51
|
Lin Y, Min L, Huang Q, Chen Y, Fang C, Sun X, Dong S. The combined effects of DEHP and PCBs on phospholipase in the livers of mice. ENVIRONMENTAL TOXICOLOGY 2015; 30:197-204. [PMID: 23804495 DOI: 10.1002/tox.21885] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 05/24/2013] [Accepted: 05/27/2013] [Indexed: 06/02/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) and polychlorinated biphenyls (PCBs) are two widely distributed pollutants that are of great concern due to their adverse health effects. However, few studies have investigated the combined effects of DEHP and PCBs. In this study, adult mice were continuously exposed to mixtures of DEHP (15 mg/kg bodyweight/day) and Aroclor 1254 (7.5 mg/kg bodyweight/day) for 12 days to investigate the combined effects of these compounds. The results showed that the ratio of the liver weight to the body weight was higher in the treated group than that in the control group. The effects of combined exposure on three important receptors, the proliferator-activated receptor (PPAR), estrogen receptor (ER), and aryl hydrocarbon receptor (AHR), were investigated. The mRNA level of PPARγ was significantly up-regulated after exposure. The expression level of ERα was decreased in the male treated group. In contrast, the expression levels of AHR and related genes (cyp1a1 and cyp1b1) were not markedly affected. The expression level of phospholipase A (PLA) was significantly down-regulated at both the mRNA and protein levels in male mice after combined treatment. In all, our study demonstrated the combined effects of DEHP and PCBs on the expression levels of key receptors in mice. The combined exposure led to a decrease in phospholipase in male mice.
Collapse
Affiliation(s)
- Yi Lin
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
52
|
Zolfaghari M, Drogui P, Seyhi B, Brar SK, Buelna G, Dubé R. Occurrence, fate and effects of Di (2-ethylhexyl) Phthalate in wastewater treatment plants: a review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 194:281-293. [PMID: 25091800 DOI: 10.1016/j.envpol.2014.07.014] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/07/2014] [Accepted: 07/10/2014] [Indexed: 06/03/2023]
Abstract
Phthalates, such as Di (2-ethylhexyl) Phthalate (DEHP) are compounds extensively used as plasticizer for long time around the world. Due to the extensive usage, DEHP is found in many surface waters (0.013-18.5 μg/L), wastewaters (0.716-122 μg/L), landfill leachate (88-460 μg/L), sludge (12-1250 mg/kg), soil (2-10 mg/kg). DEHP is persistent in the environment and the toxicity of the byproducts resulting from the degradation of DEHP sometime exacerbates the parent compound toxicity. Water/Wastewater treatment processes might play a key role in delivering safe, reliable supplies of water to households, industry and in safeguarding the quality of water in rivers, lakes and aquifers. This review addresses state of knowledge concerning the worldwide production, occurrence, fate and effects of DEHP in the environment. Moreover, the fate and behavior of DEHP in various treatment processes, including biological, physicochemical and advanced processes are reviewed and comparison (qualitative and quantitative) has been done between the processes. The trends and perspectives for treatment of wastewaters contaminated by DEHP are also analyzed in this review.
Collapse
Affiliation(s)
- M Zolfaghari
- Institut national de la recherche scientifique (INRS-Eau, Terre et Environnement), Université du Québec, 490 rue de la Couronne, Québec, QC G1K 9A9, Canada
| | - P Drogui
- Institut national de la recherche scientifique (INRS-Eau, Terre et Environnement), Université du Québec, 490 rue de la Couronne, Québec, QC G1K 9A9, Canada.
| | - B Seyhi
- Institut national de la recherche scientifique (INRS-Eau, Terre et Environnement), Université du Québec, 490 rue de la Couronne, Québec, QC G1K 9A9, Canada
| | - S K Brar
- Institut national de la recherche scientifique (INRS-Eau, Terre et Environnement), Université du Québec, 490 rue de la Couronne, Québec, QC G1K 9A9, Canada
| | - G Buelna
- Industrial Research Center of Quebec, 333 rue Franquet, Québec, QC G1P 4C7, Canada
| | - R Dubé
- Industrial Research Center of Quebec, 333 rue Franquet, Québec, QC G1P 4C7, Canada
| |
Collapse
|
53
|
Demethylation within the proximal promoter region of human estrogen receptor alpha gene correlates with its enhanced expression: Implications for female bias in lupus. Mol Immunol 2014; 61:28-37. [DOI: 10.1016/j.molimm.2014.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 04/28/2014] [Accepted: 05/02/2014] [Indexed: 11/19/2022]
|
54
|
Cuvillier-Hot V, Salin K, Devers S, Tasiemski A, Schaffner P, Boulay R, Billiard S, Lenoir A. Impact of ecological doses of the most widespread phthalate on a terrestrial species, the ant Lasius niger. ENVIRONMENTAL RESEARCH 2014; 131:104-110. [PMID: 24713390 DOI: 10.1016/j.envres.2014.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 12/03/2013] [Accepted: 03/18/2014] [Indexed: 06/03/2023]
Abstract
Phthalates are synthetic contaminants released into the environment notably by plastic waste. Semi-volatile, they adsorb to atmospheric particles and get distributed in all ecosystems. Effects of this major anthropogenic pollution in economical species in aquatic habitats have attracted large interest. On the contrary, very few studies have focused on wild terrestrial species. Yet, these lipophilic molecules are easily trapped by insect cuticle; ants and other insects have been shown to permanently bear among their cuticular components a non-negligible proportion of phthalates, meaning that they suffer from chronic exposure to these pollutants. Oral route could also be an additional way of contamination, as phthalates tend to stick to any organic particle. We show here via a food choice experiment that Lasius niger workers can detect, and avoid feeding on, food contaminated with DEHP (DiEthyl Hexyl Phthalate), the most widespread phthalate found in nature. This suggests that the main source of contamination for ants is atmosphere and that doses measured on the cuticle correspond to the chronic exposure levels for these animals. Such an ecologically relevant dose of DEHP was used to contaminate ants in lab and to investigate their physiological impact. Over a chronic exposure (1 dose per week for 5 weeks), the egg-laying rate of queens was significantly reduced lending credence to endocrine disruptive properties of such a pollutant, as also described for aquatic invertebrates. On the contrary, short term exposure (24h) to a single dose of DEHP does not induce oxidative stress in ant workers as expected, but leads to activation of the immune system. Because of their very large distribution, their presence in virtually all terrestrial ecosystems and their representation at all trophic levels, ants could be useful indicators of contamination by phthalates, especially via monitoring the level of activation of their immune state.
Collapse
Affiliation(s)
- Virginie Cuvillier-Hot
- Laboratoire GEPV - CNRS, UMR 8198 Université des Sciences et Technologies de Lille1, Villeneuve d'Ascq, France.
| | - Karine Salin
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA) - CNRS, UMR 5023 Université Lyon1, Villeurbanne, France
| | - Séverine Devers
- IRBI, Institut de Recherche sur la Biologie de l'Insecte, Université François Rabelais, UMR CNRS 7261, Tours, France
| | - Aurélie Tasiemski
- Laboratoire GEPV - CNRS, UMR 8198 Université des Sciences et Technologies de Lille1, Villeneuve d'Ascq, France
| | - Pauline Schaffner
- Laboratoire GEPV - CNRS, UMR 8198 Université des Sciences et Technologies de Lille1, Villeneuve d'Ascq, France
| | - Raphaël Boulay
- IRBI, Institut de Recherche sur la Biologie de l'Insecte, Université François Rabelais, UMR CNRS 7261, Tours, France
| | - Sylvain Billiard
- Laboratoire GEPV - CNRS, UMR 8198 Université des Sciences et Technologies de Lille1, Villeneuve d'Ascq, France
| | - Alain Lenoir
- IRBI, Institut de Recherche sur la Biologie de l'Insecte, Université François Rabelais, UMR CNRS 7261, Tours, France
| |
Collapse
|
55
|
Phthalates in Food Packaging, Consumer Products, and Indoor Environments. MOLECULAR AND INTEGRATIVE TOXICOLOGY 2014. [DOI: 10.1007/978-1-4471-6500-2_2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
56
|
Environmental chemical stressors as epigenome modifiers: a new horizon in assessment of toxicological effects. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11434-013-0007-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
57
|
Chen FP, Chien MH. Lower concentrations of phthalates induce proliferation in human breast cancer cells. Climacteric 2013; 17:377-84. [DOI: 10.3109/13697137.2013.865720] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
58
|
Magdouli S, Daghrir R, Brar SK, Drogui P, Tyagi RD. Di 2-ethylhexylphtalate in the aquatic and terrestrial environment: a critical review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2013; 127:36-49. [PMID: 23681404 DOI: 10.1016/j.jenvman.2013.04.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/29/2013] [Accepted: 04/06/2013] [Indexed: 05/25/2023]
Abstract
Phthalates are being increasingly used as softeners-plasticizers to improve the plasticity and the flexibility of materials. Amongst the different plasticizers used, more attention is paid to di (2-ethylhexylphtalate) (DEHP), one of the most representative compounds as it exhibits predominant effects on environment and human health. Meanwhile, several questions related to its sources; toxicity, distribution and fate still remain unanswered. Most of the evidence until date suggests that DEHP is an omnipresent compound found in different ecological compartments and its higher hydrophobicity and low volatility have resulted in significant adsorption to solids matrix. In fact, there are important issues to be addressed with regard to the toxicity of this compound in both animals and humans, its behavior in different ecological systems, and the transformation products generated during different biological or advanced chemical treatments. This article presents detailed review of existing treatment schemes, research gaps and future trends related to DEHP.
Collapse
Affiliation(s)
- S Magdouli
- Institut National de la Recherche Scientifique (INRS-Eau Terre et Environnement), Université du Québec, 490 rue de la Couronne, Québec City, Québec, Canada G1K 9A9.
| | | | | | | | | |
Collapse
|
59
|
Sprague BL, Trentham-Dietz A, Hedman CJ, Wang J, Hemming JD, Hampton JM, Buist DS, Aiello Bowles EJ, Sisney GS, Burnside ES. Circulating serum xenoestrogens and mammographic breast density. Breast Cancer Res 2013; 15:R45. [PMID: 23710608 PMCID: PMC4053153 DOI: 10.1186/bcr3432] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 05/27/2013] [Indexed: 12/21/2022] Open
Abstract
Introduction Humans are widely exposed to estrogenically active phthalates, parabens, and phenols, raising concerns about potential effects on breast tissue and breast cancer risk. We sought to determine the association of circulating serum levels of these chemicals (reflecting recent exposure) with mammographic breast density (a marker of breast cancer risk). Methods We recruited postmenopausal women aged 55 to 70 years from mammography clinics in Madison, Wisconsin (N = 264). Subjects completed a questionnaire and provided a blood sample that was analyzed for mono-ethyl phthalate, mono-butyl phthalate, mono-benzyl phthalate, butyl paraben, propyl paraben, octylphenol, nonylphenol, and bisphenol A (BPA). Percentage breast density was measured from mammograms by using a computer-assisted thresholding method. Results Serum BPA was positively associated with mammographic breast density after adjusting for age, body mass index, and other potentially confounding factors. Mean percentage density was 12.6% (95% confidence interval (CI), 11.4 to 14.0) among the 193 women with nondetectable BPA levels, 13.7% (95% CI, 10.7 to 17.1) among the 35 women with detectable levels below the median (<0.55 ng/ml), and 17.6% (95% CI, 14.1 to 21.5) among the 34 women with detectable levels above the median (>0.55 ng/ml; Ptrend = 0.01). Percentage breast density was also elevated (18.2%; 95% CI, 13.4 to 23.7) among the 18 women with serum mono-ethyl phthalate above the median detected level (>3.77 ng/ml) compared with women with nondetectable BPA levels (13.1%; 95% CI, 11.9 to 14.3; Ptrend = 0.07). No other chemicals demonstrated associations with percentage breast density. Conclusions Postmenopausal women with high serum levels of BPA and mono-ethyl phthalate had elevated breast density. Further investigation of the impact of BPA and mono-ethyl phthalate on breast cancer risk by using repeated serum measurements or other markers of xenoestrogen exposure are needed.
Collapse
|
60
|
Macon MB, Fenton SE. Endocrine disruptors and the breast: early life effects and later life disease. J Mammary Gland Biol Neoplasia 2013; 18:43-61. [PMID: 23417729 PMCID: PMC3682794 DOI: 10.1007/s10911-013-9275-7] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 01/16/2013] [Indexed: 01/09/2023] Open
Abstract
Breast cancer risk has both heritable and environment/lifestyle components. The heritable component is a small contribution (5-27 %), leaving the majority of risk to environment (e.g., applied chemicals, food residues, occupational hazards, pharmaceuticals, stress) and lifestyle (e.g., physical activity, cosmetics, water source, alcohol, smoking). However, these factors are not well-defined, primarily due to the enormous number of factors to be considered. In both humans and rodent models, environmental factors that act as endocrine disrupting compounds (EDCs) have been shown to disrupt normal mammary development and lead to adverse lifelong consequences, especially when exposures occur during early life. EDCs can act directly or indirectly on mammary tissue to increase sensitivity to chemical carcinogens or enhance development of hyperplasia, beaded ducts, or tumors. Protective effects have also been reported. The mechanisms for these changes are not well understood. Environmental agents may also act as carcinogens in adult rodent models, directly causing or promoting tumor development, typically in more than one organ. Many of the environmental agents that act as EDCs and are known to affect the breast are discussed. Understanding the mechanism(s) of action for these compounds will be critical to prevent their effects on the breast in the future.
Collapse
Affiliation(s)
- Madisa B. Macon
- Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC, USA
- NTP Laboratories, Division of the National Toxicology Program, NIEHS, NIH, 111 TW Alexander Dr, Bldg 101, MD E1-08, Research Triangle Park, NC 27709, USA
| | - Suzanne E. Fenton
- NTP Laboratories, Division of the National Toxicology Program, NIEHS, NIH, 111 TW Alexander Dr, Bldg 101, MD E1-08, Research Triangle Park, NC 27709, USA
| |
Collapse
|
61
|
Chu DP, Tian S, Sun DG, Hao CJ, Xia HF, Ma X. Exposure to mono-n-butyl phthalate disrupts the development of preimplantation embryos. Reprod Fertil Dev 2013; 25:1174-84. [DOI: 10.1071/rd12178] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 11/14/2012] [Indexed: 12/12/2022] Open
Abstract
Dibutyl phthalate (DBP), a widely used phthalate, is known to cause many serious diseases, especially in the reproductive system. However, little is known about the effects of its metabolite, mono-n-butyl phthalate (MBP), on preimplantation embryo development. In the present study, we found that treatment of embryos with 10–3 M MBP impaired developmental competency, whereas exposure to 10–4 M MBP delayed the progression of preimplantation embryos to the blastocyst stage. Furthermore, reactive oxygen species (ROS) levels in embryos were significantly increased following treatment with 10–3 M MBP. In addition, 10–3 M MBP increased apoptosis via the release of cytochrome c, whereas immunofluorescent analysis revealed that exposure of preimplantation embryos to MBP concentration-dependently (10–5, 10–4 and 10–3 M) decreased DNA methylation. Together, the results indicate a possible relationship between MBP exposure and developmental failure in preimplantation embryos.
Collapse
|
62
|
Prenatal and Perinatal Environmental Influences on the Human Fetal and Placental Epigenome. Clin Pharmacol Ther 2012; 92:716-26. [DOI: 10.1038/clpt.2012.141] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
63
|
Caldwell JC. DEHP: Genotoxicity and potential carcinogenic mechanisms—A review. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2012; 751:82-157. [DOI: 10.1016/j.mrrev.2012.03.001] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/22/2012] [Accepted: 03/22/2012] [Indexed: 10/28/2022]
|
64
|
Schwartzer JJ, Koenig CM, Berman RF. Using mouse models of autism spectrum disorders to study the neurotoxicology of gene-environment interactions. Neurotoxicol Teratol 2012; 36:17-35. [PMID: 23010509 DOI: 10.1016/j.ntt.2012.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 08/28/2012] [Accepted: 08/30/2012] [Indexed: 10/27/2022]
Abstract
To better study the role of genetics in autism, mouse models have been developed which mimic the genetics of specific autism spectrum and related disorders. These models have facilitated research on the role genetic susceptibility factors in the pathogenesis of autism in the absence of environmental factors. Inbred mouse strains have been similarly studied to assess the role of environmental agents on neurodevelopment, typically without the complications of genetic heterogeneity of the human population. What has not been as actively pursued, however, is the methodical study of the interaction between these factors (e.g., gene and environmental interactions in neurodevelopment). This review suggests that a genetic predisposition paired with exposure to environmental toxicants plays an important role in the etiology of neurodevelopmental disorders including autism, and may contribute to the largely unexplained rise in the number of children diagnosed with autism worldwide. Specifically, descriptions of the major mouse models of autism and toxic mechanisms of prevalent environmental chemicals are provided followed by a discussion of current and future research strategies to evaluate the role of gene and environment interactions in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Jared J Schwartzer
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California, Davis, Davis, CA 95618, United States.
| | | | | |
Collapse
|
65
|
Singh S, Li SSL. Epigenetic effects of environmental chemicals bisphenol A and phthalates. Int J Mol Sci 2012; 13:10143-10153. [PMID: 22949852 PMCID: PMC3431850 DOI: 10.3390/ijms130810143] [Citation(s) in RCA: 286] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/18/2012] [Accepted: 08/08/2012] [Indexed: 01/07/2023] Open
Abstract
The epigenetic effects on DNA methylation, histone modification, and expression of non-coding RNAs (including microRNAs) of environmental chemicals such as bisphenol A (BPA) and phthalates have expanded our understanding of the etiology of human complex diseases such as cancers and diabetes. Multiple lines of evidence from in vitro and in vivo models have established that epigenetic modifications caused by in utero exposure to environmental toxicants can induce alterations in gene expression that may persist throughout life. Epigenetics is an important mechanism in the ability of environmental chemicals to influence health and disease, and BPA and phthalates are epigenetically toxic. The epigenetic effect of BPA was clearly demonstrated in viable yellow mice by decreasing CpG methylation upstream of the Agouti gene, and the hypomethylating effect of BPA was prevented by maternal dietary supplementation with a methyl donor like folic acid or the phytoestrogen genistein. Histone H3 was found to be trimethylated at lysine 27 by BPA effect on EZH2 in a human breast cancer cell line and mice. BPA exposure of human placental cell lines has been shown to alter microRNA expression levels, and specifically, miR-146a was strongly induced by BPA treatment. In human breast cancer MCF7 cells, treatment with the phthalate BBP led to demethylation of estrogen receptor (ESR1) promoter-associated CpG islands, indicating that altered ESR1 mRNA expression by BBP is due to aberrant DNA methylation. Maternal exposure to phthalate DEHP was also shown to increase DNA methylation and expression levels of DNA methyltransferases in mouse testis. Further, some epigenetic effects of BPA and phthalates in female rats were found to be transgenerational. Finally, the available new technologies for global analysis of epigenetic alterations will provide insight into the extent and patterns of alterations between human normal and diseased tissues. In vitro models such as human embryonic stem cells may be extremely useful in bettering the understanding of epigenetic effects on human development, health and disease, because the formation of embryoid bodies in vitro is very similar to the early stage of embryogenesis.
Collapse
Affiliation(s)
- Sher Singh
- Department of Life Science, College of Science, National Taiwan Normal University, Taipei 116, Taiwan; E-Mail:
| | - Steven Shoei-Lung Li
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center of Excellence for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-7-313-5162; Fax: +886-7-313-5162
| |
Collapse
|
66
|
Rusyn I, Corton JC. Mechanistic considerations for human relevance of cancer hazard of di(2-ethylhexyl) phthalate. Mutat Res 2011; 750:141-158. [PMID: 22198209 DOI: 10.1016/j.mrrev.2011.12.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 12/06/2011] [Accepted: 12/12/2011] [Indexed: 12/28/2022]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a peroxisome proliferator agent that is widely used as a plasticizer to soften polyvinylchloride plastics and non-polymers. Both occupational (e.g., by inhalation during its manufacture and use as a plasticizer of polyvinylchloride) and environmental (medical devices, contamination of food, or intake from air, water and soil) routes of exposure to DEHP are of concern for human health. There is sufficient evidence for carcinogenicity of DEHP in the liver in both rats and mice; however, there is little epidemiological evidence on possible associations between exposure to DEHP and liver cancer in humans. Data are available to suggest that liver is not the only target tissue for DEHP-associated toxicity and carcinogenicity in both humans and rodents. The debate regarding human relevance of the findings in rats or mice has been informed by studies on the mechanisms of carcinogenesis of the peroxisome proliferator class of chemicals, including DEHP. Important additional mechanistic information became available in the past decade, including, but not limited to, sub-acute, sub-chronic and chronic studies with DEHP in peroxisome proliferator-activated receptor (PPAR) α-null mice, as well as experiments utilizing several transgenic mouse lines. Activation of PPARα and the subsequent downstream events mediated by this transcription factor represent an important mechanism of action for DEHP in rats and mice. However, additional data from animal models and studies in humans exposed to DEHP from the environment suggest that multiple molecular signals and pathways in several cell types in the liver, rather than a single molecular event, contribute to the cancer in rats and mice. In addition, the toxic and carcinogenic effects of DEHP are not limited to liver. The International Agency for Research on Cancer working group concluded that the human relevance of the molecular events leading to cancer elicited by DEHP in several target tissues (e.g., liver and testis) in rats and mice can not be ruled out and DEHP was classified as possibly carcinogenic to humans (Group 2B).
Collapse
Affiliation(s)
- Ivan Rusyn
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599-7431, USA.
| | - J Christopher Corton
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| |
Collapse
|
67
|
Jiang R, Deng L, Zhao L, Li X, Zhang F, Xia Y, Gao Y, Wang X, Sun B. miR-22 promotes HBV-related hepatocellular carcinoma development in males. Clin Cancer Res 2011; 17:5593-5603. [PMID: 21750200 DOI: 10.1158/1078-0432.ccr-10-1734] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE Previous reports have shown that IL-1α-MyD88-IL-6 signaling is essential in promoting hepatocellular carcinoma (HCC) development in a diethylnitrosamine (DEN)-induced mouse model. We aimed to determine whether interleukin (IL)-1α regulates HCC development in humans. METHODS HBV-associated HCC tissue, corresponding adjacent tissue, and normal tissue samples were obtained from 80 male and 36 female patients. IL-1α, ERα, IL-6, and MyD88 were quantified by using real-time PCR and Western blot. Stem-loop PCR was used to quantify miR-22 expression. Luciferase reporter assays were used to study transcriptional regulation. RESULTS IL-1α was highly expressed in male tumor adjacent tissue compared with normal tissue (P = 0.025); however, this was not the case for female subjects. A linear relationship was observed between increased IL-1α and decreased ERα expression in male tumor adjacent tissue (r = -0.616, P = 0.004). Our results also indicated that estrogen (E2) was suppressed upon IL-1α secretion in ERα-overexpressed HCC cells. We detected high expression of miR-22 in male tumor adjacent tissue compared with controls (P = 0.027); furthermore, we showed that miR-22 downregulates ERα transcription by targeting the 3'-untranslated region. In the DEN-induced model, IL-1α was highly expressed in sprouting tumors and gradually decreased in conjunction with HCC development. CONCLUSION Overexpression of miR-22 in male tumor adjacent tissue was associated with downregulated ERα expression, potentially by attenuating the protective effect of estrogen and causing increased IL-1α expression. These results may explain the high incidence of HBV-associated HCC in the male population.
Collapse
MESH Headings
- Animals
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/virology
- Cell Line, Tumor
- Estrogen Receptor alpha/biosynthesis
- Female
- Gene Expression Regulation, Neoplastic
- Hepatitis B virus/pathogenicity
- Humans
- Interleukin-1alpha/analysis
- Interleukin-1alpha/biosynthesis
- Interleukin-6/analysis
- Interleukin-6/biosynthesis
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Membrane Glycoproteins/analysis
- Membrane Glycoproteins/biosynthesis
- Mice
- Mice, Inbred ICR
- MicroRNAs/biosynthesis
- MicroRNAs/metabolism
- RNA, Messenger/biosynthesis
- Receptors, Interleukin-1/analysis
- Receptors, Interleukin-1/biosynthesis
- Sex Characteristics
- Signal Transduction
Collapse
Affiliation(s)
- Runqiu Jiang
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Perera F, Herbstman J. Prenatal environmental exposures, epigenetics, and disease. Reprod Toxicol 2011; 31:363-73. [PMID: 21256208 DOI: 10.1016/j.reprotox.2010.12.055] [Citation(s) in RCA: 414] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 11/24/2010] [Accepted: 12/22/2010] [Indexed: 02/08/2023]
Abstract
This review summarizes recent evidence that prenatal exposure to diverse environmental chemicals dysregulates the fetal epigenome, with potential consequences for subsequent developmental disorders and disease manifesting in childhood, over the lifecourse, or even transgenerationally. The primordial germ cells, embryo, and fetus are highly susceptible to epigenetic dysregulation by environmental chemicals, which can thereby exert multiple adverse effects. The data reviewed here on environmental contaminants have potential implications for risk assessment although more data are needed on individual susceptibility to epigenetic alterations and their persistence before this information can be used in formal risk assessments. The findings discussed indicate that identification of environmental chemicals that dysregulate the prenatal epigenome should be a priority in health research and disease prevention.
Collapse
Affiliation(s)
- Frederica Perera
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, United States.
| | | |
Collapse
|
69
|
Bernal AJ, Jirtle RL. Epigenomic disruption: the effects of early developmental exposures. BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2010; 88:938-44. [PMID: 20568270 PMCID: PMC2945443 DOI: 10.1002/bdra.20685] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Through DNA methylation, histone modifications, and small regulatory RNAs the epigenome systematically controls gene expression during development, both in utero and throughout life. The epigenome is also a very reactive system; its labile nature allows it to sense and respond to environmental perturbations to ensure survival during fetal growth. This pliability can lead to aberrant epigenetic modifications that persist into later life and induce numerous disease states. Endocrine-disrupting compounds (EDCs) are ubiquitous chemicals that interfere with growth and development. Several EDCs also interfere with epigenetic programming. The investigation of the epigenotoxic effects of bisphenol A (BPA), an EDC used in the production of plastics and resins, has further raised concern over the impact of EDCs on the epigenome. Using the Agouti viable yellow (A(vy)) mouse model, dietary BPA exposure was shown to hypomethylate both the A(vy) and the Cabp(IAP) metastable epialleles. This hypomethylating effect was counteracted with dietary supplementation of methyl donors or genistein. These results are consistent with reports of BPA and other EDCs causing epigenetic effects. Epigenotoxicity could lead to numerous developmental, metabolic, and behavioral disorders in exposed populations. The heritable nature of epigenetic changes also increases the risk for transgenerational inheritance of phenotypes. Thus, epigenotoxicity must be considered when assessing these compounds for safety.
Collapse
Affiliation(s)
- Autumn J. Bernal
- Department of Radiation Oncology Duke University Medical Center Durham, North Carolina, 27710 USA
| | - Randy L. Jirtle
- Department of Radiation Oncology Duke University Medical Center Durham, North Carolina, 27710 USA
| |
Collapse
|
70
|
Chatterjee S, Karlovsky P. Removal of the endocrine disrupter butyl benzyl phthalate from the environment. Appl Microbiol Biotechnol 2010; 87:61-73. [PMID: 20396882 PMCID: PMC2872021 DOI: 10.1007/s00253-010-2570-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 03/16/2010] [Accepted: 03/17/2010] [Indexed: 11/30/2022]
Abstract
Butyl benzyl phthalate (BBP), an aryl alkyl ester of 1,2-benzene dicarboxylic acid, is extensively used in vinyl tiles and as a plasticizer in PVC in many commonly used products. BBP, which readily leaches from these products, is one of the most important environmental contaminants, and the increased awareness of its adverse effects on human health has led to a dramatic increase in research aimed at removing BBP from the environment via bioremediation. This review highlights recent progress in the degradation of BBP by pure and mixed bacterial cultures, fungi, and in sludge, sediment, and wastewater. Sonochemical degradation, a unique abiotic remediation technique, and photocatalytic degradation are also discussed. The degradation pathways for BBP are described, and future research directions are considered.
Collapse
Affiliation(s)
- Subhankar Chatterjee
- Molecular Phytopathology and Mycotoxin Research Unit, University of Goettingen, Grisebachstrasse 6, 37077 Goettingen, Germany.
| | | |
Collapse
|
71
|
López-Carrillo L, Hernández-Ramírez RU, Calafat AM, Torres-Sánchez L, Galván-Portillo M, Needham LL, Ruiz-Ramos R, Cebrián ME. Exposure to phthalates and breast cancer risk in northern Mexico. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:539-44. [PMID: 20368132 PMCID: PMC2854732 DOI: 10.1289/ehp.0901091] [Citation(s) in RCA: 250] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 12/09/2009] [Indexed: 05/02/2023]
Abstract
BACKGROUND Phthalates, ubiquitous environmental pollutants that may disturb the endocrine system, are used primarily as plasticizers of polyvinyl chloride and as additives in consumer and personal care products. OBJECTIVES In this study, we examined the association between urinary concentrations of nine phthalate metabolites and breast cancer (BC) in Mexican women. METHODS We age-matched 233 BC cases to 221 women residing in northern Mexico. Sociodemographic and reproductive characteristics were obtained by direct interviews. Phthalates were determined in urine samples (collected pretreatment from the cases) by isotope dilution/high-performance liquid chromatography coupled to tandem mass spectrometry. RESULTS Phthalate metabolites were detected in at least 82% of women. The geometric mean concentrations of monoethyl phthalate (MEP) were higher in cases than in controls (169.58 vs. 106.78 microg/g creatinine). Controls showed significantly higher concentrations of mono-n-butyl phthalate, mono(2-ethyl-5-oxohexyl) phthalate, and mono(3-carboxypropyl) phthalate (MCPP) than did the cases. After adjusting for risk factors and other phthalates, MEP urinary concentrations were positively associated with BC [odds ratio (OR), highest vs. lowest tertile = 2.20; 95% confidence interval (CI), 1.33-3.63; p for trend < 0.01]. This association became stronger when estimated for premenopausal women (OR, highest vs. lowest tertile = 4.13; 95% CI, 1.60-10.70; p for trend < 0.01). In contrast, we observed significant negative associations for monobenzyl phthalate (MBzP) and MCPP. CONCLUSIONS We show for the first time that exposure to diethyl phthalate, the parent compound of MEP, may be associated with increased risk of BC, whereas exposure to the parent phthalates of MBzP and MCPP might be negatively associated. These findings require confirmation.
Collapse
|
72
|
Moon C, Park HJ, Choi YH, Park EM, Castranova V, Kang JL. Pulmonary inflammation after intraperitoneal administration of ultrafine titanium dioxide (TiO2) at rest or in lungs primed with lipopolysaccharide. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2010; 73:396-409. [PMID: 20155581 DOI: 10.1080/15287390903486543] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Nanoparticles are widely used in nanomedicines, including for targeted delivery of pharmacological, therapeutic, and diagnostic agents. Since nanoparticles might translocate across cellular barriers from the circulation into targeted organs, it is important to obtain information concerning the pathophysiologic effects of these particles through systemic migration. In the present study, acute pulmonary responses were examined after intraperitoneal (ip) administration of ultrafine titanium dioxide (TiO(2), 40 mg/kg) in mice at rest or in lungs primed with lipopolysaccharide (LPS, ip, 5 mg/kg). Ultrafine TiO(2) exposure increased neutrophil influx, protein levels in bronchoalveolar lavage (BAL) fluid, and reactive oxygen species (ROS) activity of BAL cells 4 h after exposure. Concomitantly, the levels of proinflammatory mediators, such as tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, and macrophage inflammatory protein (MIP)-2 in BAL fluid and mRNA expression of TNF-alpha and IL-1beta in lung tissue were elevated post ultrafine TiO(2) exposure. Ultrafine TiO(2) exposure resulted in significant activation of inflammatory signaling molecules, such as c-Src and p38 MAP kinase, in lung tissue and alveolar macrophages, and the nuclear factor (NF)-kappaB pathway in pulmonary tissue. Furthermore, ultrafine TiO(2) additively enhanced these inflammatory parameters and this signaling pathway in lungs primed with lipopolysaccharide (LPS). Contrary to this trend, a synergistic effect was found for TNF-alpha at the level of protein and mRNA expression. These results suggest that ultrafine TiO(2) (P25) induces acute lung inflammation after ip administration, and exhibits additive or synergistic effects with LPS, at least partly, via activation of oxidant-dependent inflammatory signaling and the NF-kappaB pathway, leading to increased production of proinflammatory mediators.
Collapse
Affiliation(s)
- Changsuk Moon
- Department of Physiology, School of Medicine, Ewha Woman's University, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
73
|
Choi S, Park SY, Kwak D, Phark S, Lee M, Lim JY, Jung WW, Sul D. Proteomic analysis of proteins secreted by HepG2 cells treated with butyl benzyl phthalate. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2010; 73:1570-1585. [PMID: 20954082 DOI: 10.1080/15287394.2010.511583] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Proteomic changes in proteins secreted by human hepatocellular carcinomas (HepG2) cells exposed to butyl benzyl phthalate (BBP) were evaluated. HepG2 cells were treated with three different concentrations of BBP (0, 10, or 25 μM) for 24 or 48 h. Following incubation, the cells were subjected to proteomic analysis using two different pI ranges (4-7 and 6-9) and large-size two-dimensional gel electrophoresis. Results showed resolution of a total of 2776 protein spots. Of these, 29, including 19 upregulated and 10 downregulated proteins, were identified by electrospray ionization-mass spectrometry-mass spectrometry (ESI-MS/MS). Among these, the identities of cystatin C, Rho guanine nucleotide dissociation inhibitor, gelsolin, DEK protein, Raf kinase inhibitory protein, triose phosphate isomerase, heptaglobin-related protein, inter-alpha-trypsin inhibitor heavy chain H2, and electron transfer flavoprotein subunit beta were confirmed by Western blot analysis. These proteins were found to be involved in apoptosis, signaling, tumor progression, energy metabolism, and cell structure and motility. Therefore, these proteins have potential to be employed as biomarkers of BBP exposure and may be useful in understanding mechanisms underlying the adverse effects of BBP.
Collapse
Affiliation(s)
- Seonyoung Choi
- Department of Nanobiomedical Science, College of Advanced Science, Chung-Nam, Korea
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Lyche JL, Gutleb AC, Bergman A, Eriksen GS, Murk AJ, Ropstad E, Saunders M, Skaare JU. Reproductive and developmental toxicity of phthalates. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2009; 12:225-49. [PMID: 20183522 DOI: 10.1080/10937400903094091] [Citation(s) in RCA: 403] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The purposes of this review are to (1) evaluate human and experimental evidence for adverse effects on reproduction and development in humans, produced by exposure to phthalates, and (2) identify knowledge gaps as for future studies. The widespread use of phthalates in consumer products leads to ubiquitous and constant exposure of humans to these chemicals. Phthalates were postulated to produce endocrine-disrupting effects in rodents, where fetal exposure to these compounds was found to induce developmental and reproductive toxicity. The adverse effects observed in rodent models raised concerns as to whether exposure to phthalates represents a potential health risk to humans. At present, di(2-ethylhexyl) phthalate (DEHP), di-n-butyl phthalate (DBP), and butyl benzyl phthalate (BBP) have been demonstrated to produce reproductive and developmental toxicity; thus, this review focuses on these chemicals. For the general population, DEHP exposure is predominantly via food. The average concentrations of phthalates are highest in children and decrease with age. At present, DEHP exposures in the general population appear to be close to the tolerable daily intake (TDI), suggesting that at least some individuals exceed the TDI. In addition, specific high-risk groups exist with internal levels that are several orders of magnitude above average. Urinary metabolites used as biomarkers for the internal levels provide additional means to determine more specifically phthalate exposure levels in both general and high-risk populations. However, exposure data are not consistent and there are indications that secondary metabolites may be more accurate indicators of the internal exposure compared to primary metabolites. The present human toxicity data are not sufficient for evaluating the occurrence of reproductive effects following phthalate exposure in humans, based on existing relevant animal data. This is especially the case for data on female reproductive toxicity, which are scarce. Therefore, future research needs to focus on developmental and reproductive endpoints in humans. It should be noted that phthalates occur in mixtures but most toxicological information is based on single compounds. Thus, it is concluded that it is important to improve the knowledge of toxic interactions among the different chemicals and to develop measures for combined exposure to various groups of phthalates.
Collapse
Affiliation(s)
- Jan L Lyche
- Department of Production Animal Clinical Science, Norwegian School of Veterinary Science, Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Rusiecki JA, Baccarelli A, Bollati V, Tarantini L, Moore LE, Bonefeld-Jorgensen EC. Global DNA hypomethylation is associated with high serum-persistent organic pollutants in Greenlandic Inuit. ENVIRONMENTAL HEALTH PERSPECTIVES 2008; 116:1547-52. [PMID: 19057709 PMCID: PMC2592276 DOI: 10.1289/ehp.11338] [Citation(s) in RCA: 253] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 07/16/2008] [Indexed: 05/16/2023]
Abstract
BACKGROUND Persistent organic pollutants (POPs) may influence epigenetic mechanisms; therefore, they could affect chromosomal stability and gene expression. DNA methylation, an epigenetic mechanism, has been associated with cancer initiation and progression. Greenlandic Inuit have some of the highest reported POP levels worldwide. OBJECTIVE Our aim in this study was to evaluate the relationship between plasma POPs concentrations and global DNA methylation (percent 5-methylcytosine) in DNA extracted from blood samples from 70 Greenlandic Inuit. Blood samples were collected under the Arctic Monitoring and Assessment Program and previously analyzed for a battery of POPs. METHODS We used pyrosequencing to estimate global DNA methylation via Alu and LINE-1 assays of bisulfite-treated DNA. We investigated correlations between plasma POP concentrations and global DNA methylation via correlation coefficients and linear regression analyses. RESULTS We found inverse correlations between percents methylcytosine and many of the POP concentrations measured. Linear regressions, adjusting for age and cigarette smoking, showed statistically significant inverse linear relationships mainly for the Alu assay for p,p'-DDT (1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane; beta = -0.26), p,p'-DDE [1,1-dichloro-2,2-bis(p-chlorophenyl) ethylene; beta = -0.38], beta-hexachlorocyclohexane (beta = -0.48), oxychlordane (beta = -0.32), alpha-chlordane (beta = -0.75), mirex (beta = -0.27), sum of polychlorinated biphenyls (beta = -0.56), and sum of all POPs (beta = -0.48). Linear regressions for the LINE-1 assay showed beta estimates of similar magnitudes to those using the Alu assay, however, none was statistically significant. CONCLUSIONS This is the first study to investigate environmental exposure to POPs and DNA methylation levels in a human population. Global methylation levels were inversely associated with blood plasma levels for several POPs and merit further investigation.
Collapse
Affiliation(s)
- Jennifer A Rusiecki
- Department of Preventive Medicine and Biometrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.
| | | | | | | | | | | |
Collapse
|
76
|
Dueñas-González A, García-López P, Herrera LA, Medina-Franco JL, González-Fierro A, Candelaria M. The prince and the pauper. A tale of anticancer targeted agents. Mol Cancer 2008; 7:82. [PMID: 18947424 PMCID: PMC2615789 DOI: 10.1186/1476-4598-7-82] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Accepted: 10/23/2008] [Indexed: 02/07/2023] Open
Abstract
Cancer rates are set to increase at an alarming rate, from 10 million new cases globally in 2000 to 15 million in 2020. Regarding the pharmacological treatment of cancer, we currently are in the interphase of two treatment eras. The so-called pregenomic therapy which names the traditional cancer drugs, mainly cytotoxic drug types, and post-genomic era-type drugs referring to rationally-based designed. Although there are successful examples of this newer drug discovery approach, most target-specific agents only provide small gains in symptom control and/or survival, whereas others have consistently failed in the clinical testing. There is however, a characteristic shared by these agents: -their high cost-. This is expected as drug discovery and development is generally carried out within the commercial rather than the academic realm. Given the extraordinarily high therapeutic drug discovery-associated costs and risks, it is highly unlikely that any single public-sector research group will see a novel chemical "probe" become a "drug". An alternative drug development strategy is the exploitation of established drugs that have already been approved for treatment of non-cancerous diseases and whose cancer target has already been discovered. This strategy is also denominated drug repositioning, drug repurposing, or indication switch. Although traditionally development of these drugs was unlikely to be pursued by Big Pharma due to their limited commercial value, biopharmaceutical companies attempting to increase productivity at present are pursuing drug repositioning. More and more companies are scanning the existing pharmacopoeia for repositioning candidates, and the number of repositioning success stories is increasing. Here we provide noteworthy examples of known drugs whose potential anticancer activities have been highlighted, to encourage further research on these known drugs as a means to foster their translation into clinical trials utilizing the more limited public-sector resources. If these drug types eventually result in being effective, it follows that they could be much more affordable for patients with cancer; therefore, their contribution in terms of reducing cancer mortality at the global level would be greater.
Collapse
Affiliation(s)
- Alfonso Dueñas-González
- Unidad de Investigacion Biomédica en Cáncer, Instituto de Investigaciones Biomedicas, UNAM/Instituto Nacional de Cancerologia, Mexico City, Mexico
- Dirección de Investigación, Unidad de Investigacion Biomédica en Cáncer, Av. San Fernando 22, Tlalpan, 14080 México, D.F., México
| | - Patricia García-López
- Unidad de Investigacion Biomédica en Cáncer, Instituto de Investigaciones Biomedicas, UNAM/Instituto Nacional de Cancerologia, Mexico City, Mexico
| | - Luis Alonso Herrera
- Unidad de Investigacion Biomédica en Cáncer, Instituto de Investigaciones Biomedicas, UNAM/Instituto Nacional de Cancerologia, Mexico City, Mexico
| | - Jose Luis Medina-Franco
- Torrey Pines Institute for Molecular Studies. 5775 Old Dixie Highway, Fort Pierce, Florida 34946, USA
| | - Aurora González-Fierro
- Unidad de Investigacion Biomédica en Cáncer, Instituto de Investigaciones Biomedicas, UNAM/Instituto Nacional de Cancerologia, Mexico City, Mexico
| | - Myrna Candelaria
- Unidad de Investigacion Biomédica en Cáncer, Instituto de Investigaciones Biomedicas, UNAM/Instituto Nacional de Cancerologia, Mexico City, Mexico
| |
Collapse
|
77
|
Gwinn MR, Weston A. Application of oligonucleotide microarray technology to toxic occupational exposures. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2008; 71:315-324. [PMID: 18214805 DOI: 10.1080/15287390701738509] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Microarray technology has advanced toward analysis of toxic occupational exposures in biological systems. Microarray analysis is an ideal way to search for biomarkers of exposure, even if no specific gene or pathway has been identified. Analysis may now be performed on thousands of genes simultaneously, as opposed to small numbers of genes as in the past. This ability has been put to use to analyze gene expression profiles of a variety of occupational toxins in animal models to classify toxins into specific categories based on response. Analysis of normal human cell strains allows an extension of this analysis to investigate the role of interindividual variation in response to various toxins. This methodology was used to analyze four occupationally related toxins in our lab: oxythioquinox (OTQ), a quinoxaline pesticide; malathion, an organophosphate pesticide; di-n-butyl phthalate (DBP), a chemical commonly found in personal care and cosmetic items; and benzo[a]pyrene (BaP), an environmental and occupational carcinogen. The results for each exposure highlighted signaling pathways involved in response to these occupational exposures. Both pesticides showed increase in metabolic enzymes, while DBP showed alterations in genes related to fertility. BaP exposure showed alterations in two cytochrome P450s related to carcinogenicity. When used with occupational exposure information, these data may be used to augment risk assessment to make the workplace safer for a greater proportion of the workforce, including individuals susceptible to disease related to exposures.
Collapse
Affiliation(s)
- Maureen R Gwinn
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, USA
| | | |
Collapse
|
78
|
Liu X, He DW, Zhang DY, Lin T, Wei GH. Di(2-ethylhexyl) phthalate (DEHP) increases transforming growth factor-beta1 expression in fetal mouse genital tubercles. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2008; 71:1289-94. [PMID: 18686198 DOI: 10.1080/15287390802114915] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Phthalates are known to elicit marked effects on the developing male reproductive tract as evidenced by hypospadias. Recently, transforming growth factor-beta1 (TGF-beta1) was postulated to play an essential role in the development of genital tubercles (GT), and TGF- beta1 was found to act as a phthalates-responsive gene. In this study, the effects of di(2-ethylhexyl) phthalate (DEHP) were examined on the expression of TGF-beta1 in fetal mice, as GT development is dependent upon this factor. Pregnant C57BL/6 mice were exposed to corn oil or DEHP (100, 200, or 500 mg/kg/d orally) from embryonic day 12 (ED12) to ED17. Data showed a significant inhibition of male fetal GT development following DEHP treatment. Hypospadic-like urethral orifice and abnormal urethra were evaluated macroscopically and by histology at ED19. By using reverse-transcription polymerase chain reaction (RT-PCR) and Western blot, the expression of TGF-beta1 was upregulated in DEHP-treated mice. These results suggest that hypospadias may be induced by DEHP exposure involving modification of TGF-beta1 levels.
Collapse
Affiliation(s)
- Xing Liu
- Department of Urology, Chongqing Children's Hospital, Chongqing Medical University, Chongqing, China
| | | | | | | | | |
Collapse
|
79
|
Moral R, Wang R, Russo IH, Mailo DA, Lamartiniere CA, Russo J. The plasticizer butyl benzyl phthalate induces genomic changes in rat mammary gland after neonatal/prepubertal exposure. BMC Genomics 2007; 8:453. [PMID: 18062813 PMCID: PMC2200869 DOI: 10.1186/1471-2164-8-453] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Accepted: 12/06/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phthalate esters like n-butyl benzyl phthalate (BBP) are widely used plasticizers. BBP has shown endocrine-disrupting properties, thus having a potential effect on hormone-sensitive tissues. The aim of this study is to determine the effect of neonatal/prepubertal exposure (post-natal days 2-20) to BBP on maturation parameters and on the morphology, proliferative index and genomic signature of the rat mammary gland at different ages of development (21, 35, 50 and 100 days). RESULTS Here we show that exposure to BBP increased the uterine weight/body weight ratio at 21 days and decreased the body weight at time of vaginal opening. BBP did not induce significant changes on the morphology of the mammary gland, but increased proliferative index in terminal end buds at 35 days and in lobules 1 at several ages. Moreover, BBP had an effect on the genomic profile of the mammary gland mainly at the end of the exposure (21 days), becoming less prominent thereafter. By this age a significant number of genes related to proliferation and differentiation, communication and signal transduction were up-regulated in the glands of the exposed animals. CONCLUSION These results suggest that BBP has an effect in the gene expression profile of the mammary gland.
Collapse
Affiliation(s)
- Raquel Moral
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | | | | | | | | | | |
Collapse
|
80
|
Lee KH, Lee BM. Study of mutagenicities of phthalic acid and terephthalic acid using in vitro and in vivo genotoxicity tests. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2007; 70:1329-35. [PMID: 17654251 DOI: 10.1080/15287390701432277] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Genotoxicities of phthalic acid (PA) and terephthalic acid (TPA) were examined using three mutagenicity tests: Ames, chromosome aberration (CA), and micronucleus (MN). In the Ames test, these two agents did not produce any mutagenic responses in the absence or presence of S9 mix on the Salmonella typhimurium strains TA98, TA100, TA102, TA1535, or TA1537. The CA test also showed that PA and TPA exerted no significant cytogenetic effect on Chinese hamster ovary (CHO) cells. In the mouse MN test, no significant alteration in occurrence of micronucleated polychromatic erythrocytes was observed in ICR male mice ip administered any of these agents at doses of 0, 20, 100, 500, 2500 or 12,500 microM/kg. These results indicate that PA and TPA produced no mutagenic effects using these in vitro and in vivo mutagenic test systems.
Collapse
Affiliation(s)
- Kyung Hwan Lee
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-Do, Republic of Korea
| | | |
Collapse
|