Lu W, Wan J, Zhang Q, She Z, Jiang X. Aclarubicin-loaded cationic albumin-conjugated pegylated nanoparticle for glioma chemotherapy in rats.
Int J Cancer 2007;
120:420-31. [PMID:
17066446 DOI:
10.1002/ijc.22296]
[Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Traditional glioma chemotherapy with those second-line drugs such as anthracyclines usually failed because they are inaccessible to blood-brain barrier (BBB) in tumor. In our study, we incorporated aclarubicin (ACL) into cationic albumin-conjugated pegylated nanoparticle (CBSA-NP-ACL) to determine its therapeutic potential of rats with intracranially implanted C6 glioma cells. When labeled with fluorescent probe, 6-coumarin, CBSA-NP was shown to accumulate much more in tumor mass than nanoparticle without conjugated CBSA (NP) 1 hr post intravenous injection, as well as better retention after 24 hr. Tumor drug concentration of CBSA-NP-ACL displayed 2.6- and 3.3-fold higher than that of NP-ACL and ACL solution 1 hr post injection, while 2.7 and 6.6-fold higher after 24 hr, respectively. Moreover, using tumor microdialysis sampling, AUC(0-24 hr) of free drug amount in tumor interstitium delivered by CBSA-NP-ACL was about 2.0- and 2.7-fold higher than that of NP-ACL and ACL solutions, respectively. When the tumor rat model was subjected to 4 cycles of 2 mg/kg of ACL in different formulations, a significant increase of median survival time was found in the group of CBSA-NP-ACL compared with that of saline control animals, animals treated with NP-ACL and ACL solution. By terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling, CBSA-NP-ACL can extensively make the tumor cell apoptosis. Histochemical evaluation by periodic acid Shiff staining and biochemical analysis depicted that the incorporation of ACL into CBSA-NP reduced its toxicity to liver, kidney and heart. Besides, CBSA-NP-ACL was not shown to open tight junction evaluated by BBB coculture. It was concluded that CBSA-NP-ACL could have a therapeutic potential for treatment of glioma.
Collapse