51
|
Du M, Ren Z, Li Q, Pu Q, Li X, Qiu Y, Li Y. Reduced bacterial resistance antibiotics with improved microbiota tolerance in human intestinal: Molecular design and mechanism analysis. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132368. [PMID: 37619278 DOI: 10.1016/j.jhazmat.2023.132368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
Antibiotic selectivity and bacterial resistance are critical global public health issues. We constructed a multi-class machine learning model to study antibiotic effects on human intestinal microbiota abundance and identified key features. Binding energies of β-lactam antibiotics with Escherichia coli PBP3 mutant protein were calculated, and a 2D-QSAR model for bacterial resistance was established. Sensitivity analysis identified key features affecting bacterial resistance. By coupling key features from the machine learning model and 2D-QSAR model, we designed ten flucloxacillin (FLU) substitutes that improved intestinal microbiota tolerance and reduced antibiotic bacterial resistance. Concurrently, the substitutes exhibited superior degradability in soil, aquatic environments, and under photolytic conditions, coupled with a reduced environmental toxicity compared to the FLU. Evaluations under combined medication revealed significant improvements in functionality and bacterial resistance for 80% of FLU substitutes, with 50% showing more than a twofold increase. Mechanistic analysis demonstrated enhanced binding to target proteins and increased biodegradability for FLU substitutes due to more concentrated surface charges. Reduced solvent hindrance and increased cell membrane permeability of FLU substitutes, mainly due to enhanced interactions with phospholipid bilayers, contributed to their functional selectivity. This study aims to address poor antibiotic selectivity and strong bacterial resistance, providing guidance for designing antibiotic substitutes.
Collapse
Affiliation(s)
- Meijin Du
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zhixing Ren
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Qing Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Qikun Pu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Xinao Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Youli Qiu
- School of Chemical Safety, North China Institute of Science and Technology, Yanjiao 065201, China.
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
52
|
Islam K, Khatun N, Das K, Paul S, Ghosh T, Nayek K. Ten- vs. 14-day antibiotic therapy for culture-positive neonatal sepsis. J Trop Pediatr 2023; 69:fmad036. [PMID: 37986651 DOI: 10.1093/tropej/fmad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
BACKGROUND Neonatal sepsis is a major determinant of neonatal mortality. There is a scarcity of evidence-based guidelines for the duration of antibiotics in culture-positive sepsis. OBJECTIVES The aim of this study was to compare the efficacy of 10- and 14-day antibiotic therapies in the management of culture-positive neonatal sepsis. METHODS This randomized controlled trial was conducted in the neonatal intensive care unit of a tertiary care center among the neonates suffering from culture-positive sepsis (with signs of clinical remission on day 9 of antibiotic) between January 2023 and May 2023. Newborns with major congenital anomaly, deep-seated infections, multi-organ dysfunction, associated fungal infections/infection by multiple organisms and severe birth asphyxia were excluded. Two hundred and thirty-four newborns were randomized into two groups-study (received 10 days of antibiotics) and control (received 14 days of antibiotics). Treatment failure, hospital stay and adverse effects were compared between the two groups. p < 0.05 was taken as the limit of statistical significance. RESULTS Median [interquartile range (IQR)] birth weight and gestational age of the study population (53.8% boys) were 2.424 kg (IQR: 2.183-2.695) and 37.3 weeks (IQR: 35.5-38.1), respectively. Acinetobacter was the most commonly isolated species (56, 23.9%). The baseline characteristics of both groups were almost similar. Treatment failure was similar in the study and control groups (3.8% vs. 1.7%, p = 0.40), with a shorter hospital stay [median (IQR): 14 (13-16) vs. 18 (17-19) days, p < 0.001]. CONCLUSION Ten-day antibiotic therapy was comparable with 14-day antibiotic therapy in efficacy, with a shorter duration of hospital stay and without any significant increase in adverse effects.
Collapse
Affiliation(s)
- Kamirul Islam
- Department of Pediatrics, Burdwan Medical College, Burdwan 713104, West Bengal, India
| | - Nazima Khatun
- Department of Anesthesiology, Burdwan Medical College, Burdwan 713104, West Bengal, India
| | - Kuntalkanti Das
- Department of Pediatrics, Burdwan Medical College, Burdwan 713104, West Bengal, India
| | - Sudipto Paul
- Department of Pediatrics, Burdwan Medical College, Burdwan 713104, West Bengal, India
| | - Taraknath Ghosh
- Department of Pediatrics, Burdwan Medical College, Burdwan 713104, West Bengal, India
| | - Kaustav Nayek
- Department of Pediatrics, Burdwan Medical College, Burdwan 713104, West Bengal, India
| |
Collapse
|
53
|
Yuan C, He Y, Xie K, Feng L, Gao S, Cai L. Review of microbiota gut brain axis and innate immunity in inflammatory and infective diseases. Front Cell Infect Microbiol 2023; 13:1282431. [PMID: 37868345 PMCID: PMC10585369 DOI: 10.3389/fcimb.2023.1282431] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
The microbiota gut brain (MGB) axis has been shown to play a significant role in the regulation of inflammatory and infective diseases. Exploring the structure and communication mode of MGB axis is crucial for understanding its role in diseases, and studying the signaling pathways and regulatory methods of MGB axis regulation in diseases is also of profound significance for future clinical research. This article reviews the composition, communication mechanism of MGB axis and its role in inflammatory and infective diseases, including Parkinson's disease (PD), Alzheimer's disease (AD), multiple sclerosis (MS), autism spectrum disorder (ASD), depression, psoriasis, irritable bowel syndrome (IBS), and inflammatory bowel diseases (IBD). In addition, our investigation delved into the regulatory functions of the inflammasome, IFN-I, NF-κB, and PARK7/DJ-1 innate immune signaling pathway in the context of inflammatory and infective diseases. Ultimately, we discussed the efficacy of various interventions, including fecal microbiota transplantation (FMT), antibiotics, probiotics, prebiotics, synbiotics, and postbiotics, in the management of inflammatory and infective diseases. Understanding the role and mechanism of the MGB axis might make positive effects in the treatment of inflammatory and infective diseases.
Collapse
Affiliation(s)
- Chongshan Yuan
- Department of Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Yuhong He
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Kunyu Xie
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Lianjun Feng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Shouyang Gao
- Department of Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Lifu Cai
- Department of Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
54
|
Yang J, Meng L, Li Y, Huang H. Strategies for applying probiotics in the antibiotic management of Clostridioides difficile infection. Food Funct 2023; 14:8711-8733. [PMID: 37725066 DOI: 10.1039/d3fo02110f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The vital role of probiotics in the food field has been widely recognized, and at the same time, probiotics are gradually exhibiting surprising effects in the field of nutraceuticals, especially in regulating gut inflammation and the nutritional environment. As a dietary supplement in clinical nutrition, the coadministration of probiotics with antibiotics model has been applied to prevent intestinal infections caused by Clostridioides difficile. However, the mechanism behind this "bacteria-drug combination" model remains unclear. In particular, the selection of specific probiotic strains, the order of probiotics or antibiotics, and the time interval of coadministration are key issues that need to be further explored and clarified. Here, we focus on the issues mentioned above and give reasonable opinions, mainly including: (1) probiotics are safer and more effective when they intervene after antibiotics have been used; (2) the choice of the time interval between coadministration should be based on the metabolism of antibiotics in the host, differences in probiotic strains, the baseline ecological environment of the host's intestine, and the host immune level; in addition, the selection of the coadministration regime should also take into account factors such as the antibiotic sensitivity of probiotics and dosage of probiotics; and (3) by encapsulating probiotics, combining probiotics with prebiotics, and developing next-generation probiotics (NGPs) and postbiotic formulations, we can provide a more reasonable reference for this type of "bacteria-drug combination" model, and also provide targeted guidance for the application of probiotic dietary supplements in the antibiotic management of C. difficile infection.
Collapse
Affiliation(s)
- Jingpeng Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China.
| | - Lingtong Meng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China.
| | - Yanan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China.
| |
Collapse
|
55
|
Ueta R, Imai H, Saijo K, Kawamura Y, Kodera S, Komine K, Ouchi K, Kasahara Y, Taniguchi S, Yoshida Y, Sasaki K, Shirota H, Takahashi M, Ishioka C. Antibiotics May Interfere with Nivolumab Efficacy in Patients with Head and Neck Squamous Cell Carcinoma. Oncology 2023; 102:252-259. [PMID: 37708868 DOI: 10.1159/000533860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/11/2023] [Indexed: 09/16/2023]
Abstract
INTRODUCTION Patients with the head and neck squamous cell carcinoma (SCC) are often treated with immune checkpoint inhibitors (ICIs). Recently, antibiotic intake was reported to lower the efficacy of ICIs in patients with several types of cancers. However, it is unclear if antibiotics affect the efficacy of ICIs in patients with head and neck SCC. We retrospectively assessed the influence of antibiotics on the treatment efficacy of nivolumab, an ICI, in patients with head and neck SCC. METHODS We reviewed the medical records of patients with head and neck SCC treated with nivolumab at the Department of Medical Oncology, Tohoku University Hospital, between 2017 and 2021. Patients who received oral or intravenous antibiotics from a month before the day of nivolumab initiation to the day of the first imaging evaluation of ICI efficacy were assigned to the antibiotic-treated group. The remaining patients were assigned to the antibiotic-untreated group. The response rate (RR), progression-free survival (PFS), and overall survival time (OS) of both groups were compared. RESULTS Forty-five patients were assigned to the antibiotic-treated group and 19 to the antibiotic-untreated group. The RR, median PFS, and median OS of the antibiotic-treated group were 23.7%, 3.2 months (95% confidential interval [CI]: 2.0-4.1), and 8.4 months (95% CI: 5.3-15.1) and those of the antibiotic-untreated group were 42.1%, 5.8 months (95% CI: 2.3-16.7), and 18.4 months (95% CI: 6.2-23.1), respectively. The PFS of the antibiotic-untreated group was significantly longer than that of the antibiotic-treated group. CONCLUSION Our findings indicate that antibiotic treatment significantly shortens the PFS with nivolumab therapy in patients with head and neck SCC.
Collapse
Affiliation(s)
- Reio Ueta
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroo Imai
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan,
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan,
| | - Ken Saijo
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshifumi Kawamura
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shuto Kodera
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keigo Komine
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kota Ouchi
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuki Kasahara
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Sakura Taniguchi
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuya Yoshida
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keiju Sasaki
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hidekazu Shirota
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masanobu Takahashi
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Chikashi Ishioka
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
56
|
Omeershffudin UNM, Kumar S. Emerging threat of antimicrobial resistance in Neisseria gonorrhoeae: pathogenesis, treatment challenges, and potential for vaccine development. Arch Microbiol 2023; 205:330. [PMID: 37688619 DOI: 10.1007/s00203-023-03663-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 09/11/2023]
Abstract
The continuous rise of antimicrobial resistance (AMR) is a serious concern as it endangers the effectiveness of healthcare interventions that rely on antibiotics in the long run. The increasing resistance of Neisseria gonorrhoeae, the bacteria responsible for causing gonorrhea, to commonly used antimicrobial drugs, is a major concern. This has now become a critical global health crisis. In the coming years, there is a risk of a hidden epidemic caused by the emergence of gonococcal AMR. This will worsen the global situation. Infections caused by N. gonorrhoeae were once considered easily treatable. However, over time, they have become increasingly resistant to commonly used therapeutic medications, such as penicillin, ciprofloxacin, and azithromycin. As a result, this pathogen is developing into a true "superbug," which means that ceftriaxone is now the only available option for initial empirical treatment. Effective management strategies are urgently needed to prevent severe consequences, such as infertility and pelvic inflammatory disease, which can result from delayed intervention. This review provides a thorough analysis of the escalating problem of N. gonorrhoeae, including its pathogenesis, current treatment options, the emergence of drug-resistant mechanisms, and the potential for vaccine development. We aim to provide valuable insights for healthcare practitioners, policymakers, and researchers in their efforts to combat N. gonorrhoeae antibiotic resistance by elucidating the multifaceted aspects of this global challenge.
Collapse
Affiliation(s)
- Umairah Natasya Mohd Omeershffudin
- Post Graduate Centre, Management and Science University, University Drive, Off Persiaran Olahraga, Section 13, 40100, Selangor, Malaysia
| | - Suresh Kumar
- Faculty of Health and Life Sciences, Management and Science University, Seksyen 13, 40100, Shah Alam, Selangor, Malaysia.
| |
Collapse
|
57
|
Éliás AJ, Barna V, Patoni C, Demeter D, Veres DS, Bunduc S, Erőss B, Hegyi P, Földvári-Nagy L, Lenti K. Probiotic supplementation during antibiotic treatment is unjustified in maintaining the gut microbiome diversity: a systematic review and meta-analysis. BMC Med 2023; 21:262. [PMID: 37468916 DOI: 10.1186/s12916-023-02961-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/26/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Probiotics are often used to prevent antibiotic-induced low-diversity dysbiosis, however their effect is not yet sufficiently summarized in this regard. We aimed to investigate the effects of concurrent probiotic supplementation on gut microbiome composition during antibiotic therapy. METHODS We performed a systematic review and meta-analysis of randomized controlled trials reporting the differences in gut microbiome diversity between patients on antibiotic therapy with and without concomitant probiotic supplementation. The systematic search was performed in three databases (MEDLINE (via PubMed), Embase, and Cochrane Central Register of Controlled Trials (CENTRAL)) without filters on 15 October 2021. A random-effects model was used to estimate pooled mean differences (MD) with 95% confidence intervals (CI). This review was registered on PROSPERO (CRD42021282983). RESULTS Of 11,769 identified articles, 15 were eligible in the systematic review and 5 in the meta-analyses. Quantitative data synthesis for Shannon (MD = 0.23, 95% CI: [(-)0.06-0.51]), Chao1 (MD = 11.59 [(-)18.42-41.60]) and observed OTUs (operational taxonomic unit) (MD = 17.15 [(-)9.43-43.73]) diversity indices revealed no significant difference between probiotic supplemented and control groups. Lacking data prevented meta-analyzing other diversity indices; however, most of the included studies reported no difference in the other reported α- and ß-diversity indices between the groups. Changes in the taxonomic composition varied across the eligible studies but tended to be similar in both groups. However, they showed a potential tendency to restore baseline levels in both groups after 3-8 weeks. This is the first meta-analysis and the most comprehensive review of the topic to date using high quality methods. The limited number of studies and low sample sizes are the main limitations of our study. Moreover, there was high variability across the studies regarding the indication of antibiotic therapy and the type, dose, and duration of antimicrobials and probiotics. CONCLUSIONS Our results showed that probiotic supplementation during antibiotic therapy was not found to be influential on gut microbiome diversity indices. Defining appropriate microbiome diversity indices, their standard ranges, and their clinical relevance would be crucial.
Collapse
Affiliation(s)
- Anna Júlia Éliás
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Doctoral School of Health Sciences, Semmelweis University, Budapest, Hungary
| | - Viktória Barna
- Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - Cristina Patoni
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Dóra Demeter
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Military Hospital Medical Centre, Hungarian Defense Forces, Budapest, Hungary
| | - Dániel Sándor Veres
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Stefania Bunduc
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
| | - Bálint Erőss
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Hegyi
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - László Földvári-Nagy
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary.
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary.
| | - Katalin Lenti
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| |
Collapse
|
58
|
Field D, Fernandez de Ullivarri M, Ross RP, Hill C. After a century of nisin research - where are we now? FEMS Microbiol Rev 2023; 47:fuad023. [PMID: 37300874 PMCID: PMC10257480 DOI: 10.1093/femsre/fuad023] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/13/2023] Open
Abstract
It is almost a century since nisin was discovered in fermented milk cultures, coincidentally in the same year that penicillin was first described. Over the last 100 years this small, highly modified pentacyclic peptide has not only found success in the food industry as a preservative but has also served as the paradigm for our understanding of the genetic organization, expression, and regulation of genes involved in lantibiotic biosynthesis-one of the few cases of extensive post-translation modification in prokaryotes. Recent developments in understanding the complex biosynthesis of nisin have shed light on the cellular location of the modification and transport machinery and the co-ordinated series of spatio-temporal events required to produce active nisin and provide resistance and immunity. The continued unearthing of new natural variants from within human and animal gastrointestinal tracts has sparked interest in the potential application of nisin to influence the microbiome, given the growing recognition of the role the gastrointestinal microbiota plays in health and disease. Moreover, interdisciplinary approaches have taken advantage of biotechnological advancements to bioengineer nisin to produce novel variants and expand nisin functionality for applications in the biomedical field. This review will discuss the latest progress in these aspects of nisin research.
Collapse
Affiliation(s)
- Des Field
- APC Microbiome Ireland, University College Cork,Western Road, Cork T12 YN60, Ireland
- School of Microbiology, University College Cork, College Road, Cork T12 YT20, Ireland
| | | | - R Paul Ross
- APC Microbiome Ireland, University College Cork,Western Road, Cork T12 YN60, Ireland
- School of Microbiology, University College Cork, College Road, Cork T12 YT20, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork,Western Road, Cork T12 YN60, Ireland
- School of Microbiology, University College Cork, College Road, Cork T12 YT20, Ireland
| |
Collapse
|
59
|
Zhan M, Liang X, Chen J, Yang X, Han Y, Zhao C, Xiao J, Cao Y, Xiao H, Song M. Dietary 5-demethylnobiletin prevents antibiotic-associated dysbiosis of gut microbiota and damage to the colonic barrier. Food Funct 2023; 14:4414-4429. [PMID: 37097253 DOI: 10.1039/d3fo00516j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
5-Demethylnobiletin (5DN) is an important ingredient of citrus extract that is rich in polymethoxyflavones (PMFs). In this study, we systemically investigated the preventive effects of 5DN on antibiotic-associated intestinal disturbances. Experimental mice were gavaged 0.2 mL per day of the antibiotic cocktail (12.5 g L-1 cefuroxime and 10 g L-1 levofloxacin) for 10 days, accompanied by dietary 0.05% 5DN for 10 and 20 days. The results showed that the combination of cefuroxime and levofloxacin caused swelling of the cecum and injury to the colon tissue. Meanwhile, the balance of intestinal oxidative stress and the barrier function of mice was also damaged by the antibiotics through upregulation of the relative mRNA levels of superoxide dismutase 3 (SOD3), quinine oxidoreductase 1 (NQO1) and glutathione peroxidase 1 (GPX1), and downregulation of the relative protein levels of tight junction proteins (TJs). Moreover, antibiotic exposure led to disorder of the gut microbiota, particularly increased harmful bacteria (Proteobacteria) and decreased beneficial bacteria (Bacteroideta). However, dietary 5DN could reduce antibiotic-associated intestinal damage, evidenced by the results that 5DN alleviated gut oxidative damage and attenuated intestinal barrier injury via increasing the expression of TJs including occludin and zonula occluden1 (ZO1). Additionally, dietary 5DN modulated the composition of the gut microbiota in antibiotic-treated mice by increasing the relative levels of beneficial bacteria, such as Dubosiella and Lactobacillus. Moreover, PMFs increased the contents of isobutyric acid and butyric acid, which were almost eliminated by antibiotic exposure. In conclusion, 5DN could alleviate antibiotic-related imbalance of intestinal oxidative stress, barrier function damage, intestinal flora disorders and the reduction of short-chain fatty acids (SCFAs), which lays a foundation for exploring safer and more effective ways to prevent or mitigate antibiotic-associated intestinal damage.
Collapse
Affiliation(s)
- Minmin Zhan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| | - Xinyan Liang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| | - Jiaqi Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| | - Xiaoshuang Yang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| | - Yanhui Han
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Chenxi Zhao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
60
|
Ding D, Wang B, Zhang X, Zhang J, Zhang H, Liu X, Gao Z, Yu Z. The spread of antibiotic resistance to humans and potential protection strategies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114734. [PMID: 36950985 DOI: 10.1016/j.ecoenv.2023.114734] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Antibiotic resistance is currently one of the greatest threats to human health. Widespread use and residues of antibiotics in humans, animals, and the environment can exert selective pressure on antibiotic resistance bacteria (ARB) and antibiotic resistance gene (ARG), accelerating the flow of antibiotic resistance. As ARG spreads to the population, the burden of antibiotic resistance in humans increases, which may have potential health effects on people. Therefore, it is critical to mitigate the spread of antibiotic resistance to humans and reduce the load of antibiotic resistance in humans. This review briefly described the information of global antibiotic consumption information and national action plans (NAPs) to combat antibiotic resistance and provided a set of feasible control strategies for the transmission of ARB and ARG to humans in three areas including (a) Reducing the colonization capacity of exogenous ARB, (b) Enhancing human colonization resistance and mitigating the horizontal gene transfer (HGT) of ARG, (c) Reversing ARB antibiotic resistance. With the hope of achieving interdisciplinary one-health prevention and control of bacterial resistance.
Collapse
Affiliation(s)
- Dong Ding
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China; College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Bin Wang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoan Zhang
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junxi Zhang
- NHC Key Laboratory of Birth Defects Prevention & Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Huanhuan Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xinxin Liu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zhan Gao
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Zengli Yu
- College of Public Health, Zhengzhou University, Zhengzhou, China; The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
61
|
Qian W, Li M, Yu L, Tian F, Zhao J, Zhai Q. Effects of Taurine on Gut Microbiota Homeostasis: An Evaluation Based on Two Models of Gut Dysbiosis. Biomedicines 2023; 11:biomedicines11041048. [PMID: 37189666 DOI: 10.3390/biomedicines11041048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/16/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Taurine, an abundant free amino acid, plays multiple roles in the body, including bile acid conjugation, osmoregulation, oxidative stress, and inflammation prevention. Although the relationship between taurine and the gut has been briefly described, the effects of taurine on the reconstitution of intestinal flora homeostasis under conditions of gut dysbiosis and underlying mechanisms remain unclear. This study examined the effects of taurine on the intestinal flora and homeostasis of healthy mice and mice with dysbiosis caused by antibiotic treatment and pathogenic bacterial infections. The results showed that taurine supplementation could significantly regulate intestinal microflora, alter fecal bile acid composition, reverse the decrease in Lactobacillus abundance, boost intestinal immunity in response to antibiotic exposure, resist colonization by Citrobacter rodentium, and enhance the diversity of flora during infection. Our results indicate that taurine has the potential to shape the gut microbiota of mice and positively affect the restoration of intestinal homeostasis. Thus, taurine can be utilized as a targeted regulator to re-establish a normal microenvironment and to treat or prevent gut dysbiosis.
Collapse
|
62
|
Kesavelu D, Jog P. Current understanding of antibiotic-associated dysbiosis and approaches for its management. Ther Adv Infect Dis 2023; 10:20499361231154443. [PMID: 36860273 PMCID: PMC9969474 DOI: 10.1177/20499361231154443] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/16/2023] [Indexed: 03/03/2023] Open
Abstract
Increased exposure to antibiotics during early childhood increases the risk of antibiotic-associated dysbiosis, which is associated with reduced diversity of gut microbial species and abundance of certain taxa, disruption of host immunity, and the emergence of antibiotic-resistant microbes. The disruption of gut microbiota and host immunity in early life is linked to the development of immune-related and metabolic disorders later in life. Antibiotic administration in populations predisposed to gut microbiota dysbiosis, such as newborns, obese children, and children with allergic rhinitis and recurrent infections; changes microbial composition and diversity; exacerbating dysbiosis and resulting in negative health outcomes. Antibiotic-associated diarrhea (AAD), Clostridiodes difficile-associated diarrhea (CDAD), and Helicobacter pylori infection are all short-term consequences of antibiotic treatment that persist from a few weeks to months. Changes in gut microbiota, which persist even 2 years after antibiotic exposure, and the development of obesity, allergies, and asthma are among the long-term consequences. Probiotic bacteria and dietary supplements can potentially prevent or reverse antibiotic-associated gut microbiota dysbiosis. Probiotics have been demonstrated in clinical studies to help prevent AAD and, to a lesser extent, CDAD, as well as to improve H pylori eradication rates. In the Indian setting, probiotics (Saccharomyces boulardii and Bacillus clausii) have been shown to reduce the duration and frequency of acute diarrhea in children. Antibiotics may exaggerate the consequences of gut microbiota dysbiosis in vulnerable populations already affected by the condition. Therefore, prudent use of antibiotics among neonates and young children is critical to prevent the detrimental effects on gut health.
Collapse
Affiliation(s)
| | - Pramod Jog
- Dr. D.Y. Patil Medical College, Hospital &
Research Centre, Pune, India
| |
Collapse
|
63
|
Gholami H, Chmiel JA, Burton JP, Maleki Vareki S. The Role of Microbiota-Derived Vitamins in Immune Homeostasis and Enhancing Cancer Immunotherapy. Cancers (Basel) 2023; 15:1300. [PMID: 36831641 PMCID: PMC9954268 DOI: 10.3390/cancers15041300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Not all cancer patients who receive immunotherapy respond positively and emerging evidence suggests that the gut microbiota may be linked to treatment efficacy. Though mechanisms of microbial contributions to the immune response have been postulated, one likely function is the supply of basic co-factors to the host including selected vitamins. Bacteria, fungi, and plants can produce their own vitamins, whereas humans primarily obtain vitamins from exogenous sources, yet despite the significance of microbial-derived vitamins as crucial immune system modulators, the microbiota is an overlooked source of these nutrients in humans. Microbial-derived vitamins are often shared by gut bacteria, stabilizing bioenergetic pathways amongst microbial communities. Compositional changes in gut microbiota can affect metabolic pathways that alter immune function. Similarly, the immune system plays a pivotal role in maintaining the gut microbiota, which parenthetically affects vitamin biosynthesis. Here we elucidate the immune-interactive mechanisms underlying the effects of these microbially derived vitamins and how they can potentially enhance the activity of immunotherapies in cancer.
Collapse
Affiliation(s)
- Hasti Gholami
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - John A. Chmiel
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada
- Canadian Research and Development Centre for Probiotics, Lawson Research Health Research Institute, London, ON N6A 5W9, Canada
| | - Jeremy P. Burton
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada
- Canadian Research and Development Centre for Probiotics, Lawson Research Health Research Institute, London, ON N6A 5W9, Canada
- Division of Urology, Department of Surgery, Western University, London, ON N6A 3K7, Canada
| | - Saman Maleki Vareki
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
- London Regional Cancer Program, Lawson Health Research Institute, London, ON N6A 5W9, Canada
- Department of Oncology, Western University, London, ON N6A 3K7, Canada
- Department of Medical Biophysics, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
64
|
Wang W, Weng Y, Luo T, Wang Q, Yang G, Jin Y. Antimicrobial and the Resistances in the Environment: Ecological and Health Risks, Influencing Factors, and Mitigation Strategies. TOXICS 2023; 11:185. [PMID: 36851059 PMCID: PMC9965714 DOI: 10.3390/toxics11020185] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Antimicrobial contamination and antimicrobial resistance have become global environmental and health problems. A large number of antimicrobials are used in medical and animal husbandry, leading to the continuous release of residual antimicrobials into the environment. It not only causes ecological harm, but also promotes the occurrence and spread of antimicrobial resistance. The role of environmental factors in antimicrobial contamination and the spread of antimicrobial resistance is often overlooked. There are a large number of antimicrobial-resistant bacteria and antimicrobial resistance genes in human beings, which increases the likelihood that pathogenic bacteria acquire resistance, and also adds opportunities for human contact with antimicrobial-resistant pathogens. In this paper, we review the fate of antimicrobials and antimicrobial resistance in the environment, including the occurrence, spread, and impact on ecological and human health. More importantly, this review emphasizes a number of environmental factors that can exacerbate antimicrobial contamination and the spread of antimicrobial resistance. In the future, the timely removal of antimicrobials and antimicrobial resistance genes in the environment will be more effective in alleviating antimicrobial contamination and antimicrobial resistance.
Collapse
Affiliation(s)
- Weitao Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - You Weng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ting Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
65
|
Tian D, Shi W, Yu Y, Zhou W, Tang Y, Zhang W, Huang L, Han Y, Liu G. Enrofloxacin exposure induces anxiety-like behavioral responses in zebrafish by affecting the microbiota-gut-brain axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160094. [PMID: 36372168 DOI: 10.1016/j.scitotenv.2022.160094] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/05/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The ubiquitous presence of antibiotic residues in aqueous environments poses a great potential threat to aquatic organisms. Nevertheless, the behavioral effects of environmentally realistic levels of antibiotics remain poorly understood in fish species. In this study, the behavioral impacts of enrofloxacin, one of typical fluoroquinolone antibiotics that is frequently detected in aquatic environments, were evaluated by the classic light-dark test (LDT) and novel tank task (NTT) in zebrafish. Furthermore, the effects of enrofloxacin exposure on the microbiota-gut-brain axis were also assessed to reveal potential affecting mechanisms underlying the behavioral abnormality observed. Our results demonstrated that zebrafish exposed to 60 μg/L enrofloxacin for 28 days took significantly longer to enter the stressful area of the testing tank and spent significantly less time there in both the LDT and NTT, indicating abnormal anxiety-like behaviors induced by the exposure. In addition, exposure to enrofloxacin at 6 and 60 μg/L resulted in a significant elevation in Bacteroidetes and a marked decline in the Firmicutes/Bacteroidetes ratio of the gut microbiota. Moreover, the intestinal contents of interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α), glucagon-like peptide 1 (GLP-1), and 5-hydroxytryptamine (5-HT) in zebrafish were significantly upregulated, whereas those of plasma adrenocorticotropic hormone (ACTH) and cortisol (COR) were markedly downregulated upon enrofloxacin exposure. Incubation of zebrafish with a high dose of enrofloxacin (60 μg/L) also resulted in evident increases in the contents of corticotropin-releasing hormone (CRH), brain-derived neurotrophic factor (BDNF), and neuropeptide Y (NPY) in the brain. Fortunately, no significant alteration in the expression of glial fibrillary acidic protein (GFAP) was detected in the brain after enrofloxacin exposure. Our findings suggest that the disruption of the microbiota-gut-brain axis may account for enrofloxacin-induced anxiety-like behaviors in zebrafish. Since the disruption of microbiota-gut-brain axis may give rise to various clinical symptoms, the health risk of antibiotic exposure deserves more attention.
Collapse
Affiliation(s)
- Dandan Tian
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yihan Yu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lin Huang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
66
|
Zhang S, Wang Y, Ye J, Fan Q, Lin X, Gou Z, Jiang S. Dietary supplementation of bilberry anthocyanin on growth performance, intestinal mucosal barrier and cecal microbes of chickens challenged with Salmonella Typhimurium. J Anim Sci Biotechnol 2023; 14:15. [PMID: 36670458 PMCID: PMC9854028 DOI: 10.1186/s40104-022-00799-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 11/20/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Anthocyanins (AC) showed positive effects on improving the intestinal health and alleviating intestinal pathogen infections, therefore, an experiment was conducted to explore the protective effects of supplemented AC on Salmonella-infected chickens. METHODS A total of 240 hatchling chickens were randomly allocated to 4 treatments, each with 6 replicates. Birds were fed a basal diet supplemented with 0 (CON, and ST), 100 (ACL) and 400 (ACH) mg/kg of AC for d 60, and orally challenged with PBS (CON) or 109 CFU/bird (ST, ACL, ACH) Salmonella Typhimurium at d 14 and 16. RESULTS (1) Compared with birds in ST, AC supplementation increased the body weight (BW) at d 18 and the average daily gain (ADG) from d 1 to 18 of the Salmonella-infected chickens (P < 0.05); (2) AC decreased the number of Salmonella cells in the liver and spleen, the contents of NO in plasma and inflammatory cytokines in ileal mucosa of Salmonella-infected chickens (P < 0.05); (3) Salmonella infection decreased the ileal villi height, villi height to crypt depth (V/C), and the expression of zonulaoccludins-1 (ZO-1), claudin-1, occludin, and mucin 2 (MUC2) in ileal mucosa. AC supplementation relieved these adverse effects, and decreased ileal crypt depth (P < 0.05); (4) In cecal microbiota of Salmonella-infected chickens, AC increased (P < 0.05) the alpha-diversity (Chao1, Pd, Shannon and Sobs indexes) and the relative abundance of Firmicutes, and decreased (P < 0.05) the relative abundance of Proteobacteria and Bacteroidota and the enrichment of drug antimicrobial resistance, infectious bacterial disease, and immune disease pathways. CONCLUSIONS Dietary AC protected chicken against Salmonella infection via inhibiting the Salmonella colonization in liver and spleen, suppressing secretion of inflammatory cytokines, up-regulating the expression of ileal barrier-related genes, and ameliorating the composition and function of cecal microbes. Under conditions here used, 100 mg/kg bilberry anthocyanin was recommended.
Collapse
Affiliation(s)
- Sheng Zhang
- grid.135769.f0000 0001 0561 6611Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640 Guangdong China
| | - Yibing Wang
- grid.135769.f0000 0001 0561 6611Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640 Guangdong China
| | - Jinling Ye
- grid.135769.f0000 0001 0561 6611Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640 Guangdong China
| | - Qiuli Fan
- grid.135769.f0000 0001 0561 6611Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640 Guangdong China
| | - Xiajing Lin
- grid.135769.f0000 0001 0561 6611Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640 Guangdong China
| | - Zhongyong Gou
- grid.135769.f0000 0001 0561 6611Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640 Guangdong China
| | - Shouqun Jiang
- grid.135769.f0000 0001 0561 6611Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640 Guangdong China
| |
Collapse
|
67
|
Xue L, Ding Y, Qin Q, Liu L, Ding X, Zhou Y, Liu K, Singla RK, Shen K, Din AU, Zhang Y, Shen Z, Shen B, Miao L. Assessment of the impact of intravenous antibiotics treatment on gut microbiota in patients: Clinical data from pre-and post-cardiac surgery. Front Cell Infect Microbiol 2023; 12:1043971. [PMID: 36741975 PMCID: PMC9896080 DOI: 10.3389/fcimb.2022.1043971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/23/2022] [Indexed: 01/21/2023] Open
Abstract
Background and aims Surgical site infection is a common complication after surgery. Periprocedural antibiotics are necessary to prescribe for preventing or treating infections. The present study aimed to explore the effect of intravenous antibiotics on gut microbiota and menaquinone biosynthesis in patients, especially in elderly patients undergoing cardiac surgery. Methods A total of 388 fecal samples were collected from 154 cardiac surgery patients. The V3-V4 hypervariable region of the bacterial 16S rRNA gene was amplified and sequenced on a MiSeq PE300. The gut microbiota diversity of samples was analyzed in terms of α- and β-diversity at the OTU level. The different groups were classified according to antibiotics in combinations and single antibiotics. PICRUSt2 was used for preliminary prediction of the gut microbiota function for menaquinone biosynthesis. Results The intravenously administered antibiotics which are excreted via bile represents the main antibiotics that could disturb the gut microbiota's composition in cardiac surgery patients, especially for elderly patients. The effect of antibiotics on gut microbiota is produced after antibiotics treatments over one week. The recovery of gut microbiota to the state of pre-antibiotics may require over two weeks of antibiotics withdrawal. Sex factor doesn't represent as an influencer in gut microbiota composition. Long-term use of cefoperazone-sulbactam may affect coagulation function. Conclusions The composition of the gut microbiota had a significant change post-intravenous antibiotics treatment in cardiac surgery patients. The richness and diversity of gut microbiota are increased in elderly patients.
Collapse
Affiliation(s)
- Ling Xue
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China,Department of Pharmacology, Faculty of Medicine, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Yinglong Ding
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qiong Qin
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Linsheng Liu
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoliang Ding
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi Zhou
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Kun Liu
- Reproductive Medicine Centre, The First Hospital of Lanzhou University, Lanzhou, China
| | - Rajeev K. Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China,School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Ke Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Ahmad Ud Din
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Zhang
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhenya Shen
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China,*Correspondence: Liyan Miao, ; Bairong Shen, ; Zhenya Shen,
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Liyan Miao, ; Bairong Shen, ; Zhenya Shen,
| | - Liyan Miao
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China,Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, China,*Correspondence: Liyan Miao, ; Bairong Shen, ; Zhenya Shen,
| |
Collapse
|
68
|
Yuan X, Zhou F, Wang H, Xu X, Xu S, Zhang C, Zhang Y, Lu M, Zhang Y, Zhou M, Li H, Zhang X, Zhang T, Song J. Systemic antibiotics increase microbiota pathogenicity and oral bone loss. Int J Oral Sci 2023; 15:4. [PMID: 36631439 PMCID: PMC9834248 DOI: 10.1038/s41368-022-00212-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/12/2022] [Accepted: 11/24/2022] [Indexed: 01/13/2023] Open
Abstract
Periodontitis is the most widespread oral disease and is closely related to the oral microbiota. The oral microbiota is adversely affected by some pharmacologic treatments. Systemic antibiotics are widely used for infectious diseases but can lead to gut dysbiosis, causing negative effects on the human body. Whether systemic antibiotic-induced gut dysbiosis can affect the oral microbiota or even periodontitis has not yet been addressed. In this research, mice were exposed to drinking water containing a cocktail of four antibiotics to explore how systemic antibiotics affect microbiota pathogenicity and oral bone loss. The results demonstrated, for the first time, that gut dysbiosis caused by long-term use of antibiotics can disturb the oral microbiota and aggravate periodontitis. Moreover, the expression of cytokines related to Th17 was increased while transcription factors and cytokines related to Treg were decreased in the periodontal tissue. Fecal microbiota transplantation with normal mice feces restored the gut microbiota and barrier, decreased the pathogenicity of the oral microbiota, reversed the Th17/Treg imbalance in periodontal tissue, and alleviated alveolar bone loss. This study highlights the potential adverse effects of long-term systemic antibiotics-induced gut dysbiosis on the oral microbiota and periodontitis. A Th17/Treg imbalance might be related to this relationship. Importantly, these results reveal that the periodontal condition of patients should be assessed regularly when using systemic antibiotics in clinical practice.
Collapse
Affiliation(s)
- Xulei Yuan
- grid.459985.cChongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Fuyuan Zhou
- grid.459985.cChongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - He Wang
- grid.459985.cChongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xinxin Xu
- grid.459985.cChongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Shihan Xu
- grid.459985.cChongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Chuangwei Zhang
- grid.459985.cChongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yanan Zhang
- grid.459985.cChongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Miao Lu
- grid.459985.cChongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Zhang
- grid.459985.cChongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Mengjiao Zhou
- grid.459985.cChongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Han Li
- grid.459985.cChongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Ximu Zhang
- grid.459985.cChongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Tingwei Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China.
| | - Jinlin Song
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
69
|
Lu J, Jin X, Yang S, Li Y, Wang X, Wu M. Immune mechanism of gut microbiota and its metabolites in the occurrence and development of cardiovascular diseases. Front Microbiol 2022; 13:1034537. [PMID: 36590426 PMCID: PMC9794627 DOI: 10.3389/fmicb.2022.1034537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
The risk of cardiovascular disease (CVD) is associated with unusual changes in the human gut microbiota, most commonly coronary atherosclerotic heart disease, hypertension, and heart failure. Immune mechanisms maintain a dynamic balance between the gut microbiota and the host immune system. When one side changes and the balance is disrupted, different degrees of damage are inflicted on the host and a diseased state gradually develops over time. This review summarizes the immune mechanism of the gut microbiota and its metabolites in the occurrence of common CVDs, discusses the relationship between gut-heart axis dysfunction and the progression of CVD, and lists the currently effective methods of regulating the gut microbiota for the treatment of CVDs.
Collapse
|
70
|
Li Y, Han M, Song J, Liu S, Wang Y, Su X, Wei K, Xu Z, Li H, Wang Z. The prebiotic effects of soluble dietary fiber mixture on renal anemia and the gut microbiota in end-stage renal disease patients on maintenance hemodialysis: a prospective, randomized, placebo-controlled study. J Transl Med 2022; 20:599. [PMID: 36517799 PMCID: PMC9753397 DOI: 10.1186/s12967-022-03812-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Renal anemia is caused by end-stage renal disease (ESRD) but has a complex etiology. The application of dietary fiber (DF) to regulate the gut microbiota has shown effective therapeutic effects in some diseases, but its role in renal anemia is not clear. The aim of this study was to explore the effect of DF on renal anemia by regulating the gut microbiota and its metabolite, short-chain fatty acids (SCFAs). METHODS A total of 162 ESRD patients were enrolled and randomly distributed into a DF or a control group (received oral DF or potato starch, 10 g/day for 8 weeks). Hemoglobin (Hb), serum iron (Fe2+), serum ferritin (SF), soluble transferrin receptor (sTfR), hepcidin and the dosage of recombinant human erythropoietin (rhEPO) before and after intervention in patients were analyzed. The gut microbiota and SCFAs in both groups were analyzed by 16S rDNA sequencing and gas chromatography-mass spectrometry, respectively. Spearman's correlation test was used to analyze the correlation between the gut microbiota, SCFAs and the hematological indicators. RESULTS Compared with the control group, (1) the patients in the DF group had higher Hb [117.0 (12.5) g/L vs. 94.0 (14.5) g/L, p < 0.001], Fe2+ [13.23 (4.83) μmol/L vs. 10.26 (5.55) μmol/L, p < 0.001], and SF levels [54.15 (86.66) ng/ml vs. 41.48 (36.60) ng/ml, p = 0.003]. (2) The rhEPO dosage in the DF group was not significantly decreased (p = 0.12). (3) Bifidobacterium adolescentis, Lactobacillus and Lactobacillaceae were increased in the DF group, and Lactobacillus and Lactobacillaceae were positively correlated with Hb (r = 0.44, p < 0.001; r = 0.44, p < 0.001) and Fe2+ levels (r = 0.26, p = 0.016; r = 0.26, p = 0.016) and negatively correlated with rhEPO dosage (r = - 0.45, p < 0.001; r = - 0.45, p < 0.001). (4) Patients in the DF group had elevated serum butyric acid (BA) levels [0.80 (1.65) vs. 0.05 (0.04), p < 0.001] and BA levels were positively correlated with Hb (r = 0.26, p = 0.019) and Fe2+ (r = 0.31, p = 0.005) and negatively correlated with rhEPO dosage (r = - 0.36, p = 0.001). Lactobacillus and Lactobacillaceae were positively correlated with BA levels (r = 0.78, p < 0.001; r = 0.78, p < 0.001). CONCLUSION DF may improve renal anemia in ESRD patients by regulating the gut microbiota and SCFAs. Trial registration This study was registered in the China Clinical Trial Registry ( www.chictr.org.cn ) on December 20, 2018 ( ChiCTR1800020232 ).
Collapse
Affiliation(s)
- Yang Li
- grid.410638.80000 0000 8910 6733Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Nephrology, No. 16766 Jingshi Road, Jinan, 250014 Shandong China
| | - Min Han
- grid.410638.80000 0000 8910 6733Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Nephrology, No. 16766 Jingshi Road, Jinan, 250014 Shandong China
| | - Jia Song
- grid.410638.80000 0000 8910 6733Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Nephrology, No. 16766 Jingshi Road, Jinan, 250014 Shandong China ,grid.410638.80000 0000 8910 6733Shandong First Medical University, No. 6699 Qingdao Street, Jinan, 250117 Shandong China
| | - Shijin Liu
- grid.410638.80000 0000 8910 6733Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Nephrology, No. 16766 Jingshi Road, Jinan, 250014 Shandong China ,grid.268079.20000 0004 1790 6079Weifang Medical University, No. 7166 Baotong West Street, Weifang, 261053 Shandong China
| | - Yongjun Wang
- grid.452422.70000 0004 0604 7301Department of Clinical Nutrition, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766 Jingshi Road, Jinan, 250014 Shandong China
| | - Xinhuan Su
- grid.460018.b0000 0004 1769 9639Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021 Shandong China
| | - Kai Wei
- grid.410638.80000 0000 8910 6733Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Nephrology, No. 16766 Jingshi Road, Jinan, 250014 Shandong China
| | - Zhen Xu
- Department of Nephrology, Yuncheng Chengxin Hospital, West of Jiangmiaodeng Tower, Yunzhou Street, Heze, 274700 Shandong China
| | - Hui Li
- Department of Nephrology, People’s Hospital of Lingcheng, No. 245 Zhongxing Road, Dezhou, 253599 Shandong China
| | - Zunsong Wang
- grid.410638.80000 0000 8910 6733Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Nephrology, No. 16766 Jingshi Road, Jinan, 250014 Shandong China
| |
Collapse
|
71
|
Yin X, Zheng J, Liu Y, Li Y, Yu X, Li Y, Wang X. Metagenomic evidence for increasing antibiotic resistance in progeny upon parental antibiotic exposure as the cost of hormesis. CHEMOSPHERE 2022; 309:136738. [PMID: 36216115 DOI: 10.1016/j.chemosphere.2022.136738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/20/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Antibiotics are widely consumed in the intensive mariculture industry. A better understanding of the effect of antibiotics on intergenerational antibiotic resistance in organisms is urgent since intergenerational transmission is crucial for the spread of antibiotic resistance genes (ARGs) in the environment. Herein, marine medaka (Oryzias melastigma) chronically exposed to low doses of sulfamethazine (SMZ) hormetically affected the progeny, characterized by increased richness and diversity of fecal microbiota and intestinal barrier-related gene up-regulation. Progeny immunity was modulated and caused by genetic factors due to the absence of significant SMZ accumulation in F1 embryos. In addition, some of the top genera in the progeny were positively correlated with immune diseases, while the expression of some immune-related genes, such as TNFα, IL1R2, and TLR3 changed significantly. This further indicated that the host selection caused by changes in progeny immunity was probably the primary determinant of progeny intestinal microbial colonization. Metagenomic analysis revealed that Proteobacteria represented the primary carriers of ARGs, while parental SMZ exposure facilitated the distribution and enrichment of multiple ARGs involved in the antibiotic inactivation in the progeny by promoting the diversity of Gammaproteobacteria and Bacteroidetes, further illustrating that antibiotic selection pressure persisted even if the offspring were not exposed. Therefore, SMZ induced hormesis in the progeny at the expense of increasing antibiotic resistance. Collectively, these findings provide a comprehensive overview of the intergenerational effect of antibiotics and serve as a reminder that the ARG transmission induced by the intergenerational impact of antibiotics on organisms should not be ignored.
Collapse
Affiliation(s)
- Xiaohan Yin
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China.
| | - Jingyi Zheng
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China.
| | - Yawen Liu
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China.
| | - Youshen Li
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China.
| | - Xiaoxuan Yu
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China.
| | - Yongyu Li
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China.
| | - Xinhong Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
72
|
Tan C, Zhao W, Wen W, Chen X, Ma Z, Yu G. Unraveling the effects of sulfamethoxazole on the composition of gut microbiota and immune responses in Stichopus variegatus. Front Microbiol 2022; 13:1032873. [DOI: 10.3389/fmicb.2022.1032873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
The aim of this work was to reveal the changes in gut microbiota composition and immune responses of sea cucumber (Stichopus variegatus) after being affected by different doses of sulfamethoxazole. In this study, the bacterial 16S rRNA of gut microbiota were analyzed by high-throughput sequencing, and the activities of immune enzymes [lysozyme (LZM), phenoloxidase (PO), alkaline phosphatase (AKP), and acid phosphatase (ACP)] in the gut of S. variegatus were determined. The results showed that the gut microbiota presented a lower richness in the antibiotic treatment groups compared with the control group, and there were significant differences among the dominant bacteria of different concentration treatments. At the genus level, the abundance of Escherichia, Exiguobacterium, Acinetobacter, Pseudomonas, and Thalassotalea were significantly decreased in the 3 mg/L treatment group, while Vibrio was significantly increased. Furthermore, the 6 mg/L treatment group had less effect on these intestinal dominant bacteria, especially Vibrio. The changes in relative abundance of Vibrio at the species level indicated that lower concentrations of sulfamethoxazole could enhance the enrichment of Vibrio mediterranei and Vibrio fortis in S. variegatus more than higher concentrations of sulfamethoxazole. Meanwhile, the 3 mg/L treatment group significantly increased the activities of PO, AKP, and ACP, and decreased the activity of LZM. These results suggested that lower doses of sulfamethoxazole have a greater effect on the gut microbiota composition and immune responses in S. variegatus and may increase the risk of host infection.
Collapse
|
73
|
Li C, Lu F, Chen J, Ma J, Xu N. Probiotic Supplementation Prevents the Development of Ventilator-Associated Pneumonia for Mechanically Ventilated ICU Patients: A Systematic Review and Network Meta-analysis of Randomized Controlled Trials. Front Nutr 2022; 9:919156. [PMID: 35879981 PMCID: PMC9307490 DOI: 10.3389/fnut.2022.919156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/21/2022] [Indexed: 11/25/2022] Open
Abstract
Background Ventilator-associated pneumonia (VAP) is one of the common critical complications of nosocomial infection (NI) in invasive mechanically ventilated intensive care unit (ICU) patients. The efficacy of total parenteral nutrition (TPN), enteral nutrition and/or adjuvant peripheral parenteral nutrition (EPN) supplemented with or without probiotic, prebiotic, and synbiotic therapies in preventing VAP among these patients has been questioned. We aimed to systematically and comprehensively summarize all available studies to generate the best evidence of VAP prevention for invasive mechanically ventilated ICU patients. Methods Randomized controlled trials (RCTs) for the administration of TPN, EPN, probiotics-supplemented EPN, prebiotics-supplemented EPN, and synbiotics-supplemented EPN for VAP prevention in invasive mechanically ventilated ICU patients were systematically retrieved from four electronic databases. The incidence of VAP was the primary outcome and was determined by the random-effects model of a Bayesian framework. The secondary outcomes were NI, ICU and hospital mortality, ICU and hospital length of stay, and mechanical ventilation duration. The registration number of Prospero is CRD42020195773. Results A total of 8339 patients from 31 RCTs were finally included in network meta-analysis. The primary outcome showed that probiotic-supplemented EPN had a higher correlation with the alleviation of VAP than EPN in critically invasive mechanically ventilated patients (odds ratio [OR] 0.75; 95% credible intervals [CrI] 0.58–0.95). Subgroup analyses showed that probiotic-supplemented EPN prevented VAP in trauma patients (OR 0.30; 95% CrI 0.13–0.83), mixed probiotic strain therapy was more effective in preventing VAP than EPN therapy (OR 0.55; 95% CrI 0.31–0.97), and low-dose probiotic therapy (less than 1010 CFU per day) was more associated with lowered incidence of VAP than EPN therapy (OR 0.16; 95% CrI 0.04–0.64). Secondary outcomes indicated that synbiotic-supplemented EPN therapy was more significantly related to decreased incidence of NI than EPN therapy (OR 0.34; 95% CrI 0.11–0.85). Prebiotic-supplemented EPN administration was the most effective in preventing diarrhea (OR 0.05; 95% CrI 0.00–0.71). Conclusion Probiotic supplementation shows promise in reducing the incidence of VAP in critically invasive mechanically ventilated patients. Currently, low quality of evidence reduces strong clinical recommendations. Further high-quality RCTs are needed to conclusively prove these findings. Systamatic Review Registration [https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020195773], identifier [CRD42020195773].
Collapse
Affiliation(s)
- Cong Li
- Department of Emergency Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Laboratory of Morphology, Xuzhou Medical University, Xuzhou, China
| | - Fangjie Lu
- Department of Critical Care Medicine, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Jing Chen
- Laboratory of Morphology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China
| | - Jiawei Ma
- Department of Critical Care Medicine, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, China
- *Correspondence: Jiawei Ma,
| | - Nana Xu
- Department of Emergency Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Laboratory of Morphology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China
- Nana Xu,
| |
Collapse
|
74
|
Gough EK. The impact of mass drug administration of antibiotics on the gut microbiota of target populations. Infect Dis Poverty 2022; 11:76. [PMID: 35773678 PMCID: PMC9245274 DOI: 10.1186/s40249-022-00999-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/09/2022] [Indexed: 12/15/2022] Open
Abstract
Antibiotics have become a mainstay of healthcare in the past century due to their activity against pathogens. This manuscript reviews the impact of antibiotic use on the intestinal microbiota in the context of mass drug administration (MDA). The importance of the gut microbiota to human metabolism and physiology is now well established, and antibiotic exposure may impact host health via collateral effects on the microbiota and its functions. To gain further insight into how gut microbiota respond to antibiotic perturbation and the implications for public health, factors that influence the impact of antibiotic exposure on the microbiota, potential health outcomes of antibiotic-induced microbiota alterations, and strategies that have the potential to ameliorate these wider antibiotic-associated microbiota perturbations are also reviewed.
Collapse
Affiliation(s)
- Ethan K Gough
- Department of International Health, Human Nutrition Program, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
75
|
Abstract
Systemic Lupus Erythematosus is a complex autoimmune disease and its etiology remains unknown. Increased gut permeability has been reported in lupus patients, yet whether it promotes or results from lupus progression is unclear. Recent studies indicate that an impaired intestinal barrier allows the translocation of bacteria and bacterial components into systemic organs, increasing immune cell activation and autoantibody generation. Indeed, induced gut leakage in a mouse model of lupus enhanced disease characteristics, including the production of anti-dsDNA antibody, serum IL-6 as well as cell apoptosis. Gut microbiota dysbiosis has been suggested to be one of the factors that decreases gut barrier integrity by outgrowing harmful bacteria and their products, or by perturbation of gut immune homeostasis, which in turn affects gut barrier integrity. The restoration of microbial balance eliminates gut leakage in mice, further confirming the role of microbiota in maintaining gut barrier integrity. In this review, we discuss recent advances on the association between microbiota dysbiosis and leaky gut, as well as their influences on the progression of lupus. The modifications on host microbiota and gut integrity may offer insights into the development of new lupus treatment.
Collapse
Affiliation(s)
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
76
|
Wang Z, Li F, Liu J, Luo Y, Guo H, Yang Q, Xu C, Ma S, Chen H. Intestinal Microbiota - An Unmissable Bridge to Severe Acute Pancreatitis-Associated Acute Lung Injury. Front Immunol 2022; 13:913178. [PMID: 35774796 PMCID: PMC9237221 DOI: 10.3389/fimmu.2022.913178] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/11/2022] [Indexed: 11/28/2022] Open
Abstract
Severe acute pancreatitis (SAP), one of the most serious abdominal emergencies in general surgery, is characterized by acute and rapid onset as well as high mortality, which often leads to multiple organ failure (MOF). Acute lung injury (ALI), the earliest accompanied organ dysfunction, is the most common cause of death in patients following the SAP onset. The exact pathogenesis of ALI during SAP, however, remains unclear. In recent years, advances in the microbiota-gut-lung axis have led to a better understanding of SAP-associated lung injury (PALI). In addition, the bidirectional communications between intestinal microbes and the lung are becoming more apparent. This paper aims to review the mechanisms of an imbalanced intestinal microbiota contributing to the development of PALI, which is mediated by the disruption of physical, chemical, and immune barriers in the intestine, promotes bacterial translocation, and results in the activation of abnormal immune responses in severe pancreatitis. The pathogen-associated molecular patterns (PAMPs) mediated immunol mechanisms in the occurrence of PALI via binding with pattern recognition receptors (PRRs) through the microbiota-gut-lung axis are focused in this study. Moreover, the potential therapeutic strategies for alleviating PALI by regulating the composition or the function of the intestinal microbiota are discussed in this review. The aim of this study is to provide new ideas and therapeutic tools for PALI patients.
Collapse
Affiliation(s)
- Zhengjian Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fan Li
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jin Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yalan Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Haoya Guo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qi Yang
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Caiming Xu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Shurong Ma
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Shurong Ma, ; Hailong Chen,
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Shurong Ma, ; Hailong Chen,
| |
Collapse
|
77
|
Limosilactobacillus reuteri SLZX19-12 Protects the Colon from Infection by Enhancing Stability of the Gut Microbiota and Barrier Integrity and Reducing Inflammation. Microbiol Spectr 2022; 10:e0212421. [PMID: 35658572 PMCID: PMC9241593 DOI: 10.1128/spectrum.02124-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Limosilactobacillus reuteri plays an important role in regulating intestinal functions and maintaining barrier integrity in animals. In this study, Limosilactobacillus reuteri strain SLZX19-12 was isolated from the fecal microbiota of Tibetan pigs, and it was found that this strain is sensitive to common antibiotics and has strong resistance to stress. Upon being administered by gavage at different doses, including low, medium, and high doses, for 14 days, Limosilactobacillus reuteri SLZX19-12 may enhance the intestinal barrier. After administration of a high dose of SLZX19-12, mice were challenged with Salmonella enterica serovar Typhimurium SL1344. Infection with Salmonella Typhimurium SL1344 led to disordered colonic microbiotas, colonic inflammation through the S100A8/S100A9-NF-κB pathway and potential apoptosis, and translocation of pathogens to parenteral visceral organs in mice. However, the mice pretreated with Limosilactobacillus reuteri SLZX19-12 showed lower loads of Salmonella in visceral organs, less colonic inflammation, and higher barrier integrity. More importantly, the administration of strain SLZX19-12 resulted in a more stable microbiota structure of the colon, in which the abundance of Alloprevotella was greatly enhanced. Therefore, this study suggests that Limosilactobacillus reuteri SLZX19-12 can protect the colon from infection by enhancing the stability of gut microbiota and barrier integrity and reducing inflammation. IMPORTANCE The use of antibiotics to treat bacterial infections leads to a series of side effects. As an alternative method, the biocontrol strategy, which uses probiotics to suppress pathogens, is considered a potential way to deal with bacterial infections in gut. However, there are few probiotics that are currently safe and can protect against infection. In this study, Limosilactobacillus reuteri strain SLZX19-12 was obtained from Tibetan pigs, which have higher resistance to infection. This strain is sensitive to conventional antibiotics, secretes a wide spectrum of enzymes, and also promotes the intestinal barrier function in mice. In addition, Limosilactobacillus reuteri SLZX19-12 can promote the stability of the gut microbiota to avoid or alleviate the occurrence or development of foodborne infections.
Collapse
|
78
|
Tan J, Gong J, Liu F, Li B, Li Z, You J, He J, Wu S. Evaluation of an Antibiotic Cocktail for Fecal Microbiota Transplantation in Mouse. Front Nutr 2022; 9:918098. [PMID: 35719145 PMCID: PMC9204140 DOI: 10.3389/fnut.2022.918098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/04/2022] [Indexed: 12/02/2022] Open
Abstract
Objective This study aimed to evaluate the effect of an antibiotic cocktail on gut microbiota and provide a reference for establishing an available mouse model for fecal microbiota transplantation (FMT) of specific microbes. Design C57BL/6J mice (n = 24) had free access to an antibiotic cocktail containing vancomycin (0.5 g/L), ampicillin (1 g/L), neomycin (1 g/L), and metronidazole (1 g/L) in drinking water for 3 weeks. Fecal microbiota was characterized by 16S rDNA gene sequencing at the beginning, 1st week, and 3rd week, respectively. The mice were then treated with fecal microbiota from normal mice for 1 week to verify the efficiency of FMT. Results The diversity of microbiota including chao1, observed species, phylogenetic diversity (PD) whole tree, and Shannon index were decreased significantly (P < 0.05) after being treated with the antibiotic cocktail for 1 or 3 weeks. The relative abundance of Bacteroidetes, Actinobacteria, and Verrucomicrobia was decreased by 99.94, 92.09, and 100%, respectively, while Firmicutes dominated the microbiota at the phylum level after 3 weeks of treatment. Meanwhile, Lactococcus, a genus belonging to the phylum of Firmicutes dominated the microbiota at the genus level with a relative abundance of 80.63%. Further FMT experiment indicated that the fecal microbiota from the receptor mice had a similar composition to the donor mice after 1 week. Conclusion The antibiotic cocktail containing vancomycin, ampicillin, neomycin, and metronidazole eliminates microbes belonging to Bacteroidetes, Actinobacteria, and Verrucomicrobia, which can be recovered by FMT in mice.
Collapse
|
79
|
Impact of the Gastrointestinal Tract Microbiota on Cardiovascular Health and Pathophysiology. J Cardiovasc Pharmacol 2022; 80:13-30. [PMID: 35384898 DOI: 10.1097/fjc.0000000000001273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/25/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT The microbiota of the gastrointestinal tract (GIT) is an extremely diverse community of microorganisms, and their collective genomes (microbiome) provide a vast arsenal of biological activities, in particular enzymatic ones, which are far from being fully elucidated. The study of the microbiota (and the microbiome) is receiving great interest from the biomedical community as it carries the potential to improve risk-prediction models, refine primary and secondary prevention efforts, and also design more appropriate and personalized therapies, including pharmacological ones. A growing body of evidence, though sometimes impaired by the limited number of subjects involved in the studies, suggests that GIT dysbiosis, i.e. the altered microbial composition, has an important role in causing and/or worsening cardiovascular disease (CVD). Bacterial translocation as well as the alteration of levels of microbe-derived metabolites can thus be important to monitor and modulate, because they may lead to initiation and progression of CVD, as well as to its establishment as chronic state. We hereby aim to provide readers with details on available resources and experimental approaches that are used in this fascinating field of biomedical research, and on some novelties on the impact of GIT microbiota on CVD.
Collapse
|
80
|
Li P, Li M, Song Y, Huang X, Wu T, Xu ZZ, Lu H. Green Banana Flour Contributes to Gut Microbiota Recovery and Improves Colonic Barrier Integrity in Mice Following Antibiotic Perturbation. Front Nutr 2022; 9:832848. [PMID: 35369097 PMCID: PMC8964434 DOI: 10.3389/fnut.2022.832848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Green banana flour (GBF) is rich in resistant starch that has been used as a prebiotic to exert beneficial effects on gut microbiota. In this study, GBF was evaluated for its capacity to restore gut microbiota and intestinal barrier integrity from antibiotics (Abx) perturbation by comparing it to natural recovery (NR) treatment. C57B/L 6 J mice were exposed to 3 mg ciprofloxacin and 3.5 mg metronidazole once a day for 2 weeks to induce gut microbiota dysbiosis model. Then, GBF intervention at the dose of 400 mg/kg body weight was conducted for 2 weeks. The results showed that mice treated with Abx displayed increased gut permeability and intestinal barrier disruption, which were restored more quickly with GBF than NR treatment by increasing the secretion of mucin. Moreover, GBF treatment enriched beneficial Bacteroidales S24-7, Lachnospiraceae, Bacteroidaceae, and Porphyromonadaceae that accelerated the imbalanced gut microbiota restoration to its original state. This study puts forward novel insights into the application of GBF as a functional food ingredient to repair gut microbiota from Abx perturbation.
Collapse
Affiliation(s)
- Ping Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Ming Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Ying Song
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xiaochang Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Tao Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Zhenjiang Zech Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Hui Lu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
81
|
Ghoshal UC, Gwee KA, Holtmann G, Li Y, Park SJ, Simadibrata M, Sugano K, Cohen H, Quigley EMM. Physician Perceptions on the Use of Antibiotics and Probiotics in Adults: An International Survey in the Asia-Pacific Area. Front Cell Infect Microbiol 2021; 11:722700. [PMID: 34737974 PMCID: PMC8562691 DOI: 10.3389/fcimb.2021.722700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/28/2021] [Indexed: 11/22/2022] Open
Abstract
Background and Aims The over-prescription of antibiotics is thought to represent a major threat to public health worldwide and is more frequently observed in some low- and middle-income countries. In the Asia-Pacific region, economic development, health care organization and population demographics are very heterogenous. The objective of this survey was to investigate antibiotic use and probiotic co-prescription among adult patients in this area. Methods An online survey of physicians from seven countries of the Asia-Pacific region (Australia, Japan, Indonesia, India, China, Singapore and South Korea) was performed in 2018. The questionnaire explored current practices of physicians concerning antibiotics and probiotics and factors related to prescribing decisions. Results A total of 387 general practitioners and 350 gastroenterologists completed the questionnaire. Physicians in Australia, Japan and South-Korea were low prescribers of antibiotics (11% to 19% of visits resulted in an antibiotic prescription), while physicians in Indonesia, India, China and Singapore were high prescribers (41% to 61%). A large majority (85%) of physicians agreed that antibiotics disrupted intestinal microbiota. The rates of co-prescription of probiotics varied from 16% in Japan to 39% in Singapore (overall, 27%). Conditions considered by physicians to be prevented by probiotics were mostly antibiotic-associated diarrhea (62%) and Clostridium difficile colitis (43%). Conclusions Rates of probiotic co-prescription remain low in many countries although the negative effects of antibiotics on the gut microbiota and the benefits of co-prescribing probiotics are generally known.
Collapse
Affiliation(s)
- Uday C. Ghoshal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Kok-Ann Gwee
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, and Gleneagles Hospital, Singapore, Singapore
| | - Gerald Holtmann
- Faculty of Medicine and Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
- Department of Gastroenterology and Hepatology, Translational Research Institute, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Yanmei Li
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Soo Jung Park
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
| | | | - Kentaro Sugano
- Department of Gastroenterology, Jichi Medical University, Shimotsuke, Japan
| | - Henry Cohen
- Department of Gastroenterology, Universidad de la República, Montevideo, Uruguay
| | - Eamonn M. M. Quigley
- Gastroenterology and Hepatology, Lynda K. and David M. Underwood Center for Digestive Disorders, Houston Methodist Hospital and Weill Cornell Medical College, Houston, TX, United States
| |
Collapse
|
82
|
Sun J, Zhang W, Zhao Y, Liu J, Wang F, Han Y, Jiang M, Li S, Tang D. Conditional control of chimeric antigen receptor T-cell activity through a destabilizing domain switch and its chemical ligand. Cytotherapy 2021; 23:1085-1096. [PMID: 34593327 DOI: 10.1016/j.jcyt.2021.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 07/20/2021] [Accepted: 07/25/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND AIMS Despite the impressive efficacy of chimeric antigen receptor (CAR) T-cell therapy, adverse effects, including cytokine release syndrome and neurotoxicity, impede its therapeutic application, thus making the modulation of CAR T-cell activity a priority. The destabilizing domain mutated from Escherichia coli dihydrofolate reductase (DHFR) is inherently unstable and degraded by proteasomes unless it is stabilized by its chemical ligand trimethoprim (TMP), a Food and Drug Administration-approved drug. Here the authors reveal a strategy to modulate CAR T-cell activity at the protein level by employing DHFR and TMP as a chemical switch system. METHODS First, the system was demonstrated to work in human primary T cells. To introduce the system to CAR T cells, DHFR was genetically fused to the carboxyl terminal of a third-generation CAR molecule targeting CD19 (CD19-CAR), constructing the CD19-CAR-DHFR fusion. RESULTS The CD19-CAR-DHFR molecule level was shown to be modulated by TMP. Importantly, the incorporation of DHFR had no impact on the recognition specificity and normal function of the CAR molecule. Little adverse effect on cell proliferation and apoptosis was detected. It was proved that TMP could regulate cytokine secretion and the in vitro cytotoxicity of CD19-CAR-DHFR T cells. Furthermore, the in vivo anti-tumor efficacy was demonstrated to be controllable through the manipulation of TMP administration. The approach to control CD19-CAR also succeeded in 19-BBZ(71), another CD19-targeting CAR with a different structure. CONCLUSIONS The proposed approach based on DHFR and TMP provides a facile strategy to bring CAR T-cell therapy under conditional user control, and the strategy may have the potential to be transplantable.
Collapse
Affiliation(s)
- Jiao Sun
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Wen Zhang
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.
| | - Yi Zhao
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Jiang Liu
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Fang Wang
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Ying Han
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Miao Jiang
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Shiwu Li
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Dongqi Tang
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.
| |
Collapse
|
83
|
The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders. Pharmacol Res 2021; 172:105840. [PMID: 34450312 DOI: 10.1016/j.phrs.2021.105840] [Citation(s) in RCA: 361] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
Emerging evidence indicates that the gut microbiota play a crucial role in the bidirectional communication between the gut and the brain suggesting that the gut microbes may shape neural development, modulate neurotransmission and affect behavior, and thereby contribute to the pathogenesis and/or progression of many neurodevelopmental, neuropsychiatric, and neurological conditions. This review summarizes recent data on the role of microbiota-gut-brain axis in the pathophysiology of neuropsychiatric and neurological disorders including depression, anxiety, schizophrenia, autism spectrum disorders, Parkinson's disease, migraine, and epilepsy. Also, the involvement of microbiota in gut disorders co-existing with neuropsychiatric conditions is highlighted. We discuss data from both in vivo preclinical experiments and clinical reports including: (1) studies in germ-free animals, (2) studies exploring the gut microbiota composition in animal models of diseases or in humans, (3) studies evaluating the effects of probiotic, prebiotic or antibiotic treatment as well as (4) the effects of fecal microbiota transplantation.
Collapse
|
84
|
Influence of Fluconazole Administration on Gut Microbiome, Intestinal Barrier, and Immune Response in Mice. Antimicrob Agents Chemother 2021; 65:AAC.02552-20. [PMID: 33722893 DOI: 10.1128/aac.02552-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/06/2021] [Indexed: 12/26/2022] Open
Abstract
Antibiotics that can treat or prevent infectious diseases play an important role in medical therapy. However, the use of antibiotics has potentially negative effects on the health of the host. For example, antibiotics use may affect the host's immune system by altering the gut microbiota. Therefore, the aim of the study was to investigate the influence of antifungal (fluconazole) treatment on the gut microbiota and immune system of mice. Results showed that the gut microbial composition of mice receiving fluconazole treatment was significantly changed after the trial. Fluconazole did not affect the relative abundance of bacteria but significantly reduced the diversity of bacterial flora. In the bacteriome, Firmicutes and Proteobacteria significantly increased, while Bacteroidetes, Deferribacteres, Patescibacteria, and Tenericutes showed a remarkable reduction in the fluconazole-treated group compared with the control group. In the mycobiome, the relative abundance of Ascomycota was significantly decreased and Mucoromycota was significantly increased in the intestine of mice treated with fluconazole compared to the control group. Reverse transcription-quantitative PCR (RT-qPCR) results showed that the relative gene expression of ZO-1, occludin, MyD88, interleukin-1β (IL-1β), and IL-6 was decreased in the fluconazole-treated group compared to the control. Serum levels of IL-2, LZM, and IgM were significantly increased, while the IgG level was considerably downregulated in the fluconazole-treated compared to the control group. These results suggest that the administration of fluconazole can influence the gut microbiota and that a healthy gut microbiome is important for the regulation of the host immune responses.
Collapse
|
85
|
Fecal Microbiome and Resistome Profiling of Healthy and Diseased Pakistani Individuals Using Next-Generation Sequencing. Microorganisms 2021; 9:microorganisms9030616. [PMID: 33802711 PMCID: PMC8002588 DOI: 10.3390/microorganisms9030616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
In this paper, we aimed to characterize the fecal microbiome and its resistomes of healthy and diseased subjects infected with multidrug-resistant Escherichia coli using next-generation sequencing (NGS). After initial screening, 26 stools samples belonging to healthy (n = 13) and diseased subjects (n = 13) were selected and subjected to NGS. A total of 23 and 42 antibiotic-resistant genes (ARGs) conferring resistance to 6 and 9 classes of antibiotics were identified in the resistomes of healthy and diseased subjects, respectively. Bacteroidetes were found to be the major phylum in both healthy and diseased subjects; however, Proteobacteria was predominantly present in the diseased subjects only. Microbial dysbiosis and predominance of various ARGs in the resistome of diseased subjects reflect the excessive usage of antibiotics in Pakistan and warrants immediate attention to regulate the use of various antimicrobials.
Collapse
|
86
|
Du K, Bereswill S, Heimesaat MM. A literature survey on antimicrobial and immune-modulatory effects of butyrate revealing non-antibiotic approaches to tackle bacterial infections. Eur J Microbiol Immunol (Bp) 2021; 11:1-9. [PMID: 33735105 PMCID: PMC8042652 DOI: 10.1556/1886.2021.00001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022] Open
Abstract
The excessive prescription of antibiotics has led to an increasing number of antimicrobial resistances, posing a major public health concern. Therefore, the pharmacological research has shifted its focus to the identification of natural compounds that exhibit anti-pathogenic properties without triggering antibiotic resistance. Butyrate has received increasing attention as a promising candidate for the treatment of bacterial infections in the gastrointestinal tract, particularly when antibiotic treatment is contraindicated. This literature survey summarizes recently investigated antibacterial and immunemodulatory effects of butyrate. This survey revealed that butyrate exerts direct antimicrobial effects against distinct strains of Acinetobacter baumannii, Escherichia coli, Bacillus, and Staphylococcus species. In addition, in vitro and in vivo studies confirmed indirect antimicrobial effects of butyrate, which were exhibited via induction of host defensin production as well as by activation of innate and adaptive immune responses. Finally, the synergistic action of butyrate in combination with other antimicrobial compounds results in a striking clearance of bacterial pathogens. In conclusion, butyrate and its derivatives might be considered as promising antibacterial and immune-modulatory agents in order to tackle bacterial infections without antibiotics.
Collapse
Affiliation(s)
- Ke Du
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Markus M Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
87
|
Yang S, Hu T, Liu H, Lv YL, Zhang W, Li H, Xuan L, Gong LL, Liu LH. Akebia saponin D ameliorates metabolic syndrome (MetS) via remodeling gut microbiota and attenuating intestinal barrier injury. Biomed Pharmacother 2021; 138:111441. [PMID: 33652261 DOI: 10.1016/j.biopha.2021.111441] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 12/16/2022] Open
Abstract
Metabolic syndrome (MetS) is a complex, multifactorial disease which lead to an increased risk of cardiovascular disease, type 2 diabetes, and stroke. However, selective, and potent drugs for the treatment of MetS are still lacking. Previous studies have found that Akebia saponin D (ASD) has beneficial effects on metabolic diseases such as obesity, atherosclerosis, and non-alcoholic fatty liver disease (NAFLD). Therefore, our study was designed to determine the effect and mechanism of action of ASD against MetS in a high-fat diet (HFD) induced mouse model. ASD significantly decreased plasma lipid and insulin resistance in these mice, and a targeted approach using metabolomic analyses of plasma and feces indicated that glucose and lipids in these mice crossed the damaged intestinal barrier into circulation. Furthermore, ASD was able to increase lipid excretion and inhibit intestinal epithelial lipid absorption. Results for gut microbiota composition showed that ASD significantly reduced HFD-associated Alistipes, Prevotella, and enhanced the proportions of Butyricimonas, Ruminococcus, and Bifidobacterium. After 14 weeks of ASD/fecal microbiota transplantation (FMT) interventions the developed gut barrier dysfunction was restored. Additionally, RNA-seq revealed that ASD reduced the lipid-induced tight junction (TJ) damage in intestinal epithelial cells via down-regulation of the PPAR-γ-FABP4 pathway in vitro and that use of the PPAR-γ inhibitor (T0070907) was able to partially block the effects of ASD, indicating that the PPAR-γ/FABP4 pathway is a critical mediator involved in the improvement of MetS. Our results demonstrated that ASD not only modifies the gut microbiome but also ameliorates the HFD-induced gut barrier disruption via down-regulation of the PPAR-γ-FABP4 pathway. These findings suggest a promising, and novel therapeutic strategy for gut protection against MetS.
Collapse
Affiliation(s)
- Song Yang
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Ting Hu
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - He Liu
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Ya-Li Lv
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Wen Zhang
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Han Li
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Lingling Xuan
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Li-Li Gong
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA.
| | - Li-Hong Liu
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|