51
|
Co-Encapsulated Synbiotics and Immobilized Probiotics in Human Health and Gut Microbiota Modulation. Foods 2021; 10:foods10061297. [PMID: 34200108 PMCID: PMC8230215 DOI: 10.3390/foods10061297] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/20/2022] Open
Abstract
Growing interest in the development of innovative functional products as ideal carriers for synbiotics, e.g., nutrient bars, yogurt, chocolate, juice, ice cream, and cheese, to ensure the daily intake of probiotics and prebiotics, which are needed to maintain a healthy gut microbiota and overall well-being, is undeniable and inevitable. This review focuses on the modern approaches that are currently being developed to modulate the gut microbiota, with an emphasis on the health benefits mediated by co-encapsulated synbiotics and immobilized probiotics. The impact of processing, storage, and simulated gastrointestinal conditions on the viability and bioactivity of probiotics together with prebiotics such as omega-3 polyunsaturated fatty acids, phytochemicals, and dietary fibers using various delivery systems are considered. Despite the proven biological properties of synbiotics, research in this area needs to be focused on the proper selection of probiotic strains, their prebiotic counterparts, and delivery systems to avoid suppression of their synergistic or complementary effect on human health. Future directions should lead to the development of functional food products containing stable synbiotics tailored for different age groups or specifically designed to fulfill the needs of adjuvant therapy.
Collapse
|
52
|
Mettu S, Hathi Z, Athukoralalage S, Priya A, Lam TN, Ong KL, Choudhury NR, Dutta NK, Curvello R, Garnier G, Lin CSK. Perspective on Constructing Cellulose-Hydrogel-Based Gut-Like Bioreactors for Growth and Delivery of Multiple-Strain Probiotic Bacteria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4946-4959. [PMID: 33890783 PMCID: PMC8154558 DOI: 10.1021/acs.jafc.1c00468] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/31/2021] [Accepted: 04/14/2021] [Indexed: 05/16/2023]
Abstract
The current perspective presents an outlook on developing gut-like bioreactors with immobilized probiotic bacteria using cellulose hydrogels. The innovative concept of using hydrogels to simulate the human gut environment by generating and maintaining pH and oxygen gradients in the gut-like bioreactors is discussed. Fundamentally, this approach presents novel methods of production as well as delivery of multiple strains of probiotics using bioreactors. The relevant existing synthesis methods of cellulose hydrogels are discussed for producing porous hydrogels. Harvesting methods of multiple strains are discussed in the context of encapsulation of probiotic bacteria immobilized on cellulose hydrogels. Furthermore, we also discuss recent advances in using cellulose hydrogels for encapsulation of probiotic bacteria. This perspective also highlights the mechanism of probiotic protection by cellulose hydrogels. Such novel gut-like hydrogel bioreactors will have the potential to simulate the human gut ecosystem in the laboratory and stimulate new research on gut microbiota.
Collapse
Affiliation(s)
- Srinivas Mettu
- School
of Energy and Environment, City University
of Hong Kong, Tat Chee
Avenue, Kowloon, Hong Kong
- Chemical
and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Zubeen Hathi
- School
of Energy and Environment, City University
of Hong Kong, Tat Chee
Avenue, Kowloon, Hong Kong
| | - Sandya Athukoralalage
- Chemical
and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Anshu Priya
- School
of Energy and Environment, City University
of Hong Kong, Tat Chee
Avenue, Kowloon, Hong Kong
| | - Tsz Nok Lam
- School
of Energy and Environment, City University
of Hong Kong, Tat Chee
Avenue, Kowloon, Hong Kong
| | - Khai Lun Ong
- School
of Energy and Environment, City University
of Hong Kong, Tat Chee
Avenue, Kowloon, Hong Kong
| | - Namita Roy Choudhury
- Chemical
and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Naba Kumar Dutta
- Chemical
and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Rodrigo Curvello
- Bioresource
Processing Institute of Australia (BioPRIA), Department of Chemical
Engineering, Monash University, Clayton Victoria 3800, Australia
| | - Gil Garnier
- Bioresource
Processing Institute of Australia (BioPRIA), Department of Chemical
Engineering, Monash University, Clayton Victoria 3800, Australia
| | - Carol Sze Ki Lin
- School
of Energy and Environment, City University
of Hong Kong, Tat Chee
Avenue, Kowloon, Hong Kong
| |
Collapse
|
53
|
Wang A, Lin J, Zhong Q. Enteric rice protein-shellac composite coating to enhance the viability of probiotic Lactobacillus salivarius NRRL B-30514. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106469] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
54
|
Tay PKR, Lim PY, Ow DSW. A SH3_5 Cell Anchoring Domain for Non-recombinant Surface Display on Lactic Acid Bacteria. Front Bioeng Biotechnol 2021; 8:614498. [PMID: 33585415 PMCID: PMC7873443 DOI: 10.3389/fbioe.2020.614498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/30/2020] [Indexed: 12/17/2022] Open
Abstract
Lactic acid bacteria (LAB) are a group of gut commensals increasingly recognized for their potential to deliver bioactive molecules in vivo. The delivery of therapeutic proteins, in particular, can be achieved by anchoring them to the bacterial surface, and various anchoring domains have been described for this application. Here, we investigated a new cell anchoring domain (CAD4a) isolated from a Lactobacillus protein, containing repeats of a SH3_5 motif that binds non-covalently to peptidoglycan in the LAB cell wall. Using a fluorescent reporter, we showed that C-terminal CAD4a bound Lactobacillus fermentum selectively out of a panel of LAB strains, and cell anchoring was uniform across the cell surface. Conditions affecting CAD4a anchoring were studied, including temperature, pH, salt concentration, and bacterial growth phase. Quantitative analysis showed that CAD4a allowed display of 105 molecules of monomeric protein per cell. We demonstrated the surface display of a functional protein with superoxide dismutase (SOD), an antioxidant enzyme potentially useful for treating gut inflammation. SOD displayed on cells could be protected from gastric digestion using a polymer matrix. Taken together, our results show the feasibility of using CAD4a as a novel cell anchor for protein surface display on LAB.
Collapse
Affiliation(s)
- Pei Kun Richie Tay
- Microbial Cells Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Pei Yu Lim
- Microbial Cells Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Dave Siak-Wei Ow
- Microbial Cells Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| |
Collapse
|
55
|
Wang A, Lin J, Zhong Q. Spray-coating as a novel strategy to supplement broiler feed pellets with probiotic Lactobacillus salivarius NRRL B-30514. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
56
|
Chen Y, Meenu M, Baojun X. A Narrative Review on Microencapsulation of Obligate Anaerobe Probiotics Bifidobacterium, Akkermansia muciniphila, and Faecalibacterium prausnitzii. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2020.1871008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yining Chen
- Food Science and Technology Programme, BNU-HKBU United International College, Zhuhai, Guangdong, China
| | - Maninder Meenu
- Food Science and Technology Programme, BNU-HKBU United International College, Zhuhai, Guangdong, China
| | - Xu Baojun
- Food Science and Technology Programme, BNU-HKBU United International College, Zhuhai, Guangdong, China
| |
Collapse
|
57
|
Ursachi CȘ, Perța-Crișan S, Munteanu FD. Strategies to Improve Meat Products' Quality. Foods 2020; 9:E1883. [PMID: 33348725 PMCID: PMC7766022 DOI: 10.3390/foods9121883] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Meat products represent an important component of the human diet, their consumption registering a global increase over the last few years. These foodstuffs constitute a good source of energy and some nutrients, such as essential amino acids, high biological value proteins, minerals like iron, zinc, selenium, manganese and B-complex vitamins, especially vitamin B12. On the other hand, nutritionists have associated high consumption of processed meat with an increased risk of several diseases. Researchers and processed meat producers are involved in finding methods to eliminate nutritional deficiencies and potentially toxic compounds, to obtain healthier products and at the same time with no affecting the sensorial quality and safety of the meat products. The present review aims to summarize the newest trends regarding the most important methods that can be applied to obtain high-quality products. Nutritional enrichment with natural bioactive plant compounds (antioxidants, dietary fibers) or probiotics, reduction of harmful components (salt, nitrate/nitrite, N-nitrosamines) and the use of alternative technologies (high-pressure processing, cold plasma, ultrasounds) are the most used current strategies to accomplish this aim.
Collapse
Affiliation(s)
| | | | - Florentina-Daniela Munteanu
- Faculty of Food Engineering, Tourism and Environmental Protection, “Aurel Vlaicu” University of Arad, 310330 Arad, Romania; (C.Ș.U.); (S.P.-C.)
| |
Collapse
|
58
|
Inclusion of Probiotics into Fermented Buffalo (Bubalus bubalis) Milk: An Overview of Challenges and Opportunities. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6040121] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Buffalo-milk-based dairy products provide various health benefits to humans since buffalo milk serves as a rich source of protein, fat, lactose, calcium, iron, phosphorus, vitamin A and natural antioxidants. Dairy products such as Meekiri, Dadih, Dadi and Lassie, which are derived from Artisanal fermentation of buffalo milk, have been consumed for many years. Probiotic potentials of indigenous microflora in fermented buffalo milk have been well documented. Incorporation of certain probiotics into the buffalo-milk-based dairy products conferred vital health benefits to the consumers, although is not a common practice. However, several challenges are associated with incorporating probiotics into buffalo-milk-based dairy products. The viability of probiotic bacteria can be reduced due to processing and environmental stress during storage. Further, incompatibility of probiotics with traditional starter cultures and high acidity of fermented dairy products may lead to poor viability of probiotics. The weak acidifying performance of probiotics may affect the organoleptic quality of fermented dairy products. Besides these challenges, several innovative technologies such as the use of microencapsulated probiotics, ultrasonication, the inclusion of prebiotics, use of appropriate packaging and optimal storage conditions have been reported, promising stability and viability of probiotics in buffalo-milk-based fermented dairy products.
Collapse
|
59
|
Gunzburg WH, Aung MM, Toa P, Ng S, Read E, Tan WJ, Brandtner EM, Dangerfield J, Salmons B. Efficient protection of microorganisms for delivery to the intestinal tract by cellulose sulphate encapsulation. Microb Cell Fact 2020; 19:216. [PMID: 33243224 PMCID: PMC7691082 DOI: 10.1186/s12934-020-01465-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/28/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Gut microbiota in humans and animals play an important role in health, aiding in digestion, regulation of the immune system and protection against pathogens. Changes or imbalances in the gut microbiota (dysbiosis) have been linked to a variety of local and systemic diseases, and there is growing evidence that restoring the balance of the microbiota by delivery of probiotic microorganisms can improve health. However, orally delivered probiotic microorganisms must survive transit through lethal highly acid conditions of the stomach and bile salts in the small intestine. Current methods to protect probiotic microorganisms are still not effective enough. RESULTS We have developed a cell encapsulation technology based on the natural polymer, cellulose sulphate (CS), that protects members of the microbiota from stomach acid and bile. Here we show that six commonly used probiotic strains (5 bacteria and 1 yeast) can be encapsulated within CS microspheres. These encapsulated strains survive low pH in vitro for at least 4 h without appreciable loss in viability as compared to their respective non-encapsulated counterparts. They also survive subsequent exposure to bile. The CS microspheres can be digested by cellulase at concentrations found in the human intestine, indicating one mechanism of release. Studies in mice that were fed CS encapsulated autofluorescing, commensal E. coli demonstrated release and colonization of the intestinal tract. CONCLUSION Taken together, the data suggests that CS microencapsulation can protect bacteria and yeasts from viability losses due to stomach acid, allowing the use of lower oral doses of probiotics and microbiota, whilst ensuring good intestinal delivery and release.
Collapse
Affiliation(s)
- Walter H Gunzburg
- Austrianova Singapore, 41 Science Park Road, #03-15 The Gemini, Singapore, 117610, Singapore. .,Institute of Virology, Department of Pathobiology, University of Veterinary Medicine, 1210, Vienna, Austria.
| | - Myo Myint Aung
- Austrianova Singapore, 41 Science Park Road, #03-15 The Gemini, Singapore, 117610, Singapore
| | - Pauline Toa
- Austrianova Singapore, 41 Science Park Road, #03-15 The Gemini, Singapore, 117610, Singapore
| | - Shirelle Ng
- Austrianova Singapore, 41 Science Park Road, #03-15 The Gemini, Singapore, 117610, Singapore
| | - Eliot Read
- Austrianova Singapore, 41 Science Park Road, #03-15 The Gemini, Singapore, 117610, Singapore
| | - Wee Jin Tan
- Austrianova Singapore, 41 Science Park Road, #03-15 The Gemini, Singapore, 117610, Singapore
| | - Eva Maria Brandtner
- Austrianova Singapore, 41 Science Park Road, #03-15 The Gemini, Singapore, 117610, Singapore.,VIVIT - Vorarlberg Institute for Vascular Investigation and Treatment, Feldkirch, Austria
| | - John Dangerfield
- Austrianova Singapore, 41 Science Park Road, #03-15 The Gemini, Singapore, 117610, Singapore
| | - Brian Salmons
- Austrianova Singapore, 41 Science Park Road, #03-15 The Gemini, Singapore, 117610, Singapore
| |
Collapse
|
60
|
Jampilek J, Kralova K. Potential of Nanonutraceuticals in Increasing Immunity. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2224. [PMID: 33182343 PMCID: PMC7695278 DOI: 10.3390/nano10112224] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022]
Abstract
Nutraceuticals are defined as foods or their extracts that have a demonstrably positive effect on human health. According to the decision of the European Food Safety Authority, this positive effect, the so-called health claim, must be clearly demonstrated best by performed tests. Nutraceuticals include dietary supplements and functional foods. These special foods thus affect human health and can positively affect the immune system and strengthen it even in these turbulent times, when the human population is exposed to the COVID-19 pandemic. Many of these special foods are supplemented with nanoparticles of active substances or processed into nanoformulations. The benefits of nanoparticles in this case include enhanced bioavailability, controlled release, and increased stability. Lipid-based delivery systems and the encapsulation of nutraceuticals are mainly used for the enrichment of food products with these health-promoting compounds. This contribution summarizes the current state of the research and development of effective nanonutraceuticals influencing the body's immune responses, such as vitamins (C, D, E, B12, folic acid), minerals (Zn, Fe, Se), antioxidants (carotenoids, coenzyme Q10, polyphenols, curcumin), omega-3 fatty acids, and probiotics.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia;
| |
Collapse
|
61
|
Oral delivery of bacteria: Basic principles and biomedical applications. J Control Release 2020; 327:801-833. [DOI: 10.1016/j.jconrel.2020.09.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/05/2020] [Indexed: 12/18/2022]
|
62
|
Santos MAS, Machado MTC. Coated alginate–chitosan particles to improve the stability of probiotic yeast. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14829] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Matheus A. S. Santos
- Department of Food Technology Technology Institute Federal Rural University of Rio de Janeiro Seropédica RJ Brazil
| | - Mariana T. C. Machado
- Department of Food Technology Technology Institute Federal Rural University of Rio de Janeiro Seropédica RJ Brazil
| |
Collapse
|
63
|
Liu H, Xie M, Nie S. Recent trends and applications of polysaccharides for microencapsulation of probiotics. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.11] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Huan Liu
- State Key Laboratory of Food Science and Technology China–Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology China–Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology China–Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| |
Collapse
|
64
|
Wang P, Ding M, Zhang T, Wu T, Qiao R, Zhang F, Wang X, Zhong J. Electrospraying Technique and Its Recent Application Advances for Biological Macromolecule Encapsulation of Food Bioactive Substances. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1738455] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Panpan Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
| | - Mengzhen Ding
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
| | - Ting Zhang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
| | - Tingting Wu
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
| | - Ruirui Qiao
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Fengping Zhang
- Key Laboratory of Nutrition and Healthy Culture of Aquatic Products, Livestock, and Poultry, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Sichuan Willtest Technology Co., Ltd., Tongwei Group Co., Ltd., Chengdu, Sichuan, China
| | - Xichang Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
| | - Jian Zhong
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
65
|
A Brief Review of Edible Coating Materials for the Microencapsulation of Probiotics. COATINGS 2020. [DOI: 10.3390/coatings10030197] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The consumption of probiotics has been associated with a wide range of health benefits for consumers. Products containing probiotics need to have effective delivery of the microorganisms for their consumption to translate into benefits to the consumer. In the last few years, the microencapsulation of probiotic microorganisms has gained interest as a method to improve the delivery of probiotics in the host as well as extending the shelf life of probiotic-containing products. The microencapsulation of probiotics presents several aspects to be considered, such as the type of probiotic microorganisms, the methods of encapsulation, and the coating materials. The aim of this review is to present an updated overview of the most recent and common coating materials used for the microencapsulation of probiotics, as well as the involved techniques and the results of research studies, providing a useful knowledge basis to identify challenges, opportunities, and future trends around coating materials involved in the probiotic microencapsulation.
Collapse
|
66
|
Yao M, Xie J, Du H, McClements DJ, Xiao H, Li L. Progress in microencapsulation of probiotics: A review. Compr Rev Food Sci Food Saf 2020; 19:857-874. [DOI: 10.1111/1541-4337.12532] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/18/2019] [Accepted: 11/22/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Mingfei Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNatl. Clinical Research Center for Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang Univ. Hangzhou 310003 China
| | - Jiaojiao Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNatl. Clinical Research Center for Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang Univ. Hangzhou 310003 China
| | - Hengjun Du
- Dept. of Food ScienceUniv. of Massachusetts Amherst MA 01003 U.S.A
| | | | - Hang Xiao
- Dept. of Food ScienceUniv. of Massachusetts Amherst MA 01003 U.S.A
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNatl. Clinical Research Center for Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang Univ. Hangzhou 310003 China
| |
Collapse
|
67
|
Machado D, Almeida D, Seabra CL, Andrade JC, Gomes AM, Freitas AC. Nanoprobiotics: When Technology Meets Gut Health. FUNCTIONAL BIONANOMATERIALS 2020. [DOI: 10.1007/978-3-030-41464-1_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
68
|
Synergistic effects of whey protein isolate and amorphous sucrose on improving the viability and stability of powdered Lactobacillus salivarius NRRL B-30514. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
69
|
Wang A, Lin J, Zhong Q. Probiotic powders prepared by mixing suspension of Lactobacillus salivarius NRRL B-30514 and spray-dried lactose: Physical and microbiological properties. Food Res Int 2019; 127:108706. [PMID: 31882097 DOI: 10.1016/j.foodres.2019.108706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 12/24/2022]
Abstract
Preparation of powdered probiotics is important for storage and application. In this work, a novel method to prepare powdered probiotic ingredients was studied by mixing a Lactobacillus salivarius NRRL B-30514 suspension with amorphous spray-dried lactose at suspension: lactose (v:w) ratios (SLR) of 1:5, 1:15, and 1:25. The simple procedure resulted in lactose-probiotics powders (LPPs) with greater probiotic viability initially and during subsequent 6-month storage at a smaller SLR. In LPPs with SLRs of 1:5 and 1:15, X-ray diffraction spectroscopy and scanning electron microscopy results indicated the formation of lactose crystals, and BacLight® assay suggested the significantly lowered membrane integrity of probiotics due to hypertonic pressure of lactose dissolved in excessive water. A viable but non-culturable state of L. salivarius in LPPs may exist based on the BacLight® and CTC reduction assays. The present study may provide a novel approach to prepare powdered probiotic ingredients.
Collapse
Affiliation(s)
- Anyi Wang
- Department of Food Science, University of Tennessee, Knoxville, TN, USA
| | - Jun Lin
- Department of Animal Science, University of Tennessee, Knoxville, TN, USA
| | - Qixin Zhong
- Department of Food Science, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
70
|
Seifert A, Kashi Y, Livney YD. Delivery to the gut microbiota: A rapidly proliferating research field. Adv Colloid Interface Sci 2019; 274:102038. [PMID: 31683191 DOI: 10.1016/j.cis.2019.102038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/17/2022]
Abstract
The post genomic era has brought breakthroughs in our understanding of the complex and fascinating symbiosis we have with our co-evolving microbiota, and its dramatic impact on our physiology, physical and mental health, mood, interpersonal communication, and more. This fast "proliferating" knowledge, particularly related to the gut microbiota, is leading to the development of numerous technologies aimed to promote our health via prudent modulation of our gut microbiota. This review embarks on a journey through the gastrointestinal tract from a biomaterial science and engineering perspective, and focusses on the various state-of-the-art approaches proposed in research institutes and those already used in various industries and clinics, for delivery to the gut microbiota, with emphasis on the latest developments published within the last 5 years. Current and possible future trends are discussed. It seems that future development will progress toward more personalized solutions, combining high throughput diagnostic omic methods, and precision interventions.
Collapse
Affiliation(s)
- Adi Seifert
- Biotechnology & Food Engineering Department, Technion, Israel Institute of Technology, Haifa 3200003, Israel
| | - Yechezkel Kashi
- Biotechnology & Food Engineering Department, Technion, Israel Institute of Technology, Haifa 3200003, Israel
| | - Yoav D Livney
- Biotechnology & Food Engineering Department, Technion, Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
71
|
Li W, Liu L, Tian H, Luo X, Liu S. Encapsulation of Lactobacillus plantarum in cellulose based microgel with controlled release behavior and increased long-term storage stability. Carbohydr Polym 2019; 223:115065. [DOI: 10.1016/j.carbpol.2019.115065] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/01/2019] [Accepted: 07/05/2019] [Indexed: 12/16/2022]
|
72
|
Ryan J, Hutchings SC, Fang Z, Bandara N, Gamlath S, Ajlouni S, Ranadheera CS. Microbial, physico‐chemical and sensory characteristics of mango juice‐enriched probiotic dairy drinks. INT J DAIRY TECHNOL 2019. [DOI: 10.1111/1471-0307.12630] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jessica Ryan
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food The University of Melbourne Melbourne Vic. 3010 Australia
| | - Scott C Hutchings
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food The University of Melbourne Melbourne Vic. 3010 Australia
| | - Zhongxiang Fang
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food The University of Melbourne Melbourne Vic. 3010 Australia
| | - Nandika Bandara
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture Dalhousie University Truro Nova Scotia B2N 5E3 Canada
| | - Shirani Gamlath
- Faculty of Health, School of Exercise and Nutrition Sciences Deakin University Burwood Vic. 3125 Australia
| | - Said Ajlouni
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food The University of Melbourne Melbourne Vic. 3010 Australia
| | - C Senaka Ranadheera
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food The University of Melbourne Melbourne Vic. 3010 Australia
| |
Collapse
|
73
|
Ji R, Wu J, Zhang J, Wang T, Zhang X, Shao L, Chen D, Wang J. Extending Viability of Bifidobacterium longum in Chitosan-Coated Alginate Microcapsules Using Emulsification and Internal Gelation Encapsulation Technology. Front Microbiol 2019; 10:1389. [PMID: 31316479 PMCID: PMC6609881 DOI: 10.3389/fmicb.2019.01389] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/03/2019] [Indexed: 12/29/2022] Open
Abstract
Bifidobacteria are considered one of the most important intestinal probiotics because of their significant health impact. However, this ability is usually limited by gastrointestinal fluid and temperature sensitivity. Emulsification and internal gelation is an encapsulation technique with great potential for probiotic protection during storage and the gastrointestinal transit process. This study prepared microcapsules using an emulsification and internal gelation encapsulation method with sodium alginate, chitosan, and Bifidobacterium longum as wall material, coating material, and experimental strain, respectively. Optical, scanning electron, and focal microscopes were used to observe the microcapsule surface morphology and internal viable cell distribution, and a laser particle size analyzer and zeta potentiometer were used to evaluate the chitosan-coating characteristics. In addition, microcapsule probiotic viability after storage, heat treatment, and simulated gastrointestinal fluid treatment were examined. Alginate microcapsules and chitosan-coated alginate microcapsules both had balling properties and uniform bacterial distribution. The latter kept its balling properties after freeze-drying, verified by scanning electronic microscopy (SEM), and had a clear external coating, observed by an optical microscope. The particle size of chitosan-coated alginate microcapsules was slightly larger than the uncoated microcapsules. The zeta potential of alginate and chitosan-coated alginate microcapsules was negative and positive, respectively. Heat, acid and bile salt tolerance, and stability tests revealed that the decrease of viable cells in the chitosan-coated alginate microcapsule group was significantly lower than that in uncoated microcapsules. These experimental results indicate that the chitosan-coated alginate microcapsules protect B. longum from gastrointestinal fluid and high-temperature conditions.
Collapse
Affiliation(s)
- Rui Ji
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Jiahui Wu
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, China.,College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Junliang Zhang
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, China.,Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen University, Shenzhen, China
| | - Tao Wang
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, China.,College of Life and Environmental Science, Shanghai Normal University, Shanghai, China
| | - Xudong Zhang
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, China.,College of Life and Environmental Science, Shanghai Normal University, Shanghai, China
| | - Lei Shao
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Daijie Chen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Wang
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, China.,National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai, China
| |
Collapse
|
74
|
Yucel Falco C, Amadei F, Dhayal SK, Cárdenas M, Tanaka M, Risbo J. Hybrid coating of alginate microbeads based on protein‐biopolymer multilayers for encapsulation of probiotics. Biotechnol Prog 2019; 35:e2806. [DOI: 10.1002/btpr.2806] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 12/17/2022]
Affiliation(s)
| | - Federico Amadei
- Heidelberg University, Institute for Physical Chemistry Heidelberg Germany
| | | | - Marité Cárdenas
- Biomedical Laboratory Science and Biofilm Research Center for Biointerfaces, Faculty of Health and SocietyMalmö University Malmö Sweden
| | - Motomu Tanaka
- Heidelberg University, Institute for Physical Chemistry Heidelberg Germany
| | - Jens Risbo
- University of CopenhagenDepartment of Food Science Copenhagen Denmark
| |
Collapse
|
75
|
Abstract
Nowadays, probiotic bacteria are extensively used as health-related components in novel foods with the aim of added-value for the food industry. Ingested probiotic bacteria must resist gastrointestinal exposure, the food matrix, and storage conditions. The recommended methodology for bacteria protection is microencapsulation technology. A key aspect in the advancement of this technology is the encapsulation system. Chitosan compliments the real potential of coating microencapsulation for applications in the food industry due to its physicochemical properties: positive charges via its amino groups (which makes it the only commercially available water-soluble cationic polymer), short-term biodegradability, non-toxicity and biocompatibility with the human body, and antimicrobial and antifungal actions. Chitosan-coated microcapsules have been reported to have a major positive influence on the survival rates of different probiotic bacteria under in vitro gastrointestinal conditions and in the storage stability of different types of food products; therefore, its utilization opens promising routes in the food industry.
Collapse
|
76
|
Affiliation(s)
- Catherine S. Birch
- Institute for Agri‐Food Research & Innovation, School of Natural & Environmental Sciences Newcastle University Newcastle NE1 7RU UK
| | - Graham A. Bonwick
- Institute for Agri‐Food Research & Innovation, School of Natural & Environmental Sciences Newcastle University Newcastle NE1 7RU UK
- Fera Science Limited Sand Hutton, York YO41 1LZ UK
| |
Collapse
|
77
|
Guimarães A, Abrunhosa L, Pastrana LM, Cerqueira MA. Edible Films and Coatings as Carriers of Living Microorganisms: A New Strategy Towards Biopreservation and Healthier Foods. Compr Rev Food Sci Food Saf 2018; 17:594-614. [PMID: 33350124 DOI: 10.1111/1541-4337.12345] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/07/2018] [Accepted: 02/16/2018] [Indexed: 01/23/2023]
Abstract
Edible films and coatings have been extensively studied in recent years due to their unique properties and advantages over more traditional conservation techniques. Edible films and coatings improve shelf life and food quality, by providing a protective barrier against physical and mechanical damage, and by creating a controlled atmosphere and acting as a semipermeable barrier for gases, vapor, and water. Edible films and coatings are produced using naturally derived materials, such as polysaccharides, proteins, and lipids, or a mixture of these materials. These films and coatings also offer the possibility of incorporating different functional ingredients such as nutraceuticals, antioxidants, antimicrobials, flavoring, and coloring agents. Films and coatings are also able to incorporate living microorganisms. In the last decade, several works reported the incorporation of bacteria to confer probiotic or antimicrobial properties to these films and coatings. The incorporation of probiotic bacteria in films and coatings allows them to reach the consumers' gut in adequate amounts to confer health benefits to the host, thus creating an added value to the food product. Also, other microorganisms, either bacteria or yeast, can be incorporated into edible films in a biocontrol approach to extend the shelf life of food products. The incorporation of yeasts in films and coatings has been suggested primarily for the control of the postharvest disease. This work provides a comprehensive review of the use of edible films and coatings for the incorporation of living microorganisms, aiming at the biopreservation and probiotic ability of food products.
Collapse
Affiliation(s)
- Ana Guimarães
- Centre of Biological Engineering, Univ. of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Luís Abrunhosa
- Centre of Biological Engineering, Univ. of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Lorenzo M Pastrana
- Intl. Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Miguel A Cerqueira
- Intl. Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| |
Collapse
|
78
|
Coelho LM, Silva PM, Martins JT, Pinheiro AC, Vicente AA. Emerging opportunities in exploring the nutritional/functional value of amaranth. Food Funct 2018; 9:5499-5512. [DOI: 10.1039/c8fo01422a] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Amaranthusspp. is a highly nutritive pseudocereal, rich in macronutrients and micronutrients, including vitamins and minerals.
Collapse
Affiliation(s)
| | - Pedro Miguel Silva
- CEB – Centre of Biological Engineering
- University of Minho
- 4710-057 Braga
- Portugal
| | - Joana T. Martins
- CEB – Centre of Biological Engineering
- University of Minho
- 4710-057 Braga
- Portugal
| | - Ana C. Pinheiro
- CEB – Centre of Biological Engineering
- University of Minho
- 4710-057 Braga
- Portugal
- Instituto de Biologia Experimental e Tecnológica
| | - António A. Vicente
- CEB – Centre of Biological Engineering
- University of Minho
- 4710-057 Braga
- Portugal
| |
Collapse
|