51
|
Yadav P, Yadav R, Jain S, Vaidya A. Caspase-3: A primary target for natural and synthetic compounds for cancer therapy. Chem Biol Drug Des 2021; 98:144-165. [PMID: 33963665 DOI: 10.1111/cbdd.13860] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/29/2021] [Accepted: 04/18/2021] [Indexed: 12/21/2022]
Abstract
Caspases, a group of protease enzymes (cysteine proteases), exist as inactive zymogens in the cells and execute apoptosis (programmed cell death). Caspase-3, an executioner caspase, plays an imperative role in apoptosis and becomes a primary target for cancer treatment. A number of analogues of quinazoline, quinazolinone, indoloquinazolines, quinone, naphthoquinones, pyrroloiminoquinones, styrylquinolines, tetheredtetrahydroquinoline, fluoroquinolone, thiosemicarbazones, benzotriazole, pyrimidines, chalcone, and carbazoles have been reported till date, representing caspase-3 mediated apoptosis for cancer therapy. Simultaneously, plant isolates, including lysicamine, podophyllotoxin, and majoranolide, have also been claimed for caspase-3-mediated apoptosis-induced cytotoxicity. Procaspase-activating compound-1 (PAC-1) is the first FDA approved orphan drug, and its synthetic derivative WF-208 also showed fascinating caspase-3 mediated anticancer activity. Till date, a large number of compounds have been reported and patented for their caspase-3-mediated cytotoxicity and now scientist is also focusing to introduce new compounds in market to encompass anticancer activity.
Collapse
Affiliation(s)
- Poonam Yadav
- Department of Pharmacology and Toxicology, NIPER, Hajipur, India
| | - Ramakant Yadav
- Department of Neurology, Uttar Pradesh University of Medical Sciences, Saifai, India
| | - Shweta Jain
- Sir Madan Lal Institute of Pharmacy, Etawah, India
| | - Ankur Vaidya
- Pharmacy College Saifai, Uttar Pradesh University of Medical Sciences, Saifai, India
| |
Collapse
|
52
|
Ayati A, Moghimi S, Toolabi M, Foroumadi A. Pyrimidine-based EGFR TK inhibitors in targeted cancer therapy. Eur J Med Chem 2021; 221:113523. [PMID: 33992931 DOI: 10.1016/j.ejmech.2021.113523] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/25/2021] [Accepted: 04/22/2021] [Indexed: 12/23/2022]
Abstract
Despite significant improvements of new treatment options, cancer continues to represent as one of the most common and fatal disease. The EGFR signaling pathway is considered as a significant approach in targeted therapy of cancers. Blocking the EGFR-driven pathway by inhibiting the intracellular tyrosine kinase domain of EGFR have shown considerable improvement in cancer therapy. In an effort to identify EGFR tyrosine kinase inhibitors (TKI), several small molecules especially pyrimidine containing derivatives have been designed by applying molecular simulation and evaluated the emergence of epigenetic mutation and resistance problems restricted the long-term effectiveness of such medication and explained the need for further investigations in this field. In recent years, the studies have been focused on genetic alterations on EGFR tyrosine kinase domain, which led to the design and synthesis of more selective and effective inhibitors. Herein, we give an overview of the importance and status of EGFR inhibitors in cancer therapy. In addition, we provide an update of the recent advances in design, discovery and development of novel pyrimidine containing compounds as promising selective EGFR TK inhibitors.
Collapse
Affiliation(s)
- Adileh Ayati
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Setareh Moghimi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Toolabi
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Alireza Foroumadi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
53
|
Abbas N, Matada GSP, Dhiwar PS, Patel S, Devasahayam G. Fused and Substituted Pyrimidine Derivatives as Profound Anti-Cancer Agents. Anticancer Agents Med Chem 2021; 21:861-893. [PMID: 32698738 DOI: 10.2174/1871520620666200721104431] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/06/2020] [Accepted: 05/17/2020] [Indexed: 11/22/2022]
Abstract
The rationale behind drug design is the strategic utilization of heterocyclic fragments with specific physicochemical properties to form molecular targeted agents. Among the heterocyclic molecules, pyrimidine has proved to be a privileged pharmacophore for various biological cancer targets. The anti-cancer potential of small molecules with fused and substituted pyrimidines can be enhanced through bioisosteric replacements and altering their ADME parameters. Although several small molecules are used in cancer chemotherapy, oncology therapeutics has various limitations, especially in their routes of administration and their concurrent side effects. Such pernicious effects may be overcome, via selective biological targeting. In this review, the biological targets, to inhibit cancer, have been discussed. The structural activity relationship of fused and substituted pyrimidines was studied. Eco-friendly synthetic approaches for pyrimidine derivatives have also been discussed. This review will give an insight to scientists and researchers of medicinal chemistry discipline to design small molecules having a pyrimidine scaffold with high anti-cancer potential.
Collapse
Affiliation(s)
- Nahid Abbas
- Department of Medicinal Chemistry, Acharya & BM Reddy College of Pharmacy, Bangalore 560107, India
| | | | - Prasad S Dhiwar
- Department of Medicinal Chemistry, Acharya & BM Reddy College of Pharmacy, Bangalore 560107, India
| | - Shilpa Patel
- Department of Medicinal Chemistry, Acharya & BM Reddy College of Pharmacy, Bangalore 560107, India
| | - Giles Devasahayam
- Department of Medicinal Chemistry, Acharya & BM Reddy College of Pharmacy, Bangalore 560107, India
| |
Collapse
|
54
|
Ahmed NM, Youns MM, Soltan MK, Said AM. Design, Synthesis, Molecular Modeling and Antitumor Evaluation of Novel Indolyl-Pyrimidine Derivatives with EGFR Inhibitory Activity. Molecules 2021; 26:molecules26071838. [PMID: 33805918 PMCID: PMC8037142 DOI: 10.3390/molecules26071838] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 01/15/2023] Open
Abstract
Scaffolds hybridization is a well-known drug design strategy for antitumor agents. Herein, series of novel indolyl-pyrimidine hybrids were synthesized and evaluated in vitro and in vivo for their antitumor activity. The in vitro antiproliferative activity of all compounds was obtained against MCF-7, HepG2, and HCT-116 cancer cell lines, as well as against WI38 normal cells using the resazurin assay. Compounds 1-4 showed broad spectrum cytotoxic activity against all these cancer cell lines compared to normal cells. Compound 4g showed potent antiproliferative activity against these cell lines (IC50 = 5.1, 5.02, and 6.6 μM, respectively) comparable to the standard treatment (5-FU and erlotinib). In addition, the most promising group of compounds was further evaluated for their in vivo antitumor efficacy against EAC tumor bearing mice. Notably, compound 4g showed the most potent in vivo antitumor activity. The most active compounds were evaluated for their EGFR inhibitory (range 53-79%) activity. Compound 4g was found to be the most active compound against EGFR (IC50 = 0.25 µM) showing equipotency as the reference treatment (erlotinib). Molecular modeling study was performed on compound 4g revealed a proper binding of this compound inside the EGFR active site comparable to erlotinib. The data suggest that compound 4g could be used as a potential anticancer agent.
Collapse
Affiliation(s)
- Naglaa M. Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Ein-Helwan, Helwan, Cairo 11795, Egypt;
| | - Mahmoud M. Youns
- Biochemistry Department, Faculty of Pharmacy, Helwan University, Ein-Helwan, Helwan, Cairo 11795, Egypt;
- Oman College of Health Sciences, Muscat 123, Oman;
| | - Moustafa K. Soltan
- Oman College of Health Sciences, Muscat 123, Oman;
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Ahmed M. Said
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Ein-Helwan, Helwan, Cairo 11795, Egypt;
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
- Correspondence: ; Tel.: +1-716-907-5016
| |
Collapse
|
55
|
Zhan X, Teng W, Sun K, He J, Yang J, Tian J, Huang X, Zhou L, Zhou C. CD47-mediated DTIC-loaded chitosan oligosaccharide-grafted nGO for synergistic chemo-photothermal therapy against malignant melanoma. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:112014. [PMID: 33812633 DOI: 10.1016/j.msec.2021.112014] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/11/2021] [Accepted: 02/27/2021] [Indexed: 12/11/2022]
Abstract
Nano-graphene oxide (nGO), an effective drug nanocarrier, is used for simultaneous photothermal therapy (PTT) and near-infrared fluorescence imaging. Dacarbazine (DTIC) is used in the treatment of melanoma with limited clinical efficacy. PTT shows promise in the treatment of skin cancer. Herein, chitosan oligosaccharide (COS)-grafted nGO was further modified with CD47 antibody, and loaded DTIC was prepared using a versatile nanoplatform (nGO-COS-CD47/DTIC) for the treatment of melanoma as a synergistic targeted chemo-photothermal therapy. The in vitro results demonstrated that nGO-COS-CD47/DTIC nanocarriers have excellent biocompatibility, photothermal conversion efficiency, high targeting efficiency, fast drug release under NIR irradiation, and tumor cell killing efficiency. Notably, nGO-COS-CD47/DTIC plus NIR irradiation significantly promoted early cell apoptosis through the mitochondrial apoptosis pathway and exhibited a significant joint function of antitumor efficacy. The demonstrated nGO-COS-CD47/DTIC can provide a highly efficient malignant melanoma therapy using this multifunctional intelligent nanoplatform.
Collapse
Affiliation(s)
- Xiaozhen Zhan
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, PR China.
| | - Wanqing Teng
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276005, PR China
| | - Kai Sun
- College of Chemistry and Material Science, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Jiexiang He
- College of Chemistry and Material Science, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Jie Yang
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Jinhuan Tian
- College of Chemistry and Material Science, Jinan University, Guangzhou, Guangdong 510632, PR China.
| | - Xun Huang
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276005, PR China.
| | - Lin Zhou
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, PR China.
| | - Changren Zhou
- College of Chemistry and Material Science, Jinan University, Guangzhou, Guangdong 510632, PR China.
| |
Collapse
|
56
|
Aydin BO, Anil D, Demir Y. Synthesis of N-alkylated pyrazolo[3,4-d]pyrimidine analogs and evaluation of acetylcholinesterase and carbonic anhydrase inhibition properties. Arch Pharm (Weinheim) 2021; 354:e2000330. [PMID: 33502038 DOI: 10.1002/ardp.202000330] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/01/2021] [Accepted: 01/04/2021] [Indexed: 01/28/2023]
Abstract
Fused pyrimidines, especially pyrazolo[3,4-d]pyrimidines, are among the most preferred building blocks for pharmacology studies, as they exhibit a broad spectrum of biological activity. In this study, new derivatives of pyrazolo[3,4-d]pyrimidine were synthesized by alkylation of the N1 nitrogen atom. We synthesized 3-iodo-1H-pyrazolo[3,4-d]pyrimidin-4-amine 2 from commercially available aminopyrazolopyrimidine 1 using N-iodosuccinimide as an iodinating agent. The synthesis of compound 2 started with nucleophilic substitution of 3-iodo-1H-pyrazolo[3,4-d]pyrimidin-4-amine with R-X (X: -OMs, -Br, -Cl), affording N-alkylated pyrazolo[3,4-d]pyrimidine. We performed this synthesis using a weak inorganic base and the mild temperature was also used for a two-step procedure to generate N-alkylated pyrazolo[3,4-d]pyrimidine derivatives. Also, all compounds were tested for their ability to inhibit acetylcholinesterase (AChE) and the human carbonic anhydrase (hCA) isoforms I and II, with Ki values in the range of 15.41 ± 1.39-63.03 ± 10.68 nM for AChE, 17.68 ± 1.92-66.27 ± 5.43 nM for hCA I, and 8.41 ± 2.03-28.60 ± 7.32 nM for hCA II. Notably, compound 10 was the most selective and potent CA I inhibitor with a significant selectivity ratio of 26.90.
Collapse
Affiliation(s)
- Busra O Aydin
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Derya Anil
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey.,Department of Chemistry and Chemical Process Technologies, Technical Sciences Vocational School, Ataturk University, Erzurum, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational School, Ardahan University, Ardahan, Turkey
| |
Collapse
|
57
|
Amin NH, Elsaadi MT, Zaki SS, Abdel-Rahman HM. Design, synthesis and molecular modeling studies of 2-styrylquinazoline derivatives as EGFR inhibitors and apoptosis inducers. Bioorg Chem 2020; 105:104358. [PMID: 33074119 DOI: 10.1016/j.bioorg.2020.104358] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/05/2020] [Accepted: 10/05/2020] [Indexed: 12/25/2022]
Abstract
Herein, we report the synthesis of novel 2-substituted styrylquinazolines conjugated with aniline or sulfonamide moieties, anticipated to act as potent anticancer therapeutic agents through preferential EGFR inhibition. In doing so, all the synthesized compounds were screened for their in vitro anticancer activities (nine subpanels) at the National Cancer Institute (NCI), USA. The resulting two most active anticancer compounds (7b and 8c) were then chemically manipulated to investigate feasible derivatives (12a-e and 15a-d). MTT cytotoxicity, in vitro cell free EGFR and anti-proliferative activity against EGFR/ A549 cell line evaluation for the most active broadly spectrum candidates (7a/b, 8c/e, 12b and 15d) was conducted. Promising results were obtained for the styrylquinazoline-benzenesulfonamide derivative 8c (IC50 = 8.62 µM, 0.190 µM and = 79.25%), if compared to lapatanib (IC50 = 11.98 µM, 0.190 µM, and 79.25%), respectively. Moreover, its apoptotic induction potential was studied through cell cycle analysis, Annexin-V and caspase-3 activation assays. Results showed a clear cell arrest at G2/M phase, a late apoptotic increase (76 folds) and a fruitful caspase-3 expression change (8 folds), compared to the control. Finally, molecular docking studies of compounds 7a/b, 8c/e, 12b and 15d revealed proper fitting into the active site of EGFR with a low binding energy score for compound 8c (-13.19 Kcal/mole), compared to lapatanib (-14.54 Kcal/mole).
Collapse
Affiliation(s)
- Noha H Amin
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Mohammed T Elsaadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; Department of Medicinal Chemistry, Faculty of Pharmacy, Sinai University-Kantra Branch, Egypt
| | - Shimaa S Zaki
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Hamdy M Abdel-Rahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt; Department of Medicinal Chemistry, Faculty of Pharmacy, Assiut University, 71526 Assiut, Egypt
| |
Collapse
|
58
|
Gummidi L, Kerru N, Awolade P, Raza A, Sharma AK, Singh P. Synthesis of indole-tethered [1,3,4]thiadiazolo and [1,3,4]oxadiazolo[3,2-a]pyrimidin-5-one hybrids as anti-pancreatic cancer agents. Bioorg Med Chem Lett 2020; 30:127544. [PMID: 32920143 DOI: 10.1016/j.bmcl.2020.127544] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 01/07/2023]
Abstract
New indole-tethered [1,3,4]thiadiazolo[3,2-a]pyrimidin-5-one (8a-j) and [1,3,4]oxadiazolo[3,2-a]pyrimidin-5-one hybrids (9a-e) were synthesized using [4+2] cycloaddition reactions of functionalized 1,3-diazabuta-1,3-dienes with indole-ketenes. All molecular hybrids were structurally characterized by spectroscopic techniques (IR, NMR, and HRMS) and screened for their anti-pancreatic cancer activity in vitro. The [1,3,4]oxadiazolo[3,2-a]pyrimidin-5-one hybrids (9a-e) showed stronger anti-pancreatic cancer activity than the [1,3,4]thiadiazolo[3,2-a]pyrimidin-5-one hybrids (8a-j) against the PANC-1 cell line. Compound 9d bearing an ortho-chlorophenyl moiety emerged as the most potent anti-pancreatic cancer agent with an IC50 value of 7.7 ± 0.4 µM, much superior to the standard drug Gemcitabine (IC50 > 500 µM). The discovery of these [1,3,4]thiadiazolo and [1,3,4]oxadiazolo[3,2-a]pyrimidin-5-one hybrids elicits their potentials as pursuable candidates for pancreatic cancer chemotherapy.
Collapse
Affiliation(s)
- Lalitha Gummidi
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Nagaraju Kerru
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Paul Awolade
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Asif Raza
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Arun K Sharma
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa.
| |
Collapse
|
59
|
Baillache DJ, Unciti-Broceta A. Recent developments in anticancer kinase inhibitors based on the pyrazolo[3,4- d]pyrimidine scaffold. RSC Med Chem 2020; 11:1112-1135. [PMID: 33479617 PMCID: PMC7652001 DOI: 10.1039/d0md00227e] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/01/2020] [Indexed: 12/24/2022] Open
Abstract
Pyrazolo[3,4-d]pyrimidines have become of significant interest for the medicinal chemistry community as a privileged scaffold for the development of kinase inhibitors to treat a range of diseases, including cancer. This fused nitrogen-containing heterocycle is an isostere of the adenine ring of ATP, allowing the molecules to mimic hinge region binding interactions in kinase active sites. Similarities in kinase ATP sites can be exploited to direct the activity and selectivity of pyrazolo[3,4-d]pyrimidines to multiple oncogenic targets through focussed chemical modification. As a result, pharma and academic efforts have succeeded in progressing several pyrazolo[3,4-d]pyrimidines to clinical trials, including the BTK inhibitor ibrutinib, which has been approved for the treatment of several B-cell cancers. In this review, we examine the pyrazolo[3,4-d]pyrimidines currently in clinical trials for oncology patients, as well as those published in the literature during the last 5 years for different anticancer indications.
Collapse
Affiliation(s)
- Daniel J Baillache
- Cancer Research UK Edinburgh Centre , Institute of Genetics and Molecular Medicine , University of Edinburgh , Crewe Road South , Edinburgh EH4 2XR , UK .
| | - Asier Unciti-Broceta
- Cancer Research UK Edinburgh Centre , Institute of Genetics and Molecular Medicine , University of Edinburgh , Crewe Road South , Edinburgh EH4 2XR , UK .
| |
Collapse
|
60
|
Li ZW, Zhong CY, Wang XR, Li SN, Pan CY, Wang X, Sun XY. Synthesis and Evaluation of the Antitumor Activity of Novel 1-(4-Substituted phenyl)-2-ethyl Imidazole Apoptosis Inducers In Vitro. Molecules 2020; 25:E4293. [PMID: 32962127 PMCID: PMC7570620 DOI: 10.3390/molecules25184293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 01/10/2023] Open
Abstract
Novel imidazole derivatives were designed, prepared, and evaluated in vitro for antitumor activity. The majority of the tested derivatives showed improved antiproliferative activity compared to the positive control drugs 5-FU and MTX. Among them, compound 4f exhibited outstanding antiproliferative activity against three cancer cell lines and was considerably more potent than both 5-FU and MTX. In particular, the selectivity index indicated that the tolerance of normal L-02 cells to 4f was 23-46-fold higher than that of tumor cells. This selectivity was significantly higher than that exhibited by the positive control drugs. Furthermore, compound 4f induced cell apoptosis by increasing the protein expression levels of Bax and decreasing those of Bcl-2 in a time-dependent manner. Therefore, 4f could be a potential candidate for the development of a novel antitumor agent.
Collapse
Affiliation(s)
- Zhen-Wang Li
- College of Animal Science and Technique, Heilongjiang Bayi Agriculture University, Daqing 163319, Heilongjiang, China; (Z.-W.L.); (C.-Y.Z.); (X.-R.W.); (S.-N.L.); (C.-Y.P.); (X.W.)
| | - Chun-Yan Zhong
- College of Animal Science and Technique, Heilongjiang Bayi Agriculture University, Daqing 163319, Heilongjiang, China; (Z.-W.L.); (C.-Y.Z.); (X.-R.W.); (S.-N.L.); (C.-Y.P.); (X.W.)
| | - Xiao-Ran Wang
- College of Animal Science and Technique, Heilongjiang Bayi Agriculture University, Daqing 163319, Heilongjiang, China; (Z.-W.L.); (C.-Y.Z.); (X.-R.W.); (S.-N.L.); (C.-Y.P.); (X.W.)
| | - Shi-Nian Li
- College of Animal Science and Technique, Heilongjiang Bayi Agriculture University, Daqing 163319, Heilongjiang, China; (Z.-W.L.); (C.-Y.Z.); (X.-R.W.); (S.-N.L.); (C.-Y.P.); (X.W.)
| | - Chun-Yuan Pan
- College of Animal Science and Technique, Heilongjiang Bayi Agriculture University, Daqing 163319, Heilongjiang, China; (Z.-W.L.); (C.-Y.Z.); (X.-R.W.); (S.-N.L.); (C.-Y.P.); (X.W.)
| | - Xin Wang
- College of Animal Science and Technique, Heilongjiang Bayi Agriculture University, Daqing 163319, Heilongjiang, China; (Z.-W.L.); (C.-Y.Z.); (X.-R.W.); (S.-N.L.); (C.-Y.P.); (X.W.)
| | - Xian-Yu Sun
- College of Animal Science and Technique, Heilongjiang Bayi Agriculture University, Daqing 163319, Heilongjiang, China; (Z.-W.L.); (C.-Y.Z.); (X.-R.W.); (S.-N.L.); (C.-Y.P.); (X.W.)
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu, China
| |
Collapse
|
61
|
Zhang RL, Aimudula A, Dai JH, Bao YX. RASA1 inhibits the progression of renal cell carcinoma by decreasing the expression of miR-223-3p and promoting the expression of FBXW7. Biosci Rep 2020; 40:BSR20194143. [PMID: 32588875 PMCID: PMC7350892 DOI: 10.1042/bsr20194143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 12/26/2022] Open
Abstract
RAS p21 protein activator 1 (RASA1), also known as p120-RasGAP, is a RasGAP protein that functions as a signaling scaffold protein, regulating pivotal signal cascades. However, its biological mechanism in renal cell carcinoma (RCC) remains unknown. In the present study, RASA1, F-box/WD repeat-containing protein 7 (FBXW7), and miR-223-3p expression were assessed via quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot. Then, the targeted correlations of miR-223-3p with FBXW7 and RASA1 were verified via a dual-luciferase reporter gene assay. CCK-8, flow cytometry, and Transwell assays were implemented independently to explore the impact of RASA1 on cell proliferation, apoptosis, migration, and cell cycle progression. Finally, the influence of RASA1 on tumor formation in RCC was assessed in vivo through the analysis of tumor growth in nude mice. Results showed that FBXW7 and RASA1 expression were decreased in RCC tissues and cell lines, while miR-223-3p was expressed at a higher level. Additionally, FBXW7 and RASA1 inhibited cell proliferation but facilitated the population of RCC cells in the G0/G1 phase. Altogether, RASA1 may play a key role in the progression of RCC by decreasing miR-223-3p and subsequently increasing FBXW7 expression.
Collapse
Affiliation(s)
- Rui-Li Zhang
- Postdoctoral Workstation, Changji Branch Hospital of The First Affiliated Hospital of Xinjiang Medical University, Changji, China
- Cancer Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ainiwaer Aimudula
- Cancer Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jiang-Hong Dai
- School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Yong-Xing Bao
- Cancer Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
62
|
Gaonkar S, Savanur MA, Nadaf AA, Najare MS, Mantur S, Garbhagudi M, Mulla SI, Khazi IAM. Novel pyrazolo[3,4‐
d
]pyrimidine derivatives inhibit human cancer cell proliferation and induce apoptosis by ROS generation. Arch Pharm (Weinheim) 2020; 353:e1900296. [DOI: 10.1002/ardp.201900296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/28/2020] [Accepted: 02/03/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Supreet Gaonkar
- Department of Studies in ChemistryKarnatak UniversityDharwad Karnataka India
| | | | - AfraQuasar A. Nadaf
- Department of Studies in ChemistryKarnatak UniversityDharwad Karnataka India
| | - Mahesh S. Najare
- Department of Studies in ChemistryKarnatak UniversityDharwad Karnataka India
| | - Shivaraj Mantur
- Department of Studies in ChemistryKarnatak UniversityDharwad Karnataka India
| | | | - Sikandar I. Mulla
- Department of BiochemistrySchool of Applied SciencesREVA UniversityBangalore Karnataka India
| | | |
Collapse
|
63
|
Kassab AE, El‐Dash Y, Gedawy EM. Novel pyrazolopyrimidine urea derivatives: Synthesis, antiproliferative activity, VEGFR‐2 inhibition, and effects on the cell cycle profile. Arch Pharm (Weinheim) 2020; 353:e1900319. [DOI: 10.1002/ardp.201900319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 01/11/2023]
Affiliation(s)
- Asmaa E. Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of PharmacyCairo UniversityCairo Egypt
| | - Yara El‐Dash
- Department of Pharmaceutical Organic Chemistry, Faculty of PharmacyCairo UniversityCairo Egypt
| | - Ehab M. Gedawy
- Department of Pharmaceutical Organic Chemistry, Faculty of PharmacyCairo UniversityCairo Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical IndustriesBadr University in Cairo (BUC)Cairo Egypt
| |
Collapse
|
64
|
Reddy BN, Ruddarraju RR, Kiran G, Pathak M, Reddy ARN. Novel Pyrazolo[3,4‐
d
]pyrimidine‐Containing Amide Derivatives: Synthesis, Molecular Docking, In Vitro and In Vivo Antidiabetic Activity. ChemistrySelect 2019. [DOI: 10.1002/slct.201900208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Bijivemula N. Reddy
- School of Advanced SciencesVellore Institute of Technology Vellore- 632014, Tamil Nadu India
| | - Radhakrishnam Raju. Ruddarraju
- Factory: Plot-79/B&CPashamylaram, Patancheru Medak (Dist)- 502307, Telangana India
- Jawaharlal Nehru Technological University Hyderabad- 500085, Telangana India
| | - Gangarapu. Kiran
- Department of Pharmaceutical Analysis & ChemistryAnurag Group of InstitutionsSchool of Pharmacy, Venkatapur(V), Ghatkesar(M), Medchal(D) Telangana India
| | - Madhvesh Pathak
- School of Advanced SciencesVellore Institute of Technology Vellore- 632014, Tamil Nadu India
| | - Anreddy Rama Narsimha Reddy
- Department of PharmacologyJyothishmathi Institute of Pharmaceutical Sciences, Karimnagar Telangana State INDIA – 505481
| |
Collapse
|
65
|
Somakala K, Tariq S, Amir M. Synthesis, evaluation and docking of novel pyrazolo pyrimidines as potent p38α MAP kinase inhibitors with improved anti-inflammatory, ulcerogenic and TNF-α inhibitory properties. Bioorg Chem 2019; 87:550-559. [DOI: 10.1016/j.bioorg.2019.03.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/06/2019] [Accepted: 03/14/2019] [Indexed: 01/07/2023]
|