51
|
Falduto GH, Pfeiffer A, Luker A, Metcalfe DD, Olivera A. Emerging mechanisms contributing to mast cell-mediated pathophysiology with therapeutic implications. Pharmacol Ther 2020; 220:107718. [PMID: 33130192 DOI: 10.1016/j.pharmthera.2020.107718] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
Mast cells are tissue-resident immune cells that play key roles in the initiation and perpetuation of allergic inflammation, usually through IgE-mediated mechanisms. Mast cells are, however, evolutionary ancient immune cells that can be traced back to urochordates and before the emergence of IgE antibodies, suggesting their involvement in antibody-independent biological functions, many of which are still being characterized. Herein, we summarize recent advances in understanding the roles of mast cells in health and disease, partly through the study of emerging non-IgE receptors such as the Mas-related G protein-coupled receptor X2, implicated in pseudo-allergic reactions as well as in innate defense and neuronal sensing; the mechano-sensing adhesion G protein-coupled receptor E2, variants of which are associated with familial vibratory urticaria; and purinergic receptors, which orchestrate tissue damage responses similarly to the IL-33 receptor. Recent evidence also points toward novel mechanisms that contribute to mast cell-mediated pathophysiology. Thus, in addition to releasing preformed mediators contained in granules and synthesizing mediators de novo, mast cells also secrete extracellular vesicles, which convey biological functions. Understanding their release, composition and uptake within a variety of clinical conditions will contribute to the understanding of disease specific pathology and likely lead the way to novel therapeutic approaches. We also discuss recent advances in the development of therapies targeting mast cell activity, including the ligation of inhibitory ITIM-containing receptors, and other strategies that suppress mast cells or responses to mediators for the management of mast cell-related diseases.
Collapse
Affiliation(s)
- Guido H Falduto
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Annika Pfeiffer
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andrea Luker
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dean D Metcalfe
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ana Olivera
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
52
|
Recent Advances in Extracellular Vesicles as Drug Delivery Systems and Their Potential in Precision Medicine. Pharmaceutics 2020; 12:pharmaceutics12111006. [PMID: 33105857 PMCID: PMC7690579 DOI: 10.3390/pharmaceutics12111006] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-bilayered nanoparticles released by most cell types. Recently, an enormous number of studies have been published on the potential of EVs as carriers of therapeutic agents. In contrast to systems such as liposomes, EVs exhibit less immunogenicity and higher engineering potential. Here, we review the most relevant publications addressing the potential and use of EVs as a drug delivery system (DDS). The information is divided based on the key steps for designing an EV-mediated delivery strategy. We discuss possible sources and isolation methods of EVs. We address the administration routes that have been tested in vivo and the tissue distribution observed. We describe the current knowledge on EV clearance, a significant challenge towards enhancing bioavailability. Also, EV-engineering approaches are described as alternatives to improve tissue and cell-specificity. Finally, a summary of the ongoing clinical trials is performed. Although the application of EVs in the clinical practice is still at an early stage, a high number of studies in animals support their potential as DDS. Thus, better treatment options could be designed to precisely increase target specificity and therapeutic efficacy while reducing off-target effects and toxicity according to the individual requirements of each patient.
Collapse
|
53
|
Recent progress in therapeutic drug delivery systems for treatment of traumatic CNS injuries. Future Med Chem 2020; 12:1759-1778. [PMID: 33028091 DOI: 10.4155/fmc-2020-0178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Most therapeutics for the treatment of traumatic central nervous system injuries, such as traumatic brain injury and spinal cord injury, encounter various obstacles in reaching the target tissue and exerting pharmacological effects, including physiological barriers like the blood-brain barrier and blood-spinal cord barrier, instability rapid elimination from the injured tissue or cerebrospinal fluid and off-target toxicity. For central nervous system delivery, nano- and microdrug delivery systems are regarded as the most suitable and promising carriers. In this review, the pathophysiology and biomarkers of traumatic central nervous system injuries (traumatic brain injury and spinal cord injury) are introduced. Furthermore, various drug delivery systems, novel combinatorial therapies and advanced therapies for the treatment of traumatic brain injury and spinal cord injury are emphasized.
Collapse
|
54
|
Tamura T, Yoshioka Y, Sakamoto S, Ichikawa T, Ochiya T. Extracellular Vesicles in Bone Metastasis: Key Players in the Tumor Microenvironment and Promising Therapeutic Targets. Int J Mol Sci 2020; 21:E6680. [PMID: 32932657 PMCID: PMC7555648 DOI: 10.3390/ijms21186680] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid membranous vesicles that are released from every type of cell. It has become clear that EVs are involved in a variety of biological phenomena, including cancer progression, and play critical roles in intracellular communication through the horizontal transfer of cellular cargoes such as proteins, DNA fragments, RNAs including mRNA and non-coding RNAs (microRNA, piRNA, and long non-coding RNA) and lipids. The most common cause of death associated with cancer is metastasis. Recent investigations have revealed that EVs are deeply associated with metastasis. Bone is a preferred site of metastasis, and bone metastasis is generally incurable and dramatically affects patient quality of life. Bone metastasis can cause devastating complications, including hypercalcemia, pathological fractures, spinal compression, and bone pain, which result in a poor prognosis. Although the mechanisms underlying bone metastasis have yet to be fully elucidated, increasing evidence suggests that EVs in the bone microenvironment significantly contribute to cancer progression and cancer bone tropism. Emerging evidence on EV functions in bone metastasis will facilitate the discovery of novel treatments. In this review, we will discuss the remarkable effects of EVs, especially on the tumor microenvironment in bone.
Collapse
Affiliation(s)
- Takaaki Tamura
- Department of Molecular and Cellular Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (T.T.); (Y.Y.)
- Department of Urology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; (S.S.); (T.I.)
| | - Yusuke Yoshioka
- Department of Molecular and Cellular Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (T.T.); (Y.Y.)
| | - Shinichi Sakamoto
- Department of Urology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; (S.S.); (T.I.)
| | - Tomohiko Ichikawa
- Department of Urology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; (S.S.); (T.I.)
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (T.T.); (Y.Y.)
| |
Collapse
|
55
|
Masterson CH, McCarthy SD, O'Toole D, Laffey JG. The role of cells and their products in respiratory drug delivery: the past, present, and future. Expert Opin Drug Deliv 2020; 17:1689-1702. [PMID: 32842784 DOI: 10.1080/17425247.2020.1814732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Cell-based delivery systems offer considerable promise as novel and innovative therapeutics to target the respiratory system. These systems consist of cells and/or their extracellular vesicles that deliver their contents, such as anti-microbial peptides, micro RNAs, and even mitochondria to the lung, exerting direct therapeutic effects. AREAS COVERED The purpose of this article is to critically review the status of cell-based therapies in the delivery of therapeutics to the lung, evaluate current progress, and elucidate key challenges to the further development of these novel approaches. An overview as to how these cells and/or their products may be modified to enhance efficacy is given. More complex delivery cell-based systems, including cells or vesicles that are genetically modified to (over)express specific therapeutic products, such as proteins and therapeutic nucleic acids are also discussed. Focus is given to the use of the aerosol route to deliver these products directly into the lung. EXPERT OPINION The use of biological carriers to deliver chemical or biological agents demonstrates great potential in modern medicine. The next generation of drug delivery systems may comprise 'cell-inspired' drug carriers that are entirely synthetic, developed using insights from cell-based therapeutics to overcome limitations of current generation synthetic carriers.
Collapse
Affiliation(s)
- Claire H Masterson
- Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland , Galway, Ireland.,Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland Galway , Galway, Ireland
| | - Sean D McCarthy
- Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland , Galway, Ireland.,Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland Galway , Galway, Ireland
| | - Daniel O'Toole
- Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland , Galway, Ireland.,Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland Galway , Galway, Ireland
| | - John G Laffey
- Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland , Galway, Ireland.,Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland Galway , Galway, Ireland.,Department of Anaesthesia, Galway University Hospitals, SAOLTA University Health Group , Galway, Ireland
| |
Collapse
|
56
|
Sun H, Burrola S, Wu J, Ding WQ. Extracellular Vesicles in the Development of Cancer Therapeutics. Int J Mol Sci 2020; 21:ijms21176097. [PMID: 32847103 PMCID: PMC7504131 DOI: 10.3390/ijms21176097] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) are small lipid bilayer-delimited nanoparticles released from all types of cells examined thus far. Several groups of EVs, including exosomes, microvesicles, and apoptotic bodies, have been identified according to their size and biogenesis. With extensive investigations on EVs over the last decade, it is now recognized that EVs play a pleiotropic role in various physiological processes as well as pathological conditions through mediating intercellular communication. Most notably, EVs have been shown to be involved in cancer initiation and progression and EV signaling in cancer are viewed as potential therapeutic targets. Furthermore, as membrane nanoparticles, EVs are natural products with some of them, such as tumor exosomes, possessing tumor homing propensity, thus leading to strategies utilizing EVs as drug carriers to effectively deliver cancer therapeutics. In this review, we summarize recent reports on exploring EVs signaling as potential therapeutic targets in cancer as well as on developing EVs as therapeutic delivery carriers for cancer therapy. Findings from preclinical studies are primarily discussed, with early phase clinical trials reviewed. We hope to provide readers updated information on the development of EVs as cancer therapeutic targets or therapeutic carriers.
Collapse
Affiliation(s)
- Haoyao Sun
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA; (H.S.); (S.B.)
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215001, China
| | - Stephanie Burrola
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA; (H.S.); (S.B.)
| | - Jinchang Wu
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215001, China
- Section of Oncology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China
- Correspondence: (J.W.); (W.-Q.D.); Tel.: +86-1377-604-8328 (J.W.); +1-405-271-1605 (W.-Q.D.)
| | - Wei-Qun Ding
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA; (H.S.); (S.B.)
- Correspondence: (J.W.); (W.-Q.D.); Tel.: +86-1377-604-8328 (J.W.); +1-405-271-1605 (W.-Q.D.)
| |
Collapse
|
57
|
Villata S, Canta M, Cauda V. EVs and Bioengineering: From Cellular Products to Engineered Nanomachines. Int J Mol Sci 2020; 21:ijms21176048. [PMID: 32842627 PMCID: PMC7504061 DOI: 10.3390/ijms21176048] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/15/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are natural carriers produced by many different cell types that have a plethora of functions and roles that are still under discovery. This review aims to be a compendium on the current advancement in terms of EV modifications and re-engineering, as well as their potential use in nanomedicine. In particular, the latest advancements on artificial EVs are discussed, with these being the frontier of nanomedicine-based therapeutics. The first part of this review gives an overview of the EVs naturally produced by cells and their extraction methods, focusing on the possibility to use them to carry desired cargo. The main issues for the production of the EV-based carriers are addressed, and several examples of the techniques used to upload the cargo are provided. The second part focuses on the engineered EVs, obtained through surface modification, both using direct and indirect methods, i.e., engineering of the parental cells. Several examples of the current literature are proposed to show the broad variety of engineered EVs produced thus far. In particular, we also report the possibility to engineer the parental cells to produce cargo-loaded EVs or EVs displaying specific surface markers. The third and last part focuses on the most recent advancements based on synthetic and chimeric EVs and the methods for their production. Both top-down or bottom-up techniques are analyzed, with many examples of applications.
Collapse
|
58
|
Abstract
Recent advances on milk exosomes (EXO), cargoes in cell-cell communication, explored their role within and between individuals, including in dairy species. The potential use of EXO as biomarkers of disease and metabolic conditions adds significant interest to the study of EXO in milk. Although several researches have been carried out on circulating miRNA in the milk, less information is available about milk-derived exosomal miRNAs, which are stable over time and resistant to digestion and milk processing. EXO are taken up by recipient cells through specific mechanisms, which enable the selective delivery of cargoes. This suggests that EXO cargoes can be used as biomarkers of health. Nevertheless, methodological limitations and potential applications of milk EXO in dairy ruminants must be considered. The paucity of studies that associate the EXO cargo to specific challenges deserves further investigations to unravel the variation of miRNA and proteins cargo in relation to metabolic imbalance and infectious disease of the mammary gland.
Collapse
|
59
|
Akagi T, Cabral H, Mi P. Bio-inspired nanomaterials for biomedical innovation. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2020; 21:420-421. [PMID: 32939166 PMCID: PMC7476521 DOI: 10.1080/14686996.2020.1786948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Takanori Akagi
- Department of Material Engineering, School of Engineering, the University of Tokyo, Tokyo, Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, the University of Tokyo, Tokyo, Japan
| | - Peng Mi
- State Key Lab Biotherapy, West China Hosp, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
60
|
Brites D. Regulatory function of microRNAs in microglia. Glia 2020; 68:1631-1642. [PMID: 32463968 DOI: 10.1002/glia.23846] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/14/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022]
Abstract
Microglia are CNS-resident cells involved in immune surveillance and maintenance of intercellular homeostasis, while also contributing to neurologic pathologies. MicroRNAs (miRNAs) are a class of small (~22 nucleotides) single-stranded noncoding RNAs that participate in gene regulation at the post-transcriptional level. miRNAs typically bind to the untranslated region (3' UTR) of RNAs. It has been shown that miRNAs are important players in controlling inflammation and that their abnormal expression is linked to cancer and ageing, and to the onset and progression of neurodegenerative disease. Furthermore, miRNAs participate in intercellular trafficking. Thus, miRNAs are released from cells in a free form, bound to proteins or packaged within extracellular vesicles (EVs), exerting paracrine and long distance signaling. In this review, recent findings on the role of miRNAs as drivers of microglia phenotypic changes and their cotribution in neurological disease are addressed. MAIN POINTS: miRNAs have a key role in microglia function/dysfunction, polarization, and restoration. Microglia are both a source and recipient of extracellular vesicles (EVs) containing miRNAs. Extracellular miRNAs may be found as soluble (free and EV cargo) and protein complexes.
Collapse
Affiliation(s)
- Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
61
|
Casadei L, Pollock RE. Extracellular vesicle cross-talk in the liposarcoma microenvironment. Cancer Lett 2020; 487:27-33. [PMID: 32470489 DOI: 10.1016/j.canlet.2020.04.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/14/2020] [Accepted: 04/30/2020] [Indexed: 12/19/2022]
Abstract
Liposarcoma (LPS) is the most prevalent soft tissue sarcoma; among the four different LPS subtypes, dedifferentiated liposarcoma (DDLPS) is especially worrisome given its propensity for local and distant recurrence, with an overall survival rate of only 10% at 10 years. Our understanding of the molecular drivers of this disease is rudimentary at best; knowledge about how DDLPS interacts with cells in the tumor microenvironment (TME) is also lacking. Extracellular vesicle (EVs) have been studied in a number of different systems concerning their ability to influence the TME transferring bioactive molecules. In this review, we outline the role of the TME in the DDLPS progression and recurrence, focusing on the interplay between EVs released from the tumor and their target recipient cells in the TME. Success in the understanding of this process will be critical to an enhanced understanding of the underlying biologic drivers at play, potentially leading to new therapeutic strategies of benefit to patients with this disease.
Collapse
Affiliation(s)
- Lucia Casadei
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA; Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| | - Raphael E Pollock
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA; Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
62
|
The Course of Circulating Small Extracellular Vesicles in Patients Undergoing Surgical Aortic Valve Replacement. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6381396. [PMID: 32382562 PMCID: PMC7193280 DOI: 10.1155/2020/6381396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/12/2020] [Accepted: 02/19/2020] [Indexed: 01/05/2023]
Abstract
In the last years, increasing efforts have been devoted to investigating the role of small extracellular vesicles (sEVs) in cardiovascular diseases. These nano-sized particles (30-150 nm), secreted by different cell types, contain signalling molecules that enable participation in intercellular communication processes. In this study, we examined the course of circulating sEVs in patients undergoing surgical aortic valve replacement (SAVR) and correlated them with echocardiographic and standard blood parameters. Peripheral blood samples were collected from 135 patients undergoing SAVR preoperatively and at three follow-up points. Circulating sEVs were precipitated using Exoquick™ exosome isolation reagent and analyzed by nanoparticle tracking analysis (NTA). Our findings indicate that no more than 7 days after SAVR, there was a marked increase of circulating sEVs before returning to initial values after 3 months. Further, shear stress is not a trigger for the formation and release of circulating sEVs. Moreover, we pointed out a correlation between circulating sEVs and erythrocytes as well as LDH and creatinine levels in peripheral blood. Finally, all patients with a moderate prosthesis-patient mismatch as well as with an impaired left ventricular mass regression had lower levels of circulating sEVs 3 months after SAVR compared to their respective status before surgery. We conclude that in patients with aortic valve stenosis (AVS), sEVs may play an important part in mediating cell-cell communication and SAVR may have a crucial and lasting impact on their circulating levels. Besides, lower levels of sEVs portend to be associated with inferior recovery after major surgical interventions. The additional use of circulating sEVs beyond echocardiographic and laboratory parameters could have a prognostic value to estimate adverse outcomes in patients undergoing SAVR.
Collapse
|
63
|
Xiao F, Lv S, Zong Z, Wu L, Tang X, Kuang W, Zhang P, Li X, Fu J, Xiao M, Wu M, Wu L, Zhu X, Huang K, Guo H. Cerebrospinal fluid biomarkers for brain tumor detection: clinical roles and current progress. Am J Transl Res 2020; 12:1379-1396. [PMID: 32355549 PMCID: PMC7191171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Brain tumors include those that originate within the brain (primary tumors) as well as those that arise from other cancers (metastatic tumors). The fragile nature of the brain poses a major challenge to access focal malignancies, which certainly limits both diagnostics and therapeutic approaches. This limitation has been alleviated with the advent of liquid biopsy technologies. Liquid biopsy represents a highly convenient, fast and non-invasive method, which allows multiple sampling and dynamic pathological detection. Biomarkers derived from liquid biopsies can promptly reflect changes on the gene expression profiling of tumors. Biomarkers derived from tumor cells contain abundant genetic information, which may provide a strong basis for the diagnosis and the individualized treatment of brain tumor patients. A series of body fluids can be assessed for liquid biopsy, including peripheral blood, cerebrospinal fluid (CSF), urine or saliva. Interestingly, the sensitivity and specificity of biomarkers from the CSF of patients with brain tumors is typically higher than those detected in the peripheral blood and other sources. Hence, here we describe and properly discuss the clinical roles of distinct classes of CSF biomarkers, isolated from patients with brain tumors, such as circulating tumor DNA (ctDNA), microRNA (miRNA), proteins, and extracellular vesicles (EVs).
Collapse
Affiliation(s)
- Feng Xiao
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Shigang Lv
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Zhitao Zong
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
- Department of Neurosurgery, Jiujiang Hospital of Traditional Chinese MedicineJiujiang 332005, Jiangxi, China
| | - Lei Wu
- Department of Emergency, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Xueping Tang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Wei Kuang
- Department of Emergency, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Pei Zhang
- Department of Neurosurgery, The Third Hospital of NanchangNangchang 330009, Jiangxi, China
| | - Xin Li
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Jun Fu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Menghua Xiao
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Miaojing Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Lei Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Kai Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Hua Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| |
Collapse
|
64
|
Haque S, Kodidela S, Gerth K, Hatami E, Verma N, Kumar S. Extracellular Vesicles in Smoking-Mediated HIV Pathogenesis and their Potential Role in Biomarker Discovery and Therapeutic Interventions. Cells 2020; 9:cells9040864. [PMID: 32252352 PMCID: PMC7226815 DOI: 10.3390/cells9040864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/16/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
In the last two decades, the mortality rate in people living with HIV/AIDS (PLWHA) has decreased significantly, resulting in an almost normal longevity in this population. However, a large portion of this population still endures a poor quality of life, mostly due to an increased inclination for substance abuse, including tobacco smoking. The prevalence of smoking in PLWHA is consistently higher than in HIV negative persons. A predisposition to cigarette smoking in the setting of HIV potentially leads to exacerbated HIV replication and a higher risk for developing neurocognitive and other CNS disorders. Oxidative stress and inflammation have been identified as mechanistic pathways in smoking-mediated HIV pathogenesis and HIV-associated neuropathogenesis. Extracellular vesicles (EVs), packaged with oxidative stress and inflammatory agents, show promise in understanding the underlying mechanisms of smoking-induced HIV pathogenesis via cell-cell interactions. This review focuses on recent advances in the field of EVs with an emphasis on smoking-mediated HIV pathogenesis and HIV-associated neuropathogenesis. This review also provides an overview of the potential applications of EVs in developing novel therapeutic carriers for the treatment of HIV-infected individuals who smoke, and in the discovery of novel biomarkers that are associated with HIV-smoking interactions in the CNS.
Collapse
|
65
|
Shimizu A, Sawada K, Kimura T. Pathophysiological Role and Potential Therapeutic Exploitation of Exosomes in Ovarian Cancer. Cells 2020; 9:cells9040814. [PMID: 32230983 PMCID: PMC7226729 DOI: 10.3390/cells9040814] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 12/25/2022] Open
Abstract
Exosomes are extracellular vesicles involved in several biological and pathological molecules and can carry many bioactive materials to target cells. They work as important mediators of cell-cell communication and play essential roles in many diseases, especially in cancer. Ovarian cancer is one of the most common gynecological malignancies. Most patients are diagnosed at advanced stages involving widespread peritoneal dissemination, resulting in poor prognosis. Emerging evidence has shown that exosomes play vital roles throughout the progression of ovarian cancer. Moreover, the development of engineered exosome-based therapeutic applications— including drug delivery systems, biomolecular targets and immune therapy—has increased drastically. Herein, we review the functional features of exosomes in ovarian cancer progression and the therapeutic application potential of exosomes as novel cancer treatments.
Collapse
|
66
|
Morita SY, Tsuji T, Terada T. Protocols for Enzymatic Fluorometric Assays to Quantify Phospholipid Classes. Int J Mol Sci 2020; 21:ijms21031032. [PMID: 32033167 PMCID: PMC7037927 DOI: 10.3390/ijms21031032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 12/15/2022] Open
Abstract
Phospholipids, consisting of a hydrophilic head group and two hydrophobic acyl chains, are essential for the structures of cell membranes, plasma lipoproteins, biliary mixed micelles, pulmonary surfactants, and extracellular vesicles. Beyond their structural roles, phospholipids have important roles in numerous biological processes. Thus, abnormalities in the metabolism and transport of phospholipids are involved in many diseases, including dyslipidemia, atherosclerosis, cholestasis, drug-induced liver injury, neurological diseases, autoimmune diseases, respiratory diseases, myopathies, and cancers. To further clarify the physiological, pathological, and molecular mechanisms and to identify disease biomarkers, we have recently developed enzymatic fluorometric assays for quantifying all major phospholipid classes, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidic acid, phosphatidylinositol, phosphatidylglycerol + cardiolipin, and sphingomyelin. These assays are specific, sensitive, simple, and high-throughput, and will be applicable to cells, intracellular organelles, tissues, fluids, lipoproteins, and extracellular vesicles. In this review, we present the detailed protocols for the enzymatic fluorometric measurements of phospholipid classes in cultured cells.
Collapse
|
67
|
Andrei L, Kasas S, Ochoa Garrido I, Stanković T, Suárez Korsnes M, Vaclavikova R, Assaraf YG, Pešić M. Advanced technological tools to study multidrug resistance in cancer. Drug Resist Updat 2020; 48:100658. [DOI: 10.1016/j.drup.2019.100658] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 02/06/2023]
|
68
|
Matsuda A, Moirangthem A, Angom RS, Ishiguro K, Driscoll J, Yan IK, Mukhopadhyay D, Patel T. Safety of bovine milk derived extracellular vesicles used for delivery of RNA therapeutics in zebrafish and mice. J Appl Toxicol 2019; 40:706-718. [DOI: 10.1002/jat.3938] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 11/14/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Akiko Matsuda
- Department of TransplantationMayo Clinic Jacksonville Florida
| | | | | | - Kaori Ishiguro
- Department of TransplantationMayo Clinic Jacksonville Florida
| | - Julia Driscoll
- Department of TransplantationMayo Clinic Jacksonville Florida
| | - Irene K. Yan
- Department of TransplantationMayo Clinic Jacksonville Florida
| | | | - Tushar Patel
- Department of TransplantationMayo Clinic Jacksonville Florida
| |
Collapse
|
69
|
Susa F, Limongi T, Dumontel B, Vighetto V, Cauda V. Engineered Extracellular Vesicles as a Reliable Tool in Cancer Nanomedicine. Cancers (Basel) 2019; 11:E1979. [PMID: 31835327 PMCID: PMC6966613 DOI: 10.3390/cancers11121979] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022] Open
Abstract
Fast diagnosis and more efficient therapies for cancer surely represent one of the huge tasks for the worldwide researchers' and clinicians' community. In the last two decades, our understanding of the biology and molecular pathology of cancer mechanisms, coupled with the continuous development of the material science and technological compounds, have successfully improved nanomedicine applications in oncology. This review argues on nanomedicine application of engineered extracellular vesicles (EVs) in oncology. All the most innovative processes of EVs engineering are discussed together with the related degree of applicability for each one of them in cancer nanomedicines.
Collapse
Affiliation(s)
| | | | | | | | - Valentina Cauda
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (F.S.); (T.L.); (B.D.); (V.V.)
| |
Collapse
|