51
|
Taverniti V, Del Bo' C, Fiore W, Gargari G, Arioli S, Riso P, Guglielmetti S, Frøkiær H. Combination of different probiotics and berry-derived (poly)phenols can modulate immune response in dendritic cells. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
52
|
Zhang J, Cao W, Zhao H, Guo S, Wang Q, Cheng N, Bai N. Protective Mechanism of Fagopyrum esculentum Moench. Bee Pollen EtOH Extract Against Type II Diabetes in a High-Fat Diet/Streptozocin-Induced C57BL/6J Mice. Front Nutr 2022; 9:925351. [PMID: 35845783 PMCID: PMC9280863 DOI: 10.3389/fnut.2022.925351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/10/2022] [Indexed: 12/25/2022] Open
Abstract
Bee pollen is known as a natural nutrient storehouse and plays a key role in many biological processes. Based on the preliminary separation, identification, and characterization of the main active components of Fagopyrum esculentum Moench. bee pollen (FBP), the protective effects of F. esculentum bee pollen extract (FBPE) on high-fat-diet (HFD) and streptozocin (STZ) induced type II diabetes mellitus (T2DM) was evaluated in this study. The results revealed that FBPE contains 10 active compounds mainly including luteolin (9.46 g/kg), resveratrol (5.25 g/kg), kaemferol (3.67 g/kg), etc. The animal experiment results showed that FBPE could improve HFD-STZ induced T2DM mice. Moreover, the underlying mechanism of the above results could be: (i) FBPE could reduce the inflammation related to phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway, and (ii) the gut microbiota remodeling. The results of correlation analysis showed Candidatus Arthromitus and SMB53 indicated positive correlations to tumor necrosis factor-α (TNF-α); Coprococcus, Ruminocossus, and Odoribacteraceae reported negative correlations to transforming growth factor-β (TGF-β). That FBPE has an outstanding ability to improve T2DM and could be used as a kind of potential functional food for the prevention of T2DM.
Collapse
Affiliation(s)
- Jinjin Zhang
- College of Food Science and Technology, Northwest University, Xi'an, China
| | - Wei Cao
- College of Food Science and Technology, Northwest University, Xi'an, China
- Bee Product Research Center of Shaanxi, Xi'an, China
- *Correspondence: Wei Cao
| | - Haoan Zhao
- College of Food Science and Technology, Northwest University, Xi'an, China
| | - Sen Guo
- College of Food Science and Technology, Northwest University, Xi'an, China
| | - Qian Wang
- Shaanxi Institute for Food and Drug Control, Xi'an, China
| | - Ni Cheng
- College of Food Science and Technology, Northwest University, Xi'an, China
- Bee Product Research Center of Shaanxi, Xi'an, China
| | - Naisheng Bai
- College of Food Science and Technology, Northwest University, Xi'an, China
| |
Collapse
|
53
|
Suganya T, Packiavathy IASV, Aseervatham GSB, Carmona A, Rashmi V, Mariappan S, Devi NR, Ananth DA. Tackling Multiple-Drug-Resistant Bacteria With Conventional and Complex Phytochemicals. Front Cell Infect Microbiol 2022; 12:883839. [PMID: 35846771 PMCID: PMC9280687 DOI: 10.3389/fcimb.2022.883839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/02/2022] [Indexed: 12/22/2022] Open
Abstract
Emerging antibiotic resistance in bacteria endorses the failure of existing drugs with chronic illness, complicated treatment, and ever-increasing expenditures. Bacteria acquire the nature to adapt to starving conditions, abiotic stress, antibiotics, and our immune defense mechanism due to its swift evolution. The intense and inappropriate use of antibiotics has led to the development of multidrug-resistant (MDR) strains of bacteria. Phytochemicals can be used as an alternative for complementing antibiotics due to their variation in metabolic, genetic, and physiological fronts as well as the rapid evolution of resistant microbes and lack of tactile management. Several phytochemicals from diverse groups, including alkaloids, phenols, coumarins, and terpenes, have effectively proved their inhibitory potential against MDR pathogens through their counter-action towards bacterial membrane proteins, efflux pumps, biofilms, and bacterial cell-to-cell communications, which are important factors in promoting the emergence of drug resistance. Plant extracts consist of a complex assortment of phytochemical elements, against which the development of bacterial resistance is quite deliberate. This review emphasizes the antibiotic resistance mechanisms of bacteria, the reversal mechanism of antibiotic resistance by phytochemicals, the bioactive potential of phytochemicals against MDR, and the scientific evidence on molecular, biochemical, and clinical aspects to treat bacterial pathogenesis in humans. Moreover, clinical efficacy, trial, safety, toxicity, and affordability investigations, current status and developments, related demands, and future prospects are also highlighted.
Collapse
Affiliation(s)
- Thangaiyan Suganya
- Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore, India
| | | | - G. Smilin Bell Aseervatham
- Post Graduate Research Department of Biotechnology and Bioinformatics, Holy Cross College (Autonomous), Tiruchirappalli, India
| | - Areanna Carmona
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Science Center of El Paso, Texas, TX, United States
| | - Vijayaragavan Rashmi
- National Repository for Microalgae and Cyanobacteria (NRMC)- Marine, National Facility for Marine Cyanobacteria, (Sponsored by Department of Biotechnology (DBT), Government of India), Bharathidasan University, Tiruchirappalli, India
| | | | | | - Devanesan Arul Ananth
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, India
| |
Collapse
|
54
|
Darwish MS, Abou-Zeid NA, Khojah E, AL Jumayi HA, Alshehry GA, Algarni EH, Elawady AA. Supplementation of Labneh with Passion Fruit Peel Enhanced Survival of E. coli Nissle 1917 during Simulated Gastrointestinal Digestion and Adhesion to Caco-2 Cells. Foods 2022; 11:1663. [PMID: 35681414 PMCID: PMC9180240 DOI: 10.3390/foods11111663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
Passion fruit peel powder (PFPP) was used to supplement the probiotic labneh to increase the activity of Escherichia coli Nissle 1917 (EcN) during production and storage. Labneh was manufactured with PFPP (0.5% and 1%) and analyzed at 0, 7, and 15 days of cold storage for postacidification and sensory properties and viability of EcN, survival of EcN to simulated gastrointestinal tract stress, and adhesion potential of EcN to Caco-2 cells. Acidification kinetics during fermentation showed that supplementation with PFPP reduced the time needed to decrease pH and reach the maximum acidification rate. PFPP addition contributed to postacidification of labneh during storage. PFPP had a beneficial effect (p < 0.05) on counts of EcN in labneh during different storage periods. Consumer preference expectations for labneh enriched with PFPP (0.5% and 1%) were higher than those for the control. PFPP provided a significant protective action for EcN during simulated gastrointestinal transit and had a positive effect on EcN adhesion to Caco-2 cells in vitro, although this decreased during storage with labneh. Labneh supplementation with PFPP can be recommended because of the positive effect on EcN viability and the high nutritional value, which may increase the appeal of the product to consumers.
Collapse
Affiliation(s)
- Mohamed Samir Darwish
- Dairy Microbiology Laboratory, Dairy Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt;
| | | | - Ebtihal Khojah
- Department of Food Science and Nutrition, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (E.K.); (H.A.A.J.); (G.A.A.); (E.H.A.)
| | - Huda A. AL Jumayi
- Department of Food Science and Nutrition, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (E.K.); (H.A.A.J.); (G.A.A.); (E.H.A.)
| | - Garsa A. Alshehry
- Department of Food Science and Nutrition, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (E.K.); (H.A.A.J.); (G.A.A.); (E.H.A.)
| | - Eman H. Algarni
- Department of Food Science and Nutrition, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (E.K.); (H.A.A.J.); (G.A.A.); (E.H.A.)
| | - Asmaa A. Elawady
- Dairy Microbiology Laboratory, Dairy Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt;
| |
Collapse
|
55
|
Ilie CI, Oprea E, Geana EI, Spoiala A, Buleandra M, Gradisteanu Pircalabioru G, Badea IA, Ficai D, Andronescu E, Ficai A, Ditu LM. Bee Pollen Extracts: Chemical Composition, Antioxidant Properties, and Effect on the Growth of Selected Probiotic and Pathogenic Bacteria. Antioxidants (Basel) 2022; 11:antiox11050959. [PMID: 35624823 PMCID: PMC9137718 DOI: 10.3390/antiox11050959] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/30/2022] Open
Abstract
This paper evaluated the chemical and biological properties of bee pollen samples from Romania. Firstly, the bee pollen alcoholic extracts (BPEs) were obtained from raw bee pollen harvested by Apis mellifera carpatica bees. The chemical composition of BPE was obtained by determination of total phenol content and total flavonoid content, UHPLC-DAD-ESI/MS analysis of phenolic compounds, and GC-MS analysis of fatty acids, esters, and terpenes. Additionally, the antioxidant activity was evaluated by the Trolox Equivalent Antioxidant Capacity method. Furthermore, the biological properties of BPE were evaluated (antimicrobial and cytotoxic activity). The raw BP samples studied in this paper had significant phenolic acid and flavonoid content, and moderate fatty acid, ester, and terpene content. P1, P2, and P4 have the highest TPC and TFC levels, and the best antioxidant activity. All BPEs studied had antimicrobial activity on pathogenic strains isolated from the clinic or standard strains. A synergistic antimicrobial effect of the BPEs was observed along with the soluble compounds of L. rhamnosus MF9 and E. faecalis 2M17 against some pathogenic (clinical) strains and, considering the tumour proliferation inhibitory activity, makes BP a potential prebiotic and antitumour agent for the gut environment.
Collapse
Affiliation(s)
- Cornelia-Ioana Ilie
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1–7 Gh. Polizu Street, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (E.A.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania;
| | - Eliza Oprea
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 1–3 Aleea Portocalelor, 060101 Bucharest, Romania;
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 030018 Bucharest, Romania
- Correspondence: (E.O.); (A.F.)
| | - Elisabeta-Irina Geana
- National R&D Institute for Cryogenics and Isotopic Technologies—ICIT, 4th Uzinei Street, 240050 Râmnicu Vâlcea, Romania;
| | - Angela Spoiala
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1–7 Gh. Polizu Street, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (E.A.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania;
| | - Mihaela Buleandra
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, 90–92 Șoseaua Panduri, 050663 Bucharest, Romania; (M.B.); (I.A.B.)
| | | | - Irinel Adriana Badea
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, 90–92 Șoseaua Panduri, 050663 Bucharest, Romania; (M.B.); (I.A.B.)
| | - Denisa Ficai
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania;
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1–7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1–7 Gh. Polizu Street, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (E.A.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania;
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1–7 Gh. Polizu Street, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (E.A.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania;
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
- Correspondence: (E.O.); (A.F.)
| | - Lia-Mara Ditu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 1–3 Aleea Portocalelor, 060101 Bucharest, Romania;
- Research Institute of the University of Bucharest, 050095 Bucharest, Romania;
| |
Collapse
|
56
|
Silva F, de Souza E, Queiroga R, Voss GB, Pintado M, Vasconcelos M. A fiber and phenolic‐rich flour from Isabel grape by‐products with stimulatory effects on distinct probiotics and beneficial impacts on human colonic microbiota
in vitro. Lett Appl Microbiol 2022; 75:249-260. [DOI: 10.1111/lam.13723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022]
Affiliation(s)
- F.A. Silva
- Department of Nutrition Federal University of Pernambuco Recife PE Brazil
| | - E.L. de Souza
- Department of Nutrition Health Sciences Center Federal University of Paraíba PB João Pessoa Brazil
| | - R.C.R.E. Queiroga
- Department of Nutrition Health Sciences Center Federal University of Paraíba PB João Pessoa Brazil
| | - G. B. Voss
- Universidade Católica Portuguesa CBQF ‐ Centro de Biotecnologia e Química Fina – Laboratório Associado Escola Superior de Biotecnologia Porto Portugal
| | - M.M.E. Pintado
- Universidade Católica Portuguesa CBQF ‐ Centro de Biotecnologia e Química Fina – Laboratório Associado Escola Superior de Biotecnologia Porto Portugal
| | - M.A.S. Vasconcelos
- Department of Nutrition Federal University of Pernambuco Recife PE Brazil
| |
Collapse
|
57
|
RNA-Seq Transcriptomic Analysis of Green Tea Polyphenols Modulation of Differently Expressed Genes in Enterococcus faecalis Under Bile Salt Stress. Curr Microbiol 2022; 79:147. [PMID: 35397017 DOI: 10.1007/s00284-022-02844-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 03/17/2022] [Indexed: 11/03/2022]
Abstract
Enterococcus faecalis (E. faecalis) belongs to lactic acid bacteria which can be used as a probiotic additive and feed, bringing practical value to the health of humans and animals. The prebiotic function of tea polyphenols lays a foundation for green tea polyphenols (GTP) to repair the adverse changes of E. faecalis under stress conditions. In this study, RNA-sequence analysis was used to explore the protective effect of GTP on E. faecalis under bile salt stress. A total of 50 genes were found to respond to GTP under bile salts stress, containing 18 up-regulated and 32 down-regulated genes. The results showed that multiple genes associated with cell wall and membrane, transmembrane transport, nucleotide transport and metabolism were significantly differentially expressed (P < 0.05), while GTP intervention can partly alleviate the detrimental effects of bile salt on amino acid metabolism and transport. The present study provides the whole genome transcriptomics of E. faecalis under bile salt stress and GTP intervention which help us understand the growth and mechanism of continuous adaptation of E. faecalis under stress conditions.
Collapse
|
58
|
Li J, Zhao W, Pan X, Lao F, Liao X, Shi Y, Wu J. Improvement of antioxidant properties of jujube puree by biotransformation of polyphenols via Streptococcus thermophilus fermentation. Food Chem X 2022; 13:100214. [PMID: 35498973 PMCID: PMC9039917 DOI: 10.1016/j.fochx.2022.100214] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/25/2022] Open
Abstract
Streptococcus thermophilus enriched polyphenols in fermented jujube puree. Fermentation improved jujube puree DPPH scavenging capability by 26%. 12 phenolics were identified as differential metabolites. Fermentation could be a promising approach to improve jujube phenolic quality.
To investigate the effect of lactic acid bacteria fermentation on jujube bioactivity, Streptococcus thermophilus was used to ferment jujube puree. The number of viable bacteria cells, physicochemical properties, phenolics profile and antioxidant capacity were analyzed, and their correlation were investigated. Streptococcus thermophilus exhibited a high growth capacity in jujube puree, and significantly (p < 0.05) increased the total phenolics content, 2,2-Diphenyl-1-picrylhydrazyl (DPPH) scavenging activity and reducing power after 48 h fermentation, while 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) scavenging activity was decreased. 12 differentially metabolized polyphenols were identified in fermented jujube puree. Upregulated phenolics exhibited a positive correlation with DPPH radical-scavenging ability and reducing power. This work demonstrated that Streptococcus thermophilus fermentation can be an effective method with great practical application potential to improve the antioxidant activity in jujube puree by modifying the phenolic compositional quantity and quality.
Collapse
Affiliation(s)
- Jing Li
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Wenting Zhao
- Beijing Academy of Agricultural and Forestry Sciences, Beijing 100089, China
| | - Xin Pan
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Fei Lao
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Yong Shi
- Haoxiangni Health Food Co., Ltd, Xinzheng 451100, China
| | - Jihong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| |
Collapse
|
59
|
Health Benefits of Postbiotics Produced by E. coli Nissle 1917 in Functional Yogurt Enriched with Cape Gooseberry (Physalis peruviana L.). FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8030128] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Changes in the activities of antimicrobial, antitumor, and antioxidant properties of postbiotics (YCG) are related to changes in the composition of phenolic compounds. Antimicrobial activity was found to be highest in postbiotic (YCG-7) against P. aeruginosa, S. aureus, and E. faecalis with an MIC of 3.1 µg/mL. YCG-7 revealed the most cytotoxicity against LS-174T and PC-3 cell lines with an IC50 of 5.78 and 6.56 µg/mL, respectively. YCG-7 was far more effective for scavenging free radicals in the NO• and DPPH assays with a scavenging activity of 70.73% and 85.6%, respectively. YCG-7’s total phenolic acid content is up to eightfold higher compared with control. Escherichia coli Nissle 1917 retained high viable counts during refrigerated storage, particularly in YCG (>108 cells g−1) revealing a potential prebiotic activity of Cape gooseberry juice. EcN affected the phenolic profile of the YCG. Pyrogallol, p-coumaric acid, ellagic acid, 4-hydroxybenzoic acid, salicylic acid, gallic acid, vanillic acid, o-coumaric acid, caffeic acid, catechol, syringic acid, and rutin were the predominant phenolic compounds in YCG-7 or YCG-15. Chlorogenic, rosmarinic, cinnamic acid, naringin, and kaempferol were degraded by EcN in YCG-7 and YCG-15. The YCG had significantly higher sensory scores for appearance, smoothness, sourness, mouthfeel, and overall acceptance. These results provide the basis to target the functional benefits of YCG for further human health applications.
Collapse
|
60
|
Yan R, Zhou H, Zheng X, Zhang X. RNA-seq analysis of green tea polyphenols modulation of differently expressed genes in Enterococcus faecalis under low pH. Lett Appl Microbiol 2022; 74:970-980. [PMID: 35247280 DOI: 10.1111/lam.13686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/29/2022]
Abstract
Enterococcus faecalis (E. faecalis) is a resident bacterium in the host. The increase of internal stress like low pH may affect the biological effects of E. faecalis. The prebiotic-like function of tea polyphenols can enhance the beneficial effects of its tolerance to environmental stress. In this study, RNA-sequence analysis was used to explore the protective effect of green tea polyphenols (GTP) on E. faecalis under low pH stress. A total of 28 genes were found to be responsive to GTP under low pH stress, including 16 up-regulated and 12 down-regulated. GTP intervention can partly relieve some undesired negative influences, such as the down-regulation of the base excision repair gene and amino acid transport and metabolism gene. The significantly changes were associated with selenocompound metabolism and aminoacyl-tRNA biosynthesis after the intervention of GTP. The present study provided new insights into the growth and continuous adaptation of E. faecalis under stress.
Collapse
Affiliation(s)
- Ruonan Yan
- Department of Food Science and Engineering, Ningbo University, Ningbo, 315211, P.R. China
| | - Huan Zhou
- Department of Agriculture and Biotechnology, Wenzhou Vocational College of Science and Technology, Wenzhou, 325006, China
| | - Xiaojie Zheng
- Department of Agriculture and Biotechnology, Wenzhou Vocational College of Science and Technology, Wenzhou, 325006, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, 315211, P.R. China
| |
Collapse
|
61
|
Pilosocereus gounellei (xique-xique) flour: Improving the nutritional, bioactive, and technological properties of probiotic goat-milk yogurt. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
62
|
Silva FA, Queiroga RDCRDE, de Souza EL, Voss GB, Borges GDSC, Lima MDS, Pintado MME, Vasconcelos MADS. Incorporation of phenolic-rich ingredients from integral valorization of Isabel grape improves the nutritional, functional and sensory characteristics of probiotic goat milk yogurt. Food Chem 2022; 369:130957. [PMID: 34488134 DOI: 10.1016/j.foodchem.2021.130957] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/19/2021] [Accepted: 08/23/2021] [Indexed: 12/18/2022]
Abstract
This study elaborated different probiotic goat milk yogurt formulations with addition of a low-calorie Isabel "Precoce" grape preparation and flour from derived solid by-products. Physicochemical characteristics, probiotic counts, phenolic and protein/peptide molecular weight profile, antioxidant capacity (AC) and sensory acceptance of different yogurt formulations were evaluated. Yogurts with Isabel grape ingredients (IGI) had high nutritional value, distinct phenolic profile and high AC. High counts of probiotic Lactobacillus acidophilus La-05 were found in yogurts during storage. AC of yogurts with IGI increased during a simulated gastrointestinal digestion with breakdown of high molecular weight proteins and release of protein-bound phenolics. AC of yogurts with IGI should be linked to goat milk peptides and Isabel grape phenolics. Yogurts with IGI had enhanced sensory acceptance. Incorporation of Isabel grape preparation and derived by-product flour into probiotic goat milk yogurt resulted in an added-value product with multifunctional characteristics and improved sensory characteristics.
Collapse
Affiliation(s)
| | | | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Glenise Bierhalz Voss
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Graciele da Silva Campelo Borges
- Department of Food Technology, Center of Technology and Regional Development, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Marcos Dos Santos Lima
- Institute Federal of Sertão Pernambucano, Department of Food Technology, Campus Petrolina, Pernambuco, Brazil
| | - Maria Manuela Estevez Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | | |
Collapse
|
63
|
Current clinical translation of microbiome medicines. Trends Pharmacol Sci 2022; 43:281-292. [DOI: 10.1016/j.tips.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 12/17/2022]
|
64
|
Jafari S, Thongmat K, Kijpatanasilp I, Kerdsup P, Naknaen P, Taweechotipatr M, Assatarakul K. Phenolic compound profile of probiotic (Lacticaseibacillus rhamnosus LR5) fortified vegetable tablet and probiotic survival in the simulated gastrointestinal tract. Sci Rep 2022; 12:1014. [PMID: 35046451 PMCID: PMC8770489 DOI: 10.1038/s41598-022-04874-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/22/2021] [Indexed: 11/21/2022] Open
Abstract
The objectives of this research were to study the changes of phenolic compounds in vegetable (yellow VS green) tablets with/without probiotics (Lacticaseibacillus rhamnosus LR5) supplementation by using high performance liquid chromatography and probiotic survivability through the simulated gastrointestinal tract. The green vegetable tablets with/without probiotics had a greater (p ≤ 0.05) phenolic content compared to the yellow ones. There were no significant differences of most phenolic compound contents between probiotic-supplemented vegetable tablets and non-probiotic supplemented ones (p > 0.05). The contents of ferulic acid, epicatechin, tannic acid and rutin for both vegetable tablets tended to decrease through passing the stomach (1 and 2 h) and small intestine (2 and 4 h), however, the content of catechin in the yellow vegetable tablets tended to increase. The results also showed that the survival of Lacticaseibacillus rhamnosus LR5 slightly decreased through the simulated gastrointestinal tract. The vibrations from FTIR appeared in the wave length of 4000–3100, 3000–2800 and 1652–1545 cm−1, which accounted for the change in the N–H bonds of the amine group, changes in the structure of fatty acids and the change of carbonyl groups, respectively. This work highlighted the opportunity of application of probiotics in food products; especially non-dairy foods for consumer with dairy allergy.
Collapse
Affiliation(s)
- Saeid Jafari
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Krongkan Thongmat
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Isaya Kijpatanasilp
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Paramaporn Kerdsup
- Division of Biotechnology and Agricultural Product, Faculty of Agricultural Product Innovation and Technology, Srinakharinwirot University, Nakhon Nayok, 26120, Thailand
| | - Phisut Naknaen
- Division of Food Science and Nutrition, Faculty of Agricultural Product Innovation and Technology, Srinakharinwirot University, Nakhon Nayok, 26120, Thailand
| | - Malai Taweechotipatr
- Department of Microbiology, Faculty of Medicine, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Kitipong Assatarakul
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
65
|
Gut microbiota: A potential therapeutic target for management of diabetic retinopathy? Life Sci 2021; 286:120060. [PMID: 34666038 DOI: 10.1016/j.lfs.2021.120060] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/04/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Diabetic Retinopathy (DR) is one of the main complications of Diabetes Mellitus (DM), drastically impacting individuals of working age over the years, being one of the main causes of blindness in the world. The existing therapies for its treatment consist of measures that aim only to alleviate the existing clinical signs, associated with the microvasculature. These treatments are limited only to the advanced stages and not to the preclinical ones. In response to a treatment with little resolution and limited for many patients with DM, investigations of alternative therapies that make possible the improvement of the glycemic parameters and the quality of life of subjects with DR, become extremely necessary. Recent evidence has shown that deregulation of the microbiota (dysbiosis) can lead to low-grade, local and systemic inflammation, directly impacting the development of DM and its microvascular complications, including DR, in an axis called the intestine-retina. In this regard, the present review seeks to comprehensively describe the biochemical pathways involved in DR as well as the association of the modulation of these mechanisms by the intestinal microbiota, since direct changes in the microbiota can have a drastic impact on various physiological processes. Finally, emphasize the strong potential for modulation of the gut-retina axis, as therapeutic and prophylactic target for the treatment of DR.
Collapse
|
66
|
Kinetic study of microbial inhibition by dimethyl dicarbonate and quality attributes of pomegranate juice during cold storage. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
67
|
Sirini N, Lucas-González R, Fernández-López J, Viuda-Martos M, Pérez-Álvarez JA, Frizzo LS, Signorini ML, Zbrun MV, Rosmini MR. Effect of probiotic Lactiplantibacillus plantarum and chestnut flour (Castanea sativa mill) on microbiological and physicochemical characteristics of dry-cured sausages during storage. Meat Sci 2021; 184:108691. [PMID: 34758410 DOI: 10.1016/j.meatsci.2021.108691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 01/09/2023]
Abstract
The effect of chestnut flour (Castanea sativa Mill) on L. plantarum viability and physicochemical characteristics in a dry-cured sausage (Longaniza de Pascua) during storage is discussed. Four batches were prepared: CL with 3% chestnut flour added; CPL with 3% chestnut flour and 8.5 log CFU/g L. plantarum added; PL with 8.5 log CFU/g L. plantarum added and L, the batch control. The sausages were stored at 4 °C and 20 °C, and vacuum packed for 43 d. L. plantarum viability was affected by storage time (P < 0.001). However, higher L. plantarum counts at the final of storage were reached due to chestnut flour addition (P < 0.001). At room storage, chestnut flour caused a higher increase in TBARS values (P = 0.022). Nevertheless, all lipid oxidation treatments were in the range of accepted values at the sensory detection level. In conclusion, Longaniza de Pascua can be kept at 4 °C or 20 °C for 43 d without causing any rancidity problems.
Collapse
Affiliation(s)
- N Sirini
- Laboratory of Food Analysis ¨Med. Vet R. Dalla Santina¨, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral - National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe, Argentina
| | - R Lucas-González
- IPOA Research Group, Agri-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental de la Universidad Miguel Hernández de Elche (CIAGRO-UMH), Ctra. de Beniel km 3.2, 03312 Orihuela, Alicante, Spain
| | - J Fernández-López
- IPOA Research Group, Agri-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental de la Universidad Miguel Hernández de Elche (CIAGRO-UMH), Ctra. de Beniel km 3.2, 03312 Orihuela, Alicante, Spain
| | - M Viuda-Martos
- IPOA Research Group, Agri-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental de la Universidad Miguel Hernández de Elche (CIAGRO-UMH), Ctra. de Beniel km 3.2, 03312 Orihuela, Alicante, Spain
| | - J A Pérez-Álvarez
- IPOA Research Group, Agri-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental de la Universidad Miguel Hernández de Elche (CIAGRO-UMH), Ctra. de Beniel km 3.2, 03312 Orihuela, Alicante, Spain
| | - L S Frizzo
- Laboratory of Food Analysis ¨Med. Vet R. Dalla Santina¨, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral - National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe, Argentina; Department of Public Health, Faculty of Veterinary Science, National University of the Litoral, Esperanza, Province of Santa Fe, Argentina
| | - M L Signorini
- Department of Public Health, Faculty of Veterinary Science, National University of the Litoral, Esperanza, Province of Santa Fe, Argentina; Instituto de Investigación de la Cadena Láctea (Idical CONICET - INTA), Ruta 34 km 227, Rafaela, Province of Santa Fe, Argentina
| | - M V Zbrun
- Laboratory of Food Analysis ¨Med. Vet R. Dalla Santina¨, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral - National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe, Argentina; Department of Public Health, Faculty of Veterinary Science, National University of the Litoral, Esperanza, Province of Santa Fe, Argentina
| | - M R Rosmini
- Department of Public Health, Faculty of Veterinary Science, National University of the Litoral, Esperanza, Province of Santa Fe, Argentina.
| |
Collapse
|
68
|
Haghani S, Hadidi M, Pouramin S, Adinepour F, Hasiri Z, Moreno A, Munekata PES, Lorenzo JM. Application of Cornelian Cherry ( Cornus mas L.) Peel in Probiotic Ice Cream: Functionality and Viability during Storage. Antioxidants (Basel) 2021; 10:antiox10111777. [PMID: 34829648 PMCID: PMC8615067 DOI: 10.3390/antiox10111777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, cornelian cherry (Cornus mas L.) peel (CCP) was incorporated into a probiotic ice cream formulation containing Bifidobacterium lactis to investigate the potential effect of CCP on the viability of B. lactis in the ice cream after simulated gastrointestinal stress and during 120 days of storage. Furthermore, the effect of the addition of CCP (3, 6, and 9%) on bioactive compounds, antioxidant activity, and physicochemical and sensory attributes of the ice cream was evaluated. The results showed that the addition of CCP significantly enhanced vitamin C, total polyphenols, total anthocyanin content, and antioxidant activity of the ice cream. During frozen storage of the ice cream, phenolic compounds and anthocyanins were quite stable, but vitamin C significantly decreased. The addition of CCP had no significant effect on the viability of B. lactis throughout the freezing process, but increments of 6% and 9% CCP increased the viability of B. lactis in the ice cream and after simulated gastrointestinal processes in all storage periods. These findings imply that CCP is a promising candidate to be used for producing functional ice cream.
Collapse
Affiliation(s)
- Shaghayegh Haghani
- Department of Food Science and Industries, Khazar Institute of Higher Education, Mahmoudabad 86414-46318, Mazandaran, Iran; (S.H.); (S.P.)
| | - Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain;
- Correspondence: (M.H.); (P.E.S.M.)
| | - Shiva Pouramin
- Department of Food Science and Industries, Khazar Institute of Higher Education, Mahmoudabad 86414-46318, Mazandaran, Iran; (S.H.); (S.P.)
| | - Fateme Adinepour
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgán 49138-15739, Golestan, Iran;
| | - Zahra Hasiri
- College of Veterinary Medicine, Islamic Azad University of Shahrekord, Shahrekord 88137-33395, Chaharmahal and Bakhtiari Province, Iran;
| | - Andrés Moreno
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain;
| | - Paulo E. S. Munekata
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
- Correspondence: (M.H.); (P.E.S.M.)
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| |
Collapse
|
69
|
Teixeira LD, Torrez Lamberti MF, DeBose-Scarlett E, Bahadiroglu E, Garrett TJ, Gardner CL, Meyer JL, Lorca GL, Gonzalez CF. Lactobacillus johnsonii N6.2 and Blueberry Phytophenols Affect Lipidome and Gut Microbiota Composition of Rats Under High-Fat Diet. Front Nutr 2021; 8:757256. [PMID: 34722616 PMCID: PMC8551501 DOI: 10.3389/fnut.2021.757256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/20/2021] [Indexed: 12/19/2022] Open
Abstract
Obesity is considered a primary contributing factor in the development of many diseases, including cancer, diabetes, and cardiovascular illnesses. Phytochemical-rich foods, associated to healthy gastrointestinal microbiota, have been shown to reduce obesity and associated comorbidities. In the present article, we describe the effects of the probiotic Lactobacillus johnsonii N6.2 and blueberry extracts (BB) on the gut microbiota and lipid profile of rats under a high-fat (HF) or low-calorie (LC) diet. L. johnsonii was found to increase the levels of long chain fatty acids (LCFA) in the serum of all animals under HF diet, while reduced LCFA concentrations were observed in the adipose tissue of animals under HF diet supplemented with BB extracts. All animals under HF diet also showed lower protein levels of SREBP1 and SCAP when treated with L. johnsonii. The gut microbiota diversity, β-diversity was significantly changed by L. johnsonii in the presence of BB. A significant reduction in α-diversity was observed in the ileum of animals under HF diet supplemented with L. johnsonii and BB, while increased α-diversity was observed in the ilium of animals under LC diet supplemented with L. johnsonii or BB. In summary, L. johnsonii and BB supplementation induced significant changes in gut microbiota diversity and lipid metabolism. The phospholipids pool was the lipidome component directly affected by the interventions. The ileum and colon microbiota showed clear differences depending on the diet and the treatments examined.
Collapse
Affiliation(s)
- Leandro Dias Teixeira
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Monica F Torrez Lamberti
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Evon DeBose-Scarlett
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Erol Bahadiroglu
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Timothy J Garrett
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Christopher L Gardner
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Julie L Meyer
- Department of Soil and Water Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Graciela L Lorca
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Claudio F Gonzalez
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
70
|
Sibeko L, Johns T, Cordeiro LS. Traditional plant use during lactation and postpartum recovery: Infant development and maternal health roles. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114377. [PMID: 34192598 DOI: 10.1016/j.jep.2021.114377] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/11/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Evidence of phytochemical roles in infant development and maternal recovery offers insights into beneficial functions of traditional plant use during lactation and the postpartum period. Ethnopharmacological research has relevance to global priorities on maternal and child health, to understanding origins and determinants of human self-medication, and for reconciling traditional postpartum practices and mainstream healthcare. AIM OF THE STUDY Present emerging evidence, within evolutionary and socio-cultural contexts, on the role of maternal consumption on transfer of phytochemicals into breast milk with impacts on maternal and child health, and on infant development. Establish current state of knowledge and an ethnopharmacological research agenda that is attentive to cross-cultural and regional differences in postpartum plant use. MATERIALS AND METHODS An extensive literature review using Medline, Scopus, and Web of Science focused on traditional and contemporary use and socio-cultural context, as well as physiological, pharmacological, toxicological, and behavioral activities of plants used medicinally by women during postpartum recovery and lactation. RESULTS The most widely reported postpartum plants show antimicrobial, anti-inflammatory, immunological, and neurophysiological activities, with low toxicity. Phytochemicals transfer from maternal consumption into breast milk in physiological concentrations, while animal studies demonstrate immunomodulation and other actions of medicinal plants during lactation. Reporting on the use and diverse traditional knowledge of women about plants during the postpartum period is obscured by the marginal place of obstetric issues and by gender biases in ethnobotanical research. In many contemporary contexts use is prejudiced by precautionary risk warnings in health literature and practice that confound lactation with pregnancy. CONCLUSIONS Although systematic investigation of postpartum plant use is lacking, known pharmacological activities support potential benefits on infant development and maternal health with immediate and long-term consequences in relation to allergic, inflammatory, autoimmune, and other diseases. An ethnopharmacological agenda focused on the perinatal period requires directed methodologies and a regional approach in relation to culturally-specific knowledge and practices, traditional plant use, and local health needs. Testing the hypothesis that phytochemicals transferred from medicinal plants into breast milk impact the human immune system and other aspects of infant development requires extended analysis of phytochemicals in human milk and infant lumen and plasma, as well as effects on gastrointestinal and milk microbiome.
Collapse
Affiliation(s)
- Lindiwe Sibeko
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| | - Timothy Johns
- School of Human Nutrition, McGill University, Ste. Anne de Bellevue, QC, H9X 3V9, Canada.
| | - Lorraine S Cordeiro
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| |
Collapse
|
71
|
Becerril-Sánchez AL, Quintero-Salazar B, Dublán-García O, Escalona-Buendía HB. Phenolic Compounds in Honey and Their Relationship with Antioxidant Activity, Botanical Origin, and Color. Antioxidants (Basel) 2021; 10:1700. [PMID: 34829570 PMCID: PMC8614671 DOI: 10.3390/antiox10111700] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 02/02/2023] Open
Abstract
Honey has been employed since antiquity due to its sensory, nutritional, and therapeutic properties. These characteristics are related to its physical and chemical composition. For example, phenolic compounds are substances that can determine antioxidant activity, as well as sensory characteristics, and can be employed as biomarkers of floral and geographical origin. This has generated a growing interest in the study of phenolic compounds and their influence in the intrinsic properties of this beekeeping product. This review aims to summarize, analyze, and update the status of the research that demonstrates the role of phenolic compounds in antioxidant activity, botanical-geographical origin, and the sensory characteristics of honey. These phenolic compounds, according to various results reported, have great relevance in honey's biological and functional activity. This leads to research that will link phenolic compounds to their floral, geographical, productive, and territorial origin, as well as some sensory and functional characteristics.
Collapse
Affiliation(s)
- Ana L. Becerril-Sánchez
- Food and Environmental Toxicology Laboratory, Faculty of Chemistry, Universidad Autónoma del Estado de México, Toluca 50120, Mexico;
| | | | - Octavio Dublán-García
- Food and Environmental Toxicology Laboratory, Faculty of Chemistry, Universidad Autónoma del Estado de México, Toluca 50120, Mexico;
| | - Héctor B. Escalona-Buendía
- Sensory Evaluation and Consumer Studies Laboratory, Biotechnology Department, Universidad Autónoma Metropolitana, Mexico City 09340, Mexico;
| |
Collapse
|
72
|
Domínguez-Avila JA, Villa-Rodriguez JA, Montiel-Herrera M, Pacheco-Ordaz R, Roopchand DE, Venema K, González-Aguilar GA. Phenolic Compounds Promote Diversity of Gut Microbiota and Maintain Colonic Health. Dig Dis Sci 2021; 66:3270-3289. [PMID: 33111173 DOI: 10.1007/s10620-020-06676-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/13/2020] [Indexed: 02/08/2023]
Abstract
The role of non-energy-yielding nutrients on health has been meticulously studied, and the evidence shows that a compound can exert significant effects on health even if not strictly required by the organism. Phenolic compounds are among the most widely studied molecules that fit this description; they are found in plants as secondary metabolites and are not required by humans for growth or development, but they can influence a wide array of processes that modulate health across multiple organs and systems. The lower gastrointestinal tract is a prime site of action of phenolic compounds, namely, by their effects on gut microbiota and colonic health. As with humans, phenolic compounds are not required by most bacteria but can be substrates of others; in fact, some phenolic compounds exert antibacterial actions. A diet rich in phenolic compounds can lead to qualitative and quantitative effects on gut microbiota, thereby inducing indirect health effects in mammals through the action of these microorganisms. Moreover, phenolic compounds may be fermented by the gut microbiota, thereby modulating the compounds bioactivity. In the colon, phenolic compounds promote anti-inflammatory, anti-oxidant and antiproliferative actions. The aim of the present review is to highlight the role of phenolic compounds on maintaining or restoring a healthy microbiota and overall colonic health. Mechanisms of action that substantiate the reported evidence will also be discussed.
Collapse
Affiliation(s)
- J Abraham Domínguez-Avila
- Cátedras CONACYT-Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, 83304, Hermosillo, Sonora, Mexico.
| | - Jose A Villa-Rodriguez
- Center for Digestive Health, Department of Food Science, Institute for Food Nutrition and Health, Rutgers, The State University of New Jersey, 61 Dudley Road, New Brunswick, NJ, 08901, USA
| | - Marcelino Montiel-Herrera
- Departamento de Medicina y Ciencias de la Salud, Universidad de Sonora, 83000, Hermosillo, Sonora, Mexico
| | - Ramón Pacheco-Ordaz
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, 83304, Hermosillo, Sonora, Mexico
| | - Diana E Roopchand
- Center for Digestive Health, Department of Food Science, Institute for Food Nutrition and Health, Rutgers, The State University of New Jersey, 61 Dudley Road, New Brunswick, NJ, 08901, USA
| | - Koen Venema
- Centre for Healthy Eating and Food Innovation, Maastricht University - Campus Venlo, St. Jansweg 20, 5928 RC, Venlo, The Netherlands
| | - Gustavo A González-Aguilar
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, 83304, Hermosillo, Sonora, Mexico
| |
Collapse
|
73
|
Insights into the improvement of bioactive phytochemicals, antioxidant activities and flavor profiles in Chinese wolfberry juice by select lactic acid bacteria. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
74
|
Hadidi M, Majidiyan N, Jelyani AZ, Moreno A, Hadian Z, Mousavi Khanegah A. Alginate/Fish Gelatin-Encapsulated Lactobacillus acidophilus: A Study on Viability and Technological Quality of Bread during Baking and Storage. Foods 2021; 10:foods10092215. [PMID: 34574325 PMCID: PMC8472050 DOI: 10.3390/foods10092215] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 01/26/2023] Open
Abstract
In the present study, Lactobacillus acidophilus LA-5 was microencapsulated in sodium alginate, followed by fish gelatin coating (0.5, 1.5, and 3%). The survival of L. acidophilus in bread before and after encapsulation in alginate/fish gelatin during the baking and 7-day storage was investigated. Moreover, the effect of alginate/fish gelatin-encapsulated L. acidophilus on the technological properties of bread (hardness, staling rate, water content, oven spring, specific volume, and internal texture structure) was evaluated. Compared with control (free bacteria), encapsulated L. acidophilus in alginate/fish gelatin showed an increase in the viability of bread until 2.49 and 3.07 log CFU/g during baking and storage, respectively. Good viability of (106 CFU/g) for probiotic in encapsulated L. acidophilus in alginate/fish gelatin (1.5 and 3%, respectively) after 4-day storage was achieved. Fish gelatin as a second-layer carrier of the bacteria had a positive effect on improving the technical quality of bread. Furthermore, the staling rate of bread containing encapsulated L. acidophilus alginate/fish gelatin 0.5, 1.5, and 3% decreased by 19.5, 25.8, and 31.7%, respectively. Overall, the findings suggested encapsulation of L. acidophilus in alginate/fish gelatin capsule had great potential to improve probiotic bacteria’s survival during baking and storage and to serve as an effective bread enhancer.
Collapse
Affiliation(s)
- Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain;
- Correspondence: (M.H.); (A.M.K.)
| | - Nava Majidiyan
- Department of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia 57169-63896, Iran;
| | - Aniseh Zarei Jelyani
- Food Control Laboratory, Department of Food and Drug, Shiraz University of Medical Science, Shiraz 71348-14336, Iran;
| | - Andrés Moreno
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain;
| | - Zahra Hadian
- Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran 19395-4741, Iran;
| | - Amin Mousavi Khanegah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, São Paulo 13083-852, Brazil
- Correspondence: (M.H.); (A.M.K.)
| |
Collapse
|
75
|
Jin N, Jin L, Luo S, Tang Z, Liu Z, Wei S, Liu F, Zhao X, Yu J, Zhong Y. Comprehensive Evaluation of Amino Acids and Polyphenols in 69 Varieties of Green Cabbage ( Brassica oleracea L. var. capitata L.) Based on Multivariate Statistical Analysis. Molecules 2021; 26:molecules26175355. [PMID: 34500788 PMCID: PMC8434452 DOI: 10.3390/molecules26175355] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 01/06/2023] Open
Abstract
The biological activities of the primary metabolites and secondary metabolites of 69 green cabbage varieties were tested. The LC-MS detection method was used to determine the content of 19 free amino acids (lysine, tryptophan, phenylalanine, methionine, threonine, isoleucine, leucine, valine, arginine, asparagine, glycine, proline, tyrosine, glutamine, alanine, aspartic acid, serine, and glutamate). The content of 10 polyphenols (chlorogenic acid, gallic acid, 4-coumaric acid, ferulic acid, gentisic acid, cymarin, erucic acid, benzoic acid, rutin, and kaempferol) was determined by the HPLC detection method. Considering the complexity of the data obtained, variance analysis, diversity analysis, correlation analysis, hierarchical cluster analysis (HCA), and principal component analysis (PCA) were used to process and correlate amino acid or polyphenol data, respectively. The results showed that there were significant differences between the different amino acids and polyphenols of the 69 cabbage varieties. The most abundant amino acids and polyphenols were Glu and rutin, respectively. Both amino acids and polyphenols had a high genetic diversity, and multiple groups of significant or extremely significant correlations. The 69 cabbage varieties were divided into two groups, according to 19 amino acid indexes, by PCA. Among them, seven varieties with high amino acid content all fell into the fourth quadrant. The HCA of amino acids also supports this view. Based on 10 polyphenols, the 69 cabbage varieties were divided into two groups by HCA. Based on 29 indexes of amino acids and polyphenols, 69 cabbage varieties were evaluated and ranked by PCA. Therefore, in this study, cabbage varieties were classified in accordance with the level of amino acids and polyphenols, which provided a theoretical basis for the genetic improvement of nutritional quality in cabbage.
Collapse
Affiliation(s)
- Ning Jin
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (N.J.); (L.J.); (S.L.); (Z.T.); (Z.L.); (S.W.); (F.L.)
| | - Li Jin
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (N.J.); (L.J.); (S.L.); (Z.T.); (Z.L.); (S.W.); (F.L.)
| | - Shilei Luo
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (N.J.); (L.J.); (S.L.); (Z.T.); (Z.L.); (S.W.); (F.L.)
| | - Zhongqi Tang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (N.J.); (L.J.); (S.L.); (Z.T.); (Z.L.); (S.W.); (F.L.)
| | - Zeci Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (N.J.); (L.J.); (S.L.); (Z.T.); (Z.L.); (S.W.); (F.L.)
| | - Shouhui Wei
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (N.J.); (L.J.); (S.L.); (Z.T.); (Z.L.); (S.W.); (F.L.)
| | - Fanhong Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (N.J.); (L.J.); (S.L.); (Z.T.); (Z.L.); (S.W.); (F.L.)
| | - Xiaoqiang Zhao
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China;
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (N.J.); (L.J.); (S.L.); (Z.T.); (Z.L.); (S.W.); (F.L.)
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China;
- Correspondence: (J.Y.); (Y.Z.)
| | - Yuan Zhong
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China;
- Correspondence: (J.Y.); (Y.Z.)
| |
Collapse
|
76
|
Bautista-Hernández I, Aguilar CN, Martínez-Ávila GCG, Torres-León C, Ilina A, Flores-Gallegos AC, Kumar Verma D, Chávez-González ML. Mexican Oregano ( Lippia graveolens Kunth) as Source of Bioactive Compounds: A Review. Molecules 2021; 26:molecules26175156. [PMID: 34500592 PMCID: PMC8434378 DOI: 10.3390/molecules26175156] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/03/2021] [Accepted: 07/13/2021] [Indexed: 05/08/2023] Open
Abstract
Lippia graveolens is a traditional crop and a rich source of bioactive compounds with various properties (e.g., antioxidant, anti-inflammatory, antifungal, UV defense, anti-glycemic, and cytotoxicity) that is primarily cultivated for essential oil recovery. The isolated bioactive compounds could be useful as additives in the functional food, nutraceuticals, cosmetics, and pharmaceutical industries. Carvacrol, thymol, β-caryophyllene, and p-cymene are terpene compounds contained in oregano essential oil (OEO); flavonoids such as quercetin O-hexoside, pinocembrin, and galangin are flavonoids found in oregano extracts. Furthermore, thermoresistant compounds that remain in the plant matrix following a thermal process can be priced in terms of the circular economy. By using better and more selective extraction conditions, the bioactive compounds present in Mexican oregano can be studied as potential inhibitors of COVID-19. Also, research on extraction technologies should continue to ensure a higher quality of bioactive compounds while preventing an undesired chemical shift (e.g., hydrolysis). The oregano fractions can be used in the food, health, and agricultural industries.
Collapse
Affiliation(s)
- Israel Bautista-Hernández
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo 25280, Mexico; (I.B.-H.); (A.I.); or (A.C.F.-G.)
| | - Cristóbal N. Aguilar
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo 25280, Mexico; (I.B.-H.); (A.I.); or (A.C.F.-G.)
- Correspondence: (M.L.C.-G.); (C.N.A.); Tel.: +52-844-4161238 (C.N.A.)
| | - Guillermo C. G. Martínez-Ávila
- Laboratory of Chemistry and Biochemistry, School of Agronomy, Universidad Autónoma de Nuevo León, General Escobedo, Monterrey 66050, Mexico;
| | - Cristian Torres-León
- Ethnobiological Garden and Research Center-UadeC (CIJE), Universidad Autónoma de Coahuila, Saltillo 27480, Mexico;
| | - Anna Ilina
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo 25280, Mexico; (I.B.-H.); (A.I.); or (A.C.F.-G.)
| | - Adriana C. Flores-Gallegos
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo 25280, Mexico; (I.B.-H.); (A.I.); or (A.C.F.-G.)
| | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India;
| | - Mónica L. Chávez-González
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo 25280, Mexico; (I.B.-H.); (A.I.); or (A.C.F.-G.)
- Correspondence: (M.L.C.-G.); (C.N.A.); Tel.: +52-844-4161238 (C.N.A.)
| |
Collapse
|
77
|
Application of response surface methodology for the co-optimization of extraction and probiotication of phenolic compounds from pomegranate fruit peels (Punica granatum L.). JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00943-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
78
|
Production of grape pomace extracts with enhanced antioxidant and prebiotic activities through solid-state fermentation by Aspergillus niger and Aspergillus oryzae. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101168] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
79
|
Kuerman M, Bao Y, Guo M, Jiang S. Safety assessment of two strains and anti-obese effects on mice fed a high-cholesterol diet. Biochem Biophys Res Commun 2021; 572:131-137. [PMID: 34364292 DOI: 10.1016/j.bbrc.2021.07.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 11/26/2022]
Abstract
Previous study documented that Lactobacillus paracasei S0940 and Streptococcus thermophilus ldbm1 have obvious cholesterol-lowering abilities in vitro. In this study, the safety of two strains were evaluated by nitroreductase test, hemolysis test and antibiotic sensitivity test and to evaluate the cholesterol-reducing abilities in vivo. The results indicated that two strains did not exhibit nitroreductase activities and were ɤ-hemolytic on blood agar plates. Further, both strains did not represent a health risk by antibiotic sensitivity test, and significantly reduced serum and liver cholesterol and triglyceride levels of high fat-fed mice. Compared with the high-fat model group, administration of the strains to mice fed a high-cholesterol diet increased fecal water content and fecal cholesterol and significantly improved the intestinal microbiota, which indicating that Lactobacillus paracasei S0940 and Streptococcus thermophilus ldbm1 have a positive effect on reducing cholesterol levels and may be used in functional food.
Collapse
Affiliation(s)
- Malina Kuerman
- Food Science and Engineering, College of Forestry, Northeast Forestry University, No. 26 Hexing Street, Harbin, 150040, Heilongjiang, PR China; College of Food Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Yihong Bao
- Food Science and Engineering, College of Forestry, Northeast Forestry University, No. 26 Hexing Street, Harbin, 150040, Heilongjiang, PR China.
| | - Mingruo Guo
- Department of Nutrition and Food Sciences, University of Vermont, Burlington, VT05405, USA
| | - Shilong Jiang
- Heilongjiang Feihe Dairy Company Limited, Beijing, 100015, PR China
| |
Collapse
|
80
|
Khare T, Anand U, Dey A, Assaraf YG, Chen ZS, Liu Z, Kumar V. Exploring Phytochemicals for Combating Antibiotic Resistance in Microbial Pathogens. Front Pharmacol 2021; 12:720726. [PMID: 34366872 PMCID: PMC8334005 DOI: 10.3389/fphar.2021.720726] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/28/2021] [Indexed: 01/09/2023] Open
Abstract
Antibiotic resistance or microbial drug resistance is emerging as a serious threat to human healthcare globally, and the multidrug-resistant (MDR) strains are imposing major hurdles to the progression of drug discovery programs. Newer antibiotic-resistance mechanisms in microbes contribute to the inefficacy of the existing drugs along with the prolonged illness and escalating expenditures. The injudicious usage of the conventional and commonly available antibiotics in human health, hygiene, veterinary and agricultural practices is proving to be a major driver for evolution, persistence and spread of antibiotic-resistance at a frightening rate. The drying pipeline of new and potent antibiotics is adding to the severity. Therefore, novel and effective new drugs and innovative therapies to treat MDR infections are urgently needed. Apart from the different natural and synthetic drugs being tested, plant secondary metabolites or phytochemicals are proving efficient in combating the drug-resistant strains. Various phytochemicals from classes including alkaloids, phenols, coumarins, terpenes have been successfully demonstrated their inhibitory potential against the drug-resistant pathogens. Several phytochemicals have proved effective against the molecular determinants responsible for attaining the drug resistance in pathogens like membrane proteins, biofilms, efflux pumps and bacterial cell communications. However, translational success rate needs to be improved, but the trends are encouraging. This review highlights current knowledge and developments associated challenges and future prospects for the successful application of phytochemicals in combating antibiotic resistance and the resistant microbial pathogens.
Collapse
Affiliation(s)
- Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Pune, India.,Department of Environmental Science, Savitribai Phule Pune University, Pune, India
| | - Uttpal Anand
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Abhijit Dey
- Ethnopharmacology and Natural Product Research Laboratory, Department of Life Sciences, Presidency University, Kolkata, India
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Zhijun Liu
- Department of Microbiology, Weifang Medical University, Weifang, China
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Pune, India.,Department of Environmental Science, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
81
|
de Albuquerque TMR, Magnani M, Lima MDS, Castellano LRC, de Souza EL. Effects of digested flours from four different sweet potato (Ipomoea batatas L.) root varieties on the composition and metabolic activity of human colonic microbiota in vitro. J Food Sci 2021; 86:3707-3719. [PMID: 34287876 DOI: 10.1111/1750-3841.15852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/17/2021] [Accepted: 06/17/2021] [Indexed: 12/24/2022]
Abstract
This study evaluated the effects of flours from four different sweet potato root (SPR) varieties, being two with white peel and two with purple peel, on the composition and metabolic activity of human colonic microbiota in vitro. The capability of these SPR flours (20 g/L) to cause alterations in relative abundance of different bacterial groups found as part of human colonic microbiota, as well as in lactic acid and short-chain fatty acid production was evaluated during 48 hr of an in vitro colonic fermentation. The SPR flours were submitted to a simulated gastrointestinal digestion prior to use in experiments. The four SPR flours increased the relative abundance of Lactobacillus/Enterococcus (range: 0.49-4.48%) and Bifidobacterium (range: 0.32-3.27%) and decreased the relative abundance of Bacteroides/Prevotella (range: 0.29-7.49%), Clostridium histolyticum (range: 0.15-2.08%), and Eubacterium rectale/Clostridium coccoides (range: 0.28-3.86%) during the 48 hr of colonic fermentation. The four SPRF flours had positive prebiotic indexes (> 0.38) after 24 and 48 hr of colonic fermentation, reinforcing the occurrence of selective stimulatory effects on colonic microbiota. An increased metabolic activity of human colonic microbiota was caused by tested SPR flours, which was evidenced by decreased pH (range: 3.20-3.83) and increased lactic acid and short chain fatty acid production during the 48 hr of colonic fermentation. The four examined SPR flours were capable of causing positive alterations in composition and driving the metabolic activity of human colonic microbiota during in vitro colonic fermentation, which should be linked to their prebiotic properties. PRACTICAL APPLICATION: The four examined sweet potato root flours (SPRF) caused beneficial alterations in composition besides of driving the metabolic activity of human colonic microbiota in vitro. These results characterize the examined SPRF as candidates for use as prebiotic ingredients by food industry for formulation of value-added functional foods or dietary supplements.
Collapse
Affiliation(s)
| | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, João Pessoa, Brazil
| | - Marcos Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão de Pernambuco, Petrolina, Brazil
| | - Lúcio Roberto Cançado Castellano
- Laboratory of Cultivation and Cell Analysis, Technical Health School, Health Science Center, Federal University of Paraíba, João Pessoa, Brazil
| | - Evandro Leite de Souza
- Laboratory of Food Microbiology, Department of Nutrition, Health Science Center, Federal University of Paraíba, João Pessoa, Brazil
| |
Collapse
|
82
|
Velderrain-Rodríguez GR, Quero J, Osada J, Martín-Belloso O, Rodríguez-Yoldi MJ. Phenolic-Rich Extracts from Avocado Fruit Residues as Functional Food Ingredients with Antioxidant and Antiproliferative Properties. Biomolecules 2021; 11:biom11070977. [PMID: 34356601 PMCID: PMC8301936 DOI: 10.3390/biom11070977] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/13/2022] Open
Abstract
In this study, the total phenolic compounds content and profile, the nutritional value, the antioxidant and antiproliferative activities of avocado peel, seed coat, and seed extracts were characterized. Additionally, an in-silico analysis was performed to identify the phenolic compounds with the highest intestinal absorption and Caco-2 permeability. The avocado peel extract possessed the highest content of phenolic compounds (309.95 ± 25.33 mMol GA/100 g of extract) and the lowest effective concentration (EC50) against DPPH and ABTS radicals (72.64 ± 10.70 and 181.68 ± 18.47, respectively). On the other hand, the peel and seed coat extracts had the lowest energy densities (226.06 ± 0.06 kcal/100 g and 219.62 ± 0.49 kcal/100 g, respectively). Regarding the antiproliferative activity, the avocado peel extract (180 ± 40 µg/mL) showed the lowest inhibitory concentration (IC50), followed by the seed (200 ± 21 µg/mL) and seed coat (340 ± 32 µg/mL) extracts. The IC50 of the extracts induced apoptosis in Caco-2 cells at the early and late stages. According to the in-silico analysis, these results could be related to the higher Caco-2 permeability to hydroxysalidroside, salidroside, sakuranetin, and luteolin. Therefore, this study provides new insights regarding the potential use of these extracts as functional ingredients with antioxidant and antiproliferative properties and as medicinal agents in diseases related to oxidative stress such as cancer.
Collapse
Affiliation(s)
- Gustavo R. Velderrain-Rodríguez
- Agrotecnio Center, Department of Food Technology, University of Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain; (G.R.V.-R.); (O.M.-B.)
| | - Javier Quero
- Department of Pharmacology and Physiology, Forensic and Legal Medicine, Veterinary Faculty, University of Zaragoza, 50013 Zaragoza, Spain; (J.Q.); (J.O.)
| | - Jesús Osada
- Department of Pharmacology and Physiology, Forensic and Legal Medicine, Veterinary Faculty, University of Zaragoza, 50013 Zaragoza, Spain; (J.Q.); (J.O.)
- Department of Biochemistry and Molecular Cell Biology, Veterinary Faculty, University of Zaragoza, 50009 Zaragoza, Spain
- CIBERobn, ISCIII, IIS Aragón, IA2, 28029 Madrid, Spain
| | - Olga Martín-Belloso
- Agrotecnio Center, Department of Food Technology, University of Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain; (G.R.V.-R.); (O.M.-B.)
| | - María Jesús Rodríguez-Yoldi
- Department of Pharmacology and Physiology, Forensic and Legal Medicine, Veterinary Faculty, University of Zaragoza, 50013 Zaragoza, Spain; (J.Q.); (J.O.)
- CIBERobn, ISCIII, IIS Aragón, IA2, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-976-761649
| |
Collapse
|
83
|
Ferronatto AN, Rossi R, Massochin Nunes Pinto L, Garavaglia J. Development of a freeze-dried symbiotic obtained from rice bran. ACTA ACUST UNITED AC 2021; 30:e00636. [PMID: 34136366 PMCID: PMC8178094 DOI: 10.1016/j.btre.2021.e00636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 05/04/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022]
Abstract
This study aimed to assess the growth potential of L.acidophilus and L.plantarum in rice bran, a co-product from the food industry, and subsequently develop a freeze-dried symbiotic. Furthermore, phytochemicals and antioxidant properties were analysed. The growth was measured using growth kinetics over 72 h. The total phenolic compounds were analysed by the Folin-Ciocalteau method and antioxidant potential by DPPH and ABS methods. Freeze-drying process occurred using a pilot-scale equipment (Liotop LP510), verification and quantification of probiotics occurred through molecular analyses, as DNA extraction and qPCR. As a result, there was a good growth in rice bran (p = 0.04), suggesting its prebiotic potential. Rice bran also showed significant concentrations of phenolic compounds (3.69 mgEAG/mL ± 0.04) and antioxidant activity according ABTS (8.35 μmol ET/mL ± 0.106) and DPPH (24.71 μmol ET/mL ± 7.90) methods. The bacteria concentration decreased significantly when submitted to the freeze-drying process (p = 0.001), however, they remained by the minimum concentration required for a product to be considered a symbiotic. Therefore, it was concluded that rice bran and these analysed bacteria proved to be effective for a symbiotic formulation.
Collapse
Affiliation(s)
- Andressa Neuhaus Ferronatto
- NUTRIFOR Research Institute in Food and Health at UNISINOS University, Unisinos Avenue, 950 - São Leopoldo, Rio Grande do Sul, 93022-750, Brazil
| | - Rochele Rossi
- NUTRIFOR Research Institute in Food and Health at UNISINOS University, Unisinos Avenue, 950 - São Leopoldo, Rio Grande do Sul, 93022-750, Brazil
| | - Laura Massochin Nunes Pinto
- NUTRIFOR Research Institute in Food and Health at UNISINOS University, Unisinos Avenue, 950 - São Leopoldo, Rio Grande do Sul, 93022-750, Brazil
| | - Juliano Garavaglia
- NUTRIFOR Research Institute in Food and Health at UNISINOS University, Unisinos Avenue, 950 - São Leopoldo, Rio Grande do Sul, 93022-750, Brazil
| |
Collapse
|
84
|
Sibeko L, Johns T. Global survey of medicinal plants during lactation and postpartum recovery: Evolutionary perspectives and contemporary health implications. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113812. [PMID: 33450288 DOI: 10.1016/j.jep.2021.113812] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/20/2020] [Accepted: 01/08/2021] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cross-cultural comparison of plants used during lactation and the postpartum period offers insight into a largely overlooked area of ethnopharmacological research. Potential roles of phytochemicals in emerging models of interaction among immunity, inflammation, microbiome and nervous system effects on perinatal development have relevance for the life-long health of individuals and of populations in both traditional and contemporary contexts. AIM OF THE STUDY Delineate and interpret patterns of traditional and contemporary global use of medicinal plants ingested by mothers during the postpartum period relative to phytochemical activity on immune development and gastrointestinal microbiome of breastfed infants, and on maternal health. MATERIALS AND METHODS Published reviews and surveys on galactagogues and postpartum recovery practices plus ethnobotanical studies from around the world were used to identify and rank plants, and ascertain regional use patterns. Scientific literature for 20 most-cited plants based on frequency of publication was assessed for antimicrobial, antioxidant, anti-inflammatory, immunomodulatory, antidepressant, analgesic, galactagogic and safety properties. RESULTS From compilation of 4418 use reports related to 1948 species, 105 plant taxa were recorded ≥7 times, with the most frequently cited species, Foeniculum vulgare, Trigonella foenum-graecum, Pimpinella anisum, Euphorbia hirta and Asparagus racemosus, 81, 64, 42, 40 and 38 times, respectively. Species and use vary globally, illustrated by the pattern of aromatic plants of culinary importance versus latex-producing plants utilized in North Africa/Middle East and Sub-Saharan Africa with opposing predominance. For 18/20 of the plants a risk/benefit perspective supports assessment that positive immunomodulation and related potential exceed any safety concerns. Published evidence does not support a lactation-enhancing effect for nearly all the most-cited plants while antidepressant data for the majority of plants are predominately limited to animal studies. CONCLUSIONS Within a biocultural context traditional postpartum plant use serves adaptive functions for the mother-infant dyad and contributes phytochemicals absent in most contemporary diets and patterns of ingestion, with potential impacts on allergic, inflammatory and other conditions. Polyphenolics and other phytochemicals are widely immunologically active, present in breast milk and predominately non-toxic. Systematic analysis of phytochemicals in human milk, infant lumen and plasma, and immunomodulatory studies that differentiate maternal ingestion during lactation from pregnancy, are needed. Potential herb-drug interaction and other adverse effects should remain central to obstetric advising, but unless a plant is specifically shown as harmful, considering potential contributions to health of individuals and populations, blanket advisories against postpartum herbal use during lactation appear empirically unwarranted.
Collapse
Affiliation(s)
- Lindiwe Sibeko
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| | - Timothy Johns
- School of Human Nutrition, McGill University, Ste. Anne de Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
85
|
Wang J, Xie B, Sun Z. Quality parameters and bioactive compound bioaccessibility changes in probiotics fermented mango juice using ultraviolet-assisted ultrasonic pre-treatment during cold storage. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110438] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
86
|
Sobol I, Rodionova L, Donchenko L, Stepovoy A. Changes in biologically active substances of stone fruits under the influence of low temperatures. BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20213406017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Sufficient consumption of natural biologically active substances (BAS) – vitamins, dietary fiber, mineral compounds – reduces the risk of developing diseases associated with negative external factors. A large number of BAS are contained in the cherry plum fruits. Cherry plum is characterized by storage short term, during which quality changes are possible. Studies have been conducted on the low temperatures effect the change of BAS in cherry plum fruits. Studied objects were five cherry plum varieties grown in the Russian southern regions – Dinnaya, Zhemchuzhina, Obilnaya, Puteshestvennitsa, Neberdzhayskaya ranyaya. It was found that during storage, the physical and chemical parameters change slightly, the dry substances content decreases (within 1.3-3.2 %), sugars (5.5-7.0 %), the total acids content increases (2.8 3.3 %). The BAS content slight decrease during storage does not significantly affect the nutritional value of cherry plum fruits. The ascorbic acid reduction is 9.8-17.3 %, the anthocyanins content decreases on average from 16.9 to 19.7 %, the beta-carotene content decreases by 8.7-14.8 %, the reduction level of pectin substances is 15.75-22.2 %. Thus, the freezing method application allows to preserve valuable BAS in cherry plum fruits and use them in the future as a basis for the production of functional food products.
Collapse
|
87
|
Pramanick R, Aranha C. Distinct Functional Traits of Lactobacilli from Women with Asymptomatic Bacterial Vaginosis and Normal Microbiota. Microorganisms 2020; 8:E1949. [PMID: 33316918 PMCID: PMC7763271 DOI: 10.3390/microorganisms8121949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
Asymptomatic bacterial vaginosis (BV) in reproductive-age women has serious obstetric and gynecological consequences. Despite its high incidence, the behavior of vaginal lactobacilli in asymptomatic BV is unknown. We analyzed the functional properties of previously isolated vaginal lactobacilli from asymptomatic women with normal, intermediate, and BV microbiota. Lactic acid and antimicrobial activity against seven urogenital pathogens were evaluated from lactobacilli cell-free culture supernatants (CFCs) (n = 207) after 48 h incubation in MRS. Lactobacilli isolates were used to evaluate H2O2, autoaggregation and coaggregation with C. albicans. Lactobacilli from normal microbiota produced more d-lactate than lactobacilli from intermediate and asymptomatic BV (p = 0.007). L. plantarum, L. fermentum and L. reuteri produced greater d-lactate whereas L. rhamnosus, L. crispatus, L. johnsonii were greater producers of l-lactate. Interspecies positive correlation was observed in the lactic acid contents of CFCs. Distribution of H2O2-producing lactobacilli did not vary significantly among the groups. When lactic acid isomers were considered, species from intermediate and BV microbiota clustered together with each other and distinctly from species of normal microbiota. Broad-spectrum antagonism (≥90% inhibition) against E. coli, C. albicans, S. aureus, P. aeruginosa, G. vaginalis, N. gonorrhoeae, S. agalactiae were displayed by 46.86% (97) of isolates. Our study highlights the differential functional properties of vaginal lactobacilli from women with normal microbiota and asymptomatic BV.
Collapse
Affiliation(s)
| | - Clara Aranha
- Department of Molecular Immunology and Microbiology, ICMR-National Institute for Research in Reproductive Health, Parel, Mumbai 400102, India;
| |
Collapse
|
88
|
de Oliveira SD, Araújo CM, Borges GDSC, Lima MDS, Viera VB, Garcia EF, de Souza EL, de Oliveira MEG. Improvement in physicochemical characteristics, bioactive compounds and antioxidant activity of acerola (Malpighia emarginata D.C.) and guava (Psidium guajava L.) fruit by-products fermented with potentially probiotic lactobacilli. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110200] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
89
|
Cuenca-Micó O, Aceves C. Micronutrients and Breast Cancer Progression: A Systematic Review. Nutrients 2020; 12:nu12123613. [PMID: 33255538 PMCID: PMC7759972 DOI: 10.3390/nu12123613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Epidemiological studies on micronutrient consumption have reported protective associations in the incidence and/or progression of various cancer types. Supplementation with some of these micronutrients has been analyzed, showing chemoprotection, low toxicity, antiproliferation, and the ability to modify epigenetic signatures in various cancer models. This review investigates the reported effects of micronutrient intake or supplementation in breast cancer progression. A PubMed search was conducted with the keywords "micronutrients breast cancer progression", and the results were analyzed. The selected micronutrients were vitamins (C, D, and E), folic acid, metals (Cu, Fe, Se, and Zn), fatty acids, polyphenols, and iodine. The majority of in vitro models showed antiproliferative, cell-cycle arrest, and antimetastatic effects for almost all the micronutrients analyzed, but these effects do not reflect animal or human studies. Only one clinical trial with vitamin D and one pilot study with molecular iodine showed favorable overall survival and disease-free interval.
Collapse
|
90
|
Fruits and fruit by-products as sources of bioactive compounds. Benefits and trends of lactic acid fermentation in the development of novel fruit-based functional beverages. Food Res Int 2020; 140:109854. [PMID: 33648172 DOI: 10.1016/j.foodres.2020.109854] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/07/2020] [Accepted: 10/25/2020] [Indexed: 12/11/2022]
Abstract
Current awareness about the benefits of a balanced diet supports ongoing trends in humans towards a healthier diet. This review provides an overview of fruits and fruit-by products as sources of bioactive compounds and their extraction techniques, and the use of lactic acid fermentation of fruit juices to increase their functionality. Fruit matrices emerge as a technological alternative to be fermented by autochthonous or allochthonous lactic acid bacteria (LAB such as Lactiplantibacillus plantarum, Lacticaseibacillus rhamnosus, and other Lactobacillus species), and also as probiotic vehicles. During fermentation, microbial enzymes act on several fruit phytochemicals producing new derived compounds with impact on the aroma and the functionality of the fermented drinks. Moreover, fermentation significantly reduces the sugar content improving their nutritional value and extending the shelf-life of fruit-based beverages. The generation of new probiotic beverages as alternatives to consumers with intolerance to lactose or with vegan or vegetarian diets is promising for the worldwide functional food market. An updated overview on the current knowledge of the use of fruit matrices to be fermented by LAB and the interaction between strains and the fruit phytochemical compounds to generate new functional foods as well as their future perspectives in association with the application of nanotechnology techniques are presented in this review.
Collapse
|
91
|
Sampaio KB, do Nascimento YM, Tavares JF, Cavalcanti MT, de Brito Alves JL, Garcia EF, de Souza EL. Development and in vitro evaluation of novel nutraceutical formulations composed of Limosilactobacillus fermentum, quercetin and/or resveratrol. Food Chem 2020; 342:128264. [PMID: 33041168 DOI: 10.1016/j.foodchem.2020.128264] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 09/14/2020] [Accepted: 09/27/2020] [Indexed: 01/04/2023]
Abstract
This study developed and carried out an in vitro evaluation of nutraceutical formulations composed of potentially probiotic Limosilactobacillus fermentum (L. fermentum 139, L. fermentum 263 or L. fermentum 296), quercetin and/or resveratrol. L. fermentum strains had counts of >9 log CFU/g and contents of QUE and RES of >200 µg/mg in formulations after freeze-drying. Formulations with QUE and RES protected L. fermentum during exposure to in vitro acidic stomach conditions. L. fermentum strains had counts of >6 log CFU/g on day 60 and/or 90 of refrigeration storage. Contents of QUE (>29%) and RES (>50%) in formulations were potentially bioaccessible. Higher counts of L. fermentum and higher contents of QUE and RES were found in formulations stored under refrigerated rather than under room temperature. All nutraceutical formulations had antioxidant properties. Combinations of probiotic L. fermentum and QUE and/or RES should be an innovative strategy to develop added-value nutraceutical formulations.
Collapse
Affiliation(s)
- Karoliny Brito Sampaio
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | | | - Josean Fechine Tavares
- Institute for Research in Drugs and Medicines, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Mônica Tejo Cavalcanti
- Center for Agro-Food Science and Technology, Federal University of Campina Grande, Pombal, Paraíba, Brazil
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Estefânia Fernandes Garcia
- Department of Gastronomy, Center of Technology and Regional Development, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil.
| |
Collapse
|
92
|
Ribeiro TS, Sampaio KB, Menezes FNDD, de Assis POA, Dos Santos Lima M, de Oliveira MEG, de Souza EL, do Egypto Queiroga RDCR. In vitro evaluation of potential prebiotic effects of a freeze-dried juice from Pilosocereus gounellei (A. Weber ex K. Schum. Bly. Ex Rowl) cladodes, an unconventional edible plant from Caatinga biome. 3 Biotech 2020; 10:448. [PMID: 33062577 DOI: 10.1007/s13205-020-02442-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022] Open
Abstract
This study evaluated in vitro the potential prebiotic effects of a freeze-dried juice extracted from cladodes of Pilosocereus gounellei (A. Weber ex K. Schum.) Bly. Ex Rowl, an unconventional edible plant from Brazilian Caatinga biome and popularly known as xique-xique. Prebiotic effects of freeze-dried xique-xique cladode juice (XCJ, 20 g/L) were evaluated by measurements of prebiotic activity scores and stimulatory effects on growth and metabolic activities of probiotic Lactobacillus acidophilus LA-05, L. casei L-26 and L. paracasei L-10, which are beneficial species found as part of human gut microbiota. XCJ showed positive prebiotic activity scores on all examined probiotics, indicating a selective stimulatory effect on these microorganisms in detriment to enteric pathogens. Examined probiotics had high viable counts (> 8 log CFU/mL) after 48 h of cultivation in media with XCJ (20 g/L), representing an increase of > 2 log CFU/mL when compared to viable counts found on time zero. Cultivation of probiotics in media with XCJ resulted in decreased pH during the 48 h-incubation. Contents of fructose and glucose decreased in media with XCJ inoculated with L. acidophilus LA-05, L. casei L-26 or L. paracasei L-10 during the 48 h-cultivation, in parallel with an increase in contents of acetic and lactic acids. Measured effects of XCJ on probiotics were overall similar to those exerted by fructoligosaccharides (20 g/L), a proven prebiotic ingredient. These results showed that XCJ could exert selective stimulatory effects on different Lactobacillus species, which are indicative of potential prebiotic properties.
Collapse
Affiliation(s)
- Thais Santana Ribeiro
- Laboratory of Bromatology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba Brazil
| | - Karoliny Brito Sampaio
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba Brazil
| | | | - Paloma Oliveira Antonino de Assis
- Laboratory of Bromatology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba Brazil
| | - Marcos Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão de Pernambuco, Petrolina, Petrolina, Brazil
| | - Maria Elieidy Gomes de Oliveira
- Laboratory of Bromatology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba Brazil
| | - Evandro Leite de Souza
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba Brazil
- Laboratório de Microbiologia de Alimentos, Departamento de Nutrição, Centro de Ciências da Saúde, Universidade Federal da Paraíba, Campus I, Cidade Universitária, João Pessoa, Paraíba 58051-900 Brazil
| | | |
Collapse
|
93
|
Lacerda Massa NM, Dantas Duarte Menezes FN, de Albuquerque TMR, de Oliveira SPA, Lima MDS, Magnani M, de Souza EL. Effects of digested jabuticaba (Myrciaria jaboticaba (Vell.) Berg) by-product on growth and metabolism of Lactobacillus and Bifidobacterium indicate prebiotic properties. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109766] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
94
|
Schmidt L, Heck NDV, Ferreira I, Göethel G, Somacal S, Emanuelli T, Rodrigues E, Garcia SC, Welke JE, Augusti PR. Ochratoxin A presence in Cabernet Sauvignon wine changes antioxidant activity in vitro and oxidative stress markers in vivo. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:1755-1764. [PMID: 32805194 DOI: 10.1080/19440049.2020.1802067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Ochratoxin A (OTA) is a mycotoxin found in grape products and oxidative stress has been reported as an important mechanism involved in its toxicity, classified as possible carcinogenic to humans. Conversely, phenolics are known bioactive compounds in grapes and display great antioxidant properties. However, the biological effects of the concomitant presence of phenolic compounds and OTA remains unclear. The aim of this study was to evaluate, for the first time, the effect of OTA presence in Cabernet Sauvignon wine on antioxidant activity in vitro and on oxidative stress markers in vivo. In addition, the phenolic composition of wine was evaluated by LC-DAD-MS/MS. In vitro assays were based on spectrophotometric methods, while in vivo assays were performed evaluating oxidative stress markers in the nematode Caenorhabditis elegans, an alternative model to animal testing. A total of 23 phenolic compounds were identified in the Cabernet sauvignon red wine, including the anthocyanins delphinidin-3-O-glicoside and malvidin-3-O-glicoside, the flavonol quercetin-3-O-glucuronide and the phenolic acids caffeic, verbascoside and caftaric. Trans-resveratrol and trans-piceid were the only stilbenes found in the samples. OTA presence in the red wine was accompanied by reduction in GSH content and increase in hydroxyl radical generation in vitro. The presence of OTA in wine also increased lipoperoxidation and induced overexpression of the antioxidant enzymes superoxide dismutase and catalase in vivo. This study demonstrates that OTA presence in red wine can reduce its antioxidant potential in vitro and induces oxidative stress in vivo, without affecting the phenolic compounds levels in the samples. Thus, this work provides insights into the negative effects of the presence of OTA in wine, not only by its known toxicity, but also by prejudicing the antioxidant potential of wine. It is important to be aware of these effects when developing a complete description of OTA toxicity in humans.
Collapse
Affiliation(s)
- Luana Schmidt
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS) , Porto Alegre, RS, Brazil
| | - Natália de Vargas Heck
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS) , Porto Alegre, RS, Brazil
| | - Ingrid Ferreira
- Laboratory of Toxicology (LATOX), Department of Analyses, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS) , Porto Alegre, RS, Brazil
| | - Gabriela Göethel
- Laboratory of Toxicology (LATOX), Department of Analyses, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS) , Porto Alegre, RS, Brazil
| | - Sabrina Somacal
- Integrated Nucleus of Development in Laboratory Analysis (NIDAL), Department of Technology and Food Science, Center of Rural Sciences, Federal University of Santa Maria (UFSM) , Santa Maria, RS, Brazil
| | - Tatiana Emanuelli
- Integrated Nucleus of Development in Laboratory Analysis (NIDAL), Department of Technology and Food Science, Center of Rural Sciences, Federal University of Santa Maria (UFSM) , Santa Maria, RS, Brazil
| | - Eliseu Rodrigues
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS) , Porto Alegre, RS, Brazil
| | - Solange Cristina Garcia
- Laboratory of Toxicology (LATOX), Department of Analyses, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS) , Porto Alegre, RS, Brazil
| | - Juliane Elisa Welke
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS) , Porto Alegre, RS, Brazil
| | - Paula Rossini Augusti
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS) , Porto Alegre, RS, Brazil
| |
Collapse
|
95
|
Nazzaro F, Fratianni F, De Feo V, Battistelli A, Da Cruz AG, Coppola R. Polyphenols, the new frontiers of prebiotics. ADVANCES IN FOOD AND NUTRITION RESEARCH 2020; 94:35-89. [PMID: 32892838 DOI: 10.1016/bs.afnr.2020.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is a growing interest in the identification of molecules capable to promote health and with a concurrent potential for technological applications. Prebiotics are functional ingredients naturally occurring in some plant and animal foods that since many decades stimulated considerable attention from the pharmaceutical and food industries due to their positive health effects. Together the well-known biomolecules with ascertained prebiotic effect, in last year new molecules were finally recognized as prebiotics, so capable to improve the health of an organism, also through the positive effect exerted on host microbiota. Among the so-called prebiotics, a special mention should be given to polyphenols, probably the most important, or at least among the most important secondary metabolites produced by the vegetal kingdom. This short chapter wants to emphasize polyphenols and, after briefly describing the individual microbiome, to illustrate how polyphenols can, through their influence on the microbiome, have a positive effect on the health of the individual in general, and on some pathologies in particular, for which the role of a bad status of the individual microbiome has been definitively established.
Collapse
Affiliation(s)
| | | | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| | | | - Adriano Gomes Da Cruz
- Food Department, Federal Institute of Education, Science and Technology of Rio de Janeiro, Brazil
| | - Raffaele Coppola
- Department of Agricultural, Environmental and Food Sciences, DiAAA-University of Molise, Campobasso, Italy
| |
Collapse
|
96
|
Holkem AT, Robichaud V, Favaro-Trindade CS, Lacroix M. Chemopreventive Properties of Extracts Obtained from Blueberry ( Vaccinium myrtillus L.) and Jabuticaba ( Myrciaria cauliflora Berg.) in Combination with Probiotics. Nutr Cancer 2020; 73:671-685. [PMID: 32412316 DOI: 10.1080/01635581.2020.1761986] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The association of probiotics and fruit extracts may influence the chemopreventive effect of colorectal cancer. In this context, antiproliferative activity was evaluated to select the best extracts that would be added probiotics, after addition of Bifidobacterium or Lactobacillus in the extracts the antiradical and antioxidant activity, quinone reductase (QR) assay and apoptosis assay were evaluated. Four extracts were isolated: E1: rich in total phenolic compounds; E2: rich in water-soluble phenolic compounds; E3: rich in most apolar phenolic compounds and E4: rich in anthocyanins. The antiproliferative results showed that the best extracts for blueberry and jabuticaba were, respectively the extract E4 and E2. After addition of the probiotic bacteria in these best extracts, it was observed that E2 from jabuticaba presented significantly higher antiradical and antioxidant activity values compared to E4 from blueberry before and after addition of probiotics. There was also a 9-fold increase in activity of QR by the E2 from jabuticaba with Lactobacillus (JL). Likewise, this same extract showed a significant increase both in apoptotic and necrotic cells for both cells. In conclusion, extract rich in water-soluble phenolic compounds (E2) from jabuticaba presented a greater chemopreventive effect compared to the others.
Collapse
Affiliation(s)
- Augusto Tasch Holkem
- Research Laboratory in Sciences, Applied to Food, INRS Armand-Frappier Health and Biotechnology Centre, Canadian Irradiation Centre, Institute of Nutrition and Functional Foods (INAF), Laval, Quebec, Canada.,Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Engenharia de Alimentos, Pirassununga, SP, Brazil
| | - Valérie Robichaud
- Research Laboratory in Sciences, Applied to Food, INRS Armand-Frappier Health and Biotechnology Centre, Canadian Irradiation Centre, Institute of Nutrition and Functional Foods (INAF), Laval, Quebec, Canada
| | - Carmen Silvia Favaro-Trindade
- Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Engenharia de Alimentos, Pirassununga, SP, Brazil
| | - Monique Lacroix
- Research Laboratory in Sciences, Applied to Food, INRS Armand-Frappier Health and Biotechnology Centre, Canadian Irradiation Centre, Institute of Nutrition and Functional Foods (INAF), Laval, Quebec, Canada
| |
Collapse
|
97
|
Zendeboodi F, Khorshidian N, Mortazavian AM, da Cruz AG. Probiotic: conceptualization from a new approach. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2020.03.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
98
|
Scarsella E, Cintio M, Iacumin L, Ginaldi F, Stefanon B. Interplay between Neuroendocrine Biomarkers and Gut Microbiota in Dogs Supplemented with Grape Proanthocyanidins: Results of Dietary Intervention Study. Animals (Basel) 2020; 10:ani10030531. [PMID: 32235730 PMCID: PMC7142954 DOI: 10.3390/ani10030531] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 12/17/2022] Open
Abstract
Simple Summary The connection between animal health and gut microbiota has been studied during the past years through different diet modulation experiments; however, there is still a paucity of information about the prebiotic functions in the gastrointestinal tract of companion animals. Considering this, a population of dogs living in the same environment has been subjected to a nutritional study, with different doses of proanthocyanidins extracted from grapevine supplied to the diet. Characterization of the gut microbiota and data from endocrine analysis in saliva have been collected. Dogs responded differently to the dietary intervention, and results underlined the existence of a difference between subjects in terms of fecal microorganisms and neuroendocrine markers, leading us to think the balance of gut microbiota is going to play a strong role in diet formulation based on host health modulation. Abstract Several studies on the interaction between gut microbiota and diets, including prebiotics, have been reported in dogs, but no data are available about the effects of dietary administration of grape proanthocyanidins. In the study, 24 healthy adult dogs of different breeds were recruited and divided in 3 groups of 8 subjects each. A group was fed with a control diet (D0), whilst the others were supplemented with 1 (D1) or 3 (D3) mg/kg live weight of grape proanthocyanidins. Samples of feces were collected at the beginning and after 14 and 28 days for microbiota, short chain fatty acid, and lactic acid analysis. Serotonin and cortisol were measured in saliva, collected at the beginning of the study and after 28 days. A significantly higher abundance (p < 0.01) of Enterococcus and Adlercreutzia were observed in D0, whilst Escherichia and Eubacterium were higher in D1. Fusobacterium and Phascolarctobacterium were higher (p < 0.01) in D3. Salivary serotonin increased (p < 0.01) at T28 for D1 and D3 groups but cortisol did not vary. Proanthocyanidins administration influenced the fecal microbiota and neuroendocrine response of dogs, but a high variability of taxa was observed, suggesting a uniqueness and stability of fecal microbiota related to the individual.
Collapse
|
99
|
Effects of lactic acid fermentation-based biotransformation on phenolic profiles, antioxidant capacity and flavor volatiles of apple juice. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109064] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
100
|
Sireswar S, Biswas S, Dey G. Adhesion and anti-inflammatory potential of Lactobacillus rhamnosus GG in a sea buckthorn based beverage matrix. Food Funct 2020; 11:2555-2572. [DOI: 10.1039/c9fo02249j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A seabuckthorn based beverage matrix retains the functionality of L. rhamnosus GG and exhibits enhanced anti-inflammatory effects against LPS-induced inflammation in zebrafish.
Collapse
Affiliation(s)
- Srijita Sireswar
- School of Biotechnology
- Kalinga Institute of Industrial Technology
- Deemed to be University
- Bhubaneswar
- India
| | | | - Gargi Dey
- School of Biotechnology
- Kalinga Institute of Industrial Technology
- Deemed to be University
- Bhubaneswar
- India
| |
Collapse
|