51
|
García-Cordero J, Martinez A, Blanco-Valverde C, Pino A, Puertas-Martín V, San Román R, de Pascual-Teresa S. Regular Consumption of Cocoa and Red Berries as a Strategy to Improve Cardiovascular Biomarkers via Modulation of Microbiota Metabolism in Healthy Aging Adults. Nutrients 2023; 15:nu15102299. [PMID: 37242181 DOI: 10.3390/nu15102299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The aim of the present study was to analyze the effects of cocoa flavanols and red berry anthocyanins on cardiovascular biomarkers, such as homocysteine, angiotensin-converting enzyme (ACE), nitric oxide (NO), flow-mediated vasodilation (FMD), blood pressure and lipid profile. Additionally, we aimed to ascertain their possible interactions with microbiota related metabolites, such as secondary bile acids (SBA), short-chain fatty acids (SCFA) and trimethylamine N-oxide (TMAO). A randomized, parallel-group study, single-blind for the research team, was performed on 60 healthy volunteers between the ages of 45 and 85, who consumed 2.5 g/day of cocoa powder (9.59 mg/day of total flavanols), 5 g/day of a red berry mixture (13.9 mg/day of total anthocyanins) or 7.5 g/day of a combination of both for 12 weeks. The group that had consumed cocoa showed a significant reduction in TMAO (p = 0.03) and uric acid (p = 0.01) levels in serum, accompanied by an increase in FMD values (p = 0.03) and total polyphenols. corrected by creatinine (p = 0.03) after the intervention. These latter values negatively correlated with the TMAO concentration (R = -0.57, p = 0.02). Additionally, we observed an increase in carbohydrate fermentation in the groups that had consumed cocoa (p = 0.04) and red berries (p = 0.04) between the beginning and the end of the intervention. This increase in carbohydrate fermentation was correlated with lower levels of TC/HDL ratio (p = 0.01), systolic (p = 0.01) and diastolic blood pressure (p = 0.01). In conclusion, our study showed a positive modulation of microbiota metabolism after a regular intake of cocoa flavanols and red berry anthocyanins that led to an improvement in cardiovascular function, especially in the group that consumed cocoa.
Collapse
Affiliation(s)
- Joaquín García-Cordero
- Departamento de Metabolismo y Nutrición, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), C/José Antonio Novais, 10, 28040 Madrid, Spain
| | - Alba Martinez
- Departamento de Metabolismo y Nutrición, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), C/José Antonio Novais, 10, 28040 Madrid, Spain
| | - Carlos Blanco-Valverde
- Departamento de Metabolismo y Nutrición, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), C/José Antonio Novais, 10, 28040 Madrid, Spain
| | - Alicia Pino
- Departamento de Metabolismo y Nutrición, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), C/José Antonio Novais, 10, 28040 Madrid, Spain
| | - Verónica Puertas-Martín
- Hospital 12 de Octubre, 28041 Madrid, Spain
- Facultad de Educación, Universidad Internacional de la Rioja, 26006 Logroño, Spain
| | | | - Sonia de Pascual-Teresa
- Departamento de Metabolismo y Nutrición, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), C/José Antonio Novais, 10, 28040 Madrid, Spain
| |
Collapse
|
52
|
Liu R, Liu B, Tian L, Wu X, Li X, Cai D, Jiang X, Sun J, Jin Y, Bai W. Induction of reproductive injury by bisphenol A and the protective effects of cyanidin-3-O-glucoside and protocatechuic acid in rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163615. [PMID: 37105472 DOI: 10.1016/j.scitotenv.2023.163615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/05/2023] [Accepted: 04/17/2023] [Indexed: 05/05/2023]
Abstract
Bisphenol A (BPA) has attracted growing attention as a well-known environmental pollutant due to its high risk of male reproductive toxicity. In this study, transcriptomics profiling combined with metabolomic techniques was applied to explore the intervention effects of BPA-induced male reproductive toxicity. We demonstrated that cyanidin-3-O-glucoside (C3G) and its main metabolite protocatechuic acid (PCA) significantly increased testosterone and luteinizing hormone (LH) levels in the serum of rats, and improved sperm quality. Furthermore, we identified and screened differentially expressed genes (DEGs) and metabolites (DMs) that functionally enriched in the steroidogenesis-related pathways. Next, the validated results found that C3G and PCA significantly up-regulated the gene expressions of Star, Cyp11a1, Cyp17a1, Cyp19a1, Cyp7a1, Hsd3b1, Hsd3b2, Hsd17b3, Scrab1, and Ass1 in testicular. In Leydig cells, C3G and PCA dramatically alleviated apoptosis, ROS accumulation, and cell cycle arrest caused by BPA. In addition, molecular docking and simulation results implied that C3G and PCA competitively with BPA bind to the estrogen receptors α and β (ERα and ERβ) and shared common key amino acids. The main interaction modes between small molecules and estrogen receptors included π-π stacking, salt bridges, hydrogen bonds, and hydrophobic interactions. Therefore, our study sheds light on C3G and PCA supplementation can protect male reproduction from BPA-induced injury.
Collapse
Affiliation(s)
- Ruijing Liu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China; College of Materials and Energy, Key Laboratory for Bio-Based Materials and Energy of Ministry of Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Boping Liu
- College of Materials and Energy, Key Laboratory for Bio-Based Materials and Energy of Ministry of Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Lingmin Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China
| | - Xiaoyan Wu
- College of Materials and Energy, Key Laboratory for Bio-Based Materials and Energy of Ministry of Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China
| | - Dongbao Cai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China
| | - Xinwei Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yulong Jin
- College of Materials and Energy, Key Laboratory for Bio-Based Materials and Energy of Ministry of Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
53
|
Santamarina AB, Calder PC, Estadella D, Pisani LP. Anthocyanins ameliorate obesity-associated metainflammation: Preclinical and clinical evidence. Nutr Res 2023; 114:50-70. [PMID: 37201432 DOI: 10.1016/j.nutres.2023.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 03/13/2023] [Accepted: 04/10/2023] [Indexed: 05/20/2023]
Abstract
The growing rates of obesity worldwide call for intervention strategies to help control the pathophysiological consequences of weight gain. The use of natural foods and bioactive compounds has been suggested as such a strategy because of their recognized antioxidant and anti-inflammatory properties. For example, polyphenols, especially anthocyanins, are candidates for managing obesity and its related metabolic disorders. Obesity is well known for the presence of metainflammation, which has been labeled as an inflammatory activation that leads to a variety of metabolic disorders, usually related to increased oxidative stress. Considering this, anthocyanins may be promising natural compounds able to modulate several intracellular mechanisms, mitigating oxidative stress and metainflammation. A wide variety of foods and extracts rich in anthocyanins have become the focus of research in the field of obesity. Here, we bring together the current knowledge regarding the use of anthocyanins as an intervention tested in vitro, in vivo, and in clinical trials to modulate metainflammation. Most recent research applies a wide variety of extracts and natural sources of anthocyanins, in diverse experimental models, which represents a limitation of the research field. However, the literature is sufficiently consistent to establish that the in-depth molecular analysis of gut microbiota, insulin signaling, TLR4-triggered inflammation, and oxidative stress pathways reveals their modulation by anthocyanins. These targets are interconnected at the cellular level and interact with one another, leading to obesity-associated metainflammation. Thus, the positive findings with anthocyanins observed in preclinical models might directly relate to the positive outcomes in clinical studies. In summary and based on the entirety of the relevant literature, anthocyanins can mitigate obesity-related perturbations in gut microbiota, insulin resistance, oxidative stress and inflammation and therefore may contribute as a therapeutic tool in people living with obesity.
Collapse
Affiliation(s)
- Aline B Santamarina
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Campus Baixada Santista - UNIFESP, Santos, São Paulo, Brazil
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Debora Estadella
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Campus Baixada Santista - UNIFESP, Santos, São Paulo, Brazil
| | - Luciana P Pisani
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Campus Baixada Santista - UNIFESP, Santos, São Paulo, Brazil.
| |
Collapse
|
54
|
Liu S, Cheng L, Liu Y, Zhan S, Wu Z, Zhang X. Relationship between Dietary Polyphenols and Gut Microbiota: New Clues to Improve Cognitive Disorders, Mood Disorders and Circadian Rhythms. Foods 2023; 12:foods12061309. [PMID: 36981235 PMCID: PMC10048542 DOI: 10.3390/foods12061309] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Cognitive, mood and sleep disorders are common and intractable disorders of the central nervous system, causing great inconvenience to the lives of those affected. The gut-brain axis plays a vital role in studying neurological disorders such as neurodegenerative diseases by acting as a channel for a bidirectional information exchange between the gut microbiota and the nervous system. Dietary polyphenols have received widespread attention because of their excellent biological activity and their wide range of sources, structural diversity and low toxicity. Dietary intervention through the increased intake of dietary polyphenols is an emerging strategy for improving circadian rhythms and treating metabolic disorders. Dietary polyphenols have been shown to play an essential role in regulating intestinal flora, mainly by maintaining the balance of the intestinal flora and enhancing host immunity, thereby suppressing neurodegenerative pathologies. This paper reviewed the bidirectional interactions between the gut microbiota and the brain and their effects on the central nervous system, focusing on dietary polyphenols that regulate circadian rhythms and maintain the health of the central nervous system through the gut-brain axis.
Collapse
Affiliation(s)
- Siyu Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Lu Cheng
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Shengnan Zhan
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
55
|
Valorization of Food Waste to Produce Value-Added Products Based on Its Bioactive Compounds. Processes (Basel) 2023. [DOI: 10.3390/pr11030840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The rapid growth of the global population and changes in lifestyle have led to a significant increase in food waste from various industrial, agricultural, and household sources. Nearly one-third of the food produced annually is wasted, resulting in severe resource depletion. Food waste contains rich organic matter, which, if not managed properly, can pose a serious threat to the environment and human health, making the proper disposal of food waste an urgent global issue. However, various types of food waste, such as waste from fruit, vegetables, grains, and other food production and processing, contain important bioactive compounds, such as polyphenols, dietary fiber, proteins, lipids, vitamins, organic acids, and minerals, some of which are found in greater quantities in the discarded parts than in the parts accepted by the market. These bioactive compounds offer the potential to convert food waste into value-added products, and fields including nutritional foods, bioplastics, bioenergy, biosurfactants, biofertilizers, and single cell proteins have welcomed food waste as a novel source. This review reveals the latest insights into the various sources of food waste and the potential of utilizing bioactive compounds to convert it into value-added products, thus enhancing people’s confidence in better utilizing and managing food waste.
Collapse
|
56
|
Wongwaiwech D, Kamchonemenukool S, Ho CT, Li S, Majai N, Rungrat T, Sujipuli K, Pan MH, Weerawatanakorn M. Bioactives from Crude Rice Bran Oils Extracted Using Green Technology. Molecules 2023; 28:molecules28062457. [PMID: 36985429 PMCID: PMC10057060 DOI: 10.3390/molecules28062457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
Crude rice bran oils from different rice cultivars and extraction methods bear different contents of nutraceuticals. The health benefits of lowering cholesterol activity of rice bran oil being confirmed by many reports are partly attributed to non-nutrient nutraceuticals, especially γ-oryzanol, phytosterols, and policosanols. As the world has been facing the global warming crisis, green extraction technology is gaining attention from many sectors. The current study aims to compare the nutraceutical composition with respect to γ-oryzanol, phytosterol, and policosanol content as well as the antioxidant properties of crude rice bran oils extracted from white and red rice bran using three green technologies, comparing with conventional hexane extraction. The data show that the traditional solvent extraction gave the highest oil yield percentage (26%), but it was not significantly different from subcritical liquefied dimethyl ether extraction (24.6%). Subcritical liquefied dimethyl ether extraction gave higher oil yield than supercritical CO2 extraction (15.5–16.2%). The crude rice bran oil extracted using subcritical liquefied dimethyl ether extraction produced the highest total phenolic contents and antioxidant activities. The highest γ-oryzanol content of the crude rice bran oil was found in oil extracted by conventional cold press (1370.43 mg/100 g). The γ-oryzanol content of the oil obtained via subcritical liquefied dimethyl ether extraction was high (1213.64 mg/100 g) compared with supercritical CO2 extraction. The red rice bran yielded the crude rice bran oil with the highest total phytosterol content compared with the white bran, and the oil from red rice bran extracted with subcritical liquefied dimethyl ether generated the highest total phytosterol content (1784.17 mg/100 g). The highest policosanol content (274.40 mg/100 g) was also found in oil obtained via subcritical liquefied dimethyl ether extraction.
Collapse
Affiliation(s)
- Donporn Wongwaiwech
- Department of Agro-Industry, Rajamangala University of Technology Lanna Tak, 41/1 Moo 7, Mai Ngam, Mueang, Tak 63000, Thailand
| | - Sudthida Kamchonemenukool
- Department of Agro-Industry, Naresuan University, 99 Moo 9, Tha Pho, Mueang, Phitsanulok 65000, Thailand
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Shiming Li
- Department of Food Science, College of Life Sciences, Huanggang Normal University, Huanggang 438000, China
| | - Nutthaporn Majai
- Department of Agro-Industry, Naresuan University, 99 Moo 9, Tha Pho, Mueang, Phitsanulok 65000, Thailand
| | - Tepsuda Rungrat
- Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, 99 Moo 9, Tha Pho, Mueang, Phitsanulok 65000, Thailand
| | - Kawee Sujipuli
- Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, 99 Moo 9, Tha Pho, Mueang, Phitsanulok 65000, Thailand
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, No.1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Monthana Weerawatanakorn
- Department of Agro-Industry, Naresuan University, 99 Moo 9, Tha Pho, Mueang, Phitsanulok 65000, Thailand
- Correspondence: ; Tel.: +66-0629514194
| |
Collapse
|
57
|
Nicolás García M, Borrás Enríquez A, González Escobar J, Calva Cruz O, Pérez Pérez V, Sánchez Becerril M. Phenolic Compounds in Agro-Industrial Waste of Mango Fruit: Impact on Health and Its Prebiotic Effect – a Review. POL J FOOD NUTR SCI 2023. [DOI: 10.31883/pjfns/159361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
|
58
|
Zannou O, Oussou KF, Chabi IB, Awad NMH, Aïssi MV, Goksen G, Mortas M, Oz F, Proestos C, Kayodé APP. Nanoencapsulation of Cyanidin 3- O-Glucoside: Purpose, Technique, Bioavailability, and Stability. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:617. [PMID: 36770579 PMCID: PMC9921781 DOI: 10.3390/nano13030617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
The current growing attractiveness of natural dyes around the world is a consequence of the increasing rejection of synthetic dyes whose use is increasingly criticized. The great interest in natural pigments from herbal origin such as cyanidin 3-O-glucoside (C3G) is due to their biological properties and their health benefits. However, the chemical instability of C3G during processing and storage and its low bioavailability limits its food application. Nanoencapsulation technology using appropriate nanocarriers is revolutionizing the use of anthocyanin, including C3G. Owing to the chemical stability and functional benefits that this new nanotechnology provides to the latter, its industrial application is now extending to the pharmaceutical and cosmetic fields. This review focuses on the various nanoencapsulation techniques used and the chemical and biological benefits induced to C3G.
Collapse
Affiliation(s)
- Oscar Zannou
- Department of Food Engineering, Faculty of Engineering, Ondokuz Mayis University, 55139 Samsun, Turkey
- Laboratory of Human Nutrition and Valorization of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou 01 BP 526, Benin
| | - Kouame F. Oussou
- Department of Food Engineering, Faculty of Agriculture, Çukurova University, 01330 Adana, Turkey
| | - Ifagbémi B. Chabi
- Laboratory of Human Nutrition and Valorization of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou 01 BP 526, Benin
| | - Nour M. H. Awad
- Department of Food Engineering, Faculty of Engineering, Ondokuz Mayis University, 55139 Samsun, Turkey
| | - Midimahu V. Aïssi
- School of Sciences and Techniques for the Conservation and Processing of Agricultural Products, National University of Agriculture, Sakété 00 BP 144, Benin
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Mustafa Mortas
- Department of Food Engineering, Faculty of Engineering, Ondokuz Mayis University, 55139 Samsun, Turkey
| | - Fatih Oz
- Department of Food Engineering, Agriculture Faculty, Atatürk University, 25240 Erzurum, Turkey
| | - Charalampos Proestos
- Food Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece
| | - Adéchola P. P. Kayodé
- Laboratory of Human Nutrition and Valorization of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou 01 BP 526, Benin
| |
Collapse
|
59
|
Chen K, Kortesniemi MK, Linderborg KM, Yang B. Anthocyanins as Promising Molecules Affecting Energy Homeostasis, Inflammation, and Gut Microbiota in Type 2 Diabetes with Special Reference to Impact of Acylation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1002-1017. [PMID: 36515085 PMCID: PMC9853865 DOI: 10.1021/acs.jafc.2c05879] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 05/27/2023]
Abstract
Anthocyanins, the red-orange to blue-violet colorants present in fruits, vegetables, and tubers, have antidiabetic properties expressed via modulating energy metabolism, inflammation, and gut microbiota. Acylation of the glycosyl moieties of anthocyanins alters the physicochemical properties of anthocyanins and improves their stability. Thus, acylated anthocyanins with probiotic-like property and lower bioavailability are likely to have different biological effects from nonacylated anthocyanins on diabetes. This work highlights recent findings on the antidiabetic effects of acylated anthocyanins from the perspectives of energy metabolism, inflammation, and gut microbiota compared to the nonacylated anthocyanins and particularly emphasizes the cellular and molecular mechanisms associated with the beneficial effects of these bioactive molecules, providing a new perspective to explore the different biological effects induced by structurally different anthocyanins. Acylated anthocyanins may have greater modulating effects on energy metabolism, inflammation, and gut microbiota in type 2 diabetes compared to nonacylated anthocyanins.
Collapse
|
60
|
Wu A, Gao Y, Kan R, Ren P, Xue C, Kong B, Tang Q. Alginate Oligosaccharides Prevent Dextran-Sulfate-Sodium-Induced Ulcerative Colitis via Enhancing Intestinal Barrier Function and Modulating Gut Microbiota. Foods 2023; 12:foods12010220. [PMID: 36613442 PMCID: PMC9818813 DOI: 10.3390/foods12010220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
Alginate oligosaccharides are degradation products of alginate and have attracted increasing attention due to their versatile biological functions. In the present study, C57BL/6 mice were used to assess the ameliorative effects and mechanisms of guluronate oligosaccharides (GAOS), mannuronic oligosaccharides (MAOS), and heterozygous alginate oligosaccharides (HAOS), which are the three alginate oligosaccharides of dextran sulfate sodium (DSS)-induced ulcerative colitis. The study showed that alginate oligosaccharides alleviated pathological histological damage by slowing down weight loss, inhibiting colonic length shortening, and reducing disease activity index (DAI) and histopathological scores. Alginate oligosaccharides modulated the colonic inflammatory response by reducing colonic MPO levels and downregulating the expression of IL-6 and IL-1β. Alginate oligosaccharides reduced intestinal permeability and reversed intestinal barrier damage by increasing the number of goblet cells, decreasing LPS levels, downregulating Bax protein levels, upregulating Bcl-2 protein levels, and enhancing the expression of the E-cadherin. Furthermore, alginate oligosaccharides modulated the composition of the gut microbiota and restored the production of short-chain fatty acids (SCFAs), especially acetate and butyrate. In conclusion, our study provides a scientific basis for the role of alginate oligosaccharides in relieving ulcerative colitis.
Collapse
Affiliation(s)
- Axue Wu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yuan Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Ruotong Kan
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Pengfei Ren
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Qingjuan Tang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
- Correspondence: ; Tel.: +86-13912383919
| |
Collapse
|
61
|
Rosales TKO, Pedrosa LDF, Nascimento KR, Fioroto AM, Toniazzo T, Tadini CC, Purgatto E, Hassimotto NMA, Fabi JP. Nano-encapsulated anthocyanins: A new technological approach to increase physical-chemical stability and bioaccessibility. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
62
|
Panchal SK, Brown L. Potential Benefits of Anthocyanins in Chronic Disorders of the Central Nervous System. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010080. [PMID: 36615279 PMCID: PMC9822395 DOI: 10.3390/molecules28010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Anthocyanins have been shown to be effective in chronic diseases because of their antioxidant and anti-inflammatory effects together with changes in the gut microbiota and modulation of neuropeptides such as insulin-like growth factor-1. This review will examine whether these mechanisms may be effective to moderate the symptoms of disorders of the central nervous system in humans, including schizophrenia, Parkinson's disease, Alzheimer's disease, autism spectrum disorder, depression, anxiety, attention-deficit hyperactivity disorder and epilepsy. Thus, anthocyanins from fruits and berries should be considered as complementary interventions to improve these chronic disorders.
Collapse
Affiliation(s)
- Sunil K. Panchal
- School of Science, Western Sydney University, Richmond, NSW 2753, Australia
| | - Lindsay Brown
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD 4222, Australia
- Correspondence: ; Tel.: +61-433-062-123
| |
Collapse
|
63
|
Xue H, Sang Y, Gao Y, Zeng Y, Liao J, Tan J. Research Progress on Absorption, Metabolism, and Biological Activities of Anthocyanins in Berries: A Review. Antioxidants (Basel) 2022; 12:antiox12010003. [PMID: 36670865 PMCID: PMC9855064 DOI: 10.3390/antiox12010003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/11/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Berries, as the best dietary sources for human health, are rich in anthocyanins, vitamins, fiber, polyphenols, essential amino acids, and other ingredients. Anthocyanins are one of the most important bioactive components in berries. The attractive color of berries is attributed to the fact that berries contain different kinds of anthocyanins. Increasing research activity has indicated that anthocyanins in berries show various biological activities, including protecting vision; antioxidant, anti-inflammatory and anti-tumor qualities; inhibition of lipid peroxidation; anti-cardiovascular disease properties; control of hypoglycemic conditions; and other activities. Hence, berries have high nutritional and medicinal values. The recognized absorption, metabolism, and biological activities of anthocyanins have promoted their research in different directions. Hence, it is necessary to systematically review the research progress and future prospects of anthocyanins to promote a better understanding of anthocyanins. The absorption, metabolism, and biological activities of anthocyanins from berries were reviewed in this paper. The findings of this study provide an important reference for basic research, product development and utilization of berries' anthocyanins in food, cosmetics, and drugs.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Yumei Sang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Yuchao Gao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Yuan Zeng
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Jianqing Liao
- College of Physical Science and Engineering, Yichun University, No. 576 Xuefu Road, Yichun 336000, China
- Correspondence: (J.L.); (J.T.); Tel.: +86-0312-5075644 (J.L. & J.T.)
| | - Jiaqi Tan
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
- Medical Comprehensive Experimental Center, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
- Correspondence: (J.L.); (J.T.); Tel.: +86-0312-5075644 (J.L. & J.T.)
| |
Collapse
|
64
|
Zhang Y, Yu W, Zhang L, Wang M, Chang W. The Interaction of Polyphenols and the Gut Microbiota in Neurodegenerative Diseases. Nutrients 2022; 14:nu14245373. [PMID: 36558531 PMCID: PMC9785743 DOI: 10.3390/nu14245373] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Polyphenols are secondary metabolites of plants and play a potential role in the prevention and treatment of neurodegenerative diseases (NND) such as Alzheimer's disease (AD) and Parkinson's disease (PD) due to their unique physiological functions such as acting as antioxidants, being anti-inflammatory, being neuroprotective, and promoting intestinal health. Since dietary polyphenols exist in plant foods in the form of glycosylation or esterification or are combined with polymers, they need to undergo extensive metabolism through phase I and phase II biotransformations by various intestinal enzymes, as well as metabolism by the intestinal microbiota before they can be fully absorbed. Polyphenols improve intestinal microbiota disorders by influencing the structure and function of intestinal microbiota, inducing beneficial bacteria to produce a variety of metabolites such as short-chain fatty acids (SCFAs), promoting the secretion of hormones and neurotransmitters, and playing an important role in the prevention and treatment of NND by affecting the microbe-gut-brain axis. We review the ways in which some polyphenols can change the composition of the intestinal microbiota and their metabolites in AD or PD animal models to exert the role of slowing down the progression of NND, aiming to provide evidence for the role of polyphenols in slowing the progression of NND via the microbiota-gut-brain (MGB) axis.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
- Correspondence: ; Tel.: +86-532-82991791
| | - Wanpeng Yu
- Medical College, Qingdao University, Qingdao 266021, China
| | - Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Man Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| |
Collapse
|
65
|
Chen W, Xie C, He Q, Sun J, Bai W. Improvement in color expression and antioxidant activity of strawberry juice fermented with lactic acid bacteria: A phenolic-based research. Food Chem X 2022; 17:100535. [PMID: 36845463 PMCID: PMC9943758 DOI: 10.1016/j.fochx.2022.100535] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/10/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to investigate the impact of lactic acid bacteria fermentation on color expression and antioxidant activity of strawberry juice from the perspective of phenolic components. The results showed that both Lactobacillus plantarum and Lactobacillus acidophilus were able to grow in strawberry juice, promote the consumption of rutin, (+)-catechin and pelargonidin-3-O-glucoside, and increase the content of gallic acid, protocatechuic acid, caffeic acid and p-coumaric acid compared to group control. Lower pH environment in fermented juice was likely to enhance the color performance of anthocyanins and increase its parameters a* and b*, making the juice appear orange color. In addition, the scavenging capacity of 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and ferric reducing antioxidant capacity (FRAP) were improved and closely related to polyphenolic substances and strain's metabolites in fermented juice.
Collapse
Affiliation(s)
- Wending Chen
- Department of Food Science and Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Caiyun Xie
- Department of Food Science and Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Qianqian He
- Department of Food Science and Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Jianxia Sun
- Department of Food Science and Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China,Corresponding authors.
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China,Corresponding authors.
| |
Collapse
|
66
|
Agrizzi Verediano T, Agarwal N, Stampini Duarte Martino H, Kolba N, Grancieri M, Dias Paes MC, Tako E. Effect of Black Corn Anthocyanin-Rich Extract ( Zea mays L.) on Cecal Microbial Populations In Vivo ( Gallus gallus). Nutrients 2022; 14:4679. [PMID: 36364942 PMCID: PMC9655515 DOI: 10.3390/nu14214679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 08/17/2023] Open
Abstract
Black corn has been attracting attention to investigate its biological properties due to its anthocyanin composition, mainly cyanidin-3-glucoside. Our study evaluated the effects of black corn extract (BCE) on intestinal morphology, gene expression, and the cecal microbiome. The BCE intra-amniotic administration was evaluated by an animal model in Gallus gallus. The eggs (n = 8 per group) were divided into: (1) no injection; (2) 18 MΩ H2O; (3) 5% black corn extract (BCE); and (4) 0.38% cyanidin-3-glucoside (C3G). A total of 1 mL of each component was injected intra-amniotic on day 17 of incubation. On day 21, the animals were euthanized after hatching, and the duodenum and cecum content were collected. The cecal microbiome changes were attributed to BCE administration, increasing the population of Bifidobacterium and Clostridium, and decreasing E. coli. The BCE did not change the gene expression of intestinal inflammation and functionality. The BCE administration maintained the villi height, Paneth cell number, and goblet cell diameter (in the villi and crypt), similar to the H2O injection but smaller than the C3G. Moreover, a positive correlation was observed between Bifidobacterium, Clostridium, E. coli, and villi GC diameter. The BCE promoted positive changes in the cecum microbiome and maintained intestinal morphology and functionality.
Collapse
Affiliation(s)
- Thaisa Agrizzi Verediano
- Nutrition and Health Department, Universidade Federal de Viçosa, Vicosa 36571-000, Minas Gerais, Brazil
| | - Nikita Agarwal
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, USA
| | | | - Nikolai Kolba
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, USA
| | - Mariana Grancieri
- Nutrition and Health Department, Universidade Federal de Viçosa, Vicosa 36571-000, Minas Gerais, Brazil
| | - Maria Cristina Dias Paes
- Empresa Brasileira de Pesquisa e Agropecuária (EMBRAPA), Sete Lagoas 35701-970, Minas Gerais, Brazil
| | - Elad Tako
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, USA
| |
Collapse
|
67
|
Festa J, Singh H, Hussain A, Da Boit M. Elderberries as a potential supplement to improve vascular function in a SARS-CoV-2 environment. J Food Biochem 2022; 46:e14091. [PMID: 35118699 DOI: 10.1111/jfbc.14091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 12/29/2022]
Abstract
Coronavirus disease 2019 (COVID-19) pandemic has been triggered by the severe acute respiratory syndrome coronavirus (SARS-CoV-2). Although recent studies demonstrate that SARS-CoV-2 possibly does not directly infect endothelial cells (EC), the endothelium may be affected as a secondary response due to the damage of neighboring cells, circulating pro-inflammatory cytokines, and/or other mechanisms. Long-term COVID-19 symptoms specifically nonrespiratory symptoms are due to the persistence of endothelial dysfunction (ED). Based on the literature, anthocyanins a major subgroup of flavonoid polyphenols found in berries, have been well researched for their vascular protective properties as well as the prevention of cardiovascular disease (CVD)-related deaths. Elderberries have been previously used as a natural remedy for treating influenza, cold, and consequently cardiovascular health due to a high content of cyanidin-3-glucoside (C3G) a major anthocyanin found in the human diet. The literature reported many studies demonstrating that EE has both antiviral and vascular protective properties that should be further investigated as a nutritional component used against the (in)direct effect of SARS-CoV-2 in vascular function. PRACTICAL APPLICATIONS: While previous work among the literature looks promising and builds a suggestion for investigating elderberry extract (EE) against COVID-19, further in vitro and in vivo research is required to fully evaluate EE mechanisms of action and its use as a supplement to aid current therapies.
Collapse
Affiliation(s)
- Joseph Festa
- Leicester School of Allied Health Sciences, De Montfort University, Leicester, UK
| | - Harprit Singh
- Leicester School of Allied Health Sciences, De Montfort University, Leicester, UK
| | - Aamir Hussain
- Leicester School of Allied Health Sciences, De Montfort University, Leicester, UK.,Department of Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| | - Mariasole Da Boit
- Leicester School of Allied Health Sciences, De Montfort University, Leicester, UK
| |
Collapse
|
68
|
Banji OJ, Banji D, Makeen HA, Alqahtani SS, Alshahrani S. Neuroinflammation: The Role of Anthocyanins as Neuroprotectants. Curr Neuropharmacol 2022; 20:2156-2174. [PMID: 35043761 PMCID: PMC9886846 DOI: 10.2174/1570159x20666220119140835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/18/2021] [Accepted: 12/29/2021] [Indexed: 11/22/2022] Open
Abstract
Neuroinflammation is a trigger for several neurodegenerative and neuropsychiatric disorders. Exposure to noxious external stimuli induces homeostatic disturbances resulting in morphological changes in microglia, their activation, and elaboration of pro-inflammatory mediators. This leads to neuroinflammation with the progressive loss of neurons. Nutraceuticals such as anthocyanins are a class of brightly colored bioactive compounds present in fruits and vegetables with purported health benefits. They interfere with the activation of several signaling cascades that have a prominent role in preventing neuroinflammation. More importantly, anthocyanins can cross the blood-brain barrier and are safe. Hence, the current review focuses on the bioavailability of anthocyanins, clinical and in vitro evidence on their role in impeding the activation of transcription factors, modulating the immune milieu within the central nervous system, preventing the activation of microglia, and averting neuroinflammation.
Collapse
Affiliation(s)
- Otilia J.F. Banji
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, KSA; ,Address correspondence to this author at the Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, KSA; Tel: 966-557942761; E-mail:
| | - David Banji
- Department of Pharmacology & Toxicology, College of Pharmacy, Jazan University, Jazan, KSA
| | - Hafiz A. Makeen
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, KSA;
| | - Saad S. Alqahtani
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, KSA;
| | - Saeed Alshahrani
- Department of Pharmacology & Toxicology, College of Pharmacy, Jazan University, Jazan, KSA
| |
Collapse
|
69
|
Anthocyanins from Opuntia ficus-indica Modulate Gut Microbiota Composition and Improve Short-Chain Fatty Acid Production. BIOLOGY 2022; 11:biology11101505. [PMID: 36290409 PMCID: PMC9598542 DOI: 10.3390/biology11101505] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/02/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Opuntia ficus-indica is rich in a variety of active substances, such as anthocyanins, flavonoids, and polysaccharides. Some studies have shown that anthocyanins extracted from natural plants can regulate intestinal flora. The fruit was used as raw material, and anthocyanins were extracted from it. In vivo experiments were used to study the effect of Opuntia ficus-indica anthocyanins on the mouse intestine by 16S rRNA high-throughput sequencing (NovaSeq 6000 platform) and gas chromatography (hydrogen flame ionization detector (FID)) methods. Microbiota and effects of short-chain fatty acids (SCFAs). The results showed that after feeding anthocyanins, the diversity of intestinal microorganisms in mice was significantly increased (p < 0.05), the ratio of Firmicutes/Bacteroidetes (F/B value) was significantly decreased (p < 0.05), the relative abundances of beneficial bacteria Lactobacillus, Bifidobacterium, Prevotella, and Akkermansia in the intestinal tract of mice were significantly increased (p < 0.05), and the relative abundance of pathogenic bacteria Escherichia-Shigella and Desulfovibrio decreased significantly (p < 0.05). Furthermore, anthocyanins significantly increased the content of short-chain fatty acids in the cecum of mice, among which the content of acetic acid, propionic acid, and butyric acid increased the most. Opuntia ficus-indica anthocyanins can change the microbial diversity and flora composition of the mouse gut and promote the production of short-chain fatty acids. The findings provide a theoretical basis for the use of Opuntia ficus-indica anthocyanins as dietary supplements to regulate human intestinal flora.
Collapse
|
70
|
Magni G, Riboldi B, Petroni K, Ceruti S. Flavonoids bridging the gut and the brain: intestinal metabolic fate, and direct or indirect effects of natural supporters against neuroinflammation and neurodegeneration. Biochem Pharmacol 2022; 205:115257. [PMID: 36179933 DOI: 10.1016/j.bcp.2022.115257] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/02/2022]
Abstract
In recent years, experimental evidence suggested a possible role of the gut microbiota in the onset and development of several neurodegenerative disorders, such as AD and PD, MS and pain. Flavonoids, including anthocyanins, EGCG, the flavonol quercetin, and isoflavones, are plant polyphenolic secondary metabolites that have shown therapeutic potential for the treatment of various pathological conditions, including neurodegenerative diseases. This is due to their antioxidant and anti-inflammatory properties, despite their low bioavailability which often limits their use in clinical practice. In more recent years it has been demonstrated that flavonoids are metabolized by specific bacterial strains in the gut to produce their active metabolites. On the other way round, both naturally-occurring flavonoids and their metabolites promote or limit the proliferation of specific bacterial strains, thus profoundly affecting the composition of the gut microbiota which in turn modifies its ability to further metabolize flavonoids. Thus, understanding the best way of acting on this virtuous circle is of utmost importance to develop innovative approaches to many brain disorders. In this review, we summarize some of the most recent advances in preclinical and clinical research on the neuroinflammatory and neuroprotective effects of flavonoids on AD, PD, MS and pain, with a specific focus on their mechanisms of action including possible interactions with the gut microbiota, to emphasize the potential exploitation of dietary flavonoids as adjuvants in the treatment of these pathological conditions.
Collapse
Affiliation(s)
- Giulia Magni
- Department of Pharmacological and Biomolecular Sciences - Università degli Studi di Milano - via Balzaretti, 9 - 20133 MILAN (Italy)
| | - Benedetta Riboldi
- Department of Pharmacological and Biomolecular Sciences - Università degli Studi di Milano - via Balzaretti, 9 - 20133 MILAN (Italy)
| | - Katia Petroni
- Department of Biosciences - Università degli Studi di Milano - via Celoria, 26 - 20133 MILAN (Italy)
| | - Stefania Ceruti
- Department of Pharmacological and Biomolecular Sciences - Università degli Studi di Milano - via Balzaretti, 9 - 20133 MILAN (Italy).
| |
Collapse
|
71
|
Alterations in Intestinal Brush Border Membrane Functionality and Bacterial Populations Following Intra-Amniotic Administration ( Gallus gallus) of Catechin and Its Derivatives. Nutrients 2022; 14:nu14193924. [PMID: 36235576 PMCID: PMC9572352 DOI: 10.3390/nu14193924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Catechin is a flavonoid naturally present in numerous dietary products and fruits (e.g., apples, berries, grape seeds, kiwis, green tea, red wine, etc.) and has previously been shown to be an antioxidant and beneficial for the gut microbiome. To further enhance the health benefits, bioavailability, and stability of catechin, we synthesized and characterized catechin pentaacetate and catechin pentabutanoate as two new ester derivatives of catechin. Catechin and its derivatives were assessed in vivo via intra-amniotic administration (Gallus gallus), with the following treatment groups: (1) non-injected (control); (2) deionized H2O (control); (3) Tween (0.004 mg/mL dose); (4) inulin (50 mg/mL dose); (5) Catechin (6.2 mg/mL dose); (6) Catechin pentaacetate (10 mg/mL dose); and (7) Catechin pentabutanoate (12.8 mg/mL dose). The effects on physiological markers associated with brush border membrane morphology, intestinal bacterial populations, and duodenal gene expression of key proteins were investigated. Compared to the controls, our results demonstrated a significant (p < 0.05) decrease in Clostridium genera and E. coli species density with catechin and its synthetic derivative exposure. Furthermore, catechin and its derivatives decreased iron and zinc transporter (Ferroportin and ZnT1, respectively) gene expression in the duodenum compared to the controls. In conclusion, catechin and its synthetic derivatives have the potential to improve intestinal morphology and functionality and positively modulate the microbiome.
Collapse
|
72
|
Chen W, Tu P, Ye X, Tang Q, Yu T, Zheng X. Cyanidin-3-O-glucoside impacts fecal discharge of polystyrene microplastics in mice: Potential role of microbiota-derived metabolites. Toxicol Appl Pharmacol 2022; 453:116212. [PMID: 36057402 DOI: 10.1016/j.taap.2022.116212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/31/2022] [Accepted: 08/24/2022] [Indexed: 10/14/2022]
Abstract
Microplastic particles degraded from plastic litters are recognized as a global environmental pollutant, which can be transferred and enriched via the food chain to impact ecosystems and human health. A balanced gut microbiota contributes to human health through host-gut interactions, environmentally-driven factors such as microplastic exposure would disturb the gut bacteria and affect its functionality. Dietary compounds can remodel the compositions of gut microbes, and interact with bacteria exerting profound effects on host physiology. This study explored the effects of bayberry-derived anthocyanin cyanidin-3-O-glucoside (C3G) and microplastic polystyrene (PS) on the gut microbiome in C57BL/6 mice, especially the alterations of gut bacteria and its metabolites. Using 16S rRNA high-throughput sequencing, variations in gut bacterial composition and enrichment of functional pathways were found upon PS and C3G administration. Meanwhile, the differential metabolites and metabolic pathways were identified by metabolomic analysis. Importantly, colonic and fecal PS levels were found to be strongly correlated with key microbiota-derived metabolites, which are associated with xenobiotic metabolism via regulation of xenobiotics-metabolizing enzymes and transporters. These results may offer new insights regarding the protective effects of C3G against xenobiotic PS exposure and the roles of gut bacterial metabolites.
Collapse
Affiliation(s)
- Wen Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Pengcheng Tu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Xiang Ye
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Qiong Tang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Ting Yu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
73
|
Kan J, Wu F, Wang F, Zheng J, Cheng J, Li Y, Yang Y, Du J. Phytonutrients: Sources, bioavailability, interaction with gut microbiota, and their impacts on human health. Front Nutr 2022; 9:960309. [PMID: 36051901 PMCID: PMC9424995 DOI: 10.3389/fnut.2022.960309] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/11/2022] [Indexed: 12/13/2022] Open
Abstract
Phytonutrients are natural bioactive components present in the daily diet that can exert a positive impact on human health. Studies have shown that phytonutrients may act as antioxidants and improve metabolism after being ingested, which help to regulate physiological processes and prevent metabolic disorders and diseases. However, their efficacy is limited by their low bioavailability. The gut microbiota is symbiotic with humans and its abundance and profile are related to most diseases. Interestingly, studies have shown that the gut microbiota is associated with the metabolism of phytonutrients by converting them into small molecules that can be absorbed by the body, thereby enhancing their bioavailability. Furthermore, phytonutrients can modulate the composition of the gut microbiota, and therefore improve the host's health. Here, we focus on uncovering the mechanisms by which phytonutrients and gut microbiota play roles in health, and the interrelationships between phytonutrients and gut microbiota were summarized. We also reviewed the studies that reported the efficacy of phytonutrients in human health and the future directions.
Collapse
Affiliation(s)
- Juntao Kan
- Nutrilite Health Institute, Shanghai, China
| | - Feng Wu
- Sequanta Technologies Co., Ltd., Shanghai, China
| | | | | | - Junrui Cheng
- Department of Molecular and Structural Biochemistry, North Carolina State University, Kannapolis, NC, United States
| | - Yuan Li
- Sequanta Technologies Co., Ltd., Shanghai, China
| | - Yuexin Yang
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, China
- Yuexin Yang
| | - Jun Du
- Nutrilite Health Institute, Shanghai, China
- *Correspondence: Jun Du
| |
Collapse
|
74
|
Patrakeeva VP, Shtaborov VA. Nutrition and the state of the intestinal microflora in the formation of the metabolic syndrome. OBESITY AND METABOLISM 2022. [DOI: 10.14341/omet12893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The literature review presents the results of modern studies of the relationship between diet and intestinal microbiota in the regulation of metabolic disorders. Metabolic syndrome, which is a symptom complex that combines abdominal obesity, insulin resistance, hyperglycemia, dyslipidemia and arterial hypertension, remains an important problem, being a risk factor for cardiovascular, neurodegenerative, oncological diseases and the development of type 2 diabetes mellitus. Although the pathogenesis of the metabolic syndrome has not yet been fully elucidated, it is known that visceral obesity and its associated complications, such as dyslipidemia and increased levels of pro-inflammatory cytokines, play a central role. The article presents data on the impact of the consumption of certain food products, the inclusion of plant biologically active substances (flavonoids, polyphenols, etc.) in the diet, as well as the use of elimination diets with the exclusion of carbohydrates or fats from the diet, on reducing the risk of cardiovascular accidents, levels of fasting glucose, total cholesterol, LDL, triglycerides, C-reactive protein, leptin, insulin, reduction in body weight and waist circumference, reduction in the level of circulating endotoxins and changes in the activity of immunocompetent cells. Data are presented on the possible influence of the intestinal microbiota in maintaining inflammation and the formation of degenerative changes in the body. The role of changes in the ratio of the levels of pathogenic microflora, bifidobacteria and lactobacilli in the formation of a pathological condition is shown.
Collapse
Affiliation(s)
- V. P. Patrakeeva
- N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences
| | - V. A. Shtaborov
- N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences
| |
Collapse
|
75
|
Hagen-Lillevik S, Johnson J, Siddiqi A, Persinger J, Hale G, Lai K. Harnessing the Power of Purple Sweet Potato Color and Myo-Inositol to Treat Classic Galactosemia. Int J Mol Sci 2022; 23:8654. [PMID: 35955788 PMCID: PMC9369367 DOI: 10.3390/ijms23158654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 01/25/2023] Open
Abstract
Classic Galactosemia (CG) is a devastating inborn error of the metabolism caused by mutations in the GALT gene encoding the enzyme galactose-1 phosphate uridylyltransferase in galactose metabolism. Severe complications of CG include neurological impairments, growth restriction, cognitive delays, and, for most females, primary ovarian insufficiency. The absence of the GALT enzyme leads to an accumulation of aberrant galactose metabolites, which are assumed to be responsible for the sequelae. There is no treatment besides the restriction of dietary galactose, which does not halt the development of the complications; thus, additional treatments are sorely needed. Supplements have been used in other inborn errors of metabolism but are not part of the therapeutic regimen for CG. The goal of this study was to test two generally recognized as safe supplements (purple sweet potato color (PSPC) and myo-inositol (MI)) that may impact cellular pathways contributing to the complications in CG. Our group uses a GalT gene-trapped mouse model to study the pathophysiology in CG, which phenocopy many of the complications. Here we report the ability of PSPC to ameliorate dysregulation in the ovary, brain, and liver of our mutant mice as well as positive results of MI supplementation in the ovary and brain.
Collapse
Affiliation(s)
- Synneva Hagen-Lillevik
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84108, USA
| | - Joshua Johnson
- Division of Reproductive Sciences, Aurora, CO 80045, USA
- Division of Reproductive Endocrinology and Infertility, Aurora, CO 80045, USA
- Department of Obstetrics and Gynecology, Aurora, CO 80045, USA
| | - Anwer Siddiqi
- College of Medicine, University of Florida, Jacksonville, FL 32209, USA
| | - Jes Persinger
- Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80302, USA
| | - Gillian Hale
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Kent Lai
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84108, USA
| |
Collapse
|
76
|
Victoria-Campos CI, Ornelas-Paz JDJ, Rocha-Guzmán NE, Gallegos-Infante JA, Failla ML, Pérez-Martínez JD, Rios-Velasco C, Ibarra-Junquera V. Gastrointestinal metabolism and bioaccessibility of selected anthocyanins isolated from commonly consumed fruits. Food Chem 2022; 383:132451. [PMID: 35182877 DOI: 10.1016/j.foodchem.2022.132451] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022]
Abstract
There is uncertainty about the identity of digestive metabolites of anthocyanins because many are naturally present in foods and/or are formed from other phenolic compounds during the digestive process. Studies using pure anthocyanins are needed to clarify this uncertainty. In this study, selected anthocyanins were purified from common fruits and individually subjected to gastric and small intestinal digestion in vitro to determine their stability, metabolites generated and bioaccessibility. Anthocyanins were highly stable during the gastric phase of simulated digestion (p > 0.05). The recovery of anthocyanins decreased during the small intestinal phase of digestion (p < 0.05). Stability was dependent on anthocyanidin structure and type of glycation (p < 0.05). Gastric and gastrointestinal phases mainly contained anthocyanins as bioaccessible flavylium cations and chalcones. Expected anthocyanin metabolites (i.e., phenolic acids and phoroglucinaldehyde) were not detected in chyme. Deglycation of anthocyanins during simulated digestion was quite limited and the bioaccessibility of intact anthocyanins was very low (0.07-2.21%).
Collapse
Affiliation(s)
- Claudia Inés Victoria-Campos
- Centro de Investigación en Alimentación y Desarrollo, A.C.-Unidad Cuauhtémoc, Av. Río Conchos S/N, Parque Industrial. C.P. 31570, Cd. Cuauhtémoc, Chihuahua, Mexico
| | - José de Jesús Ornelas-Paz
- Centro de Investigación en Alimentación y Desarrollo, A.C.-Unidad Cuauhtémoc, Av. Río Conchos S/N, Parque Industrial. C.P. 31570, Cd. Cuauhtémoc, Chihuahua, Mexico.
| | - Nuria Elizabeth Rocha-Guzmán
- TecNM/Instituto Tecnológico de Durango, Departamento de Ingenierías Química y Bioquímica, Felipe Pescador 1830 Oriente, Col. Nueva Vizcaya. C.P. 34080, Durango, Mexico
| | - José Alberto Gallegos-Infante
- TecNM/Instituto Tecnológico de Durango, Departamento de Ingenierías Química y Bioquímica, Felipe Pescador 1830 Oriente, Col. Nueva Vizcaya. C.P. 34080, Durango, Mexico
| | - Mark L Failla
- Department of Human Nutrition, The Ohio State University, 1787 Neil Avenue, Columbus, OH 43210, United States
| | - Jaime David Pérez-Martínez
- Universidad Autónoma de San Luis Potosí, Facultad de Ciencias Químicas, Manuel Nava 6 Zona Universitaria. C.P. 78210, San Luis Potosí, México
| | - Claudio Rios-Velasco
- Centro de Investigación en Alimentación y Desarrollo, A.C.-Unidad Cuauhtémoc, Av. Río Conchos S/N, Parque Industrial. C.P. 31570, Cd. Cuauhtémoc, Chihuahua, Mexico
| | - Vrani Ibarra-Junquera
- Universidad de Colima, Laboratorio de Bioingeniería, Km. 9 carretera Coquimatlán-Colima. C.P. 28400, Coquimatlán, Colima, Mexico
| |
Collapse
|
77
|
Alterations in Intestinal Brush Border Membrane Functionality and Bacterial Populations Following Intra-Amniotic Administration (Gallus gallus) of Nicotinamide Riboside and Its Derivatives. Nutrients 2022; 14:nu14153130. [PMID: 35956307 PMCID: PMC9370700 DOI: 10.3390/nu14153130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/12/2022] Open
Abstract
Nicotinamide riboside (NR) acts as a nicotinamide adenine dinucleotide (NAD+) precursor where NR supplementation has previously been shown to be beneficial. Thus, we synthesized and characterized nicotinamide riboside tributyrate chloride (NRTBCl, water-soluble) and nicotinamide riboside trioleate chloride (NRTOCl, oil-soluble) as two new ester derivatives of nicotinamide riboside chloride (NRCl). NRCl and its derivatives were assessed in vivo, via intra-amniotic administration (Gallus gallus), with the following treatment groups: (1) non-injected (control); and injection of (2) deionized H2O (control); (3) NRCl (30 mg/mL dose); (4) NRTBCl (30 mg/mL dose); and (5) NRTOCl (30 mg/mL dose). Post-intervention, the effects on physiological markers associated with brush border membrane morphology, intestinal bacterial populations, and duodenal gene expression of key proteins were investigated. Although no significant changes were observed in average body weights, NRTBCl exposure increased average cecum weight. NR treatment significantly increased Clostridium and NRCl treatment resulted in increased populations of Bifidobacterium, Lactobacillus, and E. coli. Duodenal gene expression analysis revealed that NRCl, NRTBCl, and NRTOCl treatments upregulated the expression of ZnT1, MUC2, and IL6 compared to the controls, suggesting alterations in brush border membrane functionality. The administration of NRCl and its derivatives appears to trigger increased expression of brush border membrane digestive proteins, with added effects on the composition and function of cecal microbial populations. Additional research is now warranted to further elucidate the effects on inflammatory biomarkers and observe changes in the specific intestinal bacterial populations post introduction of NR and its derivatives.
Collapse
|
78
|
Liu X, Wang L, Zhuang H, Yang Z, Jiang G, Liu Z. Promoting intestinal IgA production in mice by oral administration with anthocyanins. Front Immunol 2022; 13:826597. [PMID: 35967357 PMCID: PMC9364608 DOI: 10.3389/fimmu.2022.826597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 07/04/2022] [Indexed: 11/28/2022] Open
Abstract
While recent years have witnessed ever-growing evidence on the prebiotic attributes of anthocyanins for treatment of microbiota-associated diseases, the complex interplay between anthocyanin uptake, the gut microbiota, and the intestinal mucosal immune system remains poorly understood. Here, we investigate the effects of bilberry anthocyanins on the gut microbiota composition and metabolism, and the intestinal mucosal immune system of mice. We observed an increased proportion of IgA-producing plasma cells in the mesenteric lymph nodes (MLNs) and an enhanced secretion of secretory immunoglobulin A (sIgA) and antimicrobial peptides in the small intestine. Small intestine transcriptome analysis further suggested that anthocyanins influenced IgA production. We found that oral administration of anthocyanins altered the gut microbiota through maintaining the anaerobic intestinal environment, promoting the secretion of sIgA and antimicrobial peptides, and downregulating cell motility and mobile genetic elements of commensal bacteria. These observations suggest that the oral administration of anthocyanins helps in maintaining intestinal homeostasis and thus it may find applications in immunotherapy and related fields.
Collapse
Affiliation(s)
- Xuerun Liu
- Key Lab of Industrial Biocatalysis Ministry of Education, Tsinghua University, Beijing, China
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Luoyang Wang
- School of Basic Medicine, Qingdao University, Qingdao, China
- *Correspondence: Luoyang Wang, ; Zheng Liu,
| | - Huiren Zhuang
- Key Lab of Industrial Biocatalysis Ministry of Education, Tsinghua University, Beijing, China
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Zhenghuan Yang
- Key Lab of Industrial Biocatalysis Ministry of Education, Tsinghua University, Beijing, China
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Guoqiang Jiang
- Key Lab of Industrial Biocatalysis Ministry of Education, Tsinghua University, Beijing, China
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Zheng Liu
- Key Lab of Industrial Biocatalysis Ministry of Education, Tsinghua University, Beijing, China
- Department of Chemical Engineering, Tsinghua University, Beijing, China
- *Correspondence: Luoyang Wang, ; Zheng Liu,
| |
Collapse
|
79
|
Palencia-Argel M, Rodríguez-Villamil H, Bernal-Castro C, Díaz-Moreno C, Fuenmayor CA. Probiotics in anthocyanin-rich fruit beverages: research and development for novel synbiotic products. Crit Rev Food Sci Nutr 2022; 64:110-126. [PMID: 35880471 DOI: 10.1080/10408398.2022.2104806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Anthocyanin-rich fruit beverages are of special interest as functional products due to their antioxidant activity, antimicrobial properties against pathogens, and, more recently, evidence of prebiotic potential. The stability and bioactivity of anthocyanins, probiotics, prebiotics, and synbiotics have been extensively documented in beverage models and reviewed separately. This review summarizes the most recent works and methodologies used for the development of probiotic and synbiotic beverages based on anthocyanin-rich fruits with a synergistic perspective. Emphasis is made on key optimization factors and strategies that have allowed probiotic cultures to reach the minimum recommended doses to obtain health benefits at the end of the shelf life. The development of these beverages is limited by the high acidity and high content of phenolic compounds in anthocyanin-rich fruits. However, a proper selection of probiotic strains and strategies for their media adaptation may improve their viability in the beverages. Fermentation increases the viability of the probiotic cultures, improves the safety and stability of the product, and may increase its antioxidant capacity. Moreover, fermentation metabolites may synergistically enhance probiotic health benefits. On the other hand, the inoculation of probiotics without fermentation allows for synbiotic beverages with milder changes in terms of physicochemical and sensory attributes.
Collapse
Affiliation(s)
- Marcela Palencia-Argel
- Instituto de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Hawer Rodríguez-Villamil
- Instituto de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Camila Bernal-Castro
- Instituto de Biotecnología (IBUN), Universidad Nacional de Colombia, Bogotá, Bogotá, Colombia
| | - Consuelo Díaz-Moreno
- Instituto de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Carlos Alberto Fuenmayor
- Instituto de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
80
|
Purple red rice anthocyanins alleviate intestinal damage in cyclophosphamide-induced mice associated with modulation of intestinal barrier function and gut microbiota. Food Chem 2022; 397:133768. [PMID: 35908466 DOI: 10.1016/j.foodchem.2022.133768] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/17/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022]
Abstract
The regulatory effects of purple red rice bran anthocyanins (PRBA) on intestinal barrier function and gut microbiota in mice were investigated. Results showed that PRBA had an ameliorative effect on intestinal barrier damage, including restoration of villus length, improvement in the number of cupped cells and promotion of sIgA secretion. PRBA stimulated the production of cytokines, reduced the levels of endotoxin (ET) and lipopolysaccharide binding protein (LBP) in serum, as well as upregulated the expression of tight junction proteins (TJs) and NF-κB pathway proteins. Furthermore, PRBA not only promoted the production of short-chain fatty acids (SCFAs), but also regulated the intestinal microbiota by increasing beneficial bacteria (Lachnospiraceae, Bacteroidaceae, Ruminococcaceae) and reducing pathogenic bacteria (Shigella) to maintained intestinal homeostasis. Above results indicated that PRBA could ameliorate cyclophosphamide-induced impairment of intestinal barrier function and dysregulation of the gut microbiota, which provides a new idea for broadening the exploitation of PRBA.
Collapse
|
81
|
Black corn (Zea mays L.) soluble extract showed anti-inflammatory effects and improved the intestinal barrier integrity in vivo (Gallus gallus). Food Res Int 2022; 157:111227. [DOI: 10.1016/j.foodres.2022.111227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/21/2022]
|
82
|
Fabbrini M, D’Amico F, Barone M, Conti G, Mengoli M, Brigidi P, Turroni S. Polyphenol and Tannin Nutraceuticals and Their Metabolites: How the Human Gut Microbiota Influences Their Properties. Biomolecules 2022; 12:875. [PMID: 35883431 PMCID: PMC9312800 DOI: 10.3390/biom12070875] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 12/12/2022] Open
Abstract
Nutraceuticals have been receiving increasing attention in the last few years due to their potential role as adjuvants against non-communicable chronic diseases (cardiovascular disease, diabetes, cancer, etc.). However, a limited number of studies have been performed to evaluate the bioavailability of such compounds, and it is generally reported that a substantial elevation of their plasma concentration can only be achieved when they are consumed at pharmacological levels. Even so, positive effects have been reported associated with an average dietary consumption of several nutraceutical classes, meaning that the primary compound might not be solely responsible for all the biological effects. The in vivo activities of such biomolecules might be carried out by metabolites derived from gut microbiota fermentative transformation. This review discusses the structure and properties of phenolic nutraceuticals (i.e., polyphenols and tannins) and the putative role of the human gut microbiota in influencing the beneficial effects of such compounds.
Collapse
Affiliation(s)
- Marco Fabbrini
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (M.F.); (F.D.); (M.B.); (G.C.); (M.M.)
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Federica D’Amico
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (M.F.); (F.D.); (M.B.); (G.C.); (M.M.)
| | - Monica Barone
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (M.F.); (F.D.); (M.B.); (G.C.); (M.M.)
| | - Gabriele Conti
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (M.F.); (F.D.); (M.B.); (G.C.); (M.M.)
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Mariachiara Mengoli
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (M.F.); (F.D.); (M.B.); (G.C.); (M.M.)
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (M.F.); (F.D.); (M.B.); (G.C.); (M.M.)
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
83
|
Antioxidant, Anti-Inflammatory and Cytotoxic Activity of Phenolic Compound Family Extracted from Raspberries ( Rubus idaeus): A General Review. Antioxidants (Basel) 2022; 11:antiox11061192. [PMID: 35740089 PMCID: PMC9230908 DOI: 10.3390/antiox11061192] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
Raspberries (Rubus idaeus) possess a wide phenolic family profile; this serves the role of self-protection for the plant. Interest in these compounds have significantly increased, since they have been classified as nutraceuticals due to the positive health effects provided to consumers. Extensive chemical, in vitro and in vivo studies have been performed to prove and validate these benefits and their possible applications as an aid when treating several chronic degenerative diseases, characterized by oxidative stress and an inflammatory response. While many diseases could be co-adjuvanted by the intake of these phenolic compounds, this review will mainly discuss their effects on cancer. Anthocyanins and ellagitannins are known to provide a major antioxidant capacity in raspberries. The aim of this review is to summarize the current knowledge concerning the phenolic compound family of raspberries, and topics discussed include their characterization, biosynthesis, bioavailability, cytotoxicity, antioxidant and anti-inflammatory activities.
Collapse
|
84
|
Lu H, Shen M, Chen T, Yu Y, Chen Y, Yu Q, Chen X, Xie J. Mesona chinensis Benth Polysaccharides Alleviate DSS-Induced Ulcerative Colitis via Inhibiting of TLR4/MAPK/NF-κB Signaling Pathways and Modulating Intestinal Microbiota. Mol Nutr Food Res 2022; 66:e2200047. [PMID: 35661585 DOI: 10.1002/mnfr.202200047] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/12/2022] [Indexed: 12/22/2022]
Abstract
SCOPE Ulcerative colitis (UC) is a severe disease of the intestinal tract. To investigate the role of TLR4/Mitogen-activated protein kinase (MAPK)/Nuclear factor kappa-B(NF-κB) pathways and intestinal flora in UC, and the protective mechanisms of Mesona chinensis Benth polysaccharides (MBP), potential therapeutic agents due to their diabetes-relieving, cancer-suppressing, and immunomodulatory properties. METHODS AND RESULTS A dextran sulfate sodium (DSS)-induced mouse colitis model is used for experiments; the histopathology, immunohistochemistry, and Western blotting's results suggest that MBP can alleviate the colitis symptoms, inhibits the overproduction of TNF-α, IL-1β, promote IL-10, reduces myeloperoxidase activity, and alleviates the inflammatory response probably by inhibiting the activation of TLR4/MAPK/NF-κB pathways. Furthermore, MBP improvs the ratio of Bcl-2/BAX, maintains the intestinal integrity by promoting the levels of zonulin occludin-1 (ZO-1), occluding and mucin mucin-2 (MUC-2), reduces the levels of endotoxin (ET), lipopolysaccharide binding protein (LBP) in serum, and oxidative stress in liver. Moreover, using 16S rRNA Gene Sequencing analysis, MBP regulates gut microbiota by decreasing the abundances of Helicobacter and Prevotella and increasing the abundances of Lactobacillus and Coprococcus, reverses microbiota dysbiosis caused by DSS. CONCLUSION These findings confirm the anti-inflammatory effects of MBP, restoration of the intestinal barrier and intestinal flora, and have therapeutic potential to attenuate the development of UC.
Collapse
Affiliation(s)
- Hanyu Lu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Ting Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Yue Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Xianxiang Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| |
Collapse
|
85
|
Liu J, Chen J, Wang S, Xie J, Wang Y, Chai TT, Ong MK, Wu J, Tian L, Bai W. Effects of Monascus application on in vitro digestion and fermentation characteristics of fish protein. Food Chem 2022; 377:132000. [PMID: 34999460 DOI: 10.1016/j.foodchem.2021.132000] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 11/28/2022]
Abstract
The aim of this study was to investigate the digestion and fermentation properties of fish protein fermented by Monascus. Semi-dried fish was fermented by applying Monascus purpureus Went M 3.439. Our results show that the Monascus fermentation of the fish protein enriched the free amino acids and achieved a relatively higher glutamate content than the control group. The Monascus treatment promoted the decomposition of the fish protein during in vitro digestion, reduced the ammonia and indole content and tended to increase the propionic acid content during in vitro fermentation. The Monascus treatment considerably changed the gut microbiota composition, and particularly increased the relative abundance of Parabacteroides in the in vitro fermentation model of human distal colon. Consumption of Monascus fermented fish protein could result in positive changes in fermentation metabolites and gut microbiota, which brings potential health benefits.
Collapse
Affiliation(s)
- Jiaxin Liu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| | - Junliang Chen
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| | - Shuang Wang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| | - Jinghui Xie
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| | - Yuxin Wang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| | - Tsun-Thai Chai
- Department of Chemical Science, Faculty of Science, University Tunku Abdul Rahman, Jalan University, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Mei Kying Ong
- Department of Agricultural and Food Science, Faculty of Science, University Tunku Abdul Rahman, Jalan University, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Jianzhong Wu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China.
| | - Lingmin Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China.
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| |
Collapse
|
86
|
Panchal SK, John OD, Mathai ML, Brown L. Anthocyanins in Chronic Diseases: The Power of Purple. Nutrients 2022; 14:2161. [PMID: 35631301 PMCID: PMC9142943 DOI: 10.3390/nu14102161] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Anthocyanins are mainly purple-coloured phenolic compounds of plant origin that as secondary metabolites are important in plant survival. Understanding their health benefits in humans requires sourcing these unstable compounds in sufficient quantities at a reasonable cost, which has led to improved methods of extraction. Dark-coloured fruits, cereals and vegetables are current sources of these compounds. The range of potential sustainable sources is much larger and includes non-commercialised native plants from around the world and agri-waste containing anthocyanins. In the last 5 years, there have been significant advances in developing the therapeutic potential of anthocyanins in chronic human diseases. Anthocyanins exert their beneficial effects through improvements in gut microbiota, oxidative stress and inflammation, and modulation of neuropeptides such as insulin-like growth factor-1. Their health benefits in humans include reduced cognitive decline; protection of organs such as the liver, as well as the cardiovascular system, gastrointestinal tract and kidneys; improvements in bone health and obesity; and regulation of glucose and lipid metabolism. This review summarises some of the sources of anthocyanins and their mechanisms and benefits in the treatment of chronic human diseases.
Collapse
Affiliation(s)
- Sunil K. Panchal
- School of Science, Western Sydney University, Penrith, NSW 2753, Australia;
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW 2753, Australia
| | - Oliver D. John
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; or
| | - Michael L. Mathai
- Institute of Health and Sport, College of Health and Biomedicine, Victoria University, Melbourne, VIC 3021, Australia;
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
| | - Lindsay Brown
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
87
|
Chen J, Shu Y, Chen Y, Ge Z, Zhang C, Cao J, Li X, Wang Y, Sun C. Evaluation of Antioxidant Capacity and Gut Microbiota Modulatory Effects of Different Kinds of Berries. Antioxidants (Basel) 2022; 11:1020. [PMID: 35624885 PMCID: PMC9137550 DOI: 10.3390/antiox11051020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 12/19/2022] Open
Abstract
Berries are fairly favored by consumers. Phenolic compounds are the major phytochemicals in berries, among which anthocyanins are one of the most studied. Phenolic compounds are reported to have prebiotic-like effects. In the present study, we identified the anthocyanin profiles, evaluated and compared the antioxidant capacities and gut microbiota modulatory effects of nine common berries, namely blackberry, black goji berry, blueberry, mulberry, red Chinese bayberry, raspberry, red goji berry, strawberry and white Chinese bayberry. Anthocyanin profiles were identified by UPLC-Triple-TOF/MS. In vitro antioxidant capacity was evaluated by four chemical assays (DPPH, ABTS, FRAP and ORAC). In vivo antioxidant capacity and gut microbiota modulatory effects evaluation was carried out by treating healthy mice with different berry extracts for two weeks. The results show that most berries could improve internal antioxidant status, reflected by elevated serum or colonic T-AOC, GSH, T-SOD, CAT, and GSH-PX levels, as well as decreased MDA content. All berries significantly altered the gut microbiota composition. The modulatory effects of the berries were much the same, namely by the enrichment of beneficial SCFAs-producing bacteria and the inhibition of potentially harmful bacteria. Our study shed light on the gut microbiota modulatory effect of different berries and may offer consumers useful consumption guidance.
Collapse
Affiliation(s)
- Jiebiao Chen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (J.C.); (Y.S.); (J.C.); (X.L.); (C.S.)
| | - Yichen Shu
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (J.C.); (Y.S.); (J.C.); (X.L.); (C.S.)
| | - Yanhong Chen
- Laboratory Animal Center of Zhejiang University, Zijingang Campus, Hangzhou 310058, China;
| | - Zhiwei Ge
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China;
| | - Changfeng Zhang
- Shandong Key Laboratory of Storage and Transportation Technology of Agricultural Products, Shandong Institute of Commerce and Technology, Jinan 250103, China;
- National Engineering Research Center for Agricultural Products Logistics, Jinan 250103, China
| | - Jinping Cao
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (J.C.); (Y.S.); (J.C.); (X.L.); (C.S.)
| | - Xian Li
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (J.C.); (Y.S.); (J.C.); (X.L.); (C.S.)
| | - Yue Wang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (J.C.); (Y.S.); (J.C.); (X.L.); (C.S.)
| | - Chongde Sun
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (J.C.); (Y.S.); (J.C.); (X.L.); (C.S.)
| |
Collapse
|
88
|
Insight into the Progress on Natural Dyes: Sources, Structural Features, Health Effects, Challenges, and Potential. Molecules 2022; 27:molecules27103291. [PMID: 35630767 PMCID: PMC9144664 DOI: 10.3390/molecules27103291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/07/2023] Open
Abstract
(1) Background: Dyes play an important role in food, medicine, textile, and other industries, which make human life more colorful. With the increasing demand for food safety, the development of natural dyes becomes more and more attractive. (2) Methods: The literature was searched using the electronic databases PubMed, Web of Science, and SciFinder and this scoping review was carried out following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). (3) Results: 248 articles were included in this review. This review summarizes the research progress on natural dyes in the last ten years. According to structural features, natural dyes mainly include carotenoids, polyphenols, porphyrins, and alkaloids, and some of the newest dyes are summarized. Some pharmacological activities of carotenoids, anthocyanin, curcumin, and betalains in the last 10 years are summarized, and the biological effects of dyes regarding illumination conditions. The disadvantages of natural dyes, including sources, cost, stability, and poor bioavailability, limit their application. Here, some feasible strategies (potential resources, biotechnology, new extraction and separation strategies, strategies for improving stability) are described, which will contribute to the development and utilization of natural dyes. (4) Conclusion: Natural dyes show health benefits and potential in food additives. However, it is necessary for natural dyes to pass toxicity tests and quality tests and receive many regulatory approvals before their final entry into the market as food colorants or as drugs.
Collapse
|
89
|
Lin Y, Wang ZY, Wang MJ, Jiang ZM, Qin YQ, Huang TQ, Song Y, Liang HT, Liu EH. Baicalin attenuate diet-induced metabolic syndrome by improving abnormal metabolism and gut microbiota. Eur J Pharmacol 2022; 925:174996. [PMID: 35513018 DOI: 10.1016/j.ejphar.2022.174996] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 12/14/2022]
Abstract
In this work, we examined whether baicalin (BC), a bioactive flavonoid in Scutellaria baicalensis Georgi, can reduce high-fat diet (HFD)-induced metabolic syndrome (MetS) in mice. The UPLC-QTOF/MS was used for metabolome profiles analysis, and an analysis of bacterial 16S rDNA in feces was used to examine the effects of BC on gut microbiota composition. Our results showed that BC (400 mg/kg) could reduce the body weight gain, decrease hepatic fat accumulation and abnormal blood lipids, and increase insulin sensitivity after 8 weeks of treatment. BC could reverse the alteration of 7 metabolites induced by HFD and the metabolic pathways responsive to BC intervention including citrate cycle, alanine, aspartate and glutamate metabolism, glycerophospholipid metabolism, and aminoacyl-tRNA biosynthesis. 16S rDNA analysis demonstrated that BC altered the composition and function of gut microbiota in MetS mice. Notably, we found that the change in succinic acid was negatively associated with the changes in Bacteroides and Sutterella, and positively associated with the change in Mucispirillum. Moreover, we confirmed that succinic acid displayed a metabolic protective effect on MetS mice. The antibiotic treatment verified that BC exerts metabolic protection through gut microbiota. Our findings suggested BC may be a potential therapeutic drug to ameliorate diet induced MetS and gut microbiome may be a novel mechanistic target of BC for treatment of MetS.
Collapse
Affiliation(s)
- Yang Lin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Zi-Yuan Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China; Public Experimental Platform, China Pharmaceutical University, Nanjing, China
| | - Ma-Jie Wang
- Public Experimental Platform, China Pharmaceutical University, Nanjing, China
| | - Zheng-Meng Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ya-Qiu Qin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Tian-Qing Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yu Song
- College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Hui-Ting Liang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - E-Hu Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
90
|
Wang W, Zhu G, Wang Y, Li W, Yi S, Wang K, Fan L, Tang J, Chen R. Multi-Omics Integration in Mice With Parkinson’s Disease and the Intervention Effect of Cyanidin-3-O-Glucoside. Front Aging Neurosci 2022; 14:877078. [PMID: 35572129 PMCID: PMC9099026 DOI: 10.3389/fnagi.2022.877078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Background Parkinson’s disease (PD) is a multifactorial degenerative disease of the central nervous system, which affects mostly older adults. To date, research has focused on the progression of PD. Simultaneously, it was confirmed that the imbalances in gut microbiota are associated with the onset and progression of PD. Accurate diagnosis and precise treatment of PD are currently deficient due to the absence of effective biomarkers. Methods In this study, the pharmacodynamic study of cyanidin-3-O-glucoside in PD mice was used. It intends to use the “imbalance” and “balance” of intestinal microecology as the starting point to investigate the “gut-to-brain” hypothesis using metabolomic-combined 16S rRNA gene sequencing methods. Simultaneously, metabolomic analysis was implemented to acquire differential metabolites, and microbiome analysis was performed to analyze the composition and filter the remarkably altered gut microbiota at the phylum/genera level. Afterward, metabolic pathway and functional prediction analysis of the screened differential metabolites and gut microbiota were applied using the MetaboAnalyst database. In addition, Pearson’s correlation analysis was used for the differential metabolites and gut microbiota. We found that cyanidin-3-O-glucoside could protect 1-methyl-4-phenyl-1,2,3,6− tetrahydropy ridine (MPTP)-induced PD mice. Results Metabolomic analysis showed that MPTP-induced dysbiosis of the gut microbiota significantly altered sixty-seven metabolites. The present studies have also shown that MPTP-induced PD is related to lipid metabolism, amino acid metabolism, and so on. The 16S rRNA sequencing analysis indicated that 5 phyla and 22 genera were significantly altered. Furthermore, the differential gut microbiota was interrelated with amino acid metabolism, and so on. The metabolites and gut microbiota network diagram revealed significant correlations between 11 genera and 8 differential metabolites. Conclusion In combination, this study offers potential molecular biomarkers that should be validated for future translation into clinical applications for more accurately diagnosing PD. Simultaneously, the results of this study lay a basis for further study of the association between host metabolisms, gut microbiota, and PD.
Collapse
Affiliation(s)
- Wang Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guoxue Zhu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuwen Wang
- The Sixth Outpatient Department, Jinling Hospital, Nanjing, China
| | - Wei Li
- College of Traditional Chinese Medicine, College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shilin Yi
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Kai Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lu Fan
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Lu Fan,
| | - Juanjuan Tang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Juanjuan Tang,
| | - Ruini Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Ruini Chen,
| |
Collapse
|
91
|
Zhu Z, Yang L, Li Z, Liu Q. Cyanidin-3-O-glucoside, cyanidin, and oxidation products of cyanidin protect neuronal function through alleviating inflammation and oxidative damage. J Food Sci 2022; 87:2159-2172. [PMID: 35340035 DOI: 10.1111/1750-3841.16125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 11/28/2022]
Abstract
Neurotoxicity seriously affects the normal function of the nervous system. Cyanidin-3-O-glucoside (C3G) is the most abundant anthocyanin widely distributed in plants. Using β-amyloid (Aβ) transgenic Caenorhabditis elegans and cell models, the neuroprotective effect of C3G was examined. The results showed that C3G remarkably suppressed Aβ aggregation, enhanced antioxidant capacity, improved the sensitive capacity towards chemical compounds, and boosted the memory ability of C. elegans. There was no significant difference between preventive and long-term treatment groups at the same dosage of C3G. Given the rapid metabolism and oxidation of C3G in vivo, the antioxidative and anti-inflammatory activities of C3G, the metabolite cyanidin (Cy), oxidation products of Cy (OP), as well as protocatechuic acid (PCA) at the corresponding level in OP were compared by using lipopolysaccharide (LPS)-stimulated BV2 microglia cell model. The results indicated that C3G, Cy, and OP could prevent BV2 cells against LPS-induced inflammation and oxidative damage. There was no significant difference on antioxidative and anti-inflammatory activities among C3G, Cy, and OP at the same level. Notably, PCA at the corresponding concentration in OP exhibited limited antioxidative and anti-inflammatory activities. The results suggested that C3G could exert neuroprotective function through the metabolite Cy and its oxidation products by inhibiting inflammation and oxidative damage, and PCA was not the primary bioactive species in OP. PRACTICAL APPLICATION: This study confirmed the neuroprotection of cyanidin-3-O-glucoside (C3G) in transgenic Caenorhabditis elegans. C3G, its metabolite cyanidin (Cy), and oxidation products of Cy (OP) alleviated both neuroinflammation and oxidative damage. It highlighted that C3G-rich foods could exert neuroprotective potential through their oxidation products, the constitution, and existence of OP in vivo need further study.
Collapse
Affiliation(s)
- Zhenzhu Zhu
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing of Jiangsu Province, Nanjing University of Finance and Economics, Nanjing, China
| | - Lipin Yang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing of Jiangsu Province, Nanjing University of Finance and Economics, Nanjing, China
| | - Zhong Li
- Agricultural and Forestry Products Deep Processing Technology and Equipment Engineering Center of Jiangsu Province, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Qin Liu
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing of Jiangsu Province, Nanjing University of Finance and Economics, Nanjing, China
| |
Collapse
|
92
|
Li X, Teng Z, Luo Z, Yuan Y, Zeng Y, Hu J, Sun J, Bai W. Pyruvic acid stress caused color attenuation by interfering with anthocyanins metabolism during alcoholic fermentation. Food Chem 2022; 372:131251. [PMID: 34624786 DOI: 10.1016/j.foodchem.2021.131251] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/11/2021] [Accepted: 09/26/2021] [Indexed: 11/04/2022]
Abstract
Anthocyanin accounts for wine color performance, while it is susceptive to saccharomyces cerevisiae, causing threatened stability. Considering pyranoanthocyanin performed better color and stability, converting anthocyanins to pyranoanthocyanins in advance during fermentation was an ideal way for color improvement. Thus, pyruvic acid (PA) as the precursor of vitisin A was applied to fermentation with cyanidin-3-O-glucoside (C3G). Results showed that PA-stress leads to a color loss associated with a decrease in C3G and cyanidin. However, the content of pyranoanthocyanins under PA stress is unvaried. LC-MS-based non-target metabolomics revealed that superfluous PA can disturb the process of glycolysis and tricarboxylic acid cycle. Importantly, 1291 molecular features were increased and 1122 were decreased under PA-stress, in which several anthocyanins derivatization and isomerization were changed, contributing to color performance. This study indicated that extra PA is unfriendly to anthocyanins during fermentation, playing an adverse effect on color, which should be avoided in wine production.
Collapse
Affiliation(s)
- Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Zhaojun Teng
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Ziying Luo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yangbing Yuan
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Yingyu Zeng
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Jun Hu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
93
|
The Problem of Malnutrition Associated with Major Depressive Disorder from a Sex-Gender Perspective. Nutrients 2022; 14:nu14051107. [PMID: 35268082 PMCID: PMC8912662 DOI: 10.3390/nu14051107] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 02/03/2023] Open
Abstract
Major depressive disorder (MDD) is an incapacitating condition characterized by loss of interest, anhedonia and low mood, which affects almost 4% of people worldwide. With rising prevalence, it is considered a public health issue that affects economic productivity and heavily increases health costs alone or as a comorbidity for other pandemic non-communicable diseases (such as obesity, cardiovascular disease, diabetes, inflammatory bowel diseases, etc.). What is even more noteworthy is the double number of women suffering from MDD compared to men. In fact, this sex-related ratio has been contemplated since men and women have different sexual hormone oscillations, where women meet significant changes depending on the age range and moment of life (menstruation, premenstruation, pregnancy, postpartum, menopause…), which seem to be associated with susceptibility to depressive symptoms. For instance, a decreased estrogen level promotes decreased activation of serotonin transporters. Nevertheless, sexual hormones are not the only triggers that alter neurotransmission of monoamines and other neuropeptides. Actually, different dietary habits and/or nutritional requirements for specific moments of life severely affect MDD pathophysiology in women. In this context, the present review aims to descriptively collect information regarding the role of malnutrition in MDD onset and course, focusing on female patient and especially macro- and micronutrient deficiencies (amino acids, ω3 polyunsaturated fatty acids (ω3 PUFAs), folate, vitamin B12, vitamin D, minerals…), besides providing evidence for future nutritional intervention programs with a sex-gender perspective that hopefully improves mental health and quality of life in women.
Collapse
|
94
|
Nanotechnology as a Tool to Mitigate the Effects of Intestinal Microbiota on Metabolization of Anthocyanins. Antioxidants (Basel) 2022; 11:antiox11030506. [PMID: 35326155 PMCID: PMC8944820 DOI: 10.3390/antiox11030506] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/27/2022] [Accepted: 03/03/2022] [Indexed: 12/13/2022] Open
Abstract
Anthocyanins are an important group of phenolic compounds responsible for pigmentation in several plants. For humans, a regular intake is associated with a reduced risk of several diseases. However, molecular instability reduces the absorption and bioavailability of these compounds. Anthocyanins are degraded by external factors such as the presence of light, oxygen, temperature, and changes in pH ranges. In addition, the digestion process contributes to chemical degradation, mainly through the action of intestinal microbiota. The intestinal microbiota has a fundamental role in the biotransformation and metabolization of several dietary compounds, thus modifying the chemical structure, including anthocyanins. This biotransformation leads to low absorption of intact anthocyanins, and consequently, low bioavailability of these antioxidant compounds. Several studies have been conducted to seek alternatives to improve stability and protect against intestinal microbiota degradation. This comprehensive review aims to discuss the existing knowledge about the structure of anthocyanins while discussing human absorption, distribution, metabolism, and bioavailability after the oral consumption of anthocyanins. This review will highlight the use of nanotechnology systems to overcome anthocyanin biotransformation by the intestinal microbiota, pointing out the safety and effectiveness of nanostructures to maintain molecular stability.
Collapse
|
95
|
Chen K, Wei X, Kortesniemi M, Pariyani R, Zhang Y, Yang B. Effects of acylated and nonacylated anthocyanins extracts on gut metabolites and microbiota in diabetic Zucker rats: A metabolomic and metagenomic study. Food Res Int 2022; 153:110978. [DOI: 10.1016/j.foodres.2022.110978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/24/2022] [Accepted: 02/04/2022] [Indexed: 12/18/2022]
|
96
|
Massa S, Pagliarello R, Cemmi A, Di Sarcina I, Bombarely A, Demurtas OC, Diretto G, Paolini F, Petzold HE, Bliek M, Bennici E, Del Fiore A, De Rossi P, Spelt C, Koes R, Quattrocchio F, Benvenuto E. Modifying Anthocyanins Biosynthesis in Tomato Hairy Roots: A Test Bed for Plant Resistance to Ionizing Radiation and Antioxidant Properties in Space. FRONTIERS IN PLANT SCIENCE 2022; 13:830931. [PMID: 35283922 PMCID: PMC8909381 DOI: 10.3389/fpls.2022.830931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Gene expression manipulation of specific metabolic pathways can be used to obtain bioaccumulation of valuable molecules and desired quality traits in plants. A single-gene approach to impact different traits would be greatly desirable in agrospace applications, where several aspects of plant physiology can be affected, influencing growth. In this work, MicroTom hairy root cultures expressing a MYB-like transcription factor that regulates the biosynthesis of anthocyanins in Petunia hybrida (PhAN4), were considered as a testbed for bio-fortified tomato whole plants aimed at agrospace applications. Ectopic expression of PhAN4 promoted biosynthesis of anthocyanins, allowing to profile 5 major derivatives of delphinidin and petunidin together with pelargonidin and malvidin-based anthocyanins, unusual in tomato. Consistent with PhAN4 features, transcriptomic profiling indicated upregulation of genes correlated to anthocyanin biosynthesis. Interestingly, a transcriptome reprogramming oriented to positive regulation of cell response to biotic, abiotic, and redox stimuli was evidenced. PhAN4 hairy root cultures showed the significant capability to counteract reactive oxygen species (ROS) accumulation and protein misfolding upon high-dose gamma irradiation, which is among the most potent pro-oxidant stress that can be encountered in space. These results may have significance in the engineering of whole tomato plants that can benefit space agriculture.
Collapse
Affiliation(s)
- Silvia Massa
- Department for Sustainability, Biotechnology and Agro-Industry Division - Biotec Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Riccardo Pagliarello
- Department for Sustainability, Biotechnology and Agro-Industry Division - Biotec Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| | - Alessia Cemmi
- Fusion and Nuclear Safety Technologies Department, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Ilaria Di Sarcina
- Fusion and Nuclear Safety Technologies Department, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | | | - Olivia Costantina Demurtas
- Department for Sustainability, Biotechnology and Agro-Industry Division - Biotec Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Gianfranco Diretto
- Department for Sustainability, Biotechnology and Agro-Industry Division - Biotec Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Francesca Paolini
- 'Regina Elena' National Cancer Institute, HPV-UNIT, Department of Research, Advanced Diagnostic and Technological Innovation, Translational Research Functional Departmental Area, Rome, Italy
| | - H Earl Petzold
- School of Plants and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Mattijs Bliek
- Department of Plant Development and (Epi)Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Elisabetta Bennici
- Department for Sustainability, Biotechnology and Agro-Industry Division - Biotec Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Antonella Del Fiore
- Department for Sustainability, Biotechnology and Agro-Industry Division - Agrifood Sustainability, Quality, and Safety Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Patrizia De Rossi
- Energy Efficiency Unit Department - Northern Area Regions Laboratory, Casaccia Research Center, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Cornelis Spelt
- Department of Plant Development and (Epi)Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Ronald Koes
- Department of Plant Development and (Epi)Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Francesca Quattrocchio
- Department of Plant Development and (Epi)Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Eugenio Benvenuto
- Department for Sustainability, Biotechnology and Agro-Industry Division - Biotec Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| |
Collapse
|
97
|
Wang B, Xu J, Jiang S, Wang Y, Zhu J, Zhang Y. Combined Analysis of Gut Microbiota and Plasma Metabolites Reveals the Effect of Red-Fleshed Apple Anthocyanin Extract on Dysfunction of Mice Reproductive System Induced by Busulfan. Front Nutr 2022; 8:802352. [PMID: 35096946 PMCID: PMC8789878 DOI: 10.3389/fnut.2021.802352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/14/2021] [Indexed: 12/28/2022] Open
Abstract
Busulfan is currently an indispensable anti-cancer drug, but the side effects on male reproductive system are so serious. Meanwhile, red-fleshed apples are natural products with high anthocyanin content. In this research, we analyzed the effect of red-fleshed apple anthocyanin extract (RAAE) on busulfan-treated mice. Compared with the busulfan group, main plasma biochemical indicators were significantly improved after RAAE treatment. Compared with BA0 (busulfan without RAAE) group, total antioxidant capacity(T-AOC) and the activity of superoxide dismutase (SOD) and glutathione catalase (GSH-Px) in RAAE treatment groups were obviously increased, while the activity of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were significantly decreased. Malondialdehyde (MDA) was significantly decreased in the RAAE groups. In addition, we found RAAE alleviated busulfan-disrupted spermatogenesis through improving genes expression which are important for spermatogenesis, such as DDX4, PGK2, and TP1. Furthermore, we found that RAAE increased beneficial bacteria Akkermansia and Lactobacillaceae, and significantly depleted harmful bacteria Erysipelotrichia. The correlation studies indicated that RAAE ameliorated busulfan-induced rise in LysoPC levels through regulating gut microbial community and their associated metabolites. In conclusion, this study extends our understanding of the alleviated effect of RAAE on busulfan-induced male reproductive dysfunction through regulating the relationships between gut microbiota and metabolites.
Collapse
Affiliation(s)
- Bin Wang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, China.,College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Jihua Xu
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, China.,College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shenhui Jiang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Yanbo Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Jun Zhu
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Yugang Zhang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, China.,College of Horticulture, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
98
|
Recent advances of chitosan-based nanoparticles for biomedical and biotechnological applications. Int J Biol Macromol 2022; 203:379-388. [PMID: 35104473 DOI: 10.1016/j.ijbiomac.2022.01.162] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/18/2022] [Accepted: 01/26/2022] [Indexed: 12/15/2022]
Abstract
Chitosan is a natural alkaline polysaccharide, which widely exists in marine crustaceans such as shrimp and crab, has been shown to have various biological activities. It has attracted considerable attention in biomedicine and nanomaterials fields because of its excellent properties, such as biocompatibility, biodegradability, non-toxicity and easy access. In addition, because of active hydroxyl and amino groups in chitosan molecules, different functional groups can be introduced into chitosan molecules by molecular modification or chemical modification, which extends their applications. Nanoparticles with small size and large surface area can be used as diagnostic and therapeutic tools in the biomedical field, which make it easier to understand, detect and treat human diseases. The nanomaterials based on chitosan have important applications in biomedicine, industry, pharmacy, agriculture, and other fields. This review highlights the recent advances on chitosan-based nanoparticles for antibacterial property, drug and gene delivery, cancer and hyperthermia therapy, cell imaging, restorative dentistry, wound healing, tissue engineering and other biomedical fields. The nanotechnology fields involving biosensors, water treatment, food industry and agriculture are also briefly reviewed.
Collapse
|
99
|
Urbstaite R, Raudone L, Janulis V. Phytogenotypic Anthocyanin Profiles and Antioxidant Activity Variation in Fruit Samples of the American Cranberry ( Vaccinium macrocarpon Aiton). Antioxidants (Basel) 2022; 11:250. [PMID: 35204133 PMCID: PMC8868480 DOI: 10.3390/antiox11020250] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
In this study, we conducted an analysis of the qualitative and quantitative composition of anthocyanins and anthocyanidins in different cultivars and genetic clones of American cranberries grown in Lithuanian climatic conditions. Four anthocyanin compounds predominated in fruit samples of American cranberry cultivars: cyanidin-3-galactoside, cyanidin-3-arabinoside, peonidin-3-galactoside, and peonidin-3-arabinoside. They accounted for 91.66 ± 2.79% of the total amount of the identified anthocyanins. The total anthocyanin content detected via the pH differential method was found to be by about 1.6 times lower than that detected via the UPLC method. Hierarchical cluster analysis and principal component analysis showed that the 'Woolman' cultivar distinguished from other cranberry cultivars in that its samples contained two times the average total amount of anthocyanins (8.13 ± 0.09 mg/g). The group of American cranberry cultivars 'Howes', 'Le Munyon', and 'BL-8' was found to have higher than average levels of anthocyanidin galactosides (means 3.536 ± 0.05 mg/g), anthocyanidins (means 0.319 ± 0.01 mg/g), and total anthocyanins (means 6.549 ± 0.09 mg/g). The evaluation of the antioxidant effect of cranberry fruit sample extracts showed that the greatest radical scavenging activity of the cranberry fruit extracts was determined in the fruit samples of 'Woolman' (849.75 ± 10.88 µmol TE/g) and the greatest reducing activity was determined in 'Le Munyon' (528.05 ± 12.16 µmol TE/g). The study showed a correlation between the total anthocyanin content and the antiradical and reductive activity of the extracts in vitro (respectively, R = 0.635 and R = 0.507, p < 0.05).
Collapse
Affiliation(s)
- Rima Urbstaite
- Department of Pharmacognosy, Faculty of Pharmacy, Lithuanian University of Health Sciences, 50166 Kaunas, Lithuania; (L.R.); (V.J.)
| | - Lina Raudone
- Department of Pharmacognosy, Faculty of Pharmacy, Lithuanian University of Health Sciences, 50166 Kaunas, Lithuania; (L.R.); (V.J.)
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, 50166 Kaunas, Lithuania
| | - Valdimaras Janulis
- Department of Pharmacognosy, Faculty of Pharmacy, Lithuanian University of Health Sciences, 50166 Kaunas, Lithuania; (L.R.); (V.J.)
| |
Collapse
|
100
|
Gui H, Sun L, Liu R, Si X, Li D, Wang Y, Shu C, Sun X, Jiang Q, Qiao Y, Li B, Tian J. Current knowledge of anthocyanin metabolism in the digestive tract: absorption, distribution, degradation, and interconversion. Crit Rev Food Sci Nutr 2022; 63:5953-5966. [PMID: 35057688 DOI: 10.1080/10408398.2022.2026291] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Potential roles for anthocyanins in preventing various chronic diseases have been reported. These compounds are highly sensitive to external conditions and are susceptible to degradation, which increases the complexity of their metabolism in vivo. This review discusses anthocyanin metabolism in the digestive tract, phase I and II metabolism, and enterohepatic circulation (EHC), as well as their distribution of anthocyanins in blood, urine, and several organs. In the oral cavity, anthocyanins are partly hydrolyzed by microbiota into aglycones which are then conjugated by glucuronidase. In stomach, anthocyanins are absorbed without deglycosylation via specific transporters, such as sodium-dependent glucose co-transporter 1 and facilitative glucose transporters 1, while in small intestine, they are mainly absorbed as aglycones. High polymeric anthocyanins are easily degraded into low-polymeric forms or smaller phenolic acids by colonic microbiota, which improves their absorption. Anthocyanins and their derivatives are modified by phase I and II metabolic enzymes in cells and are released into the blood via the gastrovascular cavity into EHC. Notably, interconversion can be occurred under the action of enzymes such as catechol-O-methyltransferase. Taking together, differences in anthocyanin absorption, distribution, metabolism, and excretion largely depend on their glycoside and aglycone structures.
Collapse
Affiliation(s)
- Hailong Gui
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Lijun Sun
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, China
| | - Ruihai Liu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - Xu Si
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Dongnan Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Yuehua Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Chi Shu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Xiyun Sun
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Qiao Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Yanyan Qiao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| |
Collapse
|