51
|
Firnberg E, Labonte JW, Gray JJ, Ostermeier M. A comprehensive, high-resolution map of a gene's fitness landscape. Mol Biol Evol 2014; 31:1581-92. [PMID: 24567513 PMCID: PMC4032126 DOI: 10.1093/molbev/msu081] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Mutations are central to evolution, providing the genetic variation upon which selection acts. A mutation’s effect on the suitability of a gene to perform a particular function (gene fitness) can be positive, negative, or neutral. Knowledge of the distribution of fitness effects (DFE) of mutations is fundamental for understanding evolutionary dynamics, molecular-level genetic variation, complex genetic disease, the accumulation of deleterious mutations, and the molecular clock. We present comprehensive DFEs for point and codon mutants of the Escherichia coli TEM-1 β-lactamase gene and missense mutations in the TEM-1 protein. These DFEs provide insight into the inherent benefits of the genetic code’s architecture, support for the hypothesis that mRNA stability dictates codon usage at the beginning of genes, an extensive framework for understanding protein mutational tolerance, and evidence that mutational effects on protein thermodynamic stability shape the DFE. Contrary to prevailing expectations, we find that deleterious effects of mutation primarily arise from a decrease in specific protein activity and not cellular protein levels.
Collapse
Affiliation(s)
- Elad Firnberg
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University
| | - Jason W Labonte
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University
| | - Jeffrey J Gray
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University
| | - Marc Ostermeier
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University
| |
Collapse
|
52
|
Abstract
Although more than 10(9) years have passed since the existence of the last universal common ancestor, proteins have yet to reach the limits of divergence. As a result, metabolic complexity is ever expanding. Identifying and understanding the mechanisms that drive and limit the divergence of protein sequence space impact not only evolutionary biologists investigating molecular evolution but also synthetic biologists seeking to design useful catalysts and engineer novel metabolic pathways. Investigations over the past 50 years indicate that the recruitment of enzymes for new functions is a key event in the acquisition of new metabolic capacity. In this review, we outline the genetic mechanisms that enable recruitment and summarize the present state of knowledge regarding the functional characteristics of extant catalysts that facilitate recruitment. We also highlight recent examples of enzyme recruitment, both from the historical record provided by phylogenetics and from enzyme evolution experiments. We conclude with a look to the future, which promises fruitful consequences from the convergence of molecular evolutionary theory, laboratory-directed evolution, and synthetic biology.
Collapse
Affiliation(s)
- Cindy Schulenburg
- Laboratory of Organic Chemistry, ETH-Zürich , Zürich CH-8093, Switzerland
| | | |
Collapse
|
53
|
McKay PB, Griswold CK. A comparative study indicates both positive and purifying selection within ryanodine receptor (RyR) genes, as well as correlated evolution. ACTA ACUST UNITED AC 2013; 321:151-63. [DOI: 10.1002/jez.1845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 09/15/2013] [Accepted: 10/28/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Patrick B. McKay
- Department of Integrative Biology; University of Guelph; Ontario Canada
| | | |
Collapse
|
54
|
Chávez-Galarza J, Henriques D, Johnston JS, Azevedo JC, Patton JC, Muñoz I, De la Rúa P, Pinto MA. Signatures of selection in the Iberian honey bee (Apis mellifera iberiensis) revealed by a genome scan analysis of single nucleotide polymorphisms. Mol Ecol 2013; 22:5890-907. [PMID: 24118235 DOI: 10.1111/mec.12537] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 09/12/2013] [Accepted: 09/19/2013] [Indexed: 12/30/2022]
Abstract
Understanding the genetic mechanisms of adaptive population divergence is one of the most fundamental endeavours in evolutionary biology and is becoming increasingly important as it will allow predictions about how organisms will respond to global environmental crisis. This is particularly important for the honey bee, a species of unquestionable ecological and economical importance that has been exposed to increasing human-mediated selection pressures. Here, we conducted a single nucleotide polymorphism (SNP)-based genome scan in honey bees collected across an environmental gradient in Iberia and used four FST -based outlier tests to identify genomic regions exhibiting signatures of selection. Additionally, we analysed associations between genetic and environmental data for the identification of factors that might be correlated or act as selective pressures. With these approaches, 4.4% (17 of 383) of outlier loci were cross-validated by four FST -based methods, and 8.9% (34 of 383) were cross-validated by at least three methods. Of the 34 outliers, 15 were found to be strongly associated with one or more environmental variables. Further support for selection, provided by functional genomic information, was particularly compelling for SNP outliers mapped to different genes putatively involved in the same function such as vision, xenobiotic detoxification and innate immune response. This study enabled a more rigorous consideration of selection as the underlying cause of diversity patterns in Iberian honey bees, representing an important first step towards the identification of polymorphisms implicated in local adaptation and possibly in response to recent human-mediated environmental changes.
Collapse
Affiliation(s)
- Julio Chávez-Galarza
- Mountain Research Centre (CIMO), Polytechnic Institute of Bragança, Campus de Sta. Apolónia, Apartado 1172, 5301-855, Bragança, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Poulicard N, Pinel-Galzi A, Fargette D, Hébrard E. Alternative mutational pathways, outside the VPg, of rice yellow mottle virus to overcome eIF(iso)4G-mediated rice resistance under strong genetic constraints. J Gen Virol 2013; 95:219-224. [PMID: 24141250 DOI: 10.1099/vir.0.057810-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The adaptation of rice yellow mottle virus (RYMV) to rymv1-mediated resistance has been reported to involve mutations in the viral genome-linked protein (VPg). In this study, we analysed several cases of rymv1-2 resistance breakdown by an isolate with low adaptability. Surprisingly, in these rarely occurring resistance-breaking (RB) genotypes, mutations were detected outside the VPg, in the ORF2a/ORF2b overlapping region. The causal role of three mutations associated with rymv1-2 resistance breakdown was validated via directed mutagenesis of an infectious clone. In resistant plants, these mutations increased viral accumulation as efficiently as suboptimal RB mutations in the VPg. Interestingly, these mutations are located in a highly conserved, but unfolded, domain. Altogether, our results indicate that under strong genetic constraints, a priori unfit genotypes can follow alternative mutational pathways, i.e. outside the VPg, to overcome rymv1-2 resistance.
Collapse
Affiliation(s)
- Nils Poulicard
- Institut de Recherche pour le Développement (IRD), UMR RPB, Montpellier, France
| | - Agnès Pinel-Galzi
- Institut de Recherche pour le Développement (IRD), UMR RPB, Montpellier, France
| | - Denis Fargette
- Institut de Recherche pour le Développement (IRD), UMR RPB, Montpellier, France
| | - Eugénie Hébrard
- Institut de Recherche pour le Développement (IRD), UMR RPB, Montpellier, France
| |
Collapse
|
56
|
Lan T, Wang XR, Zeng QY. Structural and functional evolution of positively selected sites in pine glutathione S-transferase enzyme family. J Biol Chem 2013; 288:24441-51. [PMID: 23846689 DOI: 10.1074/jbc.m113.456863] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phylogenetic analyses have identified positive selection as an important driver of protein evolution, both structural and functional. However, the lack of appropriate combined functional and structural assays has generally hindered attempts to elucidate patterns of positively selected sites and their effects on enzyme activity and substrate specificity. In this study we investigated the evolutionary divergence of the glutathione S-transferase (GST) family in Pinus tabuliformis, a pine that is widely distributed from northern to central China, including cold temperate and drought-stressed regions. GSTs play important roles in plant stress tolerance and detoxification. We cloned 44 GST genes from P. tabuliformis and found that 26 of the 44 belong to the largest (Tau) class of GSTs and are differentially expressed across tissues and developmental stages. Substitution models identified five positively selected sites in the Tau GSTs. To examine the functional significance of these positively selected sites, we applied protein structural modeling and site-directed mutagenesis. We found that four of the five positively selected sites significantly affect the enzyme activity and specificity; thus their variation broadens the GST family substrate spectrum. In addition, positive selection has mainly acted on secondary substrate binding sites or sites close to (but not directly at) the primary substrate binding site; thus their variation enables the acquisition of new catalytic functions without compromising the protein primary biochemical properties. Our study sheds light on selective aspects of the functional and structural divergence of the GST family in pine and other organisms.
Collapse
Affiliation(s)
- Ting Lan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | |
Collapse
|
57
|
Weinreich DM, Knies JL. Fisher's geometric model of adaptation meets the functional synthesis: data on pairwise epistasis for fitness yields insights into the shape and size of phenotype space. Evolution 2013; 67:2957-72. [PMID: 24094346 PMCID: PMC4282100 DOI: 10.1111/evo.12156] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 04/22/2013] [Indexed: 12/22/2022]
Abstract
The functional synthesis uses experimental methods from molecular biology, biochemistry and structural biology to decompose evolutionarily important mutations into their more proximal mechanistic determinants. However these methods are technically challenging and expensive. Noting strong formal parallels between R.A. Fisher's geometric model of adaptation and a recent model for the phenotypic basis of protein evolution, we sought to use the former to make inferences into the latter using data on pairwise fitness epistasis between mutations. We present an analytic framework for classifying pairs of mutations with respect to similarity of underlying mechanism on this basis, and also show that these data can yield an estimate of the number of mutationally labile phenotypes underlying fitness effects. We use computer simulations to explore the robustness of our approach to violations of analytic assumptions and analyze several recently published datasets. This work provides a theoretical complement to the functional synthesis as well as a novel test of Fisher's geometric model.
Collapse
Affiliation(s)
- Daniel M Weinreich
- Department of Ecology and Evolutionary Biology, and Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, 02912.
| | | |
Collapse
|
58
|
Galán JC, González-Candelas F, Rolain JM, Cantón R. Antibiotics as selectors and accelerators of diversity in the mechanisms of resistance: from the resistome to genetic plasticity in the β-lactamases world. Front Microbiol 2013; 4:9. [PMID: 23404545 PMCID: PMC3567504 DOI: 10.3389/fmicb.2013.00009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 01/09/2013] [Indexed: 11/13/2022] Open
Abstract
Antibiotics and antibiotic resistance determinants, natural molecules closely related to bacterial physiology and consistent with an ancient origin, are not only present in antibiotic-producing bacteria. Throughput sequencing technologies have revealed an unexpected reservoir of antibiotic resistance in the environment. These data suggest that co-evolution between antibiotic and antibiotic resistance genes has occurred since the beginning of time. This evolutionary race has probably been slow because of highly regulated processes and low antibiotic concentrations. Therefore to understand this global problem, a new variable must be introduced, that the antibiotic resistance is a natural event, inherent to life. However, the industrial production of natural and synthetic antibiotics has dramatically accelerated this race, selecting some of the many resistance genes present in nature and contributing to their diversification. One of the best models available to understand the biological impact of selection and diversification are β-lactamases. They constitute the most widespread mechanism of resistance, at least among pathogenic bacteria, with more than 1000 enzymes identified in the literature. In the last years, there has been growing concern about the description, spread, and diversification of β-lactamases with carbapenemase activity and AmpC-type in plasmids. Phylogenies of these enzymes help the understanding of the evolutionary forces driving their selection. Moreover, understanding the adaptive potential of β-lactamases contribute to exploration the evolutionary antagonists trajectories through the design of more efficient synthetic molecules. In this review, we attempt to analyze the antibiotic resistance problem from intrinsic and environmental resistomes to the adaptive potential of resistance genes and the driving forces involved in their diversification, in order to provide a global perspective of the resistance problem.
Collapse
Affiliation(s)
- Juan-Carlos Galán
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal Madrid, Spain ; Centros de Investigación Biomédica en Red en Epidemiología y Salud Pública, Instituto Ramón y Cajal de Investigación Sanitaria Madrid, Spain ; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana Asociada al Consejo Superior de Investigaciones Científicas Madrid, Spain
| | | | | | | |
Collapse
|
59
|
|
60
|
Raghunathan G, Soundrarajan N, Sokalingam S, Yun H, Lee SG. Deletional protein engineering based on stable fold. PLoS One 2012; 7:e51510. [PMID: 23240034 PMCID: PMC3519881 DOI: 10.1371/journal.pone.0051510] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 11/01/2012] [Indexed: 12/14/2022] Open
Abstract
Diversification of protein sequence-structure space is a major concern in protein engineering. Deletion mutagenesis can generate a protein sequence-structure space different from substitution mutagenesis mediated space, but it has not been widely used in protein engineering compared to substitution mutagenesis, because it causes a relatively huge range of structural perturbations of target proteins which often inactivates the proteins. In this study, we demonstrate that, using green fluorescent protein (GFP) as a model system, the drawback of the deletional protein engineering can be overcome by employing the protein structure with high stability. The systematic dissection of N-terminal, C-terminal and internal sequences of GFPs with two different stabilities showed that GFP with high stability (s-GFP), was more tolerant to the elimination of amino acids compared to a GFP with normal stability (n-GFP). The deletion studies of s-GFP enabled us to achieve three interesting variants viz. s-DL4, s-N14, and s-C225, which could not been obtained from n-GFP. The deletion of 191–196 loop sequences led to the variant s-DL4 that was expressed predominantly as insoluble form but mostly active. The s-N14 and s-C225 are the variants without the amino acid residues involving secondary structures around N- and C-terminals of GFP fold respectively, exhibiting comparable biophysical properties of the n-GFP. Structural analysis of the variants through computational modeling study gave a few structural insights that can explain the spectral properties of the variants. Our study suggests that the protein sequence-structure space of deletion mutants can be more efficiently explored by employing the protein structure with higher stability.
Collapse
Affiliation(s)
- Govindan Raghunathan
- Department of Chemical Engineering, Pusan National University, Busan, South Korea
| | | | - Sriram Sokalingam
- Department of Chemical Engineering, Pusan National University, Busan, South Korea
| | - Hyungdon Yun
- School of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Sun-Gu Lee
- Department of Chemical Engineering, Pusan National University, Busan, South Korea
- * E-mail:
| |
Collapse
|
61
|
Zhu K, Gao B, Zhu S. Characterization of a chimeric antimicrobial peptide uncovers evolutionary significance of exon-shuffling. Biochem Biophys Res Commun 2012; 428:360-4. [PMID: 23103428 DOI: 10.1016/j.bbrc.2012.10.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 10/15/2012] [Indexed: 01/01/2023]
Abstract
The abaecin family comprises a class of proline-rich antimicrobial peptides (AMPs) with restricted distribution in hymenopteran insects. Intriguingly, in the parasitic wasp Nasonia vitripennis its members (termed nabaecin-1 to -3) have gained a carboxyl terminal glycine-rich antimicrobial unit through exon-shuffling. Here, we describe cDNA cloning of nabaecin-3 and the donor gene (navitripenicin) of the shuffling, and structural and functional features of nabaecin-3 and its two domains (respectively called amino-terminal abaecin unit (NtAU) and carboxyl-terminal navitripenicin unit (CtNU)). Nabaecin-3 and navitripenicin were found to be transcriptionally up-regulated in response to bacterial challenge. By using recombinant expression and chemical synthesis techniques, we produced nabaecin-3, NtAU and CtNU. Circular dichroism (CD) analyses show that these peptides remarkably differ in their structures. Functionally, nabaecin-3 displayed a wide spectrum of antimicrobial activity against an array of bacteria, yeasts and fungi at micromolar concentrations, while CtNU only had a weak antibacterial activity and NtAU completely lacked activity. Our results indicate that in Nasonia the antimicrobial function of abaecin depends on the combination of NtAU with CtNU and thus suggest a new role of exon-shuffling in buffering loss-of-function mutation of a gene.
Collapse
Affiliation(s)
- Kuanyu Zhu
- Group of Animal Innate Immunity, State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, 100101 Beijing, China
| | | | | |
Collapse
|
62
|
Kashir J, Konstantinidis M, Jones C, Heindryckx B, De Sutter P, Parrington J, Wells D, Coward K. Characterization of two heterozygous mutations of the oocyte activation factor phospholipase C zeta (PLCζ) from an infertile man by use of minisequencing of individual sperm and expression in somatic cells. Fertil Steril 2012; 98:423-31. [PMID: 22633260 DOI: 10.1016/j.fertnstert.2012.05.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/02/2012] [Accepted: 05/02/2012] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To examine the underlying factors leading to infertility in a male patient from whom phospholipase C zeta H398P (PLCζ(H398P), histidine > proline) and PLCζ(H233L) (histidine > leucine) mutations were previously identified. DESIGN Laboratory-based study. SETTING University laboratory. PATIENT(S) An infertile 38-year-old man with significantly impaired oocyte activation ability. INTERVENTION(S) Minisequencing of individual sperm for PLCζ(H398P) and PLCζ(H233L), and investigation of localization patterns arising from the expression of fluorescently tagged PLCζ isoforms in HEK293T cells. MAIN OUTCOME MEASURE(S) The presence/absence of PLCζ(H398P) and PLCζ(H233L) determined in individual sperm (n = 12 sperm), and localization of fluorescent mutant PLCζ isoforms quantified in HEK293T cells. RESULT(S) Sperm possessed either PLCζ(H233L) or PLCζ(H398P), but never both at the same time. Fluorescent PLCζ(H233L) and PLCζ(H233L+H398P) (both mutations together) localized to discrete regions in HEK293T cytoplasm but not the plasma membrane. Fluorescence statistically significantly varied between constructs such that PLCζ(WT) > mutant isoforms at both 48- and 56-hour time points. Fluorescent-PLCζ(H233L+H398P) exhibited a statistically significantly reduced level of fluorescence compared with PLCζ(H398P) at 48 hours but not 56 hours. CONCLUSION(S) Both H398P and H233L mutations are present on different alleles and do not alter PLCζ localization in HEK293T cells. Loss-of-activity mutations in PLCζ may contribute not only toward male infertility but also male subfertility in cases where PLCζ is mutated on a single allele.
Collapse
Affiliation(s)
- Junaid Kashir
- Nuffield Department of Obstetrics and Gynaecology, Women's Centre, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Roberts SA, Sterling J, Thompson C, Harris S, Mav D, Shah R, Klimczak LJ, Kryukov GV, Malc E, Mieczkowski PA, Resnick MA, Gordenin DA. Clustered mutations in yeast and in human cancers can arise from damaged long single-strand DNA regions. Mol Cell 2012; 46:424-35. [PMID: 22607975 DOI: 10.1016/j.molcel.2012.03.030] [Citation(s) in RCA: 323] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/14/2012] [Accepted: 03/31/2012] [Indexed: 10/28/2022]
Abstract
Mutations are typically perceived as random, independent events. We describe here nonrandom clustered mutations in yeast and in human cancers. Genome sequencing of yeast grown under chronic alkylation damage identified mutation clusters that extend up to 200 kb. A predominance of "strand-coordinated" changes of either cytosines or guanines in the same strand, mutation patterns, and genetic controls indicated that simultaneous mutations were generated by base alkylation in abnormally long single-strand DNA (ssDNA) formed at double-strand breaks (DSBs) and replication forks. Significantly, we found mutation clusters with analogous features in sequenced human cancers. Strand-coordinated clusters of mutated cytosines or guanines often resided near chromosome rearrangement breakpoints and were highly enriched with a motif targeted by APOBEC family cytosine-deaminases, which strongly prefer ssDNA. These data indicate that hypermutation via multiple simultaneous changes in randomly formed ssDNA is a general phenomenon that may be an important mechanism producing rapid genetic variation.
Collapse
Affiliation(s)
- Steven A Roberts
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, NIH, DHHS, Durham, NC 27709, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
The nearly neutral and selection theories of molecular evolution under the fisher geometrical framework: substitution rate, population size, and complexity. Genetics 2012; 191:523-34. [PMID: 22426879 DOI: 10.1534/genetics.112.138628] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The general theories of molecular evolution depend on relatively arbitrary assumptions about the relative distribution and rate of advantageous, deleterious, neutral, and nearly neutral mutations. The Fisher geometrical model (FGM) has been used to make distributions of mutations biologically interpretable. We explored an FGM-based molecular model to represent molecular evolutionary processes typically studied by nearly neutral and selection models, but in which distributions and relative rates of mutations with different selection coefficients are a consequence of biologically interpretable parameters, such as the average size of the phenotypic effect of mutations and the number of traits (complexity) of organisms. A variant of the FGM-based model that we called the static regime (SR) represents evolution as a nearly neutral process in which substitution rates are determined by a dynamic substitution process in which the population's phenotype remains around a suboptimum equilibrium fitness produced by a balance between slightly deleterious and slightly advantageous compensatory substitutions. As in previous nearly neutral models, the SR predicts a negative relationship between molecular evolutionary rate and population size; however, SR does not have the unrealistic properties of previous nearly neutral models such as the narrow window of selection strengths in which they work. In addition, the SR suggests that compensatory mutations cannot explain the high rate of fixations driven by positive selection currently found in DNA sequences, contrary to what has been previously suggested. We also developed a generalization of SR in which the optimum phenotype can change stochastically due to environmental or physiological shifts, which we called the variable regime (VR). VR models evolution as an interplay between adaptive processes and nearly neutral steady-state processes. When strong environmental fluctuations are incorporated, the process becomes a selection model in which evolutionary rate does not depend on population size, but is critically dependent on the complexity of organisms and mutation size. For SR as well as VR we found that key parameters of molecular evolution are linked by biological factors, and we showed that they cannot be fixed independently by arbitrary criteria, as has usually been assumed in previous molecular evolutionary models.
Collapse
|
65
|
Dey SS, Xue Y, Joachimiak MP, Friedland GD, Burnett JC, Zhou Q, Arkin AP, Schaffer DV. Mutual information analysis reveals coevolving residues in Tat that compensate for two distinct functions in HIV-1 gene expression. J Biol Chem 2012; 287:7945-55. [PMID: 22253435 DOI: 10.1074/jbc.m111.302653] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Viral genomes are continually subjected to mutations, and functionally deleterious ones can be rescued by reversion or additional mutations that restore fitness. The error prone nature of HIV-1 replication has resulted in highly diverse viral sequences, and it is not clear how viral proteins such as Tat, which plays a critical role in viral gene expression and replication, retain their complex functions. Although several important amino acid positions in Tat are conserved, we hypothesized that it may also harbor functionally important residues that may not be individually conserved yet appear as correlated pairs, whose analysis could yield new mechanistic insights into Tat function and evolution. To identify such sites, we combined mutual information analysis and experimentation to identify coevolving positions and found that residues 35 and 39 are strongly correlated. Mutation of either residue of this pair into amino acids that appear in numerous viral isolates yields a defective virus; however, simultaneous introduction of both mutations into the heterologous Tat sequence restores gene expression close to wild-type Tat. Furthermore, in contrast to most coevolving protein residues that contribute to the same function, structural modeling and biochemical studies showed that these two residues contribute to two mechanistically distinct steps in gene expression: binding P-TEFb and promoting P-TEFb phosphorylation of the C-terminal domain in RNAPII. Moreover, Tat variants that mimic HIV-1 subtypes B or C at sites 35 and 39 have evolved orthogonal strengths of P-TEFb binding versus RNAPII phosphorylation, suggesting that subtypes have evolved alternate transcriptional strategies to achieve similar gene expression levels.
Collapse
Affiliation(s)
- Siddharth S Dey
- Department of Chemical and Biomolecular Engineering and the Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Bandyopadhyay A, Saxena K, Kasturia N, Dalal V, Bhatt N, Rajkumar A, Maity S, Sengupta S, Chakraborty K. Chemical chaperones assist intracellular folding to buffer mutational variations. Nat Chem Biol 2012; 8:238-45. [PMID: 22246401 PMCID: PMC3527004 DOI: 10.1038/nchembio.768] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 11/06/2011] [Indexed: 11/09/2022]
Abstract
Hidden genetic variations harbor potential for the evolution of new traits. Molecular chaperones, that assist protein folding, may conceal genetic variations in protein coding regions. Here, we investigate if the chemical milieu of cells has the potential to alleviate intracellular protein folding; potentially implicating a role of osmolytes in concealing genetic variations. Using the model osmolyte TMAO, we uncover that it can buffer mutations that impose kinetic traps in the folding pathways of two model proteins. Using this information, we rationally designed TMAO-dependent mutants in vivo, starting from a TMAO-independent protein. Strikingly, we delineate different osmolytes to have a unique spectrum of buffered-mutations. Consequently, the chemical milieu of cells may alter the folding pathways of unique mutant variants in polymorphic populations and lead to unanticipated spectra of genetic buffering.
Collapse
Affiliation(s)
- Anannya Bandyopadhyay
- Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Delhi, India
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Million-Weaver S, Alexander DL, Allen JM, Camps M. Quantifying plasmid copy number to investigate plasmid dosage effects associated with directed protein evolution. Methods Mol Biol 2012; 834:33-48. [PMID: 22144351 PMCID: PMC3804865 DOI: 10.1007/978-1-61779-483-4_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Our laboratory specializes in directed protein evolution, i.e., evolution of proteins under defined selective pressures in the laboratory. Our target genes are encoded in ColE1 plasmids to facilitate the generation of libraries in vivo. We have observed that when random mutations are not restricted to the coding sequence of the target genes, directed evolution results in a strong positive selection of plasmid origin of replication (ori) mutations. Surprisingly, this is true even during evolution of new biochemical activities, when the activity that is being selected was not originally present. The selected plasmid ori mutations are diverse and produce a range of plasmid copy numbers, suggesting a complex interplay between ori and coding mutations rather than a simple enhancement of level of expression of the target gene. Thus, plasmid dosage may contribute significantly to evolution by fine-tuning levels of activity. Here, we present examples illustrating these observations as well as our methods for efficient quantification of plasmid copy number.
Collapse
Affiliation(s)
- Samuel Million-Weaver
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA, USA
| | | | | | | |
Collapse
|
68
|
Batista MV, Ferreira TA, Freitas AC, Balbino VQ. An entropy-based approach for the identification of phylogenetically informative genomic regions of Papillomavirus. INFECTION GENETICS AND EVOLUTION 2011; 11:2026-33. [DOI: 10.1016/j.meegid.2011.09.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 09/09/2011] [Accepted: 09/14/2011] [Indexed: 11/17/2022]
|
69
|
Aardema ML, Zhen Y, Andolfatto P. The evolution of cardenolide-resistant forms of Na⁺,K⁺ -ATPase in Danainae butterflies. Mol Ecol 2011; 21:340-9. [PMID: 22126595 DOI: 10.1111/j.1365-294x.2011.05379.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cardenolides are a class of plant secondary compounds that inhibit the proper functioning of the Na(+) , K(+) -ATPase enzyme in susceptible animals. Nonetheless, many insect species are able to sequester cardenolides for their own defence. These include butterflies in the subfamily Danainae (Family: Nymphalidae) such as the monarch (Danaus plexippus). Previous studies demonstrated that monarchs harbour an asparagine (N) to histidine (H) substitution (N122H) in the α subunit of Na(+) , K(+) -ATPase (ATPα) that reduces this enzyme's sensitivity to cardenolides. More recently, it has been suggested that at ATPα position 111, monarchs may also harbour a leucine (L)/glutamine (Q) polymorphism. This later amino acid could also contribute to cardenolide insensitivity. However, here we find that incorrect annotation of the initially reported DNA sequence for ATPα has led to several erroneous conclusions. Using a population genetic and phylogenetic analysis of monarchs and their close relatives, we show that an ancient Q111L substitution occurred prior to the radiation of all Danainae, followed by a second substitution at the same site to valine (V), which arose before the diversification of the Danaus genus. In contrast, N122H appears to be a recent substitution specific to monarchs. Surprisingly, examination of a broader insect phylogeny reveals that the same progression of amino acid substitutions (Q111L → L111V + N122H) has also occurred in Chyrsochus beetles (Family: Chrysomelidae, Subfamily: Eumolpinae) that feed on cardenolide-containing host plants. The parallel pattern of amino acid substitution in these two distantly related lineages is consistent with an adaptive role for these substitutions in reducing cardenolide sensitivity and suggests that their temporal order may be limited by epistatic interactions.
Collapse
Affiliation(s)
- Matthew L Aardema
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.
| | | | | |
Collapse
|
70
|
Network models of TEM β-lactamase mutations coevolving under antibiotic selection show modular structure and anticipate evolutionary trajectories. PLoS Comput Biol 2011; 7:e1002184. [PMID: 21966264 PMCID: PMC3178621 DOI: 10.1371/journal.pcbi.1002184] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 07/19/2011] [Indexed: 01/13/2023] Open
Abstract
Understanding how novel functions evolve (genetic adaptation) is a critical goal of evolutionary biology. Among asexual organisms, genetic adaptation involves multiple mutations that frequently interact in a non-linear fashion (epistasis). Non-linear interactions pose a formidable challenge for the computational prediction of mutation effects. Here we use the recent evolution of β-lactamase under antibiotic selection as a model for genetic adaptation. We build a network of coevolving residues (possible functional interactions), in which nodes are mutant residue positions and links represent two positions found mutated together in the same sequence. Most often these pairs occur in the setting of more complex mutants. Focusing on extended-spectrum resistant sequences, we use network-theoretical tools to identify triple mutant trajectories of likely special significance for adaptation. We extrapolate evolutionary paths (n = 3) that increase resistance and that are longer than the units used to build the network (n = 2). These paths consist of a limited number of residue positions and are enriched for known triple mutant combinations that increase cefotaxime resistance. We find that the pairs of residues used to build the network frequently decrease resistance compared to their corresponding singlets. This is a surprising result, given that their coevolution suggests a selective advantage. Thus, β-lactamase adaptation is highly epistatic. Our method can identify triplets that increase resistance despite the underlying rugged fitness landscape and has the unique ability to make predictions by placing each mutant residue position in its functional context. Our approach requires only sequence information, sufficient genetic diversity, and discrete selective pressures. Thus, it can be used to analyze recent evolutionary events, where coevolution analysis methods that use phylogeny or statistical coupling are not possible. Improving our ability to assess evolutionary trajectories will help predict the evolution of clinically relevant genes and aid in protein design. Understanding how new biological activities evolve on the molecular level has critical implications for biotechnology and for human health. Here we collect a database of mutations that contribute to the evolution of β-lactamase resistance to inhibitors and to new β-lactam antibiotics in bacterial pathogens, such as Escherichia coli. We compiled a database of TEM β-lactamase sequences evolved under antibiotic pressure and identified functional interactions between individual residue positions. We visualized these complex molecular interactions as a network and used network theory to derive information regarding the origin of individual mutations and their contribution to the observed resistance. Our approach should help interpret sequence databases for clinically relevant proteins undergoing high mutation rates and under selective (drug, immune) pressure, such as surface proteins of pathogens (particularly of RNA viruses such as HIV) or targets for chemotherapy in microbial pathogen or tumor cells. Notably, our approach only requires sequence data; detailed phylogenetic or tertiary structure information for the target gene is not necessary. Our analysis of how individual mutations work together to produce new biological activities should help anticipate evolution driven by a variety of clinically-relevant selections such as drug resistance, virulence, and immunity.
Collapse
|
71
|
Applebee MK, Joyce AR, Conrad TM, Pettigrew DW, Palsson BØ. Functional and metabolic effects of adaptive glycerol kinase (GLPK) mutants in Escherichia coli. J Biol Chem 2011; 286:23150-9. [PMID: 21550976 PMCID: PMC3123082 DOI: 10.1074/jbc.m110.195305] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Revised: 05/01/2011] [Indexed: 11/06/2022] Open
Abstract
Herein we measure the effect of four adaptive non-synonymous mutations to the glycerol kinase (glpK) gene on catalytic function and regulation, to identify changes that correlate to increased fitness in glycerol media. The mutations significantly reduce affinity for the allosteric inhibitor fructose-1,6-bisphosphate (FBP) and formation of the tetramer, which are structurally related, in a manner that correlates inversely with imparted fitness during growth on glycerol, which strongly suggests that these enzymatic parameters drive growth improvement. Counterintuitively, the glpK mutations also increase glycerol-induced auto-catabolite repression that reduces glpK transcription in a manner that correlates to fitness. This suggests that increased specific GlpK activity is attenuated by negative feedback on glpK expression via catabolite repression, possibly to prevent methylglyoxal toxicity. We additionally report that glpK mutations were fixed in 47 of 50 independent glycerol-adapted lineages. By far the most frequently mutated locus (nucleotide 218) was mutated in 20 lineages, strongly suggesting this position has an elevated mutation rate. This study demonstrates that fitness correlations can be used to interrogate adaptive processes at the protein level and to identify the regulatory constraints underlying selection and improved growth.
Collapse
Affiliation(s)
- M Kenyon Applebee
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, California 92093, USA.
| | | | | | | | | |
Collapse
|
72
|
Dehouck Y, Kwasigroch JM, Gilis D, Rooman M. PoPMuSiC 2.1: a web server for the estimation of protein stability changes upon mutation and sequence optimality. BMC Bioinformatics 2011; 12:151. [PMID: 21569468 PMCID: PMC3113940 DOI: 10.1186/1471-2105-12-151] [Citation(s) in RCA: 405] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 05/13/2011] [Indexed: 12/31/2022] Open
Abstract
Background The rational design of modified proteins with controlled stability is of extreme importance in a whole range of applications, notably in the biotechnological and environmental areas, where proteins are used for their catalytic or other functional activities. Future breakthroughs in medical research may also be expected from an improved understanding of the effect of naturally occurring disease-causing mutations on the molecular level. Results PoPMuSiC-2.1 is a web server that predicts the thermodynamic stability changes caused by single site mutations in proteins, using a linear combination of statistical potentials whose coefficients depend on the solvent accessibility of the mutated residue. PoPMuSiC presents good prediction performances (correlation coefficient of 0.8 between predicted and measured stability changes, in cross validation, after exclusion of 10% outliers). It is moreover very fast, allowing the prediction of the stability changes resulting from all possible mutations in a medium size protein in less than a minute. This unique functionality is user-friendly implemented in PoPMuSiC and is particularly easy to exploit. Another new functionality of our server concerns the estimation of the optimality of each amino acid in the sequence, with respect to the stability of the structure. It may be used to detect structural weaknesses, i.e. clusters of non-optimal residues, which represent particularly interesting sites for introducing targeted mutations. This sequence optimality data is also expected to have significant implications in the prediction and the analysis of particular structural or functional protein regions. To illustrate the interest of this new functionality, we apply it to a dataset of known catalytic sites, and show that a much larger than average concentration of structural weaknesses is detected, quantifying how these sites have been optimized for function rather than stability. Conclusion The freely available PoPMuSiC-2.1 web server is highly useful for identifying very rapidly a list of possibly relevant mutations with the desired stability properties, on which subsequent experimental studies can be focused. It can also be used to detect sequence regions corresponding to structural weaknesses, which could be functionally important or structurally delicate regions, with obvious applications in rational protein design.
Collapse
Affiliation(s)
- Yves Dehouck
- Bioinformatique génomique et structurale, Université Libre de Bruxelles, Av, Fr, Roosevelt 50, CP165/61, 1050 Brussels, Belgium.
| | | | | | | |
Collapse
|
73
|
Burch LH, Yang Y, Sterling JF, Roberts SA, Chao FG, Xu H, Zhang L, Walsh J, Resnick MA, Mieczkowski PA, Gordenin DA. Damage-induced localized hypermutability. Cell Cycle 2011; 10:1073-85. [PMID: 21406975 DOI: 10.4161/cc.10.7.15319] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Genome instability continuously presents perils of cancer, genetic disease and death of a cell or an organism. At the same time, it provides for genome plasticity that is essential for development and evolution. We address here the genome instability confined to a small fraction of DNA adjacent to free DNA ends at uncapped telomeres and double-strand breaks. We found that budding yeast cells can tolerate nearly 20 kilobase regions of subtelomeric single-strand DNA that contain multiple UV-damaged nucleotides. During restoration to the double-strand state, multiple mutations are generated by error-prone translesion synthesis. Genome-wide sequencing demonstrated that multiple regions of damage-induced localized hypermutability can be tolerated, which leads to the simultaneous appearance of multiple mutation clusters in the genomes of UV- irradiated cells. High multiplicity and density of mutations suggest that this novel form of genome instability may play significant roles in generating new alleles for evolutionary selection as well as in the incidence of cancer and genetic disease.
Collapse
Affiliation(s)
- Lauranell H Burch
- National Institute of Environmental Health Sciences, Research Triangle Park, NC USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Pavlicev M, Norgard EA, Fawcett GL, Cheverud JM. Evolution of pleiotropy: epistatic interaction pattern supports a mechanistic model underlying variation in genotype-phenotype map. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 316:371-85. [PMID: 21462316 DOI: 10.1002/jez.b.21410] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 02/25/2011] [Accepted: 03/02/2011] [Indexed: 11/10/2022]
Abstract
The genotype-phenotype (GP) map consists of developmental and physiological mechanisms mapping genetic onto phenotypic variation. It determines the distribution of heritable phenotypic variance on which selection can act. Comparative studies of morphology as well as of gene regulatory networks show that the GP map itself evolves, yet little is known about the actual evolutionary mechanisms involved. The study of such mechanisms requires exploring the variation in GP maps at the population level, which presently is easier to quantify by statistical genetic methods rather than by regulatory network structures. We focus on the evolution of pleiotropy, a major structural aspect of the GP map. Pleiotropic genes affect multiple traits and underlie genetic covariance between traits, often causing evolutionary constraints. Previous quantitative genetic studies have demonstrated population-level variation in pleiotropy in the form of loci, at which genotypes differ in the genetic covariation between traits. This variation can potentially fuel evolution of the GP map under selection and/or drift. Here, we propose a developmental mechanism underlying population genetic variation in covariance and test its predictions. Specifically, the mechanism predicts that the loci identified as responsible for genetic variation in pleiotropy are involved in trait-specific epistatic interactions. We test this prediction for loci affecting allometric relationships between traits in an advanced intercross between inbred mouse strains. The results consistently support the prediction. We further find a high degree of sign epistasis in these interactions, which we interpret as an indication of adaptive gene complexes within the diverged parental lines.
Collapse
Affiliation(s)
- Mihaela Pavlicev
- Center for Ecological and Evolutionary Synthesis, Department of Biology, University of Oslo, Norway.
| | | | | | | |
Collapse
|
75
|
Evolving a robust signal transduction pathway from weak cross-talk. Mol Syst Biol 2011; 6:452. [PMID: 21179024 PMCID: PMC3018164 DOI: 10.1038/msb.2010.105] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 11/05/2010] [Indexed: 11/15/2022] Open
Abstract
We have evolved a robust two-component signal transduction pathway from a sensor kinase (SK) and non-partner response regulator (RR) that show weak cross-talk in vitro and no detectable cross-talk in vivo in wild-type strains. The SK, CpxA, is bifunctional, with both kinase and phosphatase activities for its partner RR. We show that by combining a small number of mutations in CpxA that individually increase phosphorylation of the non-partner RR OmpR, phosphatase activity against phospho-OmpR emerges. The resulting circuit also becomes responsive to input signal to CpxA. The effects of combining these mutations in CpxA appear to reflect complex intragenic interactions between multiple sites in the protein. However, by analyzing a simple model of two-component signaling, we show that the behavior can be explained by a monotonic change in a single parameter controlling protein–protein interaction strength. The results suggest one possible mode of evolution for two-component systems with bifunctional SKs whereby the remarkable properties and competing reactions that characterize these systems can emerge by combining mutations of the same effect.
Collapse
|
76
|
Razeto-Barry P, Díaz J, Cotoras D, Vásquez RA. Molecular evolution, mutation size and gene pleiotropy: a geometric reexamination. Genetics 2011; 187:877-85. [PMID: 21196522 PMCID: PMC3048784 DOI: 10.1534/genetics.110.125195] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Accepted: 12/22/2010] [Indexed: 01/15/2023] Open
Abstract
The influence of phenotypic effects of genetic mutations on molecular evolution is not well understood. Neutral and nearly neutral theories of molecular evolution predict a negative relationship between the evolutionary rate of proteins and their functional importance; nevertheless empirical studies seeking relationships between evolutionary rate and the phenotypic role of proteins have not produced conclusive results. In particular, previous studies have not found the expected negative correlation between evolutionary rate and gene pleiotropy. Here, we studied the effect of gene pleiotropy and the phenotypic size of mutations on the evolutionary rate of genes in a geometrical model, in which gene pleiotropy was characterized by n molecular phenotypes that affect organismal fitness. For a nearly neutral process, we found a negative relationship between evolutionary rate and mutation size but pleiotropy did not affect the evolutionary rate. Further, for a selection model, where most of the substitutions were fixed by natural selection in a randomly fluctuating environment, we also found a negative relationship between evolutionary rate and mutation size, but interestingly, gene pleiotropy increased the evolutionary rate as √n. These findings may explain part of the disagreement between empirical data and traditional expectations.
Collapse
Affiliation(s)
- Pablo Razeto-Barry
- Instituto de Filosof ía y Ciencias de la Complejidad, Santiago, Chile 7780192.
| | | | | | | |
Collapse
|
77
|
Harris EE. Nonadaptive processes in primate and human evolution. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2011; 143 Suppl 51:13-45. [PMID: 21086525 DOI: 10.1002/ajpa.21439] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Evolutionary biology has tended to focus on adaptive evolution by positive selection as the primum mobile of evolutionary trajectories in species while underestimating the importance of nonadaptive evolutionary processes. In this review, I describe evidence that suggests that primate and human evolution has been strongly influenced by nonadaptive processes, particularly random genetic drift and mutation. This is evidenced by three fundamental effects: a relative relaxation of selective constraints (i.e., purifying selection), a relative increase in the fixation of slightly deleterious mutations, and a general reduction in the efficacy of positive selection. These effects are observed in protein-coding, regulatory regions, and in gene expression data, as well as in an augmentation of fixation of large-scale mutations, including duplicated genes, mobile genetic elements, and nuclear mitochondrial DNA. The evidence suggests a general population-level explanation such as a reduction in effective population size (N(e)). This would have tipped the balance between the evolutionary forces of natural selection and random genetic drift toward genetic drift for variants having small selective effects. After describing these proximate effects, I describe the potential consequences of these effects for primate and human evolution. For example, an increase in the fixation of slightly deleterious mutations could potentially have led to an increase in the fixation rate of compensatory mutations that act to suppress the effects of slightly deleterious substitutions. The potential consequences of compensatory evolution for the evolution of novel gene functions and in potentially confounding the detection of positively selected genes are explored. The consequences of the passive accumulation of large-scale genomic mutations by genetic drift are unclear, though evidence suggests that new gene copies as well as insertions of transposable elements into genes can potentially lead to adaptive phenotypes. Finally, because a decrease in selective constraint at the genetic level is expected to have effects at the morphological level, I review studies that compare rates of morphological change in various mammalian and island populations where N(e) is reduced. Furthermore, I discuss evidence that suggests that craniofacial morphology in the Homo lineage has shifted from an evolutionary rate constrained by purifying selection toward a neutral evolutionary rate.
Collapse
Affiliation(s)
- Eugene E Harris
- Department of Biological Sciences and Geology, Queensborough Community College, City University of New York, Bayside, NY 10364, USA.
| |
Collapse
|
78
|
Abstract
The divergence of new genes and proteins occurs through mutations that modulate protein function. However, mutations are pleiotropic and can have different effects on organismal fitness depending on the environment, as well as opposite effects on protein function and dosage. We review the pleiotropic effects of mutations. We discuss how they affect the evolution of gene and protein function, and how these complex mutational effects dictate the likelihood and mechanism of gene duplication and divergence. We propose several factors that can affect the divergence of new protein functions, including mutational trade-offs and hidden, or apparently neutral, variation.
Collapse
|
79
|
Geuten K, Irish V. Hidden variability of floral homeotic B genes in Solanaceae provides a molecular basis for the evolution of novel functions. THE PLANT CELL 2010; 22:2562-78. [PMID: 20807882 PMCID: PMC2947177 DOI: 10.1105/tpc.110.076026] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 06/18/2010] [Accepted: 08/09/2010] [Indexed: 05/08/2023]
Abstract
B-class MADS box genes specify petal and stamen identities in several core eudicot species. Members of the Solanaceae possess duplicate copies of these genes, allowing for diversification of function. To examine the changing roles of such duplicate orthologs, we assessed the functions of B-class genes in Nicotiana benthamiana and tomato (Solanum lycopersicum) using virus-induced gene silencing and RNA interference approaches. Loss of function of individual duplicates can have distinct phenotypes, yet complete loss of B-class gene function results in extreme homeotic transformations of petal and stamen identities. We also show that these duplicate gene products have qualitatively different protein-protein interaction capabilities and different regulatory roles. Thus, compensatory changes in B-class MADS box gene duplicate function have occurred in the Solanaceae, in that individual gene roles are distinct, but their combined functions are equivalent. Furthermore, we show that species-specific differences in the stamen regulatory network are associated with differences in the expression of the microRNA miR169. Whereas there is considerable plasticity in individual B-class MADS box transcription factor function, there is overall conservation in the roles of the multimeric MADS box B-class protein complexes, providing robustness in the specification of petal and stamen identities. Such hidden variability in gene function as we observe for individual B-class genes can provide a molecular basis for the evolution of regulatory functions that result in novel morphologies.
Collapse
Affiliation(s)
- Koen Geuten
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Conecticut 06520, USA.
| | | |
Collapse
|
80
|
Abstract
Many, if not most, enzymes can promiscuously catalyze reactions, or act on substrates, other than those for which they evolved. Here, we discuss the structural, mechanistic, and evolutionary implications of this manifestation of infidelity of molecular recognition. We define promiscuity and related phenomena and also address their generality and physiological implications. We discuss the mechanistic enzymology of promiscuity--how enzymes, which generally exert exquisite specificity, catalyze other, and sometimes barely related, reactions. Finally, we address the hypothesis that promiscuous enzymatic activities serve as evolutionary starting points and highlight the unique evolutionary features of promiscuous enzyme functions.
Collapse
Affiliation(s)
- Olga Khersonsky
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
81
|
Povolotskaya IS, Kondrashov FA. Sequence space and the ongoing expansion of the protein universe. Nature 2010; 465:922-6. [PMID: 20485343 DOI: 10.1038/nature09105] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 04/19/2010] [Indexed: 11/09/2022]
Abstract
The need to maintain the structural and functional integrity of an evolving protein severely restricts the repertoire of acceptable amino-acid substitutions. However, it is not known whether these restrictions impose a global limit on how far homologous protein sequences can diverge from each other. Here we explore the limits of protein evolution using sequence divergence data. We formulate a computational approach to study the rate of divergence of distant protein sequences and measure this rate for ancient proteins, those that were present in the last universal common ancestor. We show that ancient proteins are still diverging from each other, indicating an ongoing expansion of the protein sequence universe. The slow rate of this divergence is imposed by the sparseness of functional protein sequences in sequence space and the ruggedness of the protein fitness landscape: approximately 98 per cent of sites cannot accept an amino-acid substitution at any given moment but a vast majority of all sites may eventually be permitted to evolve when other, compensatory, changes occur. Thus, approximately 3.5 x 10(9) yr has not been enough to reach the limit of divergent evolution of proteins, and for most proteins the limit of sequence similarity imposed by common function may not exceed that of random sequences.
Collapse
Affiliation(s)
- Inna S Povolotskaya
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, Calle Dr Aiguader 88, Barcelona Biomedical Research Park Building, 08003 Barcelona, Spain
| | | |
Collapse
|
82
|
Adaptive Evolution Hotspots at the GC-Extremes of the Human Genome: Evidence for Two Functionally Distinct Pathways of Positive Selection. Adv Bioinformatics 2010:856825. [PMID: 20454629 PMCID: PMC2862947 DOI: 10.1155/2010/856825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 12/31/2009] [Accepted: 02/10/2010] [Indexed: 11/21/2022] Open
Abstract
We recently reported that the human genome is ‘‘splitting” into two gene subgroups characterised by polarised GC content (Tang et al, 2007), and that such evolutionary change may be accelerated by programmed genetic instability (Zhao et al, 2008). Here we extend this work by mapping the presence of two separate high-evolutionary-rate (Ka/Ks) hotspots in the human genome—one characterized by low GC content, high intron length, and low gene expression, and the other by high GC content, high exon number, and high gene expression. This finding suggests that at least two different mechanisms mediate adaptive genetic evolution in higher organisms: (1) intron lengthening and reduced repair in hypermethylated lowly-transcribed genes, and (2) duplication and/or insertion events affecting highly-transcribed genes, creating low-essentiality satellite daughter genes in nearby regions of active chromatin. Since the latter mechanism is expected to be far more efficient than the former in generating variant genes that increase fitnesss, these results also provide a potential explanation for the controversial value of sequence analysis in defining positively selected genes.
Collapse
|
83
|
Ramsay N, Jemth AS, Brown A, Crampton N, Dear P, Holliger P. CyDNA: synthesis and replication of highly Cy-dye substituted DNA by an evolved polymerase. J Am Chem Soc 2010; 132:5096-104. [PMID: 20235594 PMCID: PMC2850551 DOI: 10.1021/ja909180c] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Indexed: 11/28/2022]
Abstract
DNA not only transmits genetic information but can also serve as a versatile supramolecular scaffold. Here we describe a strategy for the synthesis and replication of DNA displaying hundreds of substituents using directed evolution of polymerase function by short-patch compartmentalized self-replication (spCSR) and the widely used fluorescent dye labeled deoxinucleotide triphosphates Cy3-dCTP and Cy5-dCTP as substrates. In just two rounds of spCSR selection, we have isolated a polymerase that allows the PCR amplification of double stranded DNA fragments up to 1kb, in which all dC bases are substituted by its fluorescent dye-labeled equivalent Cy3- or Cy5-dC. The resulting "CyDNA" displays hundreds of aromatic heterocycles on the outside of the DNA helix and is brightly colored and highly fluorescent. CyDNA also exhibits significantly altered physicochemical properties compared to standard B-form DNA, including loss of silica and intercalating dye binding, resistance to cleavage by some endonucleases, an up to 40% increased apparent diameter as judged by atomic force microscopy and organic phase partitioning during phenol extraction. CyDNA also displays very bright fluorescence enabling significant signal gains in microarray and microfluidic applications. CyDNA represents a step toward a long-term goal of the encoded synthesis of DNA-based polymers of programmable and evolvable sequence and properties.
Collapse
|
84
|
|
85
|
Epistasis among Deleterious Mutations in the HIV-1 Protease. J Mol Biol 2009; 392:243-50. [DOI: 10.1016/j.jmb.2009.07.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 06/29/2009] [Accepted: 07/07/2009] [Indexed: 11/23/2022]
|
86
|
Jakubowska A, Korona R. Lack of evolutionary conservation at positions important for thermal stability in the yeast ODCase protein. Mol Biol Evol 2009; 26:1431-4. [PMID: 19349645 DOI: 10.1093/molbev/msp066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Mutations destabilizing the spatial structure of proteins can persist in populations if they are fixed by drift or compensated by other mutations. The prevalence and dynamics of these processes remain largely unrecognized. A suitable target to screen for both deleterious and compensatory mutations is the URA3 gene in yeast. We identified 13 positions in which a single missense substitution causes substantially strong thermal sensitivity. We then applied mild mutagenesis resulting in roughly one base substitution per gene and found that only reversions to an original amino acid can compensate for the thermal instability. However, the 13 positions are not visibly conserved across 53 species of Ascomycota, despite that the gene product is an enzyme of stable function and high efficiency. This shows how much fitness penalties for amino acid substitutions are background dependent, underscoring the role of complex intragenic interactions in the evolution of proteins.
Collapse
|
87
|
Gerlt JA, Babbitt PC. Enzyme (re)design: lessons from natural evolution and computation. Curr Opin Chem Biol 2009; 13:10-8. [PMID: 19237310 DOI: 10.1016/j.cbpa.2009.01.014] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Accepted: 01/14/2009] [Indexed: 11/15/2022]
Abstract
The (re)design of enzymes to catalyze 'new' reactions is a topic of considerable practical and intellectual interest. Directed evolution (random mutagenesis followed by screening/selection) has been used widely to identify novel biocatalysts. However, 'rational' approaches using either natural divergent evolution or computational predictions based on chemical principles have been less successful. This review summarizes recent progress in evolution-based and computation-based (re)design.
Collapse
Affiliation(s)
- John A Gerlt
- Departments of Biochemistry and Chemistry, University of Illinois, Urbana, 61801, United States.
| | | |
Collapse
|
88
|
Determination of Mutation Patterns in Human Ornithine Transcarbamylase Precursor. J Clin Monit Comput 2009; 23:51-7. [DOI: 10.1007/s10877-009-9162-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 01/12/2009] [Indexed: 01/13/2023]
|
89
|
Yang Y, Sterling J, Storici F, Resnick MA, Gordenin DA. Hypermutability of damaged single-strand DNA formed at double-strand breaks and uncapped telomeres in yeast Saccharomyces cerevisiae. PLoS Genet 2008; 4:e1000264. [PMID: 19023402 PMCID: PMC2577886 DOI: 10.1371/journal.pgen.1000264] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 10/16/2008] [Indexed: 11/18/2022] Open
Abstract
The major DNA repair pathways operate on damage in double-strand DNA because they use the intact strand as a template after damage removal. Therefore, lesions in transient single-strand stretches of chromosomal DNA are expected to be especially threatening to genome stability. To test this hypothesis, we designed systems in budding yeast that could generate many kilobases of persistent single-strand DNA next to double-strand breaks or uncapped telomeres. The systems allowed controlled restoration to the double-strand state after applying DNA damage. We found that lesions induced by UV-light and methyl methanesulfonate can be tolerated in long single-strand regions and are hypermutagenic. The hypermutability required PCNA monoubiquitination and was largely attributable to translesion synthesis by the error-prone DNA polymerase ζ. In support of multiple lesions in single-strand DNA being a source of hypermutability, analysis of the UV-induced mutants revealed strong strand-specific bias and unexpectedly high frequency of alleles with widely separated multiple mutations scattered over several kilobases. Hypermutability and multiple mutations associated with lesions in transient stretches of long single-strand DNA may be a source of carcinogenesis and provide selective advantage in adaptive evolution. A variety of error avoidance mechanisms assure low mutation rates across the genome. Genetic defects in DNA replication or repair can lead to genome-wide increase in mutation frequency that may result in cancer predisposition and genetic disease. Transient localized hypermutability drastically differs in its biological consequences from genome-wide mutators. Since genome-wide hypermutability can cause reduced fitness due to accumulation of dysfunctional alleles, mutators are under negative selection pressure. By contrast, there would be less selection against temporary hypermutability within limited genomic regions, suggesting a special role in adaptive evolution and carcinogenesis. Mechanisms of transient hypermutability are poorly understood. Long stretches of single-strand DNA have been implicated but not demonstrated as a source of localized transient hypermutability. Using sophisticated yeast genetic systems that we developed, we found that transient stretches of chromosomal single-strand DNA at double-strand breaks and that telomeres can tolerate multiple lesions and are highly prone to damage-induced mutations, including a very unusual class of widely spaced multiple mutations. The hypermutability relied on error prone translesion DNA synthesis. Our work demonstrates a simple in vivo mechanism for localized transient hypermutability extending over several kilobases that can result in widely spaced multiple mutations without severe mutation load in the rest of the genome.
Collapse
Affiliation(s)
- Yong Yang
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, United States of America
| | - Joan Sterling
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, United States of America
| | - Francesca Storici
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, United States of America
| | - Michael A. Resnick
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, United States of America
- * E-mail: (MAR); (DAG)
| | - Dmitry A. Gordenin
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, United States of America
- * E-mail: (MAR); (DAG)
| |
Collapse
|
90
|
Bershtein S, Tawfik DS. Ohno's Model Revisited: Measuring the Frequency of Potentially Adaptive Mutations under Various Mutational Drifts. Mol Biol Evol 2008; 25:2311-8. [DOI: 10.1093/molbev/msn174] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
91
|
Shakhnovich BE, Shakhnovich EI. Improvisation in evolution of genes and genomes: whose structure is it anyway? Curr Opin Struct Biol 2008; 18:375-81. [PMID: 18487041 DOI: 10.1016/j.sbi.2008.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Accepted: 02/13/2008] [Indexed: 01/31/2023]
Abstract
Significant progress has been made in recent years in a variety of seemingly unrelated fields such as sequencing, protein structure prediction, and high-throughput transcriptomics and metabolomics. At the same time, new microscopic models have been developed that made it possible to analyze the evolution of genes and genomes from first principles. The results from these efforts enable, for the first time, a comprehensive insight into the evolution of complex systems and organisms on all scales--from sequences to organisms and populations. Every newly sequenced genome uncovers new genes, families, and folds. Where do these new genes come from? How do gene duplication and subsequent divergence of sequence and structure affect the fitness of the organism? What role does regulation play in the evolution of proteins and folds? Emerging synergism between data and modeling provides first robust answers to these questions.
Collapse
Affiliation(s)
- Boris E Shakhnovich
- Department of Molecular and Cellular Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, United States
| | | |
Collapse
|
92
|
Bershtein S, Goldin K, Tawfik DS. Intense neutral drifts yield robust and evolvable consensus proteins. J Mol Biol 2008; 379:1029-44. [PMID: 18495157 DOI: 10.1016/j.jmb.2008.04.024] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2008] [Revised: 04/08/2008] [Accepted: 04/09/2008] [Indexed: 11/27/2022]
Abstract
What changes occur when a natural protein that had been under low mutation rates is subjected to a neutral drift at high mutational loads, thus generating genetically diverse (polymorphic) gene ensembles that all maintain the protein's original function and structure? To address this question we subjected large populations of TEM-1 beta-lactamase to a prolonged neutral drift, applying high mutation rates and purifying selection to maintain TEM-1's existing penicillinase activity. Purging of deleterious mutations and enrichment of beneficial ones maintained the sequence of these ensembles closer to TEM-1's family consensus and inferred ancestor. In particular, back-to-consensus/ancestor mutations that increase TEM-1's kinetic and thermodynamic stability were enriched. These acted as global suppressors and enabled the tolerance of a broad range of deleterious mutations, thus further increasing the genetic diversity of the drifting populations. The probability of a new function emerging (cefotaxime degradation) was also substantially increased in these ensembles owing to the presence of many gene variants carrying the global suppressors. Our findings indicate the unique features of large, polymorphic neutral ensembles generated under high mutational loads and prompt the speculation that the progenitors of today's proteins may have evolved under high mutational loads. The results also suggest that predictable back-to-consensus/ancestor changes can be used in the laboratory to generate highly diverse and evolvable gene libraries.
Collapse
Affiliation(s)
- Shimon Bershtein
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | | |
Collapse
|
93
|
Bershtein S, Tawfik DS. Advances in laboratory evolution of enzymes. Curr Opin Chem Biol 2008; 12:151-8. [PMID: 18284924 DOI: 10.1016/j.cbpa.2008.01.027] [Citation(s) in RCA: 193] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 01/17/2008] [Accepted: 01/24/2008] [Indexed: 11/19/2022]
Abstract
We address recent developments in the area of laboratory, or directed evolution, with a focus on enzymes and on new methodologies of generic potential. We survey three main areas: (i) library making techniques, including the application of computational and rational methods for library design; (ii) screening and selection techniques, including recent applications of enzyme screening by FACS (fluorescence activated cell sorter); (iii) new approaches for performing directed evolution, and in particular, the application of 'neutral drifts' (libraries generated by rounds of mutation and selection for the enzyme's original function) and of consensus mutations to generate highly evolvable starting points for directed evolution.
Collapse
Affiliation(s)
- Shimon Bershtein
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
94
|
Tokuriki N, Stricher F, Serrano L, Tawfik DS. How protein stability and new functions trade off. PLoS Comput Biol 2008; 4:e1000002. [PMID: 18463696 PMCID: PMC2265470 DOI: 10.1371/journal.pcbi.1000002] [Citation(s) in RCA: 445] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 01/22/2008] [Indexed: 12/27/2022] Open
Abstract
Numerous studies have noted that the evolution of new enzymatic specificities is accompanied by loss of the protein's thermodynamic stability (ΔΔG), thus suggesting a tradeoff between the acquisition of new enzymatic functions and stability. However, since most mutations are destabilizing (ΔΔG>0), one should ask how destabilizing mutations that confer new or altered enzymatic functions relative to all other mutations are. We applied ΔΔG computations by FoldX to analyze the effects of 548 mutations that arose from the directed evolution of 22 different enzymes. The stability effects, location, and type of function-altering mutations were compared to ΔΔG changes arising from all possible point mutations in the same enzymes. We found that mutations that modulate enzymatic functions are mostly destabilizing (average ΔΔG = +0.9 kcal/mol), and are almost as destabilizing as the “average” mutation in these enzymes (+1.3 kcal/mol). Although their stability effects are not as dramatic as in key catalytic residues, mutations that modify the substrate binding pockets, and thus mediate new enzymatic specificities, place a larger stability burden than surface mutations that underline neutral, non-adaptive evolutionary changes. How are the destabilizing effects of functional mutations balanced to enable adaptation? Our analysis also indicated that many mutations that appear in directed evolution variants with no obvious role in the new function exert stabilizing effects that may compensate for the destabilizing effects of the crucial function-altering mutations. Thus, the evolution of new enzymatic activities, both in nature and in the laboratory, is dependent on the compensatory, stabilizing effect of apparently “silent” mutations in regions of the protein that are irrelevant to its function. To perform its function, a protein must fold into a complex, three-dimensional structure that is maintained by a network of interactions between its amino acid residues. Evolution of a new protein function will be driven by mutation of amino acids in key positions (new-function mutations). Such mutation can also hamper interactions that ensure the stability of a protein's fold—sometimes to a degree that renders the protein non-functional. Indeed, previous studies have noted that the evolution of new enzymatic functions is accompanied by significant losses in protein stability, suggesting a “tradeoff” between acquisition of new enzymatic functions and stability. But since most mutations are destabilizing, we sought to compare new-function mutations with other types of mutations. We performed a comprehensive analysis of the type, location, and stability effects of mutations that have conferred new enzymatic functions in laboratory evolution experiments. We found that stability changes (ΔΔG) of new-function mutations are similar to those of all other mutations, but are weaker than those of mutations that characterize neutral evolutionary changes (mutations that accumulate with no change of structure and function). Our analysis also revealed the important role of neutral (i.e., “non-functional”) mutations in compensating for the destabilizing effects of the “new-function” mutations.
Collapse
Affiliation(s)
- Nobuhiko Tokuriki
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Francois Stricher
- EMBL-CRG Systems Biology Partnership Unit, CRG-Centro de Regulacion Genomica, Barcelona, Spain
| | - Luis Serrano
- EMBL-CRG Systems Biology Partnership Unit, CRG-Centro de Regulacion Genomica, Barcelona, Spain
| | - Dan S. Tawfik
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|