51
|
Arya PS, Yagnik SM, Rajput KN, Panchal RR, Raval VH. Understanding the Basis of Occurrence, Biosynthesis, and Implications of Thermostable Alkaline Proteases. Appl Biochem Biotechnol 2021; 193:4113-4150. [PMID: 34648116 DOI: 10.1007/s12010-021-03701-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/04/2021] [Indexed: 12/29/2022]
Abstract
The group of hydrolytic enzymes synonymously known as proteases is predominantly most favored for the class of industrial enzymes. The present work focuses on the thermostable nature of these proteolytic enzymes that occur naturally among mesophilic and thermophilic microbes. The broad thermo-active feature (40-80 °C), ease of cultivation, maintenance, and bulk production are the key features associated with these enzymes. Detailing of contemporary production technologies, and controllable operational parameters including the purification strategies, are the key features that justify their industrial dominance as biocatalysts. In addition, the rigorous research inputs by protein engineering and enzyme immobilization studies add up to the thermo-catalytic features and application capabilities of these enzymes. The work summarizes key features of microbial proteases that make them numero-uno for laundry, biomaterials, waste management, food and feed, tannery, and medical as well as pharmaceutical industries. The quest for novel and/or designed and engineered thermostable protease from unexplored sources is highly stimulating and will address the ever-increasing industrial demands.
Collapse
Affiliation(s)
- Prashant S Arya
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Shivani M Yagnik
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Kiransinh N Rajput
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Rakeshkumar R Panchal
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Vikram H Raval
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380009, India.
| |
Collapse
|
52
|
Jiaojiao X, Yan Y, Bin Z, Feng L. Improved catalytic performance of carrier-free immobilized lipase by advanced cross-linked enzyme aggregates technology. Bioprocess Biosyst Eng 2021; 45:147-158. [PMID: 34611752 DOI: 10.1007/s00449-021-02648-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/28/2021] [Indexed: 01/15/2023]
Abstract
The cross-linked enzyme aggregates (CLEAs) are one of the technologies that quickly immobilize the enzyme without a carrier. In this study, ionic liquid with amino group (1-aminopropyl-3-methylimidazole bromide, FIL) was used as the novel functional surface molecule to modify CRL (Candida rugosa lipase, CRL). The enzymatic properties of CRL-FIL-CLEAs were investigated. The activity of CRL-FIL-CLEAs (5.51 U/mg protein) was 1.9 times higher than that of CRL-CLEAs (2.86 U/mg protein) without surface modification. After incubating in a centrifuge tube for 50 min at 60 °C, CRL-FIL-CLEAs still maintained 61% of its initial activity, while the value for CRL-CLEAs was only 22%. After repeated use for five times, compared with the 22% residual activity of CRL-CLEAs, the value of CRL-FIL-CLEAs was 51%. Based on the above results, it was indicated that this method provided a new idea for the effective synthesis of immobilized enzyme.
Collapse
Affiliation(s)
- Xia Jiaojiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, China
| | - Yan Yan
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, China
| | - Zou Bin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, China.
| | - Liu Feng
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, China
| |
Collapse
|
53
|
Qamar SA, Qamar M, Bilal M, Bharagava RN, Ferreira LFR, Sher F, Iqbal HMN. Cellulose-deconstruction potential of nano-biocatalytic systems: A strategic drive from designing to sustainable applications of immobilized cellulases. Int J Biol Macromol 2021; 185:1-19. [PMID: 34146557 DOI: 10.1016/j.ijbiomac.2021.06.079] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/03/2021] [Accepted: 06/11/2021] [Indexed: 02/08/2023]
Abstract
Nanostructured materials along with an added value of polymers-based support carriers have gained high interest and considered ideal for enzyme immobilization. The recently emerged nanoscience interface in the form of nanostructured materials combined with immobilized-enzyme-based bio-catalysis has now become research and development frontiers in advance and applied bio-catalysis engineering. With the involvement of nanoscience, various polymers have been thoroughly developed and exploited to nanostructured engineer constructs as ideal support carriers/matrices. Such nanotechnologically engineered support carriers/matrix possesses unique structural, physicochemical, and functional attributes which equilibrate principal factors and strengthen the biocatalysts efficacy for multipurpose applications. In addition, nano-supported catalysts are potential alternatives that can outstrip several limitations of conventional biocatalysts, such as reduced catalytic efficacy and turnover, low mass transfer efficiency, instability during the reaction, and most importantly, partial, or complete inhibition/deactivation. In this context, engineering robust and highly efficient biocatalysts is an industrially relevant prerequisite. This review comprehensively covered various biopolymers and nanostructured materials, including silica, hybrid nanoflower, nanotubes or nanofibers, nanomembranes, graphene oxide nanoparticles, metal-oxide frameworks, and magnetic nanoparticles as robust matrices for cellulase immobilization. The work is further enriched by spotlighting applied and industrially relevant considerations of nano-immobilized cellulases. For instance, owing to the cellulose-deconstruction features of nano-immobilized cellulases, the applications like lignocellulosic biomass conversion into industrially useful products or biofuels, improved paper sheet density and pulp beat in paper and pulp industry, fruit juice clarification in food industry are evident examples of cellulases, thereof are discussed in this work.
Collapse
Affiliation(s)
- Sarmad Ahmad Qamar
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Mahpara Qamar
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Ram Naresh Bharagava
- Laboratory of Bioremediation and Metagenomics Research (LBMR), Department of Environmental Microbiology (DEM), Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226 025, U.P., India
| | - Luiz Fernando Romanholo Ferreira
- Waste and Effluent Treatment Laboratory, Institute of Technology and Research (ITP), Tiradentes University, Farolândia, Aracaju, SE 49032-490, Brazil; Graduate Program in Process Engineering, Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490 Aracaju, Sergipe, Brazil
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| |
Collapse
|
54
|
Evaluating the activity and stability of sonochemically produced hemoglobin-copper hybrid nanoflowers against some metallic ions, organic solvents, and inhibitors. J Biosci Bioeng 2021; 132:327-336. [PMID: 34334311 DOI: 10.1016/j.jbiosc.2021.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 01/10/2023]
Abstract
The disadvantage of the conventional protein-inorganic hybrid nanoflower production method is the long incubation period of the synthesis method. This period is not suitable for practical industrial use. Herein, protein-inorganic hybrid nanoflowers were synthesized using hemoglobin and copper ion by fast sonication method for 10 min. The synthesized nanoflowers were characterized via scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, and Fouirer-transform infrared spectroscopy. The activity and stability of the nanoflowers in the presence of different metal ions, organic solvents, inhibitors, and storage conditions were also evaluated by comparing with free hemoglobin. According to obtained results, the optimum pH and temperatures of both hybrid nanoflower and free hemoglobin were pH 5 and 40 °C, respectively. At all pH levels, nanoflower was more stable than free protein and it was also more stable than the free hemoglobin at temperatures ranging between 50 °C and 80 °C. The free protein lost more than half of its activity in the presence of acetone, benzene, and N,N-dimethylformamide, while the hybrid nanoflower retained more than 70% of its activity for 2 h at 40 °C. The hybrid nanoflower activity was essentially increased in the presence of Ca2+, Zn2+, Fe2+, Cu2+ and Ni2+ (132%, 161%, 175%, 185% and 106%, respectively) at 5 mM concentration. The nanoflower retained more than 85% of its initial activity in the presence of all inhibitors. In addition, it retained all its activity for 3 days under different storage conditions, unlike free hemoglobin. The results demonstrated that new hybrid nanoflowers may be promising in different biotechnological applications such as catalytic biosensors and environmental or industrial catalytic processes.
Collapse
|
55
|
Guan T, Liu B, Wang R, Huang Y, Luo J, Li Y. The enhanced fatty acids flavor release for low-fat cheeses by carrier immobilized lipases on O/W Pickering emulsions. Food Hydrocoll 2021; 116:106651. [DOI: 10.1016/j.foodhyd.2021.106651] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
56
|
Altering the Stereoselectivity of Whole-Cell Biotransformations via the Physicochemical Parameters Impacting the Processes. Catalysts 2021. [DOI: 10.3390/catal11070781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The enantioselective synthesis of organic compounds is one of the great challenges in organic synthetic chemistry due to its importance for the acquisition of biologically active derivatives, e.g., pharmaceuticals, agrochemicals, and others. This is why biological systems are increasingly applied as tools for chiral compounds synthesis or modification. The use of whole cells of “wild-type” microorganisms is one possible approach, especially as some methods allow improving the conversion degrees and controlling the stereoselectivity of the reaction without the need to introduce changes at the genetic level. Simple manipulation of the culture conditions, the form of a biocatalyst, or the appropriate composition of the biotransformation medium makes it possible to obtain optically pure products in a cheap, safe, and environmentally friendly manner. This review contains selected examples of the influence of physicochemical factors on the stereochemistry of the biocatalytic preparation of enantiomerically pure compounds, which is undertaken through kinetically controlled separation of their racemic mixtures or reduction of prochiral ketones and has an effect on the final enantiomeric purity and enantioselectivity of the reaction.
Collapse
|
57
|
Tabe H, Oshima H, Ikeyama S, Amao Y, Yamada Y. Enhanced catalytic stability of acid phosphatase immobilized in the mesospaces of a SiO2-nanoparticles assembly for catalytic hydrolysis of organophosphates. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
58
|
Lipozyme 435-Mediated Synthesis of Xylose Oleate in Methyl Ethyl Ketone. Molecules 2021; 26:molecules26113317. [PMID: 34205848 PMCID: PMC8197991 DOI: 10.3390/molecules26113317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 01/05/2023] Open
Abstract
In this paper, we have performed the Lipozyme 435-catalyzed synthesis of xylose oleate in methyl ethyl ketone (MEK) from xylose and oleic acid. The effects of substrates’ molar ratios, reaction temperature, reaction time on esterification rates, and Lipozyme 435 reuse were studied. Results showed that an excess of oleic acid (xylose: oleic acid molar ratio of 1:5) significantly favored the reaction, yielding 98% of xylose conversion and 31% oleic acid conversion after 24 h-reaction (mainly to xylose mono- and dioleate, as confirmed by mass spectrometry). The highest Lipozyme 435 activities occurred between 55 and 70 °C. The predicted Ping Pong Bi Bi kinetic model fitted very well to the experimental data and there was no evidence of inhibitions in the range assessed. The reaction product was purified and presented an emulsion capacity close to that of a commercial sugar ester detergent. Finally, the repeated use of Lipozyme 435 showed a reduction in the reaction yields (by 48 and 19% in the xylose and oleic acid conversions, respectively), after ten 12 h-cycles.
Collapse
|
59
|
Shang YT, Qin J, Gong JS, Wang ZK, Li H, Li H, Shi JS, Xu ZH. High-throughput screening of a nicotinate dehydrogenase producing Pseudomonas putida mutant for efficient biosynthesis of 6-hydroxynicotinic acid. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
60
|
Bucur B, Purcarea C, Andreescu S, Vasilescu A. Addressing the Selectivity of Enzyme Biosensors: Solutions and Perspectives. SENSORS (BASEL, SWITZERLAND) 2021; 21:3038. [PMID: 33926034 PMCID: PMC8123588 DOI: 10.3390/s21093038] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/23/2022]
Abstract
Enzymatic biosensors enjoy commercial success and are the subject of continued research efforts to widen their range of practical application. For these biosensors to reach their full potential, their selectivity challenges need to be addressed by comprehensive, solid approaches. This review discusses the status of enzymatic biosensors in achieving accurate and selective measurements via direct biocatalytic and inhibition-based detection, with a focus on electrochemical enzyme biosensors. Examples of practical solutions for tackling the activity and selectivity problems and preventing interferences from co-existing electroactive compounds in the samples are provided such as the use of permselective membranes, sentinel sensors and coupled multi-enzyme systems. The effect of activators, inhibitors or enzymatic substrates are also addressed by coupled enzymatic reactions and multi-sensor arrays combined with data interpretation via chemometrics. In addition to these more traditional approaches, the review discusses some ingenious recent approaches, detailing also on possible solutions involving the use of nanomaterials to ensuring the biosensors' selectivity. Overall, the examples presented illustrate the various tools available when developing enzyme biosensors for new applications and stress the necessity to more comprehensively investigate their selectivity and validate the biosensors versus standard analytical methods.
Collapse
Affiliation(s)
- Bogdan Bucur
- National Institute for Research and Development in Biological Sciences, 296 Splaiul Independentei, 060031 Bucharest, Romania;
| | - Cristina Purcarea
- Institute of Biology, 296 Splaiul Independentei, 060031 Bucharest, Romania;
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13676, USA;
| | - Alina Vasilescu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101 Bucharest, Romania
| |
Collapse
|
61
|
PTFE-Carbon Nanotubes and Lipase B from Candida antarctica-Long-Lasting Marriage for Ultra-Fast and Fully Selective Synthesis of Levulinate Esters. MATERIALS 2021; 14:ma14061518. [PMID: 33808937 PMCID: PMC8003637 DOI: 10.3390/ma14061518] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 01/18/2023]
Abstract
An effective method for levulinic acid esters synthesis by the enzymatic Fischer esterification of levulinic acid using a lipase B from Candida antarctica (CALB) immobilized on the advanced material consisting of multi-wall carbon nanotubes (MWCNTs) and a hydrophobic polymer—polytetrafluoroethylene (Teflon, PTFE)—as a heterogeneous biocatalyst, was developed. An active phase of the biocatalyst was obtained by immobilization via interfacial activation on the surface of the hybrid material MWCNTs/PTFE (immobilization yield: 6%, activity of CALB: 5000 U∙L∙kg−1, enzyme loading: 22.5 wt.%). The catalytic activity of the obtained biocatalyst and the effects of the selected reaction parameters, including the agitation speed, the amount of PTFE in the CALB/MWCNT-PTFE biocatalyst, the amount of CALB/MWCNT-PTFE, the type of organic solvent, n-butanol excess, were tested in the esterification of levulinic acid by n-butanol. The results showed that the use of a two-fold excess of levulinic acid to n-butanol, 22.5 wt.% of CALB on MWCNT-PTFE (0.10 wt.%) and cyclohexane as a solvent at 20 °C allowed one to obtain n-butyl levulinate with a high yield (99%) and selectivity (>99%) after 45 min. The catalyst retained its activity and stability after three cycles, and then started to lose activity until dropping to a 69% yield of ester in the sixth reaction run. The presented method has opened the new possibilities for environmentally friendly synthesis of levulinate esters.
Collapse
|
62
|
Jankowska K, Zdarta J, Grzywaczyk A, Degórska O, Kijeńska-Gawrońska E, Pinelo M, Jesionowski T. Horseradish peroxidase immobilised onto electrospun fibres and its application in decolourisation of dyes from model sea water. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.11.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
63
|
Dubey NC, Tripathi BP. Nature Inspired Multienzyme Immobilization: Strategies and Concepts. ACS APPLIED BIO MATERIALS 2021; 4:1077-1114. [PMID: 35014469 DOI: 10.1021/acsabm.0c01293] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In a biological system, the spatiotemporal arrangement of enzymes in a dense cellular milieu, subcellular compartments, membrane-associated enzyme complexes on cell surfaces, scaffold-organized proteins, protein clusters, and modular enzymes have presented many paradigms for possible multienzyme immobilization designs that were adapted artificially. In metabolic channeling, the catalytic sites of participating enzymes are close enough to channelize the transient compound, creating a high local concentration of the metabolite and minimizing the interference of a competing pathway for the same precursor. Over the years, these phenomena had motivated researchers to make their immobilization approach naturally realistic by generating multienzyme fusion, cluster formation via affinity domain-ligand binding, cross-linking, conjugation on/in the biomolecular scaffold of the protein and nucleic acids, and self-assembly of amphiphilic molecules. This review begins with the discussion of substrate channeling strategies and recent empirical efforts to build it synthetically. After that, an elaborate discussion covering prevalent concepts related to the enhancement of immobilized enzymes' catalytic performance is presented. Further, the central part of the review summarizes the progress in nature motivated multienzyme assembly over the past decade. In this section, special attention has been rendered by classifying the nature-inspired strategies into three main categories: (i) multienzyme/domain complex mimic (scaffold-free), (ii) immobilization on the biomolecular scaffold, and (iii) compartmentalization. In particular, a detailed overview is correlated to the natural counterpart with advances made in the field. We have then discussed the beneficial account of coassembly of multienzymes and provided a synopsis of the essential parameters in the rational coimmobilization design.
Collapse
Affiliation(s)
- Nidhi C Dubey
- Institute of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Bijay P Tripathi
- Department of Materials Science and Engineering, Indian institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
64
|
Neto CACG, Silva NCGE, de Oliveira Costa T, de Albuquerque TL, Gonçalves LRB, Fernandez-Lafuente R, Rocha MVP. The β-galactosidase immobilization protocol determines its performance as catalysts in the kinetically controlled synthesis of lactulose. Int J Biol Macromol 2021; 176:468-478. [PMID: 33592268 DOI: 10.1016/j.ijbiomac.2021.02.078] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/01/2021] [Accepted: 02/11/2021] [Indexed: 12/17/2022]
Abstract
In this paper, 3 different biocatalysts of β-galactosidase from Kluyveromyces lactis have been prepared by immobilization in chitosan activated with glutaraldehyde (Chi_Glu_Gal), glyoxyl agarose (Aga_Gly_Gal) and agarose coated with polyethylenimine (Aga_PEI_Gal). These biocatalysts have been used to catalyze the synthesis of lactulose from lactose and fructose. Aga-PEI-Gal only produces lactulose at 50 °C, and not at 25 or 37 °C, Aga_Gly_Gal was unable to produce lactulose at any of the assayed temperatures while Chi_Glu_Gal produced lactulose at all assayed temperatures, although a lower yield was obtained at 25 or 37 °C. The pre-incubation of this biocatalyst at 50 °C permitted to obtain similar yields at 25 or 37 °C than at 50 °C. The use of milk whey instead of pure lactose and fructose produced an improvement in the yields using Aga_PEI_Gal and a decrease using Chi_Glu_Gal. The operational stability also depends on the reaction medium and of biocatalyst. This study reveals how enzyme immobilization may greatly alter the performance of β-galactosidase in a kinetically controlled manner, and how medium composition influences this performance due to the kinetic properties of β-galactosidase.
Collapse
Affiliation(s)
- Carlos Alberto Chaves Girão Neto
- Federal University of Ceará, Technology Center, Chemical Engineering Department, Campus do Pici, Bloco 709, 60 455 - 760 Fortaleza, Ceará, Brazil
| | - Natan Câmara Gomes E Silva
- Federal University of Ceará, Technology Center, Chemical Engineering Department, Campus do Pici, Bloco 709, 60 455 - 760 Fortaleza, Ceará, Brazil
| | - Thaís de Oliveira Costa
- Federal University of Ceará, Technology Center, Chemical Engineering Department, Campus do Pici, Bloco 709, 60 455 - 760 Fortaleza, Ceará, Brazil
| | - Tiago Lima de Albuquerque
- Federal University of Ceará, Technology Center, Chemical Engineering Department, Campus do Pici, Bloco 709, 60 455 - 760 Fortaleza, Ceará, Brazil
| | - Luciana Rocha Barros Gonçalves
- Federal University of Ceará, Technology Center, Chemical Engineering Department, Campus do Pici, Bloco 709, 60 455 - 760 Fortaleza, Ceará, Brazil
| | - Roberto Fernandez-Lafuente
- Instituto de Catálisis y Petroleoquímica - CSIC, Campus of excellence UAM-CSIC, Cantoblanco, 28049 Madrid. Spain; Center of Excellence in Bionanoscience Research, Member of the external scientific advisory board, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Maria Valderez Ponte Rocha
- Federal University of Ceará, Technology Center, Chemical Engineering Department, Campus do Pici, Bloco 709, 60 455 - 760 Fortaleza, Ceará, Brazil.
| |
Collapse
|
65
|
Fotiadou R, Chatzikonstantinou AV, Hammami MA, Chalmpes N, Moschovas D, Spyrou K, Polydera AC, Avgeropoulos A, Gournis D, Stamatis H. Green Synthesized Magnetic Nanoparticles as Effective Nanosupport for the Immobilization of Lipase: Application for the Synthesis of Lipophenols. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:458. [PMID: 33670153 PMCID: PMC7916844 DOI: 10.3390/nano11020458] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 11/16/2022]
Abstract
In this work, hybrid zinc oxide-iron oxide (ZnOFe) magnetic nanoparticles were synthesized employing Olea europaea leaf aqueous extract as a reducing/chelating and capping medium. The resulting magnetic nanoparticles were characterized by basic spectroscopic and microscopic techniques, namely, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), fourier-transform infrared (FTIR) and atomic force microscopy (AFM), exhibiting a spherical shape, average size of 15-17 nm, and a functionalized surface. Lipase from Thermomyces lanuginosus (TLL) was efficiently immobilized on the surface of ZnOFe nanoparticles through physical absorption. The activity of immobilized lipase was found to directly depend on the enzyme to support the mass ratio, and also demonstrated improved pH and temperature activity range compared to free lipase. Furthermore, the novel magnetic nanobiocatalyst (ZnOFe-TLL) was applied to the preparation of hydroxytyrosyl fatty acid esters, including derivatives with omega-3 fatty acids, in non-aqueous media. Conversion yields up to 90% were observed in non-polar solvents, including hydrophobic ionic liquids. Different factors affecting the biocatalyst performance were studied. ZnOFe-TLL was reutilized for eight subsequent cycles, exhibiting 90% remaining esterification activity (720 h of total operation at 50 °C). The green synthesized magnetic nanoparticles, reported here for the first time, are excellent candidates as nanosupports for the immobilization of enzymes with industrial interest, giving rise to nanobiocatalysts with elevated features.
Collapse
Affiliation(s)
- Renia Fotiadou
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece; (R.F.); (A.V.C.); (A.C.P.)
| | - Alexandra V. Chatzikonstantinou
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece; (R.F.); (A.V.C.); (A.C.P.)
| | - Mohamed Amen Hammami
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA;
| | - Nikolaos Chalmpes
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (N.C.); (D.M.); (K.S.); (A.A.); (D.G.)
| | - Dimitrios Moschovas
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (N.C.); (D.M.); (K.S.); (A.A.); (D.G.)
| | - Konstantinos Spyrou
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (N.C.); (D.M.); (K.S.); (A.A.); (D.G.)
| | - Angeliki C. Polydera
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece; (R.F.); (A.V.C.); (A.C.P.)
| | - Apostolos Avgeropoulos
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (N.C.); (D.M.); (K.S.); (A.A.); (D.G.)
| | - Dimitrios Gournis
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (N.C.); (D.M.); (K.S.); (A.A.); (D.G.)
| | - Haralambos Stamatis
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece; (R.F.); (A.V.C.); (A.C.P.)
| |
Collapse
|
66
|
Zhang S, Bilal M, Zdarta J, Cui J, Kumar A, Franco M, Ferreira LFR, Iqbal HMN. Biopolymers and nanostructured materials to develop pectinases-based immobilized nano-biocatalytic systems for biotechnological applications. Food Res Int 2021; 140:109979. [PMID: 33648214 DOI: 10.1016/j.foodres.2020.109979] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/27/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023]
Abstract
Pectinases are the emerging enzymes of the biotechnology industry with a 25% share in the worldwide food and beverage enzyme market. These are green and eco-friendly tools of nature and hold a prominent place among the commercially produced enzymes. Pectinases exhibit applications in various industrial bioprocesses, such as clarification of fruit juices and wine, degumming, and retting of plant fibers, extraction of antioxidants and oil, fermentation of tea/coffee, wastewater remediation, modification of pectin-laden agro-industrial waste materials for high-value products biosynthesis, manufacture of cellulose fibres, scouring, bleaching, and size reduction of fabric, cellulosic biomass pretreatment for bioethanol production, etc. Nevertheless, like other enzymes, pectinases also face the challenges of low operational stability, recoverability, and recyclability. To address the above-mentioned problems, enzyme immobilization has become an eminently promising approach to improve their thermal stability and catalytic characteristics. Immobilization facilitates easy recovery and recycling of the biocatalysts multiple times, leading to enhanced performance and commercial feasibility.In this review, we illustrate recent developments on the immobilization of pectinolytic enzymes using polymers and nanostructured materials-based carrier supports to constitute novel biocatalytic systems for industrial exploitability. The first section reviewed the immobilization of pectinases on polymers-based supports (ca-alginate, chitosan, agar-agar, hybrid polymers) as a host matrix to construct robust pectinases-based biocatalytic systems. The second half covers nanostructured supports (nano-silica, magnetic nanostructures, hybrid nanoflowers, dual-responsive polymeric nanocarriers, montmorillonite clay), and cross-linked enzyme aggregates for enzyme immobilization. The biotechnological applications of the resulted immobilized robust pectinases-based biocatalytic systems are also meticulously vetted. Finally, the concluding remarks and future recommendations are also given.
Collapse
Affiliation(s)
- Shuangshuang Zhang
- School of Food Science and Technology, Jiangsu Food and Pharmaceutical Science College, Huai'an 223003, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China.
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China
| | - Ashok Kumar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh 173 234, India
| | - Marcelo Franco
- Department of Exact and Technological Sciences, State University of Santa Cruz, 45654-370 Ilhéus, Brazil
| | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University, Murilo Dantas Avenue, 300, Farolândia, 49032-490 Aracaju, Sergipe, Brazil; Institute of Technology and Research, Murilo Dantas Avenue, 300, Farolândia, 49032-490 Aracaju, Sergipe, Brazil
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| |
Collapse
|
67
|
Ramírez N, Serey M, Illanes A, Piumetti M, Ottone C. Immobilization strategies of photolyases: Challenges and perspectives for DNA repairing application. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 215:112113. [PMID: 33383556 DOI: 10.1016/j.jphotobiol.2020.112113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/27/2020] [Accepted: 12/19/2020] [Indexed: 02/08/2023]
Abstract
Photolyases are enzymes that repair DNA damage caused by solar radiation. Due to their photorepair potential, photolyases added in topical creams and used in medical treatments has allowed to reverse skin damage and prevent the development of different diseases, including actinic keratosis, premature photoaging and cancer. For this reason, research has been oriented to the study of new photolyases performing in extreme environments, where high doses of UV radiation may be a key factor for these enzymes to have perfected their photorepair potential. Generally, the extracted enzymes are first encapsulated and then added to the topical creams to increase their stability. However, other well consolidated immobilization methods are interesting strategies to be studied that may improve the biocatalyst performance. This review aims to go through the different Antarctic organisms that have exhibited photoreactivation activity, explaining the main mechanisms of photolyase DNA photorepair. The challenges of immobilizing these enzymes on porous and nanostructured supports is also discussed. The comparison of the most reported immobilization methods with respect to the structure of photolyases show that both covalent and ionic immobilization methods produced an increase in their stability. Moreover, the use of nanosized materials as photolyase support would permit the incorporation of the biocatalyst into the target cell, which is a technological requirement that photolyase based biocatalysts must fulfill.
Collapse
Affiliation(s)
- Nicolás Ramírez
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso, Chile
| | - Marcela Serey
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso, Chile
| | - Andrés Illanes
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso, Chile
| | - Marco Piumetti
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Carminna Ottone
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso, Chile.
| |
Collapse
|
68
|
Naramittanakul A, Buttranon S, Petchsuk A, Chaiyen P, Weeranoppanant N. Development of a continuous-flow system with immobilized biocatalysts towards sustainable bioprocessing. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00189b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Implementing immobilized biocatalysts in continuous-flow systems can enable a sustainable process through enhanced enzyme stability, better transport and process continuity as well as simplified recycle and downstream processing.
Collapse
Affiliation(s)
- Apisit Naramittanakul
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Supacha Buttranon
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Atitsa Petchsuk
- National Metal and Materials Technology Center (MTEC), Pathum Thani 12120, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Nopphon Weeranoppanant
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
- Department of Chemical Engineering, Faculty of Engineering, Burapha University, Chonburi 20131, Thailand
| |
Collapse
|
69
|
Alagöz D, Toprak A, Yildirim D, Tükel SS, Fernandez-Lafuente R. Modified silicates and carbon nanotubes for immobilization of lipase from Rhizomucor miehei: Effect of support and immobilization technique on the catalytic performance of the immobilized biocatalysts. Enzyme Microb Technol 2020; 144:109739. [PMID: 33541574 DOI: 10.1016/j.enzmictec.2020.109739] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 12/11/2020] [Accepted: 12/25/2020] [Indexed: 11/17/2022]
Abstract
Lipase from Rhizomucor miehei (RML) was covalently immobilized on different supports, two silica gels and two carbon nanotube samples, using two different strategies. RML was immobilized on 3-carboxypropyl silica gel (RML@Si-COOH) and multi-wall carbon nanotubes containing carboxylic acid functionalities (RML@MCNT-COOH) using a two-step carbodiimide activation/immobilization reaction. Moreover, the enzyme was also immobilized on 3-aminopropyl silica (RML@Si-Glu) and single-wall carbon nanotubes functionalized with 3-APTES and activated with glutaraldehyde (RML@SCNT-Glu). Before and after RML immobilization, the structurel properties of supports were characterized and compared in detail. After immobilization, the expressed activities were 36.9, 90.2, 16.9, and 26.1 % for RML@Si-COOH, RML@Si-Glu, RML@MCNT-COOH, and RML@SCNT-Glu, respectively. The kinetic parameters of free and immobilized RML samples were determined for three substrates, p-nitrophenyl acetate, p-nitrophenyl butyrate and p-nitrophenyl palmitate, and RML@Si-Glu showed higher catalytic efficiency than the other immobilized RML samples. RML@Si-COOH, RML@Si-Glu, RML@MCNT-COOH, and RML@SCNT-Glu exhibited 5.8, 7.6, 4.2 and 4.6 folds longer half-life values than those of the free enzyme at pH 7.5 and 40 °C. Recyclability studies showed that all the immobilized RML biocatalysts retained over 90 % of their initial activities after ten cycles in the hydrolysis of p-nitrophenyl butyrate.
Collapse
Affiliation(s)
- Dilek Alagöz
- Cukurova University, Imamoglu Vocational School, Adana, Turkey.
| | - Ali Toprak
- Cukurova University, Sciences & Letters Faculty, Chemistry Department, 01330, Adana, Turkey
| | - Deniz Yildirim
- Cukurova University, Ceyhan Engineering Faculty, Chemical Engineering Department, Adana, Turkey
| | - S Seyhan Tükel
- Cukurova University, Sciences & Letters Faculty, Chemistry Department, 01330, Adana, Turkey
| | - Roberto Fernandez-Lafuente
- Departamento De Biocatalisis, ICP-CSIC, C/Marie Crue 2, Campus UAM-CSIC, Cantoblanco, 28049, Madrid, Spain; Center of Excellence in Bionanoscience Research, Member of The External Scientific Advisory Board, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
70
|
Rodríguez-Núñez K, Bernal C, Martínez R. Immobilized Biocatalyst Engineering: High throughput enzyme immobilization for the integration of biocatalyst improvement strategies. Int J Biol Macromol 2020; 170:61-70. [PMID: 33358947 DOI: 10.1016/j.ijbiomac.2020.12.097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/05/2020] [Accepted: 12/12/2020] [Indexed: 10/22/2022]
Abstract
The increasing use of sustainable manufacturing technologies in the industry presents a constant challenge for the development of suitable biocatalysts. Traditionally, improved biocatalysts are developed either using protein engineering (PE) or enzyme immobilization (EI). However, these approaches are usually not simultaneously applied. In this work, we designed and validated an enzyme improvement platform, Immobilized Biocatalyst Engineering (IBE), which simultaneously integrates PE and EI, with a unique combination of improvement through amino acid substitutions and attachment to a support material, allowing to select variants that would not be found through single or subsequent PE and EI improvement strategies. Our results show that there is a significant difference on the best performing variants identified through IBE, when compared to those that could be identified as soluble enzymes and then immobilized, especially when evaluating variants with low enzyme as soluble enzymes and high activity when immobilized. IBE allows evaluating thousands of variants in a short time through an integrated screening, and selection can be made with more information, resulting in the detection of highly stable and active heterogeneous biocatalysts. This novel approach can translate into a higher probability of finding suitable biocatalysts for highly demanding processes.
Collapse
Affiliation(s)
- Karen Rodríguez-Núñez
- Laboratorio de Tecnología de Enzimas para Bioprocesos, Departamento de Ingeniería en Alimentos, Universidad de La Serena, Av. Raúl Bitrán 1305, 1720010 La Serena, Chile
| | - Claudia Bernal
- Laboratorio de Tecnología de Enzimas para Bioprocesos, Departamento de Ingeniería en Alimentos, Universidad de La Serena, Av. Raúl Bitrán 1305, 1720010 La Serena, Chile; Instituto de Investigación Multidisciplinario en Ciencia y Tecnología, Universidad de La Serena, Benavente 980, 1720010 La Serena, Chile.
| | - Ronny Martínez
- Laboratorio de Tecnología de Enzimas para Bioprocesos, Departamento de Ingeniería en Alimentos, Universidad de La Serena, Av. Raúl Bitrán 1305, 1720010 La Serena, Chile.
| |
Collapse
|
71
|
Gottschalk J, Elling L. Current state on the enzymatic synthesis of glycosaminoglycans. Curr Opin Chem Biol 2020; 61:71-80. [PMID: 33271474 DOI: 10.1016/j.cbpa.2020.09.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 12/17/2022]
Abstract
Glycosaminoglycans (GAGs) are linear anionic polysaccharides, and most of them show a specific sulfation pattern. GAGs have been studied for decades, and still, new biological functions are discovered. Hyaluronic acid and heparin are sold for medical or cosmetic applications. With increased market and applications, the production of GAGs stays in the focus of research groups and the industry. Common industrial GAG production relies on the extraction of animal tissue. Contamination, high dispersity, and uncontrolled sulfation pattern are still obstacles to this process. Tailored production strategies for the chemoenzymatic synthesis have been developed to address these obstacles. In recent years, enzyme cascades, including uridine-5'-diphosphate sugar syntheses, were established to obtain defined polymer size and dispersity, as well as defined sulfation patterns. Nevertheless, the complex synthesis of GAGs is still a challenging research field.
Collapse
Affiliation(s)
- Johannes Gottschalk
- Laboratory for Biomaterials, Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074, Aachen, Germany
| | - Lothar Elling
- Laboratory for Biomaterials, Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074, Aachen, Germany.
| |
Collapse
|
72
|
Ficin: A protease extract with relevance in biotechnology and biocatalysis. Int J Biol Macromol 2020; 162:394-404. [DOI: 10.1016/j.ijbiomac.2020.06.144] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/20/2022]
|
73
|
Uber TM, Buzzo AJDR, Scaratti G, Amorim SM, Helm CV, Maciel GM, Peralta RA, Moreira RDFPM, Bracht A, Peralta RM. Comparative detoxification of Remazol Rrilliant Blue R by free and immobilized laccase of Oudemansiella canarii. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1835873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Thaís Marques Uber
- Department of Biochemistry, State University of Maringá, Maringá, Brazil
| | | | - Gidiane Scaratti
- Department of Chemistry and Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Suélen Maria Amorim
- Department of Chemistry and Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Giselle Maria Maciel
- Academic Department of Chemistry and Biology, Technological Federal University of Paraná, Curitiba, Brazil
| | - Rosely Aparecida Peralta
- Department of Chemistry and Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Adelar Bracht
- Department of Biochemistry, State University of Maringá, Maringá, Brazil
| | | |
Collapse
|
74
|
Kadam AA, Shinde SK, Ghodake GS, Saratale GD, Saratale RG, Sharma B, Hyun S, Sung JS. Chitosan-Grafted Halloysite Nanotubes-Fe 3O 4 Composite for Laccase-Immobilization and Sulfamethoxazole-Degradation. Polymers (Basel) 2020; 12:E2221. [PMID: 32992644 PMCID: PMC7600077 DOI: 10.3390/polym12102221] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 01/07/2023] Open
Abstract
A surface-engineered nano-support for enzyme laccase-immobilization was designed by grafting the surface of halloysite nanotubes (HNTs) with Fe3O4 nanoparticles and chitosan. Herein, HNTs were magnetized (HNTs-M) by a cost-effective reduction-precipitation method. The synthesized HNTs-M were grafted with 0.25%, 0.5%, 1%, and 2% chitosan (HNTs-M-chitosan), respectively. Synthesized HNTs-M-chitosan (0.25%), HNTs-M-chitosan (0.5%), HNTs-M-chitosan (1%) and HNTs-M-chitosan (2%) were linked with glutaraldehyde (GTA) for laccase immobilization. Among these formulations, HNTs-M-chitosan (1%) exhibited the highest laccase immobilization with 95.13% activity recovery and 100.12 mg/g of laccase loading. The optimized material was characterized thoroughly by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), X-ray powder diffraction (XRD), thermal gravimetric analysis (TGA), and vibrating sample magnetometer (VSM) analysis. The immobilized laccase (HNTs-M-chitosan (1%)-GTA-Laccase) exhibited higher pH, temperature, and storage stabilities. The HNTs-M-chitosan (1%)-GTA-Laccase possesses excellent reusability capabilities. At the end of 10 cycles of the reusability experiment, HNTs-M-chitosan (1%)-GTA-Laccase retained 59.88% of its initial activity. The immobilized laccase was utilized for redox-mediated degradation of sulfamethoxazole (SMX), resulting in 41%, 59%, and 62% degradation of SMX in the presence of 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), guaiacol (GUA), and syringaldehyde (SA), respectively. Repeated SMX degradation (57.10% after the sixth cycle) confirmed the potential of HNTs-M-chitosan (1%)-GTA-Laccase for environmental pollutant degradation. Thus, we successfully designed chitosan-based, rapidly separable super-magnetic nanotubes for efficacious enhancement of laccase biocatalysis, which can be applied as nano-supports for other enzymes.
Collapse
Affiliation(s)
- Avinash A. Kadam
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Korea; (A.A.K.); (R.G.S.)
| | - Surendra K. Shinde
- Department of Biological and Environmental Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyonggido 10326, Korea; (S.K.S.); (G.S.G.)
| | - Gajanan S. Ghodake
- Department of Biological and Environmental Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyonggido 10326, Korea; (S.K.S.); (G.S.G.)
| | - Ganesh D. Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Korea;
| | - Rijuta G. Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Korea; (A.A.K.); (R.G.S.)
| | - Bharat Sharma
- Department of Materials Science and Engineering, Incheon National University, Academy Road Yeonsu, Incheon 22012, Korea;
| | - Seunghun Hyun
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Korea;
| | - Jung-Suk Sung
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyonggido 10326, Korea
| |
Collapse
|
75
|
Plž M, Petrovičová T, Rebroš M. Semi-Continuous Flow Biocatalysis with Affinity Co-Immobilized Ketoreductase and Glucose Dehydrogenase. Molecules 2020; 25:molecules25184278. [PMID: 32961948 PMCID: PMC7570937 DOI: 10.3390/molecules25184278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/10/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
The co-immobilization of ketoreductase (KRED) and glucose dehydrogenase (GDH) on highly cross-linked agarose (sepharose) was studied. Immobilization of these two enzymes was performed via affinity interaction between His-tagged enzymes (six histidine residues on the N-terminus of the protein) and agarose matrix charged with nickel (Ni2+ ions). Immobilized enzymes were applied in a semicontinuous flow reactor to convert the model substrate; α-hydroxy ketone. A series of biotransformation reactions with a substrate conversion of >95% were performed. Immobilization reduced the requirement for cofactor (NADP+) and allowed the use of higher substrate concentration in comparison with free enzymes. The immobilized system was also tested on bulky ketones and a significant enhancement in comparison with free enzymes was achieved.
Collapse
|
76
|
Abd Rahman NH, Jaafar NR, Abdul Murad AM, Abu Bakar FD, Shamsul Annuar NA, Md Illias R. Novel cross-linked enzyme aggregates of levanase from Bacillus lehensis G1 for short-chain fructooligosaccharides synthesis: Developmental, physicochemical, kinetic and thermodynamic properties. Int J Biol Macromol 2020; 159:577-589. [DOI: 10.1016/j.ijbiomac.2020.04.262] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 10/24/2022]
|
77
|
Enzyme-Coated Micro-Crystals: An Almost Forgotten but Very Simple and Elegant Immobilization Strategy. Catalysts 2020. [DOI: 10.3390/catal10080891] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The immobilization of enzymes using protein coated micro-crystals (PCMCs) was reported for the first time in 2001 by Kreiner and coworkers. The strategy is very simple. First, an enzyme solution must be prepared in a concentrated solution of one compound (salt, sugar, amino acid) very soluble in water and poorly soluble in a water-soluble solvent. Then, the enzyme solution is added dropwise to the water soluble solvent under rapid stirring. The components accompanying the enzyme are called the crystal growing agents, the solvent being the dehydrating agent. This strategy permits the rapid dehydration of the enzyme solution drops, resulting in a crystallization of the crystal formation agent, and the enzyme is deposited on this crystal surface. The reaction medium where these biocatalysts can be used is marked by the solubility of the PCMC components, and usually these biocatalysts may be employed in water soluble organic solvents with a maximum of 20% water. The evolution of these PCMC was to chemically crosslink them and further improve their stabilities. Moreover, the PCMC strategy has been used to coimmobilize enzymes or enzymes and cofactors. The immobilization may permit the use of buffers as crystal growth agents, enabling control of the reaction pH in the enzyme environments. Usually, the PCMC biocatalysts are very stable and more active than other biocatalysts of the same enzyme. However, this simple (at least at laboratory scale) immobilization strategy is underutilized even when the publications using it systematically presented a better performance of them in organic solvents than that of many other immobilized biocatalysts. In fact, many possibilities and studies using this technique are lacking. This review tried to outline the possibilities of this useful immobilization strategy.
Collapse
|
78
|
Becaro AA, Mendes AA, Adriano WS, Lopes LA, Vanzolini KL, Fernandez-Lafuente R, Tardioli PW, Cass QB, Giordano RDLC. Immobilization and stabilization of d-hydantoinase from Vigna angularis and its use in the production of N-carbamoyl-d-phenylglycine. Improvement of the reaction yield by allowing chemical racemization of the substrate. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
79
|
Taheri-Kafrani A, Kharazmi S, Nasrollahzadeh M, Soozanipour A, Ejeian F, Etedali P, Mansouri-Tehrani HA, Razmjou A, Yek SMG, Varma RS. Recent developments in enzyme immobilization technology for high-throughput processing in food industries. Crit Rev Food Sci Nutr 2020; 61:3160-3196. [PMID: 32715740 DOI: 10.1080/10408398.2020.1793726] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The demand for food and beverage markets has increased as a result of population increase and in view of health awareness. The quality of products from food processing industry has to be improved economically by incorporating greener methodologies that enhances the safety and shelf life via the enzymes application while maintaining the essential nutritional qualities. The utilization of enzymes is rendered more favorable in industrial practices via the modification of their characteristics as attested by studies on enzyme immobilization pertaining to different stages of food and beverage processing; these studies have enhanced the catalytic activity, stability of enzymes and lowered the overall cost. However, the harsh conditions of industrial processes continue to increase the propensity of enzyme destabilization thus shortening their industrial lifespan namely enzyme leaching, recoverability, uncontrollable orientation and the lack of a general procedure. Innovative studies have strived to provide new tools and materials for the development of systems offering new possibilities for industrial applications of enzymes. Herein, an effort has been made to present up-to-date developments on enzyme immobilization and current challenges in the food and beverage industries in terms of enhancing the enzyme stability.
Collapse
Affiliation(s)
- Asghar Taheri-Kafrani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Sara Kharazmi
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Asieh Soozanipour
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Fatemeh Ejeian
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Parisa Etedali
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Amir Razmjou
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Samaneh Mahmoudi-Gom Yek
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran.,Department of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
80
|
Enantioselective Transesterification of Allyl Alcohols with (E)-4-Arylbut-3-en-2-ol Motif by Immobilized Lecitase™ Ultra. Catalysts 2020. [DOI: 10.3390/catal10070798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Lecitase™ Ultra was immobilized on four different supports and tested for the first time as the biocatalyst in the kinetic resolution of racemic allyl alcohols with the (E)-4-arylbut-3-en-2-ol system in the process of transesterification. The most effective biocatalyst turned out to be the enzyme immobilized on agarose activated with cyanogen bromide (LU-CNBr). The best results (E > 200, ees and eep = 95–99%) were obtained for (E)-4-phenylbut-3-en-2-ol and its analog with a 2,5-dimethylphenyl ring whereas the lowest ee of kinetic resolution products (90%) was achieved for the substrate with a 4-methoxyphenyl substituent. For all substrates, (R)-enantiomers were esterified faster than their (S)-antipodes. The results showed that LU-CNBr is a versatile biocatalyst, showing high activity and enantioselectivity in a wide range of organic solvents in the presence of commonly used acyl donors. High operational stability of LU-CNBr allows it to be reused in three subsequent reaction cycles without negative effects on the efficiency and enantioselectivity of transesterification. This biocatalyst can become attractive to the commercial lipases in the process of the kinetic resolution of allyl alcohols.
Collapse
|
81
|
Protease—A Versatile and Ecofriendly Biocatalyst with Multi-Industrial Applications: An Updated Review. Catal Letters 2020. [DOI: 10.1007/s10562-020-03316-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
82
|
Bilal M, Wang Z, Cui J, Ferreira LFR, Bharagava RN, Iqbal HMN. Environmental impact of lignocellulosic wastes and their effective exploitation as smart carriers - A drive towards greener and eco-friendlier biocatalytic systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137903. [PMID: 32199388 DOI: 10.1016/j.scitotenv.2020.137903] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 02/05/2023]
Abstract
In recent years, lignocellulosic wastes have gathered much attention due to increasing economic, social, environmental apprehensions, global climate change and depleted fossil fuel reserves. The unsuitable management of lignocellulosic materials and related organic wastes poses serious environmental burden and causes pollution. On the other hand, lignocellulosic wastes hold significant economic potential and can be employed as promising catalytic supports because of impressing traits such as surface area, porous structure, and occurrence of many chemical moieties (i.e., carboxyl, amino, thiol, hydroxyl, and phosphate groups). In the current literature, scarce information is available on this important and highly valuable aspect of lignocellulosic wastes as smart carriers for immobilization. Thus, to fulfill this literature gap, herein, an effort has been made to signify the value generation aspects of lignocellulosic wastes. Literature assessment spotlighted that all these waste materials display high potential for immobilizing enzyme because of their low cost, bio-renewable, and sustainable nature. Enzyme immobilization has gained recognition as a highly useful technology to improve enzyme properties such as catalytic stability, performance, and repeatability. The application of carrier-supported biocatalysts has been a theme of considerable research, for the past three decades, in the bio-catalysis field. Nonetheless, the type of support matrix plays a key role in the immobilization process due to its influential impact on the physicochemical characteristics of the as-synthesized biocatalytic system. In the past, an array of various organic, inorganic, and composite materials has been used as carriers to formulate efficient and stable biocatalysts. This review is envisioned to provide recent progress and development on the use of different agricultural wastes (such as coconut fiber, sugarcane bagasse, corn and rice wastes, and Brewers' spent grain) as support materials for enzyme immobilization. In summary, the effective utilization of lignocellulosic wastes to develop multi-functional biocatalysts is not only economical but also reduce environmental problems of unsuitable management of organic wastes and drive up the application of biocatalytic technology in the industry.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Zhaoyu Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, China
| | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University, Av. Murilo Dantas 300, Farolândia, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas 300 - Prédio do ITP, Farolândia, 49032-490, Aracaju, SE, Brazil
| | - Ram Naresh Bharagava
- Laboratory for Bioremediation and Metagenomics Research, Department of Microbiology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226 025, Uttar Pradesh, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| |
Collapse
|
83
|
A Review on Bio-Based Catalysts (Immobilized Enzymes) Used for Biodiesel Production. ENERGIES 2020. [DOI: 10.3390/en13113013] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The continuous increase of the world’s population results in an increased demand for energy drastically from the industrial and domestic sectors as well. Moreover, the current public awareness regarding issues such as pollution and overuse of petroleum fuel has resulted in the development of research approaches concerning alternative renewable energy sources. Amongst the various options for renewable energies used in transportation systems, biodiesel is considered the most suitable replacement for fossil-based diesel. In what concerns the industrial application for biodiesel production, homogeneous catalysts such as sodium hydroxide, potassium hydroxide, sulfuric acid, and hydrochloric acid are usually selected, but their removal after reaction could prove to be rather complex and sometimes polluting, resulting in increases on the production costs. Therefore, there is an open field for research on new catalysts regarding biodiesel production, which can comprise heterogeneous catalysts. Apart from that, there are other alternatives to these chemical catalysts. Enzymatic catalysts have also been used in biodiesel production by employing lipases as biocatalysts. For economic reasons, and reusability and recycling, the lipases urged to be immobilized on suitable supports, thus the concept of heterogeneous biocatalysis comes in existence. Just like other heterogeneous catalytic materials, this one also presents similar issues with inefficiency and mass-transfer limitations. A solution to overcome the said limitations can be to consider the use of nanostructures to support enzyme immobilization, thus obtaining new heterogeneous biocatalysts. This review mainly focuses on the application of enzymatic catalysts as well as nano(bio)catalysts in transesterification reaction and their multiple methods of synthesis.
Collapse
|
84
|
Review on surface modification of nanocarriers to overcome diffusion limitations: An enzyme immobilization aspect. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107574] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
85
|
Comparative Study on Enzyme Immobilization Using Natural Hydrogel Matrices—Experimental Studies Supported by Molecular Models Analysis. Catalysts 2020. [DOI: 10.3390/catal10050489] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Currently, great attention is focused on conducting manufacture processes using clean and eco-friendly technologies. This research trend also relates to the production of immobilized biocatalysts of industrial importance using matrices and methods that fulfill specified operational and environmental requirements. For that reason, hydrogels of natural origin and the entrapment method become increasingly popular in terms of enzyme immobilization. The presented work is the comparative research on invertase immobilization using two natural hydrogel matrices—alginate and gelatin. During the study, we provided the molecular insight into the structural characteristics of both materials regarding their applicability as effective enzyme carriers. In order to confirm our predictions of using these hydrogels for invertase immobilization, we performed the typical experimental studies. In this case, the appropriate conditions of enzyme entrapment were selected for both types of carrier. Next, the characterization of received invertase preparations was made. As a final experimental result, the gelatin-based hydrogel was selected as an effective carrier for invertase immobilization. Hereby, using mild conditions and a pro-ecological, biodegradable matrix, it was possible to obtain very stable and reactive biocatalyst. The choice of gelatin-immobilized invertase preparation was compatible with our predictions based on the molecular models of hydrogel matrices and enzyme used.
Collapse
|
86
|
Morsi R, Bilal M, Iqbal HMN, Ashraf SS. Laccases and peroxidases: The smart, greener and futuristic biocatalytic tools to mitigate recalcitrant emerging pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136572. [PMID: 31986384 DOI: 10.1016/j.scitotenv.2020.136572] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/05/2020] [Accepted: 01/05/2020] [Indexed: 02/08/2023]
Abstract
Various organic pollutants so-called emerging pollutants (EPs), including active residues from pharmaceuticals, pesticides, surfactants, hormones, and personal care products, are increasingly being detected in numerous environmental matrices including water. The persistence of these EPs can cause adverse ecological and human health effects even at very small concentrations in the range of micrograms per liter or lower, hence called micropollutants (MPs). The existence of EPs/MPs tends to be challenging to mitigate from the environment effectively. Unfortunately, most of them are not removed during the present-day treatment plants. So far, a range of treatment processes and degradation methods have been introduced and deployed against various EPs and/or MPs, such as ultrafiltration, nanofiltration, advanced oxidation processes (AOPs) and enzyme-based treatments coupled with membrane filtrations. To further strengthen the treatment processes and to overcome the EPs/MPs effective removal dilemma, numerous studies have revealed the applicability and notable biocatalytic potentialities of laccases and peroxidases to degrade different classes of organic pollutants. Exquisite selectivity and unique catalytic properties make these enzymes powerful biocatalytic candidates for bio-transforming an array of toxic contaminants to harmless entities. This review focuses on the use of laccases and peroxidases, such as soybean peroxidase (SBP), horseradish peroxidase (HRP), lignin peroxidase (LiP), manganese peroxidase (MnP), and chloroperoxidase (CPO) as a greener oxidation route towards efficient and effective removal or degradation of EPs/MPs.
Collapse
Affiliation(s)
- Rana Morsi
- Department of Chemistry, College of Science, UAE University, Al Ain, United Arab Emirates.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Science, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, NL CP 64849, Mexico.
| | - S Salman Ashraf
- Department of Chemistry, College of Arts and Sciences, Khalifa University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
87
|
Continuous-Flow Synthesis of β-Amino Acid Esters by Lipase-Catalyzed Michael Addition of Aromatic Amines. Catalysts 2020. [DOI: 10.3390/catal10040432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A continuous-flow procedure for the synthesis of β-amino acid esters has been developed via lipase-catalyzed Michael reaction of various aromatic amines with acrylates. Lipase TL IM from Thermomyces lanuginosus was first used to catalyze Michael addition reaction of aromatic amines. Compared with other methods, the salient features of this work include green reaction conditions (methanol as reaction medium), short residence time (30 min), readily available catalyst and a reaction process that is easy to control. This enzymatic synthesis of β-amino acid esters performed in continuous-flow microreactors is an innovation that provides a new strategy for the fast biotransformation of β-amino acid esters.
Collapse
|
88
|
Ali M, Ishqi HM, Husain Q. Enzyme engineering: Reshaping the biocatalytic functions. Biotechnol Bioeng 2020; 117:1877-1894. [DOI: 10.1002/bit.27329] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/13/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Misha Ali
- Department of Biochemistry, Faculty of Life SciencesAligarh Muslim University Aligarh Uttar Pradesh India
| | | | - Qayyum Husain
- Department of Biochemistry, Faculty of Life SciencesAligarh Muslim University Aligarh Uttar Pradesh India
| |
Collapse
|
89
|
Gupta MN, Perwez M, Sardar M. Protein crosslinking: Uses in chemistry, biology and biotechnology. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1733990] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
| | - Mohammad Perwez
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Meryam Sardar
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
90
|
|
91
|
Leśniarek A, Chojnacka A, Drozd R, Szymańska M, Gładkowski W. Free and Immobilized Lecitase™ Ultra as the Biocatalyst in the Kinetic Resolution of ( E)-4-Arylbut-3-en-2-yl Esters. Molecules 2020; 25:molecules25051067. [PMID: 32120991 PMCID: PMC7179117 DOI: 10.3390/molecules25051067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/19/2022] Open
Abstract
The influence of buffer type, co-solvent type, and acyl chain length was investigated for the enantioselective hydrolysis of racemic 4-arylbut-3-en-2-yl esters using Lecitase™ Ultra (LU). Immobilized preparations of the Lecitase™ Ultra enzyme had significantly higher activity and enantioselectivity than the free enzyme, particularly for 4-phenylbut-3-en-2-yl butyrate as the substrate. Moreover, the kinetic resolution with the immobilized enzyme was achieved in a much shorter time (24–48 h). Lecitase™ Ultra, immobilized on cyanogen bromide-activated agarose, was particularly effective, producing, after 24 h of reaction time in phosphate buffer (pH 7.2) with acetone as co-solvent, both (R)-alcohols and unreacted (S)-esters with good to excellent enantiomeric excesses (ee 90–99%). These conditions and enzyme were also suitable for the kinetic separation of racemic (E)-4-phenylbut-3-en-2-yl butyrate analogs containing methyl substituents on the benzene ring (4b,4c), but they did not show any enantioselectivity toward (E)-4-(4’-methoxyphenyl)but-3-en-2-yl butyrate (4d).
Collapse
Affiliation(s)
- Aleksandra Leśniarek
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland;
- Correspondence: (A.L.); (W.G.); Tel.: +48-713205154 (W.G.)
| | - Anna Chojnacka
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland;
| | - Radosław Drozd
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, 45 Piastów Avenue, 71-311 Szczecin, Poland; (R.D.); (M.S.)
| | - Magdalena Szymańska
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, 45 Piastów Avenue, 71-311 Szczecin, Poland; (R.D.); (M.S.)
| | - Witold Gładkowski
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland;
- Correspondence: (A.L.); (W.G.); Tel.: +48-713205154 (W.G.)
| |
Collapse
|
92
|
Giannakopoulou A, Gkantzou E, Polydera A, Stamatis H. Multienzymatic Nanoassemblies: Recent Progress and Applications. Trends Biotechnol 2020; 38:202-216. [DOI: 10.1016/j.tibtech.2019.07.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 12/23/2022]
|
93
|
Bilal M, Iqbal HMN. Tailoring Multipurpose Biocatalysts via Protein Engineering Approaches: A Review. Catal Letters 2019; 149:2204-2217. [DOI: 10.1007/s10562-019-02821-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/08/2019] [Indexed: 02/05/2023]
|
94
|
Increasing the Enzyme Loading Capacity of Porous Supports by a Layer-by-Layer Immobilization Strategy Using PEI as Glue. Catalysts 2019. [DOI: 10.3390/catal9070576] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A new strategy to increase the enzyme-loading capacity of porous supports was investigated. Lipase from Pseudomonas fluorescens (PFL) was immobilized on octyl-agarose (OA) beads and treated with polyethyleneimine (PEI). Then, PFL was immobilized on the previous PFL layer. Next, the biocatalyst was coated with PEI and a third layer of PFL was added. Sodium dodecyl sulfate polyacrylamide electrophoresis showed that the amount of PFL proportionally increased with each enzyme layer; however, the effects on biocatalyst activity were not as clear. Hydrolyzing 50 mM of triacetin at 25 °C, the activity of the three-layer biocatalyst was even lower than that of the bi-layer one; on the contrary its activity was higher when the activity was measured at 4 °C in the presence of 30% acetonitrile (that reduced the activity and thus the relevance of the substrate diffusion limitations). That is, the advantage of the multilayer formation depends on the specific activity of the enzyme and on the diffusion limitations of the substrate. When octyl agarose (OA)-PFL-PEI-PFL preparation was treated with glutaraldehyde, the activity was reduced, although the enzyme stability increased and the immobilization of the last PFL layer offered results similar to the one obtained using the three-layer preparation without glutaraldehyde modification (90%).
Collapse
|
95
|
Bilal M, Iqbal HMN. State-of-the-art strategies and applied perspectives of enzyme biocatalysis in food sector - current status and future trends. Crit Rev Food Sci Nutr 2019; 60:2052-2066. [PMID: 31210055 DOI: 10.1080/10408398.2019.1627284] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
With the recent progress in biotechnology, a wide variety of novel enzymes with unique physicochemical properties and diverse applications has been introduced, and new application list continues to extend in the future. Enzymes obtained from microorganisms, including bacteria, fungi, yeast are widely applied in numerous food formulations for intensifying their texture and taste. Owing to several desirable characteristics such as easy, cost-efficient and stable production, microbial-derived enzymes are preferred source in contrast to animals or plants. Enzymatic processes have a considerable impact in controlling the characteristics such as (1) physiochemical properties, (2) rheological functionalities, (3) facile process as compared to the chemical-based processing, (4) no or minimal consumption of harsh chemicals, (5) overall cost-effective ratio, (6) sensory and flavor qualities, and (7) intensifying the stability, shelf life and overall quality of the product, etc. in the food industry. Also, enzyme-catalyzed processing has also been designed for new food applications such as extraction of bioactive compounds, nutrient-rich and texture improved foods production, and eliminating food safety hazards. Herein, we reviewed recent applications of food-processing enzymes and highlighted promising technologies to diversify their application range in food industries. Immobilization technology enabled biocatalysts to be used cost-effectively due to reusability with negligible or no activity loss. Integrated progress in novel enzyme discovery, and recombinant DNA technology, as well as protein engineering and bioprocess engineering strategies, are believed to rapidly propagate biocatalysis at industrial-scale food processing or green and sustainable chemical manufacturing.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Hafiz M N Iqbal
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, N.L., Mexico
| |
Collapse
|
96
|
Alkaline Modification of a Metal–Enzyme–Surfactant Nanocomposite to Enhance the Production of L-α-glycerylphosphorylcholine. Catalysts 2019. [DOI: 10.3390/catal9030237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Microenvironment modification within nanoconfinement can maximize the catalytic activity of enzymes. Phospholipase A1 (PLA1) has been used as the biocatalyst to produce high value L-α-glycerylphosphorylcholine (L-α-GPC) through hydrolysis of phosphatidylcholine (PC). We successfully developed a simple co-precipitation method to encapsulate PLA1 in a metal–surfactant nanocomposite (MSNC), then modified it using alkalescent 2-Methylimidazole (2-Melm) to promote catalytic efficiency in biphasic systems. The generated 2-Melm@PLA1/MSNC showed higher catalytic activity than PLA1/MSNC and free PLA1. Scanning electron microscopy and transmission electron microscopy showed a typical spherical structure of 2-Melm@PLA1/MSNC at about 50 nm, which was smaller than that of 2-Melm@MSNC. Energy disperse spectroscopy, N2 adsorption isotherms, Fourier transform infrared spectrum, and high-resolution X-ray photoelectron spectroscopy proved that 2-Melm successfully modified PLA1/MSNC. The generated 2-Melm@PLA1/MSNC showed a high catalytic rate per unit enzyme mass of 1.58 μmol mg-1 min-1 for the formation of L-α-GPC. The 2-Melm@PLA1/MSNC also showed high thermal stability, pH stability, and reusability in a water–hexane biphasic system. The integration of alkaline and amphiphilic properties of a nanocomposite encapsulating PLA1 resulted in highly efficient sequenced reactions of acyl migration and enzymatic hydrolysis at the interface of a biphasic system, which cannot be achieved by free enzyme.
Collapse
|