51
|
Fărcaș AC, Socaci SA, Nemeș SA, Salanță LC, Chiș MS, Pop CR, Borșa A, Diaconeasa Z, Vodnar DC. Cereal Waste Valorization through Conventional and Current Extraction Techniques-An Up-to-Date Overview. Foods 2022; 11:foods11162454. [PMID: 36010454 PMCID: PMC9407619 DOI: 10.3390/foods11162454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Nowadays, in the European Union more than 100 million tons of food are wasted, meanwhile, millions of people are starving. Food waste represents a serious and ever-growing issue which has gained researchers’ attention due to its economic, environmental, social, and ethical implications. The Sustainable Development Goal has as its main objective the reduction of food waste through several approaches such as the re-use of agro-industrial by-products and their exploitation through complete valorization of their bioactive compounds. The extraction of the bioactive compounds through conventional methods has been used for a long time, whilst the increasing demand and evolution for using more sustainable extraction techniques has led to the development of new, ecologically friendly, and high-efficiency technologies. Enzymatic and ultrasound-assisted extractions, microwave-assisted extraction, membrane fractionation, and pressure-based extraction techniques (supercritical fluid extraction, subcritical water extraction, and steam explosion) are the main debated green technologies in the present paper. This review aims to provide a critical and comprehensive overview of the well-known conventional extraction methods and the advanced novel treatments and extraction techniques applied to release the bioactive compounds from cereal waste and by-products.
Collapse
Affiliation(s)
- Anca Corina Fărcaș
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăştur Street, 400372 Cluj-Napoca, Romania
- Correspondence: (A.C.F.); (M.S.C.); Tel.: +40-264-596384 (A.C.F.); +40-(21)-318-2564 (M.S.C.)
| | - Sonia Ancuța Socaci
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăştur Street, 400372 Cluj-Napoca, Romania
| | - Silvia Amalia Nemeș
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăştur Street, 400372 Cluj-Napoca, Romania
| | - Liana Claudia Salanță
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăştur Street, 400372 Cluj-Napoca, Romania
| | - Maria Simona Chiș
- Laboratory for Testing Quality and Food Safety, Calea Florești Street, No. 64, 400516 Cluj-Napoca, Romania
- Correspondence: (A.C.F.); (M.S.C.); Tel.: +40-264-596384 (A.C.F.); +40-(21)-318-2564 (M.S.C.)
| | - Carmen Rodica Pop
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăştur Street, 400372 Cluj-Napoca, Romania
| | - Andrei Borșa
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur, 400372 Cluj-Napoca, Romania
| | - Zorița Diaconeasa
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăştur Street, 400372 Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăştur Street, 400372 Cluj-Napoca, Romania
| |
Collapse
|
52
|
Lei P, Chen H, Ma J, Fang Y, Qu L, Yang Q, Peng B, Zhang X, Jin L, Sun D. Research progress on extraction technology and biomedical function of natural sugar substitutes. Front Nutr 2022; 9:952147. [PMID: 36034890 PMCID: PMC9414081 DOI: 10.3389/fnut.2022.952147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Improved human material living standards have resulted in a continuous increase in the rate of obesity caused by excessive sugar intake. Consequently, the number of diabetic patients has skyrocketed, not only resulting in a global health problem but also causing huge medical pressure on the government. Limiting sugar intake is a serious problem in many countries worldwide. To this end, the market for sugar substitute products, such as artificial sweeteners and natural sugar substitutes (NSS), has begun to rapidly grow. In contrast to controversial artificial sweeteners, NSS, which are linked to health concepts, have received particular attention. This review focuses on the extraction technology and biomedical function of NSS, with a view of generating insights to improve extraction for its large-scale application. Further, we highlight research progress in the use of NSS as food for special medical purpose (FSMP) for patients.
Collapse
Affiliation(s)
- Pengyu Lei
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Haojie Chen
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Yimen Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Linkai Qu
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Bo Peng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Xingxing Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| |
Collapse
|
53
|
Ultrasonic-Assisted Extraction of Flavonoids from Juglans mandshurica Maxim.: Artificial Intelligence-Based Optimization, Kinetics Estimation, and Antioxidant Potential. Molecules 2022; 27:molecules27154837. [PMID: 35956798 PMCID: PMC9369614 DOI: 10.3390/molecules27154837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/16/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022] Open
Abstract
Ultrasonic-assisted extraction (UAE) of flavonoids (JMBF) from Juglans mandshurica Maxim., an important industrial crop in China, was investigated in the present study. To improve the extraction efficiency of JMBF, suitable UAE was proposed after optimization using a hybrid response surface methodology–artificial neural network–genetic algorithm approach (RSM–ANN–GA). The maximum extraction yield (6.28 mg·g−1) of JMBF was achieved using the following optimum UAE conditions: ethanol concentration, 62%; solid–liquid ratio, 1:20 g·mL−1; ultrasonic power, 228 W; extraction temperature, 60 °C; extraction time, 40 min; total number of extractions, 1. Through the investigation of extraction kinetics, UAE offered a higher saturated concentration (Cs) for JMBF in comparison to traditional solvent extraction (TSE). Scanning electron microscopy (SEM) images showed that deeper holes were generated in J. mandshurica powder under the action of ultrasound, indicating that ultrasound significantly changed the structure of the plant materials to facilitate the dissolution of active substances. Extracts obtained using UAE and TSE were compared by Fourier-transform infrared spectroscopy analysis, the results of which revealed that the functional group of bioactive compounds in the extract was unaffected by the ultrasonication process. Moreover, JMBF was further shown to exhibit significant antioxidant properties in vitro. This study provides a basis for the application of JMBF as a natural antioxidant.
Collapse
|
54
|
Selective Supercritical CO 2 Extraction and Biocatalytic Valorization of Cucurbita pepo L. Industrial Residuals. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154783. [PMID: 35897957 PMCID: PMC9332722 DOI: 10.3390/molecules27154783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022]
Abstract
The valorization of biomass residuals constitutes a key aspect of circular economy and thus a major challenge for the scientific community. Among industrial wastes, plant residuals could represent an attractive source of bioactive compounds. In this context, a residue from the industrial extraction of Cucurbita pepo L. seeds, whose oil is commercialized for the treatment of genito-urinary tract pathologies, has been selected. Supercritical CO2 technology has been employed as a highly selective "green" methodology allowing the recovery of compounds without chemical degradation and limited operational costs. Free fatty acids have been collected in mild conditions while an enrichment in sterols has been selectively obtained from sc-CO2 extracts by appropriate modulation of process parameters (supercritical fluid pressure and temperature), hence demonstrating the feasibility of the technique to target added-value compounds in a selective way. Obtained fatty acids were thus converted into the corresponding ethanol carboxamide derivatives by lipase-mediated biocatalyzed reactions, while the hydroxylated derivatives of unsaturated fatty acids were obtained by stereoselective hydration reaction under reductive conditions in the presence of a selected FADH2-dependent oleate hydratase.
Collapse
|
55
|
Neekhra S, Pandith JA, Mir NA, Manzoor A, Ahmad S, Ahmad R, Sheikh RA. Innovative approaches for microencapsulating bioactive compounds and probiotics: An updated review. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Somya Neekhra
- Department of Food Engineering and Technology, Institute of Engineering and Technology Bundelkhand University Jhansi India
| | - Junaid Ahmad Pandith
- Department of Post‐Harvest Engineering and Technology, Faculty of Agriculture Aligarh Muslim University Aligarh India
| | - Nisar A. Mir
- Department of Biotechnology Engineering and Food Technology, University Institute of Engineering Chandigarh University Mohali Punjab India
| | - Arshied Manzoor
- Department of Post‐Harvest Engineering and Technology, Faculty of Agriculture Aligarh Muslim University Aligarh India
| | - Saghir Ahmad
- Department of Post‐Harvest Engineering and Technology, Faculty of Agriculture Aligarh Muslim University Aligarh India
| | - Rizwan Ahmad
- Department of Post‐Harvest Engineering and Technology, Faculty of Agriculture Aligarh Muslim University Aligarh India
| | - Rayees Ahmad Sheikh
- Department of Chemistry government Degree College Pulwama Jammu and Kashmir India
| |
Collapse
|
56
|
Extraction of phenolic compounds from cranberrybush (Viburnum opulus L.) fruit using ultrasound, microwave, and ultrasound-microwave combination methods. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01498-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
57
|
Das I, Arora A. One stage hydrothermal treatment: A green strategy for simultaneous extraction of food hydrocolloid and co-products from sweet lime (Citrus Limetta) peels. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
58
|
Vlčko T, Rathod NB, Kulawik P, Ozogul Y, Ozogul F. The impact of aromatic plant-derived bioactive compounds on seafood quality and safety. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 102:275-339. [PMID: 36064295 DOI: 10.1016/bs.afnr.2022.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Plant-derived bioactive compounds have been extensively studied and used within food industry for the last few decades. Those compounds have been used to extend the shelf-life and improve physico-chemical and sensory properties on food products. They have also been used as nutraceuticals due to broad range of potential health-promoting properties. Unlike the synthetic additives, the natural plant-derived compounds are more acceptable and often regarded as safer by the consumers. This chapter summarizes the extraction methods and sources of those plant-derived bioactives as well as recent findings in relation to their health-promoting properties, including cardio-protective, anti-diabetic, anti-inflammatory, anti-carcinogenic, immuno-modulatory and neuro-protective properties. In addition, the impact of applying those plant-derived compounds on seafood products is also investigated by reviewing the recent studies on their use as anti-microbial, anti-oxidant, coloring and flavoring agents as well as freshness indicators. Moreover, the current limitations of the use of plant-derived bioactive compounds as well as future prospects are discussed. The discoveries show high potential of those compounds and the possibility to apply on many different seafood. The compounds can be applied as individual while more and more studies are showing synergetic effect when those compounds are used in combination providing new important research possibilities.
Collapse
Affiliation(s)
- Tomáš Vlčko
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak Agriculture University in Nitra, Nitra, Slovakia
| | - Nikheel Bhojraj Rathod
- Department of Post Harvest Management of Meat, Poultry and Fish, Post Graduate Institute of Post-Harvest Management, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Roha, Maharashtra, India
| | - Piotr Kulawik
- Department of Animal Products Technology, Faculty of Food Technology, University of Agriculture, Kraków, Poland
| | - Yesim Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey.
| |
Collapse
|
59
|
Nicolescu A, Babotă M, Zhang L, Bunea CI, Gavrilaș L, Vodnar DC, Mocan A, Crișan G, Rocchetti G. Optimized Ultrasound-Assisted Enzymatic Extraction of Phenolic Compounds from Rosa canina L. Pseudo-Fruits (Rosehip) and Their Biological Activity. Antioxidants (Basel) 2022; 11:antiox11061123. [PMID: 35740020 PMCID: PMC9220760 DOI: 10.3390/antiox11061123] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
Two techniques, namely, optimized ultrasound-assisted extraction (UAE) and enzyme-assisted extraction (EAE), were used to promote the extraction of phenolic compounds from the pseudo-fruits of Rosa canina L. (RC). For UAE, an optimization process based on the design of experiment (DoE) principles was used for determining the dependence between three variables (i.e., time of extraction, ultrasound amplitude, and the material-to-water ratio) and the total phenolic content of the samples. For EAE, a 2:1:1 pectinase, cellulase, and hemicellulase enzymatic blend was used as pre-treatment for optimized UAE, inducing a higher total phenolic content. The untargeted phenolic profiling approach revealed a great abundance of lower molecular weight phenolics (1.64 mg Eq./g) in UAE-RC extracts, whilst gallic acid (belonging to hydroxybenzoic acid derivatives) was the most abundant individual compound of both extracts. The unsupervised multivariate statistics clearly discriminated the impact of enzymatic pre-treatment on the phenolic profile of RC pseudo-fruits. Finally, Pearson’s correlation coefficients showed that anthocyanins, phenolic acids, and tyrosol derivatives were those compounds mostly correlated to the in vitro antioxidant potential of the extracts, whilst negative and significant (p < 0.05) correlation coefficients were recorded when considering the enzymatic inhibition activities. The highest enzyme-inhibitory activity has been identified against α-glucosidase, which indicates an antidiabetic effect.
Collapse
Affiliation(s)
- Alexandru Nicolescu
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania; (A.N.); (M.B.); (G.C.)
| | - Mihai Babotă
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania; (A.N.); (M.B.); (G.C.)
| | - Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy;
| | - Claudiu I. Bunea
- Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania;
| | - Laura Gavrilaș
- Department of Bromatology, Hygiene, Nutrition, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania;
| | - Dan C. Vodnar
- Institute of Life Sciences, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
| | - Andrei Mocan
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania; (A.N.); (M.B.); (G.C.)
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Correspondence: or
| | - Gianina Crișan
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania; (A.N.); (M.B.); (G.C.)
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy;
| |
Collapse
|
60
|
Ma RH, Zhang XX, Ni ZJ, Thakur K, Wang W, Yan YM, Cao YL, Zhang JG, Rengasamy KRR, Wei ZJ. Lycium barbarum (Goji) as functional food: a review of its nutrition, phytochemical structure, biological features, and food industry prospects. Crit Rev Food Sci Nutr 2022; 63:10621-10635. [PMID: 35593666 DOI: 10.1080/10408398.2022.2078788] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Lycium genus (Goji berry) is recognized as a good source of homology of medicine and food, with various nutrients and phytochemicals. Lately, numerous studies have focused on the chemical constituents and biological functions of the L. barbarum L., covering phytochemical and pharmacological aspects. We aim to provide exclusive data on the nutrients of L. barbarum L. fruits and phytochemicals, including their structural characterization, the evolution of extraction, and purification processes of different phytochemicals of L. barbarum L. fruit while placing greater emphasis on their wide-ranging health effects. This review also profitably offers innovative approaches for the food industry and industrial applications of L. barbarum L. and addresses some current situations and problems in the development of L. barbarum L. in deep processing products, which can provide clues for the sustainable development of L. barbarum L. industry.
Collapse
Affiliation(s)
- Run-Hui Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan, People's Republic of China
| | - Xiu-Xiu Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan, People's Republic of China
| | - Zhi-Jing Ni
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan, People's Republic of China
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan, People's Republic of China
| | - Wei Wang
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan, People's Republic of China
| | - Ya-Mei Yan
- Institute of wolfberry Engineering and Technology, Ningxia Academy of Agriculture and Forestry, Yinchuan, People's Republic of China
| | - You-Long Cao
- Institute of wolfberry Engineering and Technology, Ningxia Academy of Agriculture and Forestry, Yinchuan, People's Republic of China
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan, People's Republic of China
| | - Kannan R R Rengasamy
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan, People's Republic of China
| |
Collapse
|
61
|
Castro-Muñoz R, Gontarek-Castro E, Jafari SM. Up-to-date strategies and future trends towards the extraction and purification of Capsaicin: A comprehensive review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
62
|
Zannini E, Bravo Núñez Á, Sahin AW, Arendt EK. Arabinoxylans as Functional Food Ingredients: A Review. Foods 2022; 11:1026. [PMID: 35407113 PMCID: PMC8997659 DOI: 10.3390/foods11071026] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
The health benefits of fibre consumption are sound, but a more compressive understanding of the individual effects of different fibres is still needed. Arabinoxylan is a complex fibre that provides a wide range of health benefits strongly regulated by its chemical structure. Arabinoxylans can be found in various grains, such as wheat, barley, or corn. This review addresses the influence of the source of origin and extraction process on arabinoxylan structure. The health benefits related to short-chain fatty acid production, microbiota regulation, antioxidant capacity, and blood glucose response control are discussed and correlated to the arabinoxylan's structure. However, most studies do not investigate the effect of AX as a pure ingredient on food systems, but as fibres containing AXs (such as bran). Therefore, AX's benefit for human health deserves further investigation. The relationship between arabinoxylan structure and its physicochemical influence on cereal products (pasta, cookies, cakes, bread, and beer) is also discussed. A strong correlation between arabinoxylan's structural properties (degree of branching, solubility, and molecular mass) and its functionalities in food systems can be observed. There is a need for further studies that address the health implications behind the consumption of arabinoxylan-rich products. Indeed, the food matrix may influence the effects of arabinoxylans in the gastrointestinal tract and determine which specific arabinoxylans can be included in cereal and non-cereal-based food products without being detrimental for product quality.
Collapse
Affiliation(s)
- Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland; (Á.B.N.); (A.W.S.); (E.K.A.)
| | - Ángela Bravo Núñez
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland; (Á.B.N.); (A.W.S.); (E.K.A.)
| | - Aylin W. Sahin
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland; (Á.B.N.); (A.W.S.); (E.K.A.)
| | - Elke K. Arendt
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland; (Á.B.N.); (A.W.S.); (E.K.A.)
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| |
Collapse
|
63
|
Li H, Zhai B, Sun J, Fan Y, Zou J, Cheng J, Zhang X, Shi Y, Guo D. Ultrasound-Assisted Extraction of Total Saponins from Aralia taibaiensis: Process Optimization, Phytochemical Characterization, and Mechanism of α-Glucosidase Inhibition. Drug Des Devel Ther 2022; 16:83-105. [PMID: 35027819 PMCID: PMC8749049 DOI: 10.2147/dddt.s345592] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/15/2021] [Indexed: 12/30/2022] Open
Abstract
Purpose Aralia taibaiensis, a medicinal food plant, and total saponins from its root bark extract inhibit α-glucosidase activity, which is associated with type 2 diabetes; however, the inhibitory mechanism is unknown. Furthermore, a green extraction technique superior to conventional hot reflux extraction (HRE) is needed for the rapid and easy extraction of A. taibaiensis total saponins (TSAT) to exploit and utilize this resource. Our aim was to develop a green extraction method for obtaining TSAT and to investigate the mechanism by which TSAT inhibits α-glucosidase. Materials and Methods In this study, the ultrasound-assisted extraction (UAE) process was optimized using a Box–Behnken design, and the extraction mechanism was investigated using scanning electron microscopy (SEM). High-performance liquid chromatography (HPLC) was used for qualitative and quantitative analyses of TSAT. In vitro glycosylation assays, enzyme kinetics, fluorescence spectroscopy measurements, atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FT-IR) and molecular docking techniques were used to investigate the mechanism by which the A. taibaiensis active ingredients inhibit α-glucosidase. Results The optimal parameters for the extraction yield were obtained as an ethanol concentration of 73%, ultrasound time of 34 min, ultrasound temperature of 61 °C and solid–liquid ratio of 16 g/mL, which were better than HRE. The SEM analysis showed that UAE effectively disrupted plant cells, thus increasing the TSAT yield. In vitro α-glucosidase inhibition experiments showed that both TSAT and its active ingredient, araloside A, inhibited α-glucosidase activity by binding to α-glucosidase, thereby changing the conformation and microenvironment of α-glucosidase to subsequently inhibit enzyme activity. Conclusion The optimal extraction conditions identified here established a basis for future scale-up of ultrasound extraction parameters with the potential for obtaining maximum yields. In vitro enzyme inhibition experiments investigated the mechanism of the TSAT interaction with α-glucosidase and further explored whether araloside A may be the main contributor to the good inhibition of α-glucosidase activity by TSAT.
Collapse
Affiliation(s)
- Huan Li
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China.,The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| | - Bingtao Zhai
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China.,The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| | - Jing Sun
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China.,The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| | - Yu Fan
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| | - Junbo Zou
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China.,The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| | - Jiangxue Cheng
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China.,The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| | - Xiaofei Zhang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China.,The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| | - Yajun Shi
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China.,The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| | - Dongyan Guo
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China.,The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| |
Collapse
|
64
|
Vladkova T, Georgieva N, Staneva A, Gospodinova D. Recent Progress in Antioxidant Active Substances from Marine Biota. Antioxidants (Basel) 2022; 11:439. [PMID: 35326090 PMCID: PMC8944465 DOI: 10.3390/antiox11030439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The well-recognized but not fully explored antioxidant activity of marine-biota-derived, biologically active substances has led to interest in their study as substitutes of antibiotics, antiaging agents, anticancer and antiviral drugs, and others. The aim of this review is to present the current state of the art of marine-biota-derived antioxidants to give some ideas for potential industrial applications. METHODS This review is an update for the last 5 years on the marine sources of natural antioxidants, different classes antioxidant compounds, and current derivation biotechnologies. RESULTS New marine sources of antioxidants, including byproducts and wastes, are presented, along with new antioxidant substances and derivation approaches. CONCLUSIONS The interest in high-value antioxidants from marine biota continues. Natural substances combining antioxidant and antimicrobial action are of particular interest because of the increasing microbial resistance to antibiotic treatments. New antioxidant substances are discovered, along with those extracted from marine biota collected in other locations. Byproducts and wastes provide a valuable source of antioxidant substances. The application of optimized non-conventional derivation approaches is expected to allow the intensification of the production and improvement in the quality of the derived substances. The ability to obtain safe, high-value products is of key importance for potential industrialization.
Collapse
Affiliation(s)
- Todorka Vladkova
- Laboratory for Advanced Materials Research, University of Chemical Technology and Metallurgy (UCTM), 8 “St. Kl. Ohridski” Blvd, 1756 Sofia, Bulgaria;
| | - Nelly Georgieva
- Department of Biotechnology, University of Chemical Technology and Metallurgy (UCTM), 1756 Sofia, Bulgaria;
| | - Anna Staneva
- Laboratory for Advanced Materials Research, University of Chemical Technology and Metallurgy (UCTM), 8 “St. Kl. Ohridski” Blvd, 1756 Sofia, Bulgaria;
| | - Dilyana Gospodinova
- Department of Electrical Apparatus, Technical University of Sofia, 1756 Sofia, Bulgaria;
| |
Collapse
|
65
|
Pulsed electric field (PEF): Avant-garde extraction escalation technology in food industry. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
66
|
Mediani A, Kamal N, Lee SY, Abas F, Farag MA. Green Extraction Methods for Isolation of Bioactive Substances from Coffee Seed and Spent. SEPARATION & PURIFICATION REVIEWS 2022. [DOI: 10.1080/15422119.2022.2027444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Ahmed Mediani
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM Bangi, 43600, Malaysia
| | - Nurkhalida Kamal
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM Bangi, 43600, Malaysia
| | - Soo Yee Lee
- Natural Medicines and Products Research Laboratory (NaturMeds), Institute of Bioscience Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Faridah Abas
- Natural Medicines and Products Research Laboratory (NaturMeds), Institute of Bioscience Universiti Putra Malaysia, 43400 Serdang, Malaysia
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
67
|
Sustainable Drying and Green Deep Eutectic Extraction of Carotenoids from Tomato Pomace. Foods 2022; 11:foods11030405. [PMID: 35159554 PMCID: PMC8834280 DOI: 10.3390/foods11030405] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/13/2022] Open
Abstract
The extraction of molecules with high added value plays an important role in the recovery of food waste. This work aimed to valorize tomato pomace, a by-product composed of skin and seeds, through extraction of carotenoids, especially lycopene and β-carotene. The tomato pomace was dried using three different methods (freeze-drying, heat drying, and non-thermal air-drying) to reduce its weight, volume, and water activity and to concentrate the carotenoid fraction. These drying approaches were compared considering the extractive potential. Three solvent mixtures were compared, a traditional one (n-hexane:acetone) and two green deep eutectic solvent mixtures (ethyl acetate:ethyl lactate and menthol:lactic acid) in combination with different drying procedures. The extract obtained using ethyl acetate:ethyl lactate with non-thermal air-drying showed the highest contents of lycopene and β-carotene (75.86 and 3950.08 µg/g of dried sample, respectively) compared with the other procedures.
Collapse
|
68
|
Lemes AC, Egea MB, de Oliveira Filho JG, Gautério GV, Ribeiro BD, Coelho MAZ. Biological Approaches for Extraction of Bioactive Compounds From Agro-industrial By-products: A Review. Front Bioeng Biotechnol 2022; 9:802543. [PMID: 35155407 PMCID: PMC8829320 DOI: 10.3389/fbioe.2021.802543] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/14/2021] [Indexed: 12/17/2022] Open
Abstract
Bioactive compounds can provide health benefits beyond the nutritional value and are originally present or added to food matrices. However, because they are part of the food matrices, most bioactive compounds remain in agroindustrial by-products. Agro-industrial by-products are generated in large quantities throughout the food production chain and can—when not properly treated—affect the environment, the profit, and the proper and nutritional distribution of food to people. Thus, it is important to adopt processes that increase the use of these agroindustrial by-products, including biological approaches, which can enhance the extraction and obtention of bioactive compounds, which enables their application in food and pharmaceutical industries. Biological processes have several advantages compared to nonbiological processes, including the provision of extracts with high quality and bioactivity, as well as extracts that present low toxicity and environmental impact. Among biological approaches, extraction from enzymes and fermentation stand out as tools for obtaining bioactive compounds from various agro-industrial wastes. In this sense, this article provides an overview of the main bioactive components found in agroindustrial by-products and the biological strategies for their extraction. We also provide information to enhance the use of these bioactive compounds, especially for the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Ailton Cesar Lemes
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- *Correspondence: Ailton Cesar Lemes, ; Maria Alice Zarur Coelho,
| | | | | | - Gabrielle Victoria Gautério
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Bernardo Dias Ribeiro
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Maria Alice Zarur Coelho
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- *Correspondence: Ailton Cesar Lemes, ; Maria Alice Zarur Coelho,
| |
Collapse
|
69
|
Sustainable Extractions for Maximizing Content of Antioxidant Phytochemicals from Black and Red Currants. Foods 2022; 11:foods11030325. [PMID: 35159476 PMCID: PMC8833918 DOI: 10.3390/foods11030325] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 01/27/2023] Open
Abstract
Sustainable extraction techniques (ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), and pressurized-liquid extraction (PLE)) were applied and compared with conventional solvent extraction to evaluate their efficiency in maximizing the bioactive compound content and antioxidant activity of black and red currants. The influence of ethanol concentrations (30%, 50%, 70%) were studied in all extraction methods, while different temperatures (30, 50, 70 °C/80, 100, 120 °C) were evaluated in UAE and PLE, respectively. Generally, higher total phenolics were determined in black currant extracts (1.93–3.41 g GAE/100 g) than in red currant extracts (1.27–2.63 g GAE/100 g). The results showed that MAE was the most efficient for the extraction of bioactives from black currants, with 3.41 g GAE/100 g and 0.7934 g CE/100 g, while PLE provided the highest TP and TF for black currant samples (2.63 g GAE/100 g and 0.77 g CE/100 g). Extracts obtained by MAE (10 min, 600 W, 30% ethanol) and PLE (50% ethanol, 10 min, 120 °C) had the highest antioxidant activity, as determined by various in vitro assays (DPPH, FRAP, and ABTS). In conclusion, sustainable extraction techniques can be considered an efficient tool to maximize the content of bioactive antioxidants from black and red currants.
Collapse
|
70
|
Anusha Siddiqui S, Redha AA, Esmaeili Y, Mehdizadeh M. Novel insights on extraction and encapsulation techniques of elderberry bioactive compounds. Crit Rev Food Sci Nutr 2022; 63:5937-5952. [PMID: 35021911 DOI: 10.1080/10408398.2022.2026290] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Elderberry (Sambucus nigra L.) has been used in traditional medicine and as a supplement in many beverages and meals. Elderberry is a good source of bioactive flavonoids like quercetin, kaempferol, and rutin, as well as other phenolic compounds. Extraction techniques significantly influence the efficiency of extraction of bioactive compounds. Green chemistry elements such as safety, environmental friendliness, run-down or at least minimal contaminants, efficiency, and economic criteria should all be addressed by an effective bioactive extraction process. Furthermore, micro/nanoencapsulation technologies are particularly effective for increasing bioavailability and bioactive component stability. SCOPE AND APPROACH This review article comprehensively describes new developments in elderberry extraction and encapsulation. Elderberry is largely employed in the food and pharmaceutical industries due to its health-promoting and sensory characteristics. Elderberry has traditionally been used as a diaphoretic, antipyretic, diuretic, antidepressant, and antitumor agent in folk medicine. KEY FINDINGS AND CONCLUSIONS Conventional extraction methods (e.g. maceration and Soxhelt extraction) as well as advanced green techniques (e.g. supercritical fluids, pulsed electric field, emulsion liquid extraction, microwave, and ultrasonic extraction) have been used to extract bioactives from elderberry. Over the other protective measures, encapsulation techniques are particularly recommended to protect the bioactive components found in elderberry. Microencapsulation (spray drying, freeze drying, extrusion, emulsion systems) and nanoencapsulation (nanoemulsions, solid lipid nanoparticles and nanodispersions, nanohydrogels, electrospinning, nano spray drying) approaches for elderberry bioactives have been examined in this regard.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), D-Quakenbrück, Germany
| | - Ali Ali Redha
- Chemistry Department, School of Science, Loughborough University, Loughborough, United Kingdom
| | - Yasaman Esmaeili
- Department of Food Science and Technology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Mohammad Mehdizadeh
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|
71
|
Bianchi A, Sanz V, Domínguez H, Torres M. Valorisation of the industrial hybrid carrageenan extraction wastes using eco-friendly treatments. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
72
|
Muñoz-Almagro N, Morales-Soriano E, Villamiel M, Condezo-Hoyos L. Hybrid high-intensity ultrasound and microwave treatment: A review on its effect on quality and bioactivity of foods. ULTRASONICS SONOCHEMISTRY 2021; 80:105835. [PMID: 34826725 PMCID: PMC8626613 DOI: 10.1016/j.ultsonch.2021.105835] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 09/21/2021] [Accepted: 11/15/2021] [Indexed: 05/08/2023]
Abstract
With the growing of consumer's demand for products ready to eat that can be elaborated with greener technologies without affecting to their organoleptic characteristics, the application of ultrasound combined with microwaves has been widely studied on food preservation treatments (drying, frying), extraction of high-value added compounds and enzymatic hydrolysis of proteins. This review presents a complete picture of current knowledge on the ultrasound combined with microwaves including the mechanisms, influencing factors, advantages and drawbacks, emphasising in several synergistic effects observed in different processes of strong importance in the food industry. Recent research has shown that this hybrid technology could not only minimise the disadvantages of power US for drying and frying but also improve the product quality and the efficiency of both cooking processes by lowering the energy consumption. Regarding extraction, current studies have corroborated that the combined method presents higher yields in less time, in comparison with those in the respective ultrasound and microwave separately. Additionally, recent results have indicated that the bioactive compounds extracted by this combined technology exhibit promising antitumor activities as well as antioxidant and hepatoprotective effects. Remarkably, this hybrid technology has been shown as a good pre-treatment since the structural changes that are produced in the molecules facilitate the subsequent action of enzymes. However, the combination of these techniques still requires a proper design to develop and optimized conditions are required to make a scale process, and it may lead to a major step concerning a sustainable development and utilization of bioactive compounds from natural products in real life.
Collapse
Affiliation(s)
- Nerea Muñoz-Almagro
- Grupo de Química y Funcionalidad de Carbohidratos y Derivados, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM) CEI (CSIC+UAM), Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Eduardo Morales-Soriano
- Universidad Nacional Agraria La Molina, Facultad de Industrias Alimentarias, Innovative Technology, Food and Health Research Group, Lima, Peru
| | - Mar Villamiel
- Grupo de Química y Funcionalidad de Carbohidratos y Derivados, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM) CEI (CSIC+UAM), Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Luis Condezo-Hoyos
- Universidad Nacional Agraria La Molina, Facultad de Industrias Alimentarias, Innovative Technology, Food and Health Research Group, Lima, Peru; Universidad Nacional Agraria La Molina, Instituto de Investigación de Bioquímica y Biología Molecular, Lima, Perú.
| |
Collapse
|
73
|
Das S, Nadar SS, Rathod VK. Integrated strategies for enzyme assisted extraction of bioactive molecules: A review. Int J Biol Macromol 2021; 191:899-917. [PMID: 34534588 DOI: 10.1016/j.ijbiomac.2021.09.060] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022]
Abstract
Conventional methods of extracting bioactive molecules are gradually losing pace due to their numerous disadvantages, such as product degradation, lower efficiency, and toxicity. Thus, in light of the rising demand for these bioactive, enzymes have garnered much attention for their efficiency in extraction. However, enzyme-assisted extraction is also plagued with a high capital cost that cannot justify the extraction yields obtained. In order to mitigate these problems, enzyme-assisted extraction can be consorted with non-conventional methods. This review includes current progress concerning the combined approaches while converging the recent advancements in the field that outperformed conventional extraction processes. It also highlights the design of biocatalyst and key parameters involved in the effective extraction of bioactive molecules. An integrated approach for efficiently extracting polyphenols, essential oils, pigments, and vitamins has been comprehensively reviewed. Furthermore, the different immobilization strategies have been discussed for large-scale implementation of enzymes for extraction. The integration of advanced non-conventional methods with enzyme-assisted extraction will open new avenues to enhance the overall extraction efficiency.
Collapse
Affiliation(s)
- Srija Das
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E) Mumbai 400019, India
| | - Shamraja S Nadar
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E) Mumbai 400019, India
| | - Virendra K Rathod
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E) Mumbai 400019, India.
| |
Collapse
|
74
|
Rao MV, Sengar AS, C K S, Rawson A. Ultrasonication - A green technology extraction technique for spices: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
75
|
Evaluation of extraction technologies of lycopene: Hindrance of extraction, effects on isomerization and comparative analysis - A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
76
|
Tabio-García D, Paraguay-Delgado F, Sánchez-Madrigal MÁ, Quintero-Ramos A, Espinoza-Hicks JC, Meléndez-Pizarro CO, Ruiz-Gutiérrez MG, Espitia-Rangel E. Optimisation of the ultrasound-assisted extraction of betalains and polyphenols from Amaranthus hypochondriacus var. Nutrisol. ULTRASONICS SONOCHEMISTRY 2021; 77:105680. [PMID: 34365154 PMCID: PMC8355915 DOI: 10.1016/j.ultsonch.2021.105680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
The present study optimised the ultrasound-assisted extraction (UAE) of bioactive compounds from Amaranthus hypochondriacus var. Nutrisol. Influence of temperature (25.86-54.14 °C) and ultrasonic power densities (UPD) (76.01-273.99 mW/mL) on total betalains (BT), betacyanins (BC), betaxanthins (BX), total polyphenols (TP), antioxidant activity (AA), colour parameters (L*, a*, and b*), amaranthine (A), and isoamaranthine (IA) were evaluated using response surface methodology. Moreover, betalain extraction kinetics and mass transfer coefficients (KLa) were determined for each experimental condition. BT, BC, BX, TP, AA, b*, KLa, and A were significantly affected (p < 0.05) by temperature extraction and UPD, whereas L*, a*, and IA were only affected (p < 0.05) by temperature. All response models were significantly validated with regression coefficients (R2) ranging from 87.46 to 99.29%. BT, A, IA, and KLa in UAE were 1.38, 1.65, 1.50, and 29.93 times higher than determined using conventional extraction, respectively. Optimal UAE conditions were obtained at 41.80 °C and 188.84 mW/mL using the desired function methodology. Under these conditions, the experimental values for BC, BX, BT, TP, AA, L*, a*, b*, KLa, A, and IA were closely related to the predicted values, indicating the suitability of the developed quadratic models. This study proposes a simple and efficient UAE method to obtain betalains and polyphenols with high antioxidant activity, which can be used in several applications within the food industry.
Collapse
Affiliation(s)
- Danger Tabio-García
- Universidad Autónoma de Chihuahua, Facultad de Ciencias Químicas, Circuito Universitario s/n, Campus Universitario # 2. Chihuahua, Chihuahua C. P. 31 125, Mexico
| | - Francisco Paraguay-Delgado
- Centro de Investigación en Materiales Avanzados S.C., CIMAV. Miguel de Cervantes 120. Chihuahua, Chihuahua C. P. 31 125, Mexico
| | - Miguel Á Sánchez-Madrigal
- Universidad Autónoma de Chihuahua, Facultad de Ciencias Químicas, Circuito Universitario s/n, Campus Universitario # 2. Chihuahua, Chihuahua C. P. 31 125, Mexico
| | - Armando Quintero-Ramos
- Universidad Autónoma de Chihuahua, Facultad de Ciencias Químicas, Circuito Universitario s/n, Campus Universitario # 2. Chihuahua, Chihuahua C. P. 31 125, Mexico.
| | - José C Espinoza-Hicks
- Universidad Autónoma de Chihuahua, Facultad de Ciencias Químicas, Circuito Universitario s/n, Campus Universitario # 2. Chihuahua, Chihuahua C. P. 31 125, Mexico
| | - Carmen O Meléndez-Pizarro
- Universidad Autónoma de Chihuahua, Facultad de Ciencias Químicas, Circuito Universitario s/n, Campus Universitario # 2. Chihuahua, Chihuahua C. P. 31 125, Mexico
| | - Martha G Ruiz-Gutiérrez
- Universidad Autónoma de Chihuahua, Facultad de Ciencias Químicas, Circuito Universitario s/n, Campus Universitario # 2. Chihuahua, Chihuahua C. P. 31 125, Mexico
| | - Eduardo Espitia-Rangel
- INIFAP, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias. Campo Experimental Valle de México, Km 13.5 Carr Los Reyes-Texcoco, C. P. 56 250 Texcoco Estado de Mexico, Mexico
| |
Collapse
|
77
|
Ferreira-Santos P, Miranda SM, Belo I, Spigno G, Teixeira JA, Rocha CM. Sequential multi-stage extraction of biocompounds from Spirulina platensis: Combined effect of ohmic heating and enzymatic treatment. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
78
|
Agregán R, Munekata PE, Feng X, Astray G, Gullón B, Lorenzo JM. Recent advances in the extraction of polyphenols from eggplant and their application in foods. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
79
|
Whitaker RD, Altintzoglou T, Lian K, Fernandez EN. Marine Bioactive Peptides in Supplements and Functional Foods - A Commercial Perspective. Curr Pharm Des 2021; 27:1353-1364. [PMID: 33155895 DOI: 10.2174/1381612824999201105164000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/05/2020] [Indexed: 11/22/2022]
Abstract
Many bioactive peptides have been described from marine sources and much marine biomass is still not explored or utilized in products. Marine peptides can be developed into a variety of products, and there is a significant interest in the use of bioactive peptides from marine sources for nutraceuticals or functional foods. We present here a mini-review collecting the knowledge about the value chain of bioactive peptides from marine sources used in nutraceuticals and functional foods. Many reports describe bioactive peptides from marine sources, but in order to make these available to the consumers in commercial products, it is important to connect the bioactivities associated with these peptides to commercial opportunities and possibilities. In this mini-review, we present challenges and opportunities for the commercial use of bioactive peptides in nutraceuticals and functional food products. We start the paper by introducing approaches for isolation and identification of bioactive peptides and candidates for functional foods. We further discuss market-driven innovation targeted to ensure that isolated peptides and suggested products are marketable and acceptable by targeted consumers. To increase the commercial potential and ensure the sustainability of the identified bioactive peptides and products, we discuss scalability, regulatory frameworks, production possibilities and the shift towards greener technologies. Finally, we discuss some commercial products from marine peptides within the functional food market. We discuss the placement of these products in the larger picture of the commercial sphere of functional food products from bioactive peptides.
Collapse
|
80
|
Aslam A, Bahadar A, Liaquat R, Saleem M, Waqas A, Zwawi M. Algae as an attractive source for cosmetics to counter environmental stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:144905. [PMID: 33770892 DOI: 10.1016/j.scitotenv.2020.144905] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/27/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
In recent times, a considerable amount of evidence has come to light regarding the effect that air pollution has on skin conditions. The human skin is the chief protection we have against environmental harm, whether biological, chemical, or physical. The stress from these environmental factors, along with internal influences, can be a cause of skin aging and enlarged pores, thinner skin, skin laxity, wrinkles, fine lines, dryness, and a more fragile dermal layer. This knowledge has led to greater demand for skin cosmetics and a requirement for natural raw ingredients with a high degree of safety and efficiency in combating skin complications. Recent developments in green technology have made the employment of naturally occurring bioactive compounds more popular, and novel extraction methods have ensured that the use of these compounds has greater compatibility with sustainable development principles. Thus, there is a demand for investigations into efficient non-harmful naturally occurring raw ingredients; compounds derived from algae could be beneficial in this area. Algae, both macroalgae and microalgae, consists of waterborne photosynthetic organisms that are potentially valuable as they have a range of bioactive compounds in their composition. Several beneficial metabolites can be obtained from algae, such as antioxidants, carotenoids, mycosporine-like amino acids (MAA), pigments, polysaccharides, and scytonemin. Various algae strains are now widely employed in skincare products for various purposes, such as a moisturizer, anti-wrinkle agent, texture-enhancing agents, or sunscreen. This research considers the environmental stresses on human skin and how they may be mitigated using cosmetics created using algae; special attention will be paid to external factors, both generally and specifically (amongst them light exposure and pollutants).
Collapse
Affiliation(s)
- Ayesha Aslam
- US Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Ali Bahadar
- Department of Chemical and Materials Engineering, King Abdulaziz University, Rabigh 21911, Saudi Arabia.
| | - Rabia Liaquat
- US Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Muhammad Saleem
- Department of Industrial Engineering, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Adeel Waqas
- US Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Mohammed Zwawi
- Department of Mechanical Engineering, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| |
Collapse
|
81
|
Utilization of ultrasound and pulse electric field for the extraction of water-soluble non-starch polysaccharide from taro (Colocasia esculenta) peel. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
82
|
Extraction of Pb(II) from wheat samples via dual-frequency ultrasound-assisted enzymatic digestion and the mechanisms of its interactions with wheat proteins. Food Chem 2021; 363:130247. [PMID: 34116494 DOI: 10.1016/j.foodchem.2021.130247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 01/02/2023]
Abstract
A novel dual-frequency ultrasound-assisted enzymatic digestion (DUED) technique was used to extract Pb(II) from certified reference materials (CRMs) of wheat flour. Following this, the interactions of Pb(II) with wheat proteins were investigated to provide evidence for the selection of enzyme species. The results showed that the simultaneous use of α-amylase and flavourzyme resulted in the recovery of 97.9% of Pb(II) in 6 min under a 40 kHz ultrasonic bath combined with a 20 kHz ultrasonic probe. The exopeptidase activity of the flavourzyme was found to be the main contributor to the extraction of Pb(II) from the CRMs. Additionally, the proposed method exhibited a low detection limit (8.2 ng/g) and high recoveries of real samples (93.4%-112.2%) with RSD less than 7.33%. Furthermore, the oxygen-containing groups of wheat proteins, the nitrogen-containing groups of albumins and globulins, and the sulfur-containing groups of gliadins and glutenins were found to offer coordination sites for Pb(II).
Collapse
|
83
|
Singla M, Sit N. Application of ultrasound in combination with other technologies in food processing: A review. ULTRASONICS SONOCHEMISTRY 2021; 73:105506. [PMID: 33714087 PMCID: PMC7960546 DOI: 10.1016/j.ultsonch.2021.105506] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/26/2021] [Accepted: 02/25/2021] [Indexed: 05/06/2023]
Abstract
The use of non-thermal processing technologies has been on the surge due to ever increasing demand for highest quality convenient foods containing the natural taste & flavor and being free of chemical additives and preservatives. Among the various non-thermal processing methods, ultrasound technology has proven to be very valuable. Ultrasound processing, being used alone or in combination with other processing methods, yields significant positive results on the quality of foods, thus has been considered efficacious. Food processes performed under the action of ultrasound are believed to be affected in part by cavitation phenomenon and mass transfer enhancement. It is considered to be an emerging and promising technology and has been applied efficiently in food processing industry for several processes such as freezing, filtration, drying, separation, emulsion, sterilization, and extraction. Various researches have opined that ultrasound leads to an increase in the performance of the process and improves the quality factors of the food. The present paper will discuss the mechanical, chemical and biochemical effects produced by the propagation of high intensity ultrasonic waves through the medium. This review outlines the current knowledge about application of ultrasound in food technology including processing, preservation and extraction. In addition, the several advantages of ultrasound processing, which when combined with other different technologies (such as microwave, supercritical CO2, high pressure processing, enzymatic extraction, etc.) are being examined. These include an array of effects such as effective mixing, retention of food characteristics, faster energy and mass transfer, reduced thermal and concentration gradients, effective extraction, increased production, and efficient alternative to conventional techniques. Furthermore, the paper presents the necessary theoretical background and details of the technology, technique, and safety precautions about ultrasound.
Collapse
Affiliation(s)
- Mohit Singla
- Department of Food Engineering and Technology, Tezpur University, Assam 784028, India
| | - Nandan Sit
- Department of Food Engineering and Technology, Tezpur University, Assam 784028, India.
| |
Collapse
|
84
|
Nguyen TMC, Gavahian M, Tsai PJ. Effects of ultrasound-assisted extraction (UAE), high voltage electric field (HVEF), high pressure processing (HPP), and combined methods (HVEF+UAE and HPP+UAE) on Gac leaves extraction. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
85
|
Conventional and Enzyme-Assisted Extraction of Rosemary Leaves (Rosmarinus officinalis L.): Toward a Greener Approach to High Added-Value Extracts. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The effect of different extraction methods of rosemary leaves on the total phenolic content (TPC), and the antioxidant activity of the extracts was herein investigated. Firstly, the solid-liquid conventional extraction (CEM) and microwave-assisted extraction (MAE) were implemented in an effort to identify the effect of the solvent and of microwave irradiation on the extract quality. The extract obtained from CEM at room temperature, using ethanol/water 95:5 v/v, showed the highest antioxidant activity (IC50 = 12.1 μg/mL). MAE using ethanol/water 50:50 v/v provided an extract with TPC and DPPH radical scavenging ability in a significantly shorter extraction time (1 h for MAE and 24 h for CEM). Enzyme-assisted extraction (EAE) using five commercial enzyme formulations was implemented, and the kinetic equation was calculated. Finally, the effect of EAE as a pretreatment method to CEM was examined. Pretreatment of the plant material with pectinolytic enzymes for 1 h prior to a 24 h CEM with 50% hydroethanolic solvent was found to be the optimum conditions for the extraction of rosemary leaves, providing an extract with higher DPPH radical scavenging ability (IC50 14.3 ± 0.8 μg/mL) and TPC (15.2 ± 0.3 mgGAE/grosemary) than the corresponding extract without the enzyme pretreatment.
Collapse
|
86
|
Xu K, Gao X, Chi M, Chen K, Zhang Y, Kong W, Li Z, Huang S, Qin K. Microwave-Assisted Extraction Coupled with Mass Spectrometry for Determining Five Volatile Compounds from Soy Sauces. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2021; 2021:6625929. [PMID: 33936837 PMCID: PMC8062169 DOI: 10.1155/2021/6625929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/15/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
As a popular fermented condiment in oriental countries, soy sauce plays a more and more important role in modern food culture due to its unique smell and delicious taste. With the help of microwave extraction and gas chromatography-tandem mass spectrometry, the sample preparation method is aimed to determine the content of cyclohexane, benzene, toluene, chlorobenzene, and styrene in soy sauce. The method was validated by examining the linearity, accuracy, specificity, precision, the limit of detection, and quantitation. Meanwhile, three key factors have an impact on the efficiency and accuracy of the method including extracting solvent, temperature, and time which were optimized. The result shows that the recoveries of spiked analytes ranged from 80.86% to 105.71%, the relative standard deviation of intraday and interday precision was no more than 12.1% and 12.5%, and the limit of detection and quantitation were 0.25-1.00 ng/mL and 0.50-2.00 ng/mL, respectively. The results also indicated that the proposed method was a simple, reliable, and sensitive approach for the determination trace amount of five harmful volatile organic compounds from soy sauce.
Collapse
Affiliation(s)
- Kai Xu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, 59Cangwu Road, Lianyungang 222005, China
- Jiangsu Institute of Marine Resources Development, 59 Cangwu Road, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xun Gao
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, 59Cangwu Road, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Miaomiao Chi
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, 59Cangwu Road, Lianyungang 222005, China
| | - Kexin Chen
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, 59Cangwu Road, Lianyungang 222005, China
| | - Yue Zhang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, 59Cangwu Road, Lianyungang 222005, China
| | - Weihao Kong
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, 59Cangwu Road, Lianyungang 222005, China
| | - Ziying Li
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, 59Cangwu Road, Lianyungang 222005, China
| | - Shengnan Huang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, 59Cangwu Road, Lianyungang 222005, China
| | - Kunming Qin
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, 59Cangwu Road, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
87
|
Recovery of Biomolecules from Agroindustry by Solid-Liquid Enzyme-Assisted Extraction: a Review. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-01974-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
88
|
Sridhar A, Ponnuchamy M, Kumar PS, Kapoor A, Vo DVN, Prabhakar S. Techniques and modeling of polyphenol extraction from food: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2021; 19:3409-3443. [PMID: 33753968 PMCID: PMC7968578 DOI: 10.1007/s10311-021-01217-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/04/2021] [Indexed: 05/18/2023]
Abstract
There is a growing demand for vegetal food having health benefits such as improving the immune system. This is due in particular to the presence of polyphenols present in small amounts in many fruits, vegetables and functional foods. Extracting polyphenols is challenging because extraction techniques should not alter food quality. Here, we review technologies for extracting polyphenolic compounds from foods. Conventional techniques include percolation, decoction, heat reflux extraction, Soxhlet extraction and maceration, whereas advanced techniques are ultrasound-assisted extraction, microwave-assisted extraction, supercritical fluid extraction, high-voltage electric discharge, pulse electric field extraction and enzyme-assisted extraction. Advanced techniques are 32-36% more efficient with approximately 15 times less energy consumption and producing higher-quality extracts. Membrane separation and encapsulation appear promising to improve the sustainability of separating polyphenolic compounds. We present kinetic models and their influence on process parameters such as solvent type, solid and solvent ratio, temperature and particle size.
Collapse
Affiliation(s)
- Adithya Sridhar
- Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203 India
| | - Muthamilselvi Ponnuchamy
- Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203 India
| | - Ponnusamy Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India
| | - Ashish Kapoor
- Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203 India
| | - Dai-Viet N. Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Sivaraman Prabhakar
- Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203 India
| |
Collapse
|
89
|
Guerra-Valle M, Lillo-Perez S, Petzold G, Orellana-Palma P. Effect of Freeze Crystallization on Quality Properties of Two Endemic Patagonian Berries Juices: Murta ( Ugni molinae) and Arrayan ( Luma apiculata). Foods 2021; 10:466. [PMID: 33672566 PMCID: PMC7924035 DOI: 10.3390/foods10020466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 12/31/2022] Open
Abstract
This work studied the effects of centrifugal block freeze crystallization (CBFC) on physicochemical parameters, total phenolic compound content (TPCC), antioxidant activity (AA), and process parameters applied to fresh murta and arrayan juices. In the last cycle, for fresh murta and arrayan juices, the total soluble solids (TSS) showed values close to 48 and 54 Brix, and TPCC exhibited values of approximately 20 and 66 mg gallic acid equivalents/100 grams dry matter (d.m.) for total polyphenol content, 13 and 25 mg cyanidin-3-glucoside equivalents/100 grams d.m. for total anthocyanin content, and 9 and 17 mg quercetin equivalents/100 grams d.m. for total flavonoid content, respectively. Moreover, the TPCC retention indicated values over 78% for murta juice, and 82% for arrayan juice. Similarly, the AA presented an increase over 2.1 times in relation to the correspondent initial AA value. Thus, the process parameters values were between 69% and 85% for efficiency, 70% and 88% for percentage of concentrate, and 0.72% and 0.88 (kg solutes/kg initial solutes) for solute yield. Therefore, this work provides insight about CBFC on valuable properties in fresh Patagonian berries juices, for future applications in health and industrial scale.
Collapse
Affiliation(s)
- María Guerra-Valle
- Laboratory of Cryoconcentration, Department of Food Engineering, Universidad del Bío-Bío, Av. Andrés Bello 720, 3780000 Chillán, Chile; (M.G.-V.); (S.L.-P.)
- Doctorado en Ingeniería de Alimentos, Universidad del Bío-Bío, Av. Andrés Bello 720, 3780000 Chillán, Chile
| | - Siegried Lillo-Perez
- Laboratory of Cryoconcentration, Department of Food Engineering, Universidad del Bío-Bío, Av. Andrés Bello 720, 3780000 Chillán, Chile; (M.G.-V.); (S.L.-P.)
- Magíster en Ciencias e Ingeniería en Alimentos, Universidad del Bío-Bío, Av. Andrés Bello 720, 3780000 Chillán, Chile
| | - Guillermo Petzold
- Laboratory of Cryoconcentration, Department of Food Engineering, Universidad del Bío-Bío, Av. Andrés Bello 720, 3780000 Chillán, Chile; (M.G.-V.); (S.L.-P.)
| | - Patricio Orellana-Palma
- Department of Biotechnology, Universidad Tecnológica Metropolitana, Las Palmeras 3360, P.O. Box, 7800003 Ñuñoa, Santiago, Chile
| |
Collapse
|
90
|
Dash DR, Pathak SS, Pradhan RC. Improvement in novel ultrasound‐assisted extraction technology of high value‐added components from fruit and vegetable peels. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dibya Ranjan Dash
- Department of Food Process Engineering National Institute of Technology Rourkela Odisha India
| | - Sumit Sudhir Pathak
- Department of Food Process Engineering National Institute of Technology Rourkela Odisha India
| | - Rama Chandra Pradhan
- Department of Food Process Engineering National Institute of Technology Rourkela Odisha India
| |
Collapse
|
91
|
Viana da Silva M, Santos MRC, Alves Silva IR, Macedo Viana EB, Dos Anjos DA, Santos IA, Barbosa de Lima NG, Wobeto C, Jorge N, Lannes SCDS. Synthetic and Natural Antioxidants Used in the Oxidative Stability of Edible Oils: An Overview. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2020.1869775] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Marcondes Viana da Silva
- Department of Exact and Natural Sciences (DCEN), State University of Southwest Bahia, Bairro Primavera, Itapetinga, Brasil
| | - Mariana Romana Correia Santos
- Department of Exact and Natural Sciences (DCEN), State University of Southwest Bahia, Bairro Primavera, Itapetinga, Brasil
| | - Izis Rafaela Alves Silva
- Department of Exact and Natural Sciences (DCEN), State University of Southwest Bahia, Bairro Primavera, Itapetinga, Brasil
| | - Eduardo Bruno Macedo Viana
- Department of Exact and Natural Sciences (DCEN), State University of Southwest Bahia, Bairro Primavera, Itapetinga, Brasil
| | - Dioneire Amparo Dos Anjos
- Department of Exact and Natural Sciences (DCEN), State University of Southwest Bahia, Bairro Primavera, Itapetinga, Brasil
| | - Ingrid Alves Santos
- Department of Exact and Natural Sciences (DCEN), State University of Southwest Bahia, Bairro Primavera, Itapetinga, Brasil
| | | | - Carmen Wobeto
- Universidade Federal De Mato Grosso - Campus De Sinop, Universidade Federal De Mato Grosso, Sinop, BR
| | - Neuza Jorge
- Paulista State University Júlio de Mesquita Filho, Institute of Biosciences Letters and Exact Sciences, São José Do Rio Preto, SP, Brazil
| | - Suzana Caetano Da Silva Lannes
- Faculty of Pharmaceutical Sciences, Department of Pharmaceutical-Biochemical Technology, University of São Paulo, São Paulo, BR
| |
Collapse
|
92
|
Optimized Conditions for Flavonoid Extraction from Pomelo Peel Byproducts under Enzyme- and Ultrasound-Assisted Extraction Using Response Surface Methodology. J FOOD QUALITY 2021. [DOI: 10.1155/2021/6666381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Pomelo (Citrus maxima (Burm.) Merrill) peel, which has been considered as a byproduct, is a potential source of flavonoids. In this study, the extraction conditions of total flavonoids from peels of Da Xanh pomelo were optimized using the response surface methodology with the Box–Behnken design. The combination of two novel extraction methods, including enzyme-assisted and ultrasound-assisted extractions, was used for the optimization. The results indicated that the optimal extraction condition was a liquid-to-solid ratio of 142.99 mL/g, enzyme concentration of 3.45%, and the time of 65.23 min for incubation and of 69.26 min for sonication treatment. Total phenolic and total flavonoid contents of the pomelo peel extracts, under optimal condition of the combined method (16.79 mg GAE/g and 10.69 mg RE/g, respectively), were significantly higher than those of the conventional method (6.58 mg GAE/g and 2.42 mg RE/g, respectively). The naringin and hesperidin contents of extracts under optimal condition increased by 5.70% and 1.20%, respectively, compared to the extracts under the conventional method.
Collapse
|
93
|
Fruits and fruit by-products as sources of bioactive compounds. Benefits and trends of lactic acid fermentation in the development of novel fruit-based functional beverages. Food Res Int 2020; 140:109854. [PMID: 33648172 DOI: 10.1016/j.foodres.2020.109854] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/07/2020] [Accepted: 10/25/2020] [Indexed: 12/11/2022]
Abstract
Current awareness about the benefits of a balanced diet supports ongoing trends in humans towards a healthier diet. This review provides an overview of fruits and fruit-by products as sources of bioactive compounds and their extraction techniques, and the use of lactic acid fermentation of fruit juices to increase their functionality. Fruit matrices emerge as a technological alternative to be fermented by autochthonous or allochthonous lactic acid bacteria (LAB such as Lactiplantibacillus plantarum, Lacticaseibacillus rhamnosus, and other Lactobacillus species), and also as probiotic vehicles. During fermentation, microbial enzymes act on several fruit phytochemicals producing new derived compounds with impact on the aroma and the functionality of the fermented drinks. Moreover, fermentation significantly reduces the sugar content improving their nutritional value and extending the shelf-life of fruit-based beverages. The generation of new probiotic beverages as alternatives to consumers with intolerance to lactose or with vegan or vegetarian diets is promising for the worldwide functional food market. An updated overview on the current knowledge of the use of fruit matrices to be fermented by LAB and the interaction between strains and the fruit phytochemical compounds to generate new functional foods as well as their future perspectives in association with the application of nanotechnology techniques are presented in this review.
Collapse
|
94
|
Das G, Lim KJ, Tantengco OAG, Carag HM, Gonçalves S, Romano A, Das SK, Coy-Barrera E, Shin HS, Gutiérrez-Grijalva EP, Heredia JB, Patra JK. Cactus: Chemical, nutraceutical composition and potential bio-pharmacological properties. Phytother Res 2020; 35:1248-1283. [PMID: 33025610 DOI: 10.1002/ptr.6889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 01/14/2023]
Abstract
Cactus species are plants that grow in the arid and semiarid regions of the world. They have long fascinated the attention of the scientific community due to their unusual biology. Cactus species are used for a variety of purposes, such as food, fodder, ornamental, and as medicinal plants. In the last regard, they have been used in traditional medicine for eras by the ancient people to cure several diseases. Recent scientific investigations suggest that cactus materials may be used as a source of naturally-occurring products, such as mucilage, fiber, pigments, and antioxidants. For this reason, numerous species under this family are becoming endangered and extinct. This review provides an overview of the habitat, classification, phytochemistry, chemical constituents, extraction and isolation of bioactive compounds, nutritional and pharmacological potential with pre-clinical and clinical studies of different Cactus species. Furthermore, conservation strategies for the ornamental and endangered species have also been discussed.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, Republic of Korea
| | - Kyung Jik Lim
- Department of Food Science & Biotechnology, Dongguk University-Seoul, Goyangsi, Republic of Korea
| | | | - Harold M Carag
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Sandra Gonçalves
- MED - Mediterranean Institute for Agriculture, Environment and Development, Universidade do Algarve, Faculdade de Ciências e Tecnologia, Campus de Gambelas, Faro, Portugal
| | - Anabela Romano
- MED - Mediterranean Institute for Agriculture, Environment and Development, Universidade do Algarve, Faculdade de Ciências e Tecnologia, Campus de Gambelas, Faro, Portugal
| | - Swagat Kumar Das
- Department of Biotechnology, College of Engineering and Technology, Biju Patnaik University of Technology, Kalinga Nagar, Ghatikia, Bhubaneswar, Odisha, India
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá, Colombia
| | - Han-Seung Shin
- Department of Food Science & Biotechnology, Dongguk University-Seoul, Goyangsi, Republic of Korea
| | - Erick Paul Gutiérrez-Grijalva
- Department of Nutraceuticals and Functional Foods, Cátedras CONACYT-Centro de Investigación en Alimentación y Desarrollo, Culiacán, Mexico
| | - J Basilio Heredia
- Department of Nutraceuticals and Functional Foods, Centro de Investigación en Alimentación y Desarrollo, Culiacán, Mexico
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, Republic of Korea
| |
Collapse
|
95
|
Salazar-López NJ, Domínguez-Avila JA, Yahia EM, Belmonte-Herrera BH, Wall-Medrano A, Montalvo-González E, González-Aguilar GA. Avocado fruit and by-products as potential sources of bioactive compounds. Food Res Int 2020; 138:109774. [PMID: 33292952 DOI: 10.1016/j.foodres.2020.109774] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 12/22/2022]
Abstract
The increased demand for avocado, and therefore production and consumption, generate large quantities of by-products such as seeds, peel, and defatted pulp, which account for approximately 30% of fruit weight, and which are commonly discarded and wasted. The present review focuses on various compounds present in avocado fruit and its by-products, with particular interest to those that can be potentially used in different industrial forms, such as nutraceuticals, to add to or to formulate functional foods, among other uses. Main molecular families of bioactive compounds present in avocado include phenolic compounds (such as hydroxycinnamic acids, hydroxybenzoic acids, flavonoids and proanthocyanins), acetogenins, phytosterols, carotenoids and alkaloids. Types, contents, and possible functions of these bioactive compounds are described from a chemical, biological, and functional approach. The use of avocado and its by-products requires using processing methods that allow highest yield with the least amount of unusable residues, while also preserving the integrity of bioactive compounds of interest. Avocado cultivar, fruit development, ripening stage, and processing methods are some of the main factors that influence the type and amount of extractable molecules. The phytochemical diversity of avocado fruit and its by-products make them potential sources of nutraceutical compounds, from which functional foods can be obtained, as well as other applications in food, health, pigment, and material sectors, among others.
Collapse
Affiliation(s)
- Norma Julieta Salazar-López
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo, Sonora 83304, Mexico
| | - J Abraham Domínguez-Avila
- Cátedras CONACYT-Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo, Sonora 83304, Mexico
| | - Elhadi M Yahia
- Laboratorio de Fitoquímicos y Nutrición, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Avenida de las Ciencias, Juriquilla, Querétaro, 76230 Qro., Mexico.
| | - Beatriz Haydee Belmonte-Herrera
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo, Sonora 83304, Mexico
| | - Abraham Wall-Medrano
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez, Chihuahua 32310, Mexico.
| | - Efigenia Montalvo-González
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México-Instituto Tecnológico de Tepic, Av. Tecnológico 255 Fracc. Lagos del Country, Tepic, Nayarit 63175, Mexico.
| | - G A González-Aguilar
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo, Sonora 83304, Mexico.
| |
Collapse
|
96
|
Highly-Efficient Caffeine Recovery from Green Coffee Beans under Ultrasound-Assisted SC–CO2 Extraction. Processes (Basel) 2020. [DOI: 10.3390/pr8091062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Natural caffeine from decaffeination processes is widely used by pharmaceutical, cosmetic and soft-drink industries. Supercritical CO2 extraction (SFE–CO2) is extensively exploited industrially, and one of its most representative applications is the decaffeination process, which is a greener alternative to the use of organic solvents. Despite its advantages, extraction kinetics are rather slow near the CO2 critical point, meaning that improvements are highly sought after. The effect exerted by a combination of SFE–CO2 and ultrasound (US–SFE–CO2) has been investigated in this preliminary study, with the aim of improving mass transfer and selectivity in the extraction of caffeine from green coffee beans. This hybrid technology can considerably enhance the extraction efficiency and cut down process time. Further studies are in progress to demonstrate the complete decaffeination of green coffee beans of different types and origins.
Collapse
|
97
|
Morales-Oyervides L, Ruiz-Sánchez JP, Oliveira JC, Sousa-Gallagher MJ, Méndez-Zavala A, Giuffrida D, Dufossé L, Montañez J. Biotechnological approaches for the production of natural colorants by Talaromyces/Penicillium: A review. Biotechnol Adv 2020; 43:107601. [PMID: 32682871 DOI: 10.1016/j.biotechadv.2020.107601] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/20/2020] [Accepted: 07/13/2020] [Indexed: 12/28/2022]
Abstract
There has been an increased interest in replacing synthetic colorants by colorants obtained from natural sources, especially microbial pigments. Monascus pigments have been used as natural colorings and food additives in Asia for centuries but have raised toxicity issues. Recently, Talaromyces/Penicillium species have been recognized as potential strains to produce natural pigments similar to those produced by Monascus species. To date, it has not been published a literature compilation about the research and development activity of Talaromyces/Penicillium pigments. Developing a new bioprocess requires several steps, from an initial concept to a practical and feasible application. Industrial applications of fungal pigments will depend on: (i) characterization of the molecules to assure a safe consumption, (ii) stability of the pigments to the processing conditions required by the products where they will be incorporated, (iii) optimizing process conditions to achieve high yields, iv) implementing an efficient product recovery and (v) scale-up of the bioprocess. The above aspects have been reviewed in detail to evaluate the feasibility of reaching a commercial scale of the pigments produced by Talaromyces/Penicillium. Finally, the biological activities of the pigments and their potential applications are discussed.
Collapse
Affiliation(s)
- Lourdes Morales-Oyervides
- School of Engineering, University College Cork, Cork, Ireland; Department of Chemical Engineering, Autonomous University of Coahuila, Saltillo, Coahuila, Mexico
| | - Juan Pablo Ruiz-Sánchez
- Department of Chemical Engineering, Autonomous University of Coahuila, Saltillo, Coahuila, Mexico
| | | | | | | | - Daniele Giuffrida
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali, University of Messina, Messina, Italy
| | - Laurent Dufossé
- Chimie et Biotechnologie des Produits Naturels & ESIROI Agroalimentaire, Université de la Réunion, Ile de la Réunion, France
| | - Julio Montañez
- Department of Chemical Engineering, Autonomous University of Coahuila, Saltillo, Coahuila, Mexico.
| |
Collapse
|
98
|
Hentati F, Tounsi L, Djomdi D, Pierre G, Delattre C, Ursu AV, Fendri I, Abdelkafi S, Michaud P. Bioactive Polysaccharides from Seaweeds. Molecules 2020; 25:E3152. [PMID: 32660153 PMCID: PMC7397078 DOI: 10.3390/molecules25143152] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 02/08/2023] Open
Abstract
Bioactive compounds with diverse chemical structures play a significant role in disease prevention and maintenance of physiological functions. Due to the increase in industrial demand for new biosourced molecules, several types of biomasses are being exploited for the identification of bioactive metabolites and techno-functional biomolecules that are suitable for the subsequent uses in cosmetic, food and pharmaceutical fields. Among the various biomasses available, macroalgae are gaining popularity because of their potential nutraceutical and health benefits. Such health effects are delivered by specific diterpenes, pigments (fucoxanthin, phycocyanin, and carotenoids), bioactive peptides and polysaccharides. Abundant and recent studies have identified valuable biological activities of native algae polysaccharides, but also of their derivatives, including oligosaccharides and (bio)chemically modified polysaccharides. However, only a few of them can be industrially developed and open up new markets of active molecules, extracts or ingredients. In this respect, the health and nutraceutical claims associated with marine algal bioactive polysaccharides are summarized and comprehensively discussed in this review.
Collapse
Affiliation(s)
- Faiez Hentati
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (F.H.); (L.T.); (G.P.); (C.D.); (A.V.U.)
- Laboratoire de Génie Enzymatique et Microbiologie, Équipe de Biotechnologie des Algues, Département Génie Biologique, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisie;
| | - Latifa Tounsi
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (F.H.); (L.T.); (G.P.); (C.D.); (A.V.U.)
| | - Djomdi Djomdi
- Department of Renewable Energy, National Advanced School of Engineering of Maroua, University of Maroua, P.O. Box 46 Maroua, Cameroon;
| | - Guillaume Pierre
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (F.H.); (L.T.); (G.P.); (C.D.); (A.V.U.)
| | - Cédric Delattre
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (F.H.); (L.T.); (G.P.); (C.D.); (A.V.U.)
- Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| | - Alina Violeta Ursu
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (F.H.); (L.T.); (G.P.); (C.D.); (A.V.U.)
| | - Imen Fendri
- Laboratoire de Biotechnologie des Plantes Appliquée à l’Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax 3038, Tunisie;
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Équipe de Biotechnologie des Algues, Département Génie Biologique, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisie;
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (F.H.); (L.T.); (G.P.); (C.D.); (A.V.U.)
| |
Collapse
|
99
|
Ferreira-Santos P, Zanuso E, Genisheva Z, Rocha CMR, Teixeira JA. Green and Sustainable Valorization of Bioactive Phenolic Compounds from Pinus By-Products. Molecules 2020; 25:molecules25122931. [PMID: 32630539 PMCID: PMC7356352 DOI: 10.3390/molecules25122931] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 01/17/2023] Open
Abstract
In Europe, pine forests are one of the most extended forests formations, making pine residues and by-products an important source of compounds with high industrial interest as well as for bioenergy production. Moreover, the valorization of lumber industry residues is desirable from a circular economy perspective. Different extraction methods and solvents have been used, resulting in extracts with different constituents and consequently with different bioactivities. Recently, emerging and green technologies as ultrasounds, microwaves, supercritical fluids, pressurized liquids, and electric fields have appeared as promising tools for bioactive compounds extraction in alignment with the Green Chemistry principles. Pine extracts have attracted the researchers’ attention because of the positive bioproperties, such as anti-inflammatory, antimicrobial, anti-neurodegenerative, antitumoral, cardioprotective, etc., and potential industrial applications as functional foods, food additives as preservatives, nutraceuticals, pharmaceuticals, and cosmetics. Phenolic compounds are responsible for many of these bioactivities. However, there is not much information in the literature about the individual phenolic compounds of extracts from the pine species. The present review is about the reutilization of residues and by-products from the pine species, using ecofriendly technologies to obtain added-value bioactive compounds for industrial applications.
Collapse
|
100
|
Wen L, Zhang Z, Zhao M, Senthamaraikannan R, Padamati RB, Sun D, Tiwari BK. Green extraction of soluble dietary fibre from coffee silverskin: impact of ultrasound/microwave‐assisted extraction. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14477] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Le Wen
- Teagasc Food Research Centre Ashtown Dublin 15 Ireland
- Food Refrigeration and Computerized Food Technology (FRCFT) School of Biosystems and Food Engineering Agriculture & Food Science Centre University College Dublin (UCD) National University of Ireland Belfield Dublin 4 Ireland
| | - Zhihang Zhang
- Teagasc Food Research Centre Ashtown Dublin 15 Ireland
| | - Ming Zhao
- Teagasc Food Research Centre Ashtown Dublin 15 Ireland
| | | | | | - Da‐Wen Sun
- Food Refrigeration and Computerized Food Technology (FRCFT) School of Biosystems and Food Engineering Agriculture & Food Science Centre University College Dublin (UCD) National University of Ireland Belfield Dublin 4 Ireland
| | | |
Collapse
|