51
|
|
52
|
|
53
|
Tondo AR, Caputo L, Mangiatordi GF, Monaci L, Lentini G, Logrieco AF, Montaruli M, Nicolotti O, Quintieri L. Structure-Based Identification and Design of Angiotensin Converting Enzyme-Inhibitory Peptides from Whey Proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:541-548. [PMID: 31860295 DOI: 10.1021/acs.jafc.9b06237] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Besides their nutritional value, whey protein (WP) peptides are food components retaining important pharmacological properties for controlling hypertension. We herein report how the use of complementary experimental and theoretical investigations allowed the identification of novel angiotensin converting enzyme inhibitory (ACEI) peptides obtained from a WP hydrolysate and addressed the rational design of even shorter sequences based on molecular pruning. Thus, after bromelain digestion followed by a 5 kDa cutoff ultrafiltration, WP hydrolysate with ACEI activity was fractioned by RP-HPLC; 2 out of 23 collected fractions retained ACEI activity and were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). In the face of 128 identified peptides, molecular docking was carried out to prioritize peptides and to rationally guide the design of novel shorter and bioactive sequences. Therefore, 11 peptides, consisting of 3-6 amino acids and with molecular weights in the range from 399 to 674 Da, were rationally designed and then purchased to determine the IC50 value. This approach allowed the identification of two novel peptides: MHI and IAEK with IC50 ACEI values equal to 11.59 and 25.08 μM, respectively. Interestingly, we also confirmed the well-known ACEI IPAVF with an IC50 equal to 9.09 μM. In light of these results, this integrated approach could pave the way for high-throughput screening and identification of new peptides in dairy products. In addition, the herein proposed ACEI peptides could be exploited for novel applications both for food production and pharmaceuticals.
Collapse
Affiliation(s)
- Anna Rita Tondo
- Department of Pharmacy-Drug Sciences , University of Studies of Bari Aldo Moro , Via E. Orabona, 4 , 70126 Bari , Italy
| | - Leonardo Caputo
- Institute of Sciences of Food Production (CNR-ISPA) National Council of Research , Via G. Amendola, 122/O , 70126 Bari , Italy
| | - Giuseppe Felice Mangiatordi
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche , Via G. Amendola 122/O , 70126 Bari , Italy
| | - Linda Monaci
- Institute of Sciences of Food Production (CNR-ISPA) National Council of Research , Via G. Amendola, 122/O , 70126 Bari , Italy
| | - Giovanni Lentini
- Department of Pharmacy-Drug Sciences , University of Studies of Bari Aldo Moro , Via E. Orabona, 4 , 70126 Bari , Italy
| | - Antonio Francesco Logrieco
- Institute of Sciences of Food Production (CNR-ISPA) National Council of Research , Via G. Amendola, 122/O , 70126 Bari , Italy
| | - Michele Montaruli
- Department of Pharmacy-Drug Sciences , University of Studies of Bari Aldo Moro , Via E. Orabona, 4 , 70126 Bari , Italy
| | - Orazio Nicolotti
- Department of Pharmacy-Drug Sciences , University of Studies of Bari Aldo Moro , Via E. Orabona, 4 , 70126 Bari , Italy
| | - Laura Quintieri
- Institute of Sciences of Food Production (CNR-ISPA) National Council of Research , Via G. Amendola, 122/O , 70126 Bari , Italy
| |
Collapse
|
54
|
Isolation and identification of alcohol dehydrogenase stabilizing peptides from Alcalase digested chicken breast hydrolysates. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
55
|
Korish AA, Abdel Gader AGM, Alhaider AA. Comparison of the hypoglycemic and antithrombotic (anticoagulant) actions of whole bovine and camel milk in streptozotocin-induced diabetes mellitus in rats. J Dairy Sci 2020; 103:30-41. [DOI: 10.3168/jds.2019-16606] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/30/2019] [Indexed: 01/15/2023]
|
56
|
Gomes AS, Vacca F, Cinquetti R, Murashita K, Barca A, Bossi E, Rønnestad I, Verri T. Identification and characterization of the Atlantic salmon peptide transporter 1a. Am J Physiol Cell Physiol 2020; 318:C191-C204. [DOI: 10.1152/ajpcell.00360.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peptide transporter 1 (PepT1) mediates the uptake of dietary di-/tripeptides in vertebrates. However, in teleost fish gut, more than one PepT1-type transporter might operate, because of teleost-specific whole gen(om)e duplication event(s) that occurred during evolution. Here, we describe a novel teleost di-/tripeptide transporter, i.e., the Atlantic salmon ( Salmo salar) peptide transporter 1a [PepT1a; or solute carrier family 15 member 1a (Slc15a1a)], which is a paralog (77% similarity and 64% identity at the amino acid level) of the well-described Atlantic salmon peptide transporter 1b [PepT1b, alias PepT1; or solute carrier family 15 member 1b (Slc15a1b)]. Comparative analysis and evolutionary relationships of gene/protein sequences were conducted after ad hoc database mining. Tissue mRNA expression analysis was performed by quantitative real-time PCR, whereas transport function analysis was accomplished by heterologous expression in Xenopus laevis oocytes and two-electrode voltage-clamp measurements. Atlantic salmon pept1a is highly expressed in the proximal intestine (pyloric ceca ≈ anterior midgut > midgut >> posterior midgut), in the same gut regions as pept1b but notably ~5-fold less abundant. Like PepT1b, Atlantic salmon PepT1a is a low‐affinity/high‐capacity system. Functional analysis showed electrogenic, Na+-independent/pH-dependent transport and apparent substrate affinity ( K0.5) values for Gly-Gln of 1.593 mmol/L at pH 7.6 and 0.076 mmol/L at pH 6.5. In summary, we show that a piscine PepT1a-type transporter is functional. Defining the role of Atlantic salmon PepT1a in the gut will help to understand the evolutionary and functional relationships among peptide transporters. Its functional characterization will contribute to elucidate the relevance of peptide transporters in Atlantic salmon nutritional physiology.
Collapse
Affiliation(s)
- Ana S. Gomes
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Francesca Vacca
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Raffaella Cinquetti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Koji Murashita
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Research Center for Aquaculture Systems, Japan Fisheries Research and Education Agency, National Research Institute of Aquaculture, Tamaki, Japan
| | - Amilcare Barca
- Laboratory of General Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Elena Bossi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Ivar Rønnestad
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Tiziano Verri
- Laboratory of General Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| |
Collapse
|
57
|
Iahtisham-Ul-Haq, Butt MS, Randhawa MA, Shahid M. Hepatoprotective effects of red beetroot-based beverages against CCl 4 -induced hepatic stress in Sprague Dawley rats. J Food Biochem 2019; 43:e13057. [PMID: 31583751 DOI: 10.1111/jfbc.13057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/08/2019] [Accepted: 09/10/2019] [Indexed: 12/30/2022]
Abstract
Red beetroot (Beta vulgaris L.) is considered important to improve hepatic health but its use is primarily limited to fresh salads in Pakistan. This study was aimed at exploring prophylactic role of red beetroot-based beverages against carbon tetrachloride (CCl4 )-induced hepatic stress. Purposely, red beetroot-based beverages (8 ml/kg b.w. per day) were administered to normal and hepatotoxicity-induced rats for 8 weeks. The biochemical analyses revealed significantly higher levels of superoxide dismutase (25%-28%), catalase (21%-24%), and hepatic enzymes (15%-19%) alongside reduced lipid peroxidation (27%-32%) in liver tissues of hepatotoxicity-induced rats treated with beetroot-based beverages compared to control. Similarly, hepatic injury was reduced by 19%-26% as indicated by concentrations of serum hepatic health biomarkers. Moreover, histological architecture of hepatocytes also portrayed promising effects of beetroot-based beverages to preserve hepatocellular portfolio. It was concluded that red beetroot-based beverages considerably assuage negative impacts of hepatic stress. PRACTICAL APPLICATIONS: Functional foods and nutraceuticals are considered vital in controlling the oxidative stress-mediated metabolic disorders as safer alternatives to pharmaceutical agents. The current research explored the protective effects of red beetroot-based beverages which can be utilized as an effective approach to prevent liver injuries. Also, the outcomes of this research endorsed the defensive role of these beverages against oxidative stress-induced hepatic stress, so dietary supplementation of such products can be synchronized in clinical practices to alleviate oxidative stress. However, there is a need to further explore the safety aspects of such products in their long-term usage before implementing this module in humans for disease prevention/cure.
Collapse
Affiliation(s)
- Iahtisham-Ul-Haq
- National Institute of Food Science & Technology, Faculty of Food, Nutrition & Home Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Masood Sadiq Butt
- National Institute of Food Science & Technology, Faculty of Food, Nutrition & Home Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Atif Randhawa
- National Institute of Food Science & Technology, Faculty of Food, Nutrition & Home Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Shahid
- Medicinal Biochemistry Research Laboratory, Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
58
|
Moosmang S, Siltari A, Bolzer MT, Kiechl S, Sturm S, Stuppner H. Development, validation, and application of a fast, simple, and robust SPE-based LC-MS/MS method for quantification of angiotensin I-converting enzyme inhibiting tripeptides Val-Pro-Pro, Ile-Pro-Pro, and Leu-Pro-Pro in yoghurt and other fermented dairy products. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2019.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
59
|
Antioxidant peptides (<3 kDa) identified on hard cow milk cheese with rennet from different origin. Food Res Int 2019; 120:643-649. [DOI: 10.1016/j.foodres.2018.11.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/26/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022]
|
60
|
Xu Q, Hong H, Wu J, Yan X. Bioavailability of bioactive peptides derived from food proteins across the intestinal epithelial membrane: A review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.02.050] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
61
|
Fan F, Shi P, Chen H, Tu M, Wang Z, Lu W, Du M. Identification and availability of peptides from lactoferrin in the gastrointestinal tract of mice. Food Funct 2019; 10:879-885. [DOI: 10.1039/c8fo01998c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The metabolic fate of lactoferrin in vivo.
Collapse
Affiliation(s)
- Fengjiao Fan
- Department of Food Science and Engineering
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150090
- China
| | - Pujie Shi
- Department of Food Science and Engineering
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150090
- China
| | - Hui Chen
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Dalian Polytechnic University
- Dalian 116034
- China
| | - Maolin Tu
- Department of Food Science and Engineering
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150090
- China
| | - Zhenyu Wang
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Dalian Polytechnic University
- Dalian 116034
- China
| | - Weihong Lu
- Department of Food Science and Engineering
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150090
- China
| | - Ming Du
- Department of Food Science and Engineering
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150090
- China
| |
Collapse
|
62
|
Giromini C, Cheli F, Rebucci R, Baldi A. Invited review: Dairy proteins and bioactive peptides: Modeling digestion and the intestinal barrier. J Dairy Sci 2018; 102:929-942. [PMID: 30591343 DOI: 10.3168/jds.2018-15163] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/11/2018] [Indexed: 12/31/2022]
Abstract
Dairy products are one of the most important sources of biologically active proteins and peptides. The health-promoting functions of these peptides are related to their primary structure, which depends on the parent protein composition. A crucial issue in this field is the demonstration of a cause-effect relationship from the ingested protein form to the bioactive form in vivo. Intervention studies represent the gold standard in nutritional research; however, attention has increasingly been focused on the development of sophisticated in vitro models of digestion to elucidate the mechanism of action of dairy nutrients in a mechanistic way and significantly reduce the number of in vivo trials. On the other hand, the epithelial intestinal barrier is the first gate that actively interacts with digestion metabolites, making the intestinal cells the first target tissue of dairy nutrients and respective metabolites. An evolution of the in vitro digestion approach in the study of dairy proteins and derived bioactive compounds is the setup of combined in vitro digestion and cell culture models taking into consideration the endpoint to measure the target organism (e.g., animal, human) and the key concepts of bioaccessibility, bioavailability, and bioactivity. This review discusses the relevance and challenges of modeling digestion and the intestinal barrier, focusing on the implications for the modeling of dairy protein digestion for bioactivity evaluation.
Collapse
Affiliation(s)
- Carlotta Giromini
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan, Italy 20134.
| | - Federica Cheli
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan, Italy 20134
| | - Raffaella Rebucci
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan, Italy 20134
| | - Antonella Baldi
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan, Italy 20134
| |
Collapse
|
63
|
Xu Q, Yan X, Zhang Y, Wu J. Current understanding of transport and bioavailability of bioactive peptides derived from dairy proteins: a review. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.14055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Qingbiao Xu
- College of Animal Sciences and Technology Huazhong Agricultural University Wuhan 430070 China
- Department of Agricultural, Food and Nutritional Science University of Alberta Edmonton Alberta T6G 2P5 Canada
| | - Xianghua Yan
- College of Animal Sciences and Technology Huazhong Agricultural University Wuhan 430070 China
| | - Yangdong Zhang
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs Institute of Animal Science Chinese Academy of Agricultural Sciences Beijing 100193 China
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science University of Alberta Edmonton Alberta T6G 2P5 Canada
| |
Collapse
|
64
|
Manzanares P, Martínez R, Garrigues S, Genovés S, Ramón D, Marcos JF, Martorell P. Tryptophan-Containing Dual Neuroprotective Peptides: Prolyl Endopeptidase Inhibition and Caenorhabditis elegans Protection from β-Amyloid Peptide Toxicity. Int J Mol Sci 2018; 19:E1491. [PMID: 29772745 PMCID: PMC5983740 DOI: 10.3390/ijms19051491] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/09/2018] [Accepted: 05/14/2018] [Indexed: 12/15/2022] Open
Abstract
Neuroprotective peptides represent an attractive pharmacological strategy for the prevention or treatment of age-related diseases, for which there are currently few effective therapies. Lactoferrin (LF)-derived peptides (PKHs) and a set of six rationally-designed tryptophan (W)-containing heptapeptides (PACEIs) were characterized as prolyl endopeptidase (PEP) inhibitors, and their effect on β-amyloid peptide (Aβ) toxicity in a Caenorhabditis elegans model of Alzheimer's disease (AD) was evaluated. Two LF-derived sequences, PKH8 and PKH11, sharing a W at the C-terminal end, and the six PACEI heptapeptides (PACEI48L to PACEI53L) exhibited significant in vitro PEP inhibition. The inhibitory peptides PKH11 and PACEI50L also alleviated Aβ-induced paralysis in the in vivo C. elegans model of AD. Partial or total loss of the inhibitory effect on PEP was achieved by the substitution of W residues in PKH11 and PACEI50L and correlated with the loss of protection against Aβ toxicity, pointing out the relevance of W on the neuroprotective activity. Further experiments suggest that C. elegans protection might not be mediated by an antioxidant mechanism but rather by inhibition of Aβ oligomerization and thus, amyloid deposition. In conclusion, novel natural and rationally-designed W-containing peptides are suitable starting leads to design effective neuroprotective agents.
Collapse
Affiliation(s)
- Paloma Manzanares
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), 46980 Paterna, Valencia, Spain.
| | - Roberto Martínez
- Department of Food Biotechnology; Biópolis S.L.-Archer Daniels Midland, Parc Científic Universitat de València Edif. 2, 46980 Paterna, Valencia, Spain.
| | - Sandra Garrigues
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), 46980 Paterna, Valencia, Spain.
| | - Salvador Genovés
- Department of Food Biotechnology; Biópolis S.L.-Archer Daniels Midland, Parc Científic Universitat de València Edif. 2, 46980 Paterna, Valencia, Spain.
| | - Daniel Ramón
- Department of Food Biotechnology; Biópolis S.L.-Archer Daniels Midland, Parc Científic Universitat de València Edif. 2, 46980 Paterna, Valencia, Spain.
| | - Jose F Marcos
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), 46980 Paterna, Valencia, Spain.
| | - Patricia Martorell
- Department of Food Biotechnology; Biópolis S.L.-Archer Daniels Midland, Parc Científic Universitat de València Edif. 2, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
65
|
Wayah SB, Philip K. Pentocin MQ1: A Novel, Broad-Spectrum, Pore-Forming Bacteriocin From Lactobacillus pentosus CS2 With Quorum Sensing Regulatory Mechanism and Biopreservative Potential. Front Microbiol 2018; 9:564. [PMID: 29636737 PMCID: PMC5880951 DOI: 10.3389/fmicb.2018.00564] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/12/2018] [Indexed: 01/08/2023] Open
Abstract
Micrococcus luteus, Listeria monocytogenes, and Bacillus cereus are major food-borne pathogenic and spoilage bacteria. Emergence of antibiotic resistance and consumer demand for foods containing less of chemical preservatives led to a search for natural antimicrobials. A study aimed at characterizing, investigating the mechanism of action and regulation of biosynthesis and evaluating the biopreservative potential of pentocin from Lactobacillus pentosus CS2 was conducted. Pentocin MQ1 is a novel bacteriocin isolated from L. pentosus CS2 of coconut shake origin. The purification strategy involved adsorption-desorption of bacteriocin followed by RP-HPLC. It has a molecular weight of 2110.672 Da as determined by MALDI-TOF mass spectrometry and a molar extinction value of 298.82 M−1 cm−1. Pentocin MQ1 is not plasmid-borne and its biosynthesis is regulated by a quorum sensing mechanism. It has a broad spectrum of antibacterial activity, exhibited high chemical, thermal and pH stability but proved sensitive to proteolytic enzymes. It is potent against M. luteus, B. cereus, and L. monocytogenes at micromolar concentrations. It is quick-acting and exhibited a bactericidal mode of action against its targets. Target killing was mediated by pore formation. We report for the first time membrane permeabilization as a mechanism of action of the pentocin from the study against Gram-positive bacteria. Pentocin MQ1 is a cell wall-associated bacteriocin. Application of pentocin MQ1 improved the microbiological quality and extended the shelf life of fresh banana. This is the first report on the biopreservation of banana using bacteriocin. These findings place pentocin MQ1 as a potential biopreservative for further evaluation in food and medical applications.
Collapse
Affiliation(s)
- Samson B Wayah
- Microbiology Division, Faculty of Science, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Koshy Philip
- Microbiology Division, Faculty of Science, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
66
|
Lafarga T, Álvarez C, Hayes M. Bioactive peptides derived from bovine and porcine co-products: A review. J Food Biochem 2017. [DOI: 10.1111/jfbc.12418] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Tomas Lafarga
- Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, Edifici Fruitcentre; Institut de Recerca i Tecnologia Agroalimentàries (IRTA); Lleida 25003 Spain
| | - Carlos Álvarez
- Food Quality and Sensory Science Ashtown; Teagasc Food Research Centre, Dublin 15; Dublin Ireland
| | - Maria Hayes
- Food Biosciences, Ashtown; Teagasc Food Research Centre, Dublin 15; Dublin Ireland
| |
Collapse
|
67
|
Abstract
Milk whey—commonly known as cheese whey—is a by-product of cheese or casein in the dairy industry and contains usually high levels of lactose, low levels of nitrogenous compounds, protein, salts, lactic acid and small amounts of vitamins and minerals. Milk whey contains several unique components like immunoglobulins (Igs), lactoferrin (Lf), lactoperoxidase (Lp), glycomacropeptide (GMP) and sphingolipids that possess some important antimicrobial and antiviral properties. Some whey components possess anticancer properties such as sphingomyelin, which have the potential to inhibit colon cancer. Immunoglobulin-G (IgGs), Lp and Lf concentrated from whey participates in host immunity. IgGs binds with bacterial toxins and lowers the bacterial load in the large bowel. There are some whey-derived carbohydrate components that possess prebiotic activity. Lactose support lactic acid bacteria (such as Bifidobacteria and Lactobacilli). Stallic acids, an oligosaccharide in whey, are typically attached to proteins, and possess prebiotic properties. The uniqueness of whey proteins is due to their ability to boost the level of glutathione (GSH) in various tissues and also to optimize various processes of the immune system. The role of GSH is very critical as it protects the cells against free radical damage, infections, toxins, pollution and UV exposure. Overall GSH acts as a centerpiece of the body’s antioxidant defense system. It has been widely observed that individuals suffering from cancer, HIV, chronic fatigue syndrome and many other immune-compromising conditions have very poor levels of glutathione. The sulphur-containing amino-acids (cysteine and methionine) are also found in high levels in whey protein. Thus, the present review will focus on the therapeutic potential of milk whey such as antibiotic, anti-cancer, anti-toxin, immune-enhancer, prebiotic property etc.
Collapse
|