51
|
Wang L, Ruan M, Yan H, Lei B, Sun X, Chang C, Liu L, Xie W. Pretreatment serum neutrophil-to-lymphocyte and monocyte-to-lymphocyte ratios: Two tumor-related systemic inflammatory markers in patients with thymic epithelial tumors. Cytokine 2020; 133:155149. [PMID: 32512341 DOI: 10.1016/j.cyto.2020.155149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/16/2020] [Accepted: 05/25/2020] [Indexed: 11/18/2022]
Abstract
OBJECTIVES To understand underlying changes in pretreatment serum inflammatory markers associated with thymic epithelial tumors (TETs) development. METHODS A retrospective analysis of 113 TETs patients who underwent 18-fluorine fluorodeoxyglucose (18F-FDG) positron emission tomography combined computed tomography (PET/CT) one to two weeks before tumor resection or biopsy was performed. Pretreatment serum neutrophil, monocyte, platelet, and lymphocyte counts, and fibrinogen and C-reaction protein (CRP) concentrations were measured one day before surgery or biopsy. Neutrophil-to-lymphocyte ratio (NLR), monocyte-to-lymphocyte ratio (MLR), and platelet-to-lymphocyte ratio (PLR) were calculated by dividing corresponding cells counts by lymphocyte counts, respectively. The maximum standard uptake value (SUVmax) of 18F-FDG of primary TETs was applied to reflect tumor glycolytic activity. The student's t-test, one-way ANOVA analysis, Chi-square test, receiver operating characteristic curve analysis, and Logistic regression analysis were used for statistical analysis. RESULTS The serum NLR and MLR were significantly higher in TETs patients than in healthy volunteers (P both ≤ 0.001). High serum NLR and MLR were related to the thymic carcinomas (TCs) subtype, elevated Masaoka-Koga (M-K) tumor stage, and metastasis of TETs (P all < 0.005). High serum NLR and MLR were also associated with high SUVmax values of TETs (P all < 0.005), with increasingly differences between groups as the cut-off values defining low-SUVmax and high-SUVmax groups increased. With the medium cutoff of NLR, MLR, and SUVmax of 3.07, 0.25, and 8.00 respectively, the high NLR and MLR levels were significantly associated with high SUVmax level of TETs (P both < 0.005). Moreover, the incidences of co-high SUVmax/NLR and co-high SUVmax/MLR were higher in TETs patients older than 55 years, with TCs, in M-K stage IV, and with metastasis (P all < 0.05). Both the co-high SUVmax/NLR and co-high SUVmax/MLR increased the risk of TETs metastasis (P both < 0.001), while the co-high SUVmax/MLR was also an independent risk factor for TETs metastasis (odds ratio: 3.92, 95% confidence interval: 1.02-15.12, P = 0.047). CONCLUSION Pretreatment serum NLR and MLR of TETs patients are two tumor-progression- and tumor-glycolysis-related inflammatory markers. Enhanced tumor glycolytic activity and associated systemic inflammatory reaction may play a synergistic role in TETs metastasis.
Collapse
Affiliation(s)
- Lihua Wang
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 Huaihai West Road, Shanghai 200030, China; Clinical and Translational Center in Shanghai Chest Hospital, Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, 241 Huaihai West Road, Shanghai 200030, China
| | - Maomei Ruan
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 Huaihai West Road, Shanghai 200030, China; Clinical and Translational Center in Shanghai Chest Hospital, Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, 241 Huaihai West Road, Shanghai 200030, China
| | - Hui Yan
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 Huaihai West Road, Shanghai 200030, China; Clinical and Translational Center in Shanghai Chest Hospital, Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, 241 Huaihai West Road, Shanghai 200030, China
| | - Bei Lei
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 Huaihai West Road, Shanghai 200030, China; Clinical and Translational Center in Shanghai Chest Hospital, Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, 241 Huaihai West Road, Shanghai 200030, China
| | - Xiaoyan Sun
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 Huaihai West Road, Shanghai 200030, China; Clinical and Translational Center in Shanghai Chest Hospital, Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, 241 Huaihai West Road, Shanghai 200030, China
| | - Cheng Chang
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 Huaihai West Road, Shanghai 200030, China; Clinical and Translational Center in Shanghai Chest Hospital, Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, 241 Huaihai West Road, Shanghai 200030, China
| | - Liu Liu
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 Huaihai West Road, Shanghai 200030, China; Clinical and Translational Center in Shanghai Chest Hospital, Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, 241 Huaihai West Road, Shanghai 200030, China.
| | - Wenhui Xie
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 Huaihai West Road, Shanghai 200030, China; Clinical and Translational Center in Shanghai Chest Hospital, Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, 241 Huaihai West Road, Shanghai 200030, China.
| |
Collapse
|
52
|
Certo M, Marone G, de Paulis A, Mauro C, Pucino V. Lactate: Fueling the fire starter. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1474. [PMID: 31840439 PMCID: PMC7187281 DOI: 10.1002/wsbm.1474] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
It is becoming increasingly appreciated that intermediates of metabolic pathways, besides their anabolic and catabolic functions, can act as signaling molecules and influence the outcome of immune responses. Although lactate was previously considered as a waste product of glucose metabolism, accumulating evidence has highlighted its pivotal role in regulating diverse biological processes, including immune cell polarization, differentiation and effector functions. In addition, lactate is a key player in modulating tumor immune surveillance. Hence, targeting lactate-induced signaling pathways is a promising tool to reduce inflammation, to prevent autoimmunity and to restore anti-tumor immune response. This article is characterized under: Biological Mechanisms > Metabolism.
Collapse
Affiliation(s)
- Michelangelo Certo
- Institute of Inflammation and Ageing, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Giancarlo Marone
- Department of Public HealthUniversity of Naples Federico IINaplesItaly
- Ospedale dei Colli, Hospital PharmacyNaplesItaly
| | - Amato de Paulis
- Department of Translational Medical Sciences (DISMET)University of Naples Federico IINaplesItaly
- Center for Basic and Clinical Immunology Research (CISI), School of MedicineUniversity of Naples Federico IINaplesItaly
| | - Claudio Mauro
- Institute of Inflammation and Ageing, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Institute of Metabolism and Systems Research, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Valentina Pucino
- Institute of Inflammation and Ageing, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Rheumatology Research Group, Institute for Inflammation and Ageing, College of Medical and Dental SciencesQueen Elizabeth Hospital, University of BirminghamBirminghamUK
| |
Collapse
|
53
|
Pucino V, Certo M, Varricchi G, Marone G, Ursini F, Rossi FW, De Paulis A, Mauro C, Raza K, Buckley CD. Metabolic Checkpoints in Rheumatoid Arthritis. Front Physiol 2020; 11:347. [PMID: 32362840 PMCID: PMC7180190 DOI: 10.3389/fphys.2020.00347] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
Several studies have highlighted the interplay between metabolism, immunity and inflammation. Both tissue resident and infiltrating immune cells play a major role in the inflammatory process of rheumatoid arthritis (RA) via the production of cytokines, adipo-cytokines and metabolic intermediates. These functions are metabolically demanding and require the most efficient use of bioenergetic pathways. The synovial membrane is the primary site of inflammation in RA and exhibits distinctive histological patterns characterized by different metabolism, prognosis and response to treatment. In the RA synovium, the high energy demand by stromal and infiltrating immune cells, causes the accumulation of metabolites, and adipo-cytokines, which carry out signaling functions, as well as activating transcription factors which act as metabolic sensors. These events drive immune and joint-resident cells to acquire pro-inflammatory effector functions which in turn perpetuate chronic inflammation. Whether metabolic changes are a consequence of the disease or one of the causes of RA pathogenesis is still under investigation. This review covers our current knowledge of cell metabolism in RA. Understanding the intricate interactions between metabolic pathways and the inflammatory and immune responses will provide more awareness of the mechanisms underlying RA pathogenesis and will identify novel therapeutic options to treat this disease.
Collapse
Affiliation(s)
- Valentina Pucino
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Rheumatology Research Group, Institute for Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Michelangelo Certo
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Gilda Varricchi
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Giancarlo Marone
- Department of Public Health, University of Naples Federico II, Naples, Italy
- Ospedale dei Colli, Hospital Pharmacy, Naples, Italy
| | - Francesco Ursini
- Section of Rheumatology, Department of Biomedical and Neuromotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy
- Medicine and Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Francesca Wanda Rossi
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Amato De Paulis
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Claudio Mauro
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Karim Raza
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Rheumatology Research Group, Institute for Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, United Kingdom
- Research into Inflammatory Arthritis Centre Versus Arthritis, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, United Kingdom
- MRC and Versus Arthritis Centre for Musculoskeletal Ageing Research (CMAR), College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Christopher Dominic Buckley
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
54
|
Schurich A, Magalhaes I, Mattsson J. Metabolic regulation of CAR T cell function by the hypoxic microenvironment in solid tumors. Immunotherapy 2020; 11:335-345. [PMID: 30678555 DOI: 10.2217/imt-2018-0141] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The field of immunometabolism has attracted growing attention as an area at the heart of immune regulation. Upon activation, T cells undergo significant metabolic changes allowing them to mediate effector responses. The advent of chimeric antigen receptor T cell-adoptive therapy has shown some striking clinical efficacy but fails to induce sufficient antitumor response in many patients. Solid tumors put up significant opposition creating a microenvironment deficient of oxygen and glucose, depriving T cells of energy and pushing them to exhaustion. Here, we focus on immune suppressive mechanisms related to hypoxia in the tumor microenvironment and the resulting metabolic changes in T cells. New therapeutic approaches such as generating chimeric antigen receptor T cells able to withstand the challenging solid tumor microenvironment are needed.
Collapse
Affiliation(s)
- Anna Schurich
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Isabelle Magalhaes
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Mattsson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Clinical Immunology, Karolinska University Hospital, Huddinge, Sweden
| |
Collapse
|
55
|
Can Metabolic Pathways Be Therapeutic Targets in Rheumatoid Arthritis? J Clin Med 2019; 8:jcm8050753. [PMID: 31137815 PMCID: PMC6572063 DOI: 10.3390/jcm8050753] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/05/2019] [Accepted: 05/20/2019] [Indexed: 12/18/2022] Open
Abstract
The metabolic rewiring of tumor cells and immune cells has been viewed as a promising source of novel drug targets. Many of the molecular pathways implicated in rheumatoid arthritis (RA) directly modify synovium metabolism and transform the resident cells, such as the fibroblast-like synoviocytes (FLS), and the synovial tissue macrophages (STM), toward an overproduction of enzymes, which degrade cartilage and bone, and cytokines, which promote immune cell infiltration. Recent studies have shown metabolic changes in stromal and immune cells from RA patients. Metabolic disruption in the synovium provide the opportunity to use in vivo metabolism-based imaging techniques for patient stratification and to monitor treatment response. In addition, these metabolic changes may be therapeutically targetable. Thus, resetting metabolism of the synovial membrane offers additional opportunities for disease modulation and restoration of homeostasis in RA. In fact, rheumatologists already use the antimetabolite methotrexate, a chemotherapy agent, for the treatment of patients with inflammatory arthritis. Metabolic targets that do not compromise systemic homeostasis or corresponding metabolic functions in normal cells could increase the drug armamentarium in rheumatic diseases for combination therapy independent of systemic immunosuppression. This article summarizes what is known about metabolism in synovial tissue cells and highlights chemotherapies that target metabolism as potential future therapeutic strategies for RA.
Collapse
|
56
|
Wang SJ, Zhao JK, Ren S, Sun WW, Zhang WJ, Zhang JN. Wogonin affects proliferation and the energy metabolism of SGC-7901 and A549 cells. Exp Ther Med 2018; 17:911-918. [PMID: 30651880 DOI: 10.3892/etm.2018.7023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 10/03/2018] [Indexed: 12/11/2022] Open
Abstract
Many studies have focused on the identification of therapeutic targets for the treatment of certain types of cancer. Wogonin is a natural flavonoid compound that exhibits a potent anti-cancer effect. The underlying mechanism of wogonin may therefore reveal an effective way to identify novel therapeutic targets. In the current study, growth curves and MTT assays were performed to determine the effects of wogonin in human gastric cancer cells (SGC-7901) and human lung adenocarcinoma cells (A549), respectively. Changes in morphology were observed using hematoxylin and eosin (H&E) staining. The activities of key enzymes in the glycolysis and tricarboxylic acid cycle were measured using spectrophotometry. Western blot analysis was performed to determine the expression levels of hypoxia inducible factor-1α (HIF-1α) and monocarboxylate transporter-4 (MCT-4). Wogonin inhibited cell proliferation in a time- and dose-dependent manner in SGC-7901 and A549 cells. H&E staining suggested that wogonin induced cell morphology changes. In SGC-7901 cells, lactate dehydrogenase (LDH) and succinate dehydrogenase (SDH) activities and adenosine triphosphate (ATP) generation were decreased significantly by wogonin treatment compared with the untreated control. In A549 cells, wogonin significantly reduced LDH activity, but exhibited no significant effects on kinase activities or ATP generation. Furthermore, wogonin significantly decreased HIF-1α and MCT-4 protein expression in SGC-7901 cells, but not in A549 cells. The results demonstrated that wogonin inhibited the energy metabolism, cell proliferation and angiogenesis in SGC-7901 and A549 cells by negatively regulating HIF-1α and MCT-4 expression. The differential regulatory roles of wogonin in metabolism-associated enzymes in human gastric cancer and lung adenocarcinoma cells indicated its various antitumor mechanisms. The different metabolic regulatory mechanisms exhibited by wogonin in different tumor tissues should therefore be considered for antitumor therapy.
Collapse
Affiliation(s)
- Shu-Jing Wang
- College of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang 150076, P.R. China
| | - Jian-Kai Zhao
- College of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang 150076, P.R. China
| | - Shuang Ren
- College of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang 150076, P.R. China
| | - Wei-Wei Sun
- College of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang 150076, P.R. China
| | - Wen-Jun Zhang
- College of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang 150076, P.R. China
| | - Jia-Ning Zhang
- College of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang 150076, P.R. China
| |
Collapse
|