51
|
Kuang Y, Sechi M, Nurra S, Ljungman M, Neamati N. Design and Synthesis of Novel Reactive Oxygen Species Inducers for the Treatment of Pancreatic Ductal Adenocarcinoma. J Med Chem 2018; 61:1576-1594. [PMID: 29328656 DOI: 10.1021/acs.jmedchem.7b01463] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Altering redox homeostasis provides distinctive therapeutic opportunities for the treatment of pancreatic cancer. Quinazolinediones (QDs) are novel redox modulators that we previously showed to induce potent growth inhibition in pancreatic ductal adenocarcinoma (PDAC) cell lines. Our lead optimization campaign yielded QD325 as the most potent redox modulator candidate inducing substantial reactive oxygen species (ROS) in PDAC cells. Nascent RNA sequencing following treatments with the QD compounds revealed induction of stress responses in nucleus, endoplasmic reticulum, and mitochondria of pancreatic cancer cells. Furthermore, the QD compounds induced Nrf2-mediated oxidative stress and unfolded protein responses as demonstrated by dose-dependent increases in RNA synthesis of representative genes such as NQO1, HMOX1, DDIT3, and HSPA5. At higher concentrations, the QDs blocked mitochondrial function by inhibiting mtDNA transcription and downregulating the mtDNA-encoded OXPHOS enzymes. Importantly, treatments with QD325 were well tolerated in vivo and significantly delayed tumor growth in mice. Our study supports the development of QD325 as a new therapeutic in the treatment of PDAC.
Collapse
Affiliation(s)
- Yuting Kuang
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan , 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States.,Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California , 1985 Zonal Avenue, Los Angeles, California 90033, United States
| | - Mario Sechi
- Department of Chemistry and Pharmacy, University of Sassari , Via Vienna 2, 07100 Sassari, Italy
| | - Salvatore Nurra
- Department of Chemistry and Pharmacy, University of Sassari , Via Vienna 2, 07100 Sassari, Italy
| | - Mats Ljungman
- Department of Radiation Oncology, University of Michigan , 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan , 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
52
|
Jiang Y, Zheng G, Duan Q, Yang L, Zhang J, Zhang H, He J, Sun H, Ho D. Ultra-sensitive fluorescent probes for hypochlorite acid detection and exogenous/endogenous imaging of living cells. Chem Commun (Camb) 2018; 54:7967-7970. [DOI: 10.1039/c8cc03963a] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Two fluorescent probes have been developed to detect HOCl with ultra-high sensitivity and employed to image exogenous/endogenous HOCl in living cells.
Collapse
Affiliation(s)
- Yin Jiang
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- Guangdong
- China
| | - Guansheng Zheng
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- Guangdong
- China
| | - Qinya Duan
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- Guangdong
- China
| | - Liu Yang
- Department of Chemistry
- City University of Hong Kong
- Kowloon
- China
| | - Jie Zhang
- Department of Chemistry
- City University of Hong Kong
- Kowloon
- China
| | - Huatang Zhang
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- Guangdong
- China
| | - Jun He
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- Guangdong
- China
| | - Hongyan Sun
- Department of Chemistry
- City University of Hong Kong
- Kowloon
- China
| | - Derek Ho
- Department of Materials Science and Engineering
- City University of Hong Kong
- Kowloon
- China
| |
Collapse
|
53
|
Kalyanaraman B, Cheng G, Hardy M, Ouari O, Bennett B, Zielonka J. Teaching the basics of reactive oxygen species and their relevance to cancer biology: Mitochondrial reactive oxygen species detection, redox signaling, and targeted therapies. Redox Biol 2017; 15:347-362. [PMID: 29306792 PMCID: PMC5756055 DOI: 10.1016/j.redox.2017.12.012] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 12/21/2017] [Accepted: 12/23/2017] [Indexed: 01/05/2023] Open
Abstract
Reactive oxygen species (ROS) have been implicated in tumorigenesis (tumor initiation, tumor progression, and metastasis). Of the many cellular sources of ROS generation, the mitochondria and the NADPH oxidase family of enzymes are possibly the most prevalent intracellular sources. In this article, we discuss the methodologies to detect mitochondria-derived superoxide and hydrogen peroxide using conventional probes as well as newly developed assays and probes, and the necessity of characterizing the diagnostic marker products with HPLC and LC-MS in order to rigorously identify the oxidizing species. The redox signaling roles of mitochondrial ROS, mitochondrial thiol peroxidases, and transcription factors in response to mitochondria-targeted drugs are highlighted. ROS generation and ROS detoxification in drug-resistant cancer cells and the relationship to metabolic reprogramming are discussed. Understanding the subtle role of ROS in redox signaling and in tumor proliferation, progression, and metastasis as well as the molecular and cellular mechanisms (e.g., autophagy) could help in the development of combination therapies. The paradoxical aspects of antioxidants in cancer treatment are highlighted in relation to the ROS mechanisms in normal and cancer cells. Finally, the potential uses of newly synthesized exomarker probes for in vivo superoxide and hydrogen peroxide detection and the low-temperature electron paramagnetic resonance technique for monitoring oxidant production in tumor tissues are discussed.
Collapse
Affiliation(s)
- Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States.
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Micael Hardy
- Aix Marseille Univ CNRS ICR UMR 7273, Marseille 13013, France
| | - Olivier Ouari
- Aix Marseille Univ CNRS ICR UMR 7273, Marseille 13013, France
| | - Brian Bennett
- Department of Physics, Marquette University, 540 North 15th Street, Milwaukee, WI 53233, United States
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| |
Collapse
|
54
|
Abstract
Cancer survival is largely impacted by the dissemination of cancer cells from the original tumor site to secondary tissues or organs through metastasis. Targets for antimetastatic therapies have recently become a focus of research, but progress will require a better understanding of the molecular mechanisms driving metastasis. Selenoproteins play important roles in many of the cellular activities underlying metastasis including cell adhesion, matrix degradation and migration, invasion into the blood and extravasation into secondary tissues, and subsequent proliferation into metastatic tumors along with the angiogenesis required for growth. In this review the roles identified for different selenoproteins in these steps and how they may promote or inhibit metastatic cancers is discussed. These roles include selenoenzyme modulation of redox tone and detoxification of reactive oxygen species, calcium homeostasis and unfolded protein responses regulated by endoplasmic reticulum selenoproteins, and the multiple physiological responses influenced by other selenoproteins.
Collapse
Affiliation(s)
- Michael P Marciel
- John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Peter R Hoffmann
- John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States.
| |
Collapse
|
55
|
Wilkes JG, Alexander MS, Cullen JJ. Superoxide Dismutases in Pancreatic Cancer. Antioxidants (Basel) 2017; 6:antiox6030066. [PMID: 28825637 PMCID: PMC5618094 DOI: 10.3390/antiox6030066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/10/2017] [Accepted: 08/15/2017] [Indexed: 01/17/2023] Open
Abstract
The incidence of pancreatic cancer is increasing as the population ages but treatment advancements continue to lag far behind. The majority of pancreatic cancer patients have a K-ras oncogene mutation causing a shift in the redox state of the cell, favoring malignant proliferation. This mutation is believed to lead to nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation and superoxide overproduction, generating tumorigenic behavior. Superoxide dismutases (SODs) have been studied for their ability to manage the oxidative state of the cell by dismuting superoxide and inhibiting signals for pancreatic cancer growth. In particular, manganese superoxide dismutase has clearly shown importance in cell cycle regulation and has been found to be abnormally low in pancreatic cancer cells as well as the surrounding stromal tissue. Likewise, extracellular superoxide dismutase expression seems to favor suppression of pancreatic cancer growth. With an increased understanding of the redox behavior of pancreatic cancer and key regulators, new treatments are being developed with specific targets in mind. This review summarizes what is known about superoxide dismutases in pancreatic cancer and the most current treatment strategies to be advanced from this knowledge.
Collapse
Affiliation(s)
- Justin G. Wilkes
- Departments of Surgery and Radiation Oncology, University of Iowa Carver College of Medicine, Iowa City, IA 52245, USA; (J.G.W.); (M.S.A.)
| | - Matthew S. Alexander
- Departments of Surgery and Radiation Oncology, University of Iowa Carver College of Medicine, Iowa City, IA 52245, USA; (J.G.W.); (M.S.A.)
| | - Joseph J. Cullen
- Departments of Surgery and Radiation Oncology, University of Iowa Carver College of Medicine, Iowa City, IA 52245, USA; (J.G.W.); (M.S.A.)
- Veterans Affairs Medical Center, Iowa City, IA 52245, USA
- Correspondence: ; Tel.: +1-319-353-8297; Fax: +1-319-356-8378
| |
Collapse
|
56
|
Xu B, Wang S, Li R, Chen K, He L, Deng M, Kannappan V, Zha J, Dong H, Wang W. Disulfiram/copper selectively eradicates AML leukemia stem cells in vitro and in vivo by simultaneous induction of ROS-JNK and inhibition of NF-κB and Nrf2. Cell Death Dis 2017; 8:e2797. [PMID: 28518151 PMCID: PMC5520701 DOI: 10.1038/cddis.2017.176] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 12/22/2022]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous malignancy. Despite the advances in past decades, the clinical outcomes of AML patients remain poor. Leukemia stem cells (LSCs) is the major cause of the recurrence of AML even after aggressive treatment making, promoting development of LSC-targeted agents is an urgent clinical need. Although the antitumor activity of disulfiram (DS), an approved anti-alcoholism drug, has been demonstrated in multiple types of tumors including hematological malignancies such as AML, it remains unknown whether this agent would also be able to target cancer stem cells like LSCs. Here, we report the in vitro and in vivo activity of DS in combination with copper (Cu) against CD34+/CD38+ leukemia stem-like cells sorted from KG1α and Kasumi-1 AML cell lines, as well as primary CD34+ AML samples. DS plus Cu (DS/Cu) displayed marked inhibition of proliferation, induction of apoptosis, and suppression of colony formation in cultured AML cells while sparing the normal counterparts. DS/Cu also significantly inhibited the growth of human CD34+/CD38+ leukemic cell-derived xenografts in NOD/SCID mice. Mechanistically, DS/Cu-induced cytotoxicity was closely associated with activation of the stress-related ROS-JNK pathway as well as simultaneous inactivation of the pro-survival Nrf2 and nuclear factor-κB pathways. In summary, our findings indicate that DS/Cu selectively targets leukemia stem-like cells both in vitro and in vivo, thus suggesting a promising LSC-targeted activity of this repurposed agent for treatment of relapsed and refractory AML.
Collapse
Affiliation(s)
- Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen, China.,Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shiyun Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rongwei Li
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kai Chen
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lingli He
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Manman Deng
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Vinodh Kannappan
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Jie Zha
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Huijuan Dong
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weiguang Wang
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| |
Collapse
|
57
|
Döppler H, Storz P. Mitochondrial and Oxidative Stress-Mediated Activation of Protein Kinase D1 and Its Importance in Pancreatic Cancer. Front Oncol 2017; 7:41. [PMID: 28361035 PMCID: PMC5350125 DOI: 10.3389/fonc.2017.00041] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/01/2017] [Indexed: 12/31/2022] Open
Abstract
Due to alterations in their metabolic activity and decreased mitochondrial efficiency, cancer cells often show increased generation of reactive oxygen species (ROS), but at the same time, to avoid cytotoxic signaling and to facilitate tumorigenic signaling, have mechanism in place that keep ROS in check. This requires signaling molecules that convey increases in oxidative stress to signal to the nucleus to upregulate antioxidant genes. Protein kinase D1 (PKD1), the serine/threonine kinase, is one of these ROS sensors. In this mini-review, we highlight the mechanisms of how PKD1 is activated in response to oxidative stress, so far known downstream effectors, as well as the importance of PKD1-initiated signaling for development and progression of pancreatic cancer.
Collapse
Affiliation(s)
- Heike Döppler
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic , Jacksonville, FL , USA
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic , Jacksonville, FL , USA
| |
Collapse
|
58
|
Jiang Y, Zheng G, Cai N, Zhang H, Tan Y, Huang M, He Y, He J, Sun H. A fast-response fluorescent probe for hypochlorous acid detection and its application in exogenous and endogenous HOCl imaging of living cells. Chem Commun (Camb) 2017; 53:12349-12352. [DOI: 10.1039/c7cc07373a] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A facile fluorescent probe for exogenous and endogenous HOCl detection in living cells.
Collapse
Affiliation(s)
- Yin Jiang
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Guansheng Zheng
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Ning Cai
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Huatang Zhang
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Yi Tan
- Department of Chemistry
- City University of Hong Kong
- Kowloon
- China
| | - Mengjiao Huang
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Yonghe He
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Jun He
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Hongyan Sun
- Department of Chemistry
- City University of Hong Kong
- Kowloon
- China
- Key Laboratory of Biochip Technology
| |
Collapse
|