51
|
Isolation and characterization of extracellular vesicle subpopulations from tissues. Nat Protoc 2021; 16:1548-1580. [PMID: 33495626 DOI: 10.1038/s41596-020-00466-1] [Citation(s) in RCA: 263] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) are lipid bilayered membrane structures released by all cells. Most EV studies have been performed by using cell lines or body fluids, but the number of studies on tissue-derived EVs is still limited. Here, we present a protocol to isolate up to six different EV subpopulations directly from tissues. The approach includes enzymatic treatment of dissociated tissues followed by differential ultracentrifugation and density separation. The isolated EV subpopulations are characterized by electron microscopy and RNA profiling. In addition, their protein cargo can be determined with mass spectrometry, western blot and ExoView. Tissue-EV isolation can be performed in 22 h, but a simplified version can be completed in 8 h. Most experiments with the protocol have used human melanoma metastases, but the protocol can be applied to other cancer and non-cancer tissues. The procedure can be adopted by researchers experienced with cell culture and EV isolation.
Collapse
|
52
|
Carr LE, Virmani MD, Rosa F, Munblit D, Matazel KS, Elolimy AA, Yeruva L. Role of Human Milk Bioactives on Infants' Gut and Immune Health. Front Immunol 2021; 12:604080. [PMID: 33643310 PMCID: PMC7909314 DOI: 10.3389/fimmu.2021.604080] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/22/2021] [Indexed: 12/26/2022] Open
Abstract
Exclusive human milk feeding of the newborn is recommended during the first 6 months of life to promote optimal health outcomes during early life and beyond. Human milk contains a variety of bioactive factors such as hormones, cytokines, leukocytes, immunoglobulins, lactoferrin, lysozyme, stem cells, human milk oligosaccharides (HMOs), microbiota, and microRNAs. Recent findings highlighted the potential importance of adding HMOs into infant formula for their roles in enhancing host defense mechanisms in neonates. Therefore, understanding the roles of human milk bioactive factors on immune function is critical to build the scientific evidence base around breastfeeding recommendations, and to enhance positive health outcomes in formula fed infants through modifications to formulas. However, there are still knowledge gaps concerning the roles of different milk components, the interactions between the different components, and the mechanisms behind health outcomes are poorly understood. This review aims to show the current knowledge about HMOs, milk microbiota, immunoglobulins, lactoferrin, and milk microRNAs (miRNAs) and how these could have similar mechanisms of regulating gut and microbiota function. It will also highlight the knowledge gaps for future research.
Collapse
Affiliation(s)
- Laura E. Carr
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Arkansas Children's Nutrition Center, Little Rock, AR, United States
| | - Misty D. Virmani
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Fernanda Rosa
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Arkansas Children's Nutrition Center, Little Rock, AR, United States
| | - Daniel Munblit
- Department of Pediatrics and Pediatric Infectious Diseases, Institute of Child's Health, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Inflammation, Repair and Development Section, Faculty of Medicine, Imperial College London, National Heart and Lung Institute, London, United Kingdom
- Research and Clinical Center for Neuropsychiatry, Moscow, Russia
| | | | - Ahmed A. Elolimy
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Arkansas Children's Nutrition Center, Little Rock, AR, United States
| | - Laxmi Yeruva
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Arkansas Children's Nutrition Center, Little Rock, AR, United States
- Arkansas Children's Research Institute, Little Rock, AR, United States
| |
Collapse
|
53
|
Tosar JP, Segovia M, Castellano M, Gámbaro F, Akiyama Y, Fagúndez P, Olivera Á, Costa B, Possi T, Hill M, Ivanov P, Cayota A. Fragmentation of extracellular ribosomes and tRNAs shapes the extracellular RNAome. Nucleic Acids Res 2020; 48:12874-12888. [PMID: 32785615 PMCID: PMC7736827 DOI: 10.1093/nar/gkaa674] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/19/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
A major proportion of extracellular RNAs (exRNAs) do not copurify with extracellular vesicles (EVs) and remain in ultracentrifugation supernatants of cell-conditioned medium or mammalian blood serum. However, little is known about exRNAs beyond EVs. We have previously shown that the composition of the nonvesicular exRNA fraction is highly biased toward specific tRNA-derived fragments capable of forming RNase-protecting dimers. To solve the problem of stability in exRNA analysis, we developed a method based on sequencing the size exclusion chromatography (SEC) fractions of nonvesicular extracellular samples treated with RNase inhibitors (RI). This method revealed dramatic compositional changes in exRNA population when enzymatic RNA degradation was inhibited. We demonstrated the presence of ribosomes and full-length tRNAs in cell-conditioned medium of a variety of mammalian cell lines. Their fragmentation generates some small RNAs that are highly resistant to degradation. The extracellular biogenesis of some of the most abundant exRNAs demonstrates that extracellular abundance is not a reliable input to estimate RNA secretion rates. Finally, we showed that chromatographic fractions containing extracellular ribosomes are probably not silent from an immunological perspective and could possibly be decoded as damage-associated molecular patterns.
Collapse
Affiliation(s)
- Juan Pablo Tosar
- Analytical Biochemistry Unit. Nuclear Research Center. Faculty of Science. Universidad de la República, Uruguay
- Functional Genomics Unit, Institut Pasteur de Montevideo, Uruguay
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Mercedes Segovia
- Laboratory of Immunoregulation and Inflammation, Institut Pasteur de Montevideo, Uruguay. Immunobiology Department, Faculty of Medicine, Universidad de la República, Uruguay
| | - Mauricio Castellano
- Analytical Biochemistry Unit. Nuclear Research Center. Faculty of Science. Universidad de la República, Uruguay
- Functional Genomics Unit, Institut Pasteur de Montevideo, Uruguay
| | - Fabiana Gámbaro
- Functional Genomics Unit, Institut Pasteur de Montevideo, Uruguay
- Molecular Virology Laboratory, Nuclear Research Center. Faculty of Science. Universidad de la República, Uruguay
| | - Yasutoshi Akiyama
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Pablo Fagúndez
- Analytical Biochemistry Unit. Nuclear Research Center. Faculty of Science. Universidad de la República, Uruguay
- Functional Genomics Unit, Institut Pasteur de Montevideo, Uruguay
| | - Álvaro Olivera
- Centro Universitario Regional Este, Universidad de la República, Uruguay
| | - Bruno Costa
- Analytical Biochemistry Unit. Nuclear Research Center. Faculty of Science. Universidad de la República, Uruguay
- Functional Genomics Unit, Institut Pasteur de Montevideo, Uruguay
| | - Tania Possi
- Functional Genomics Unit, Institut Pasteur de Montevideo, Uruguay
| | - Marcelo Hill
- Laboratory of Immunoregulation and Inflammation, Institut Pasteur de Montevideo, Uruguay. Immunobiology Department, Faculty of Medicine, Universidad de la República, Uruguay
| | - Pavel Ivanov
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and M.I.T., Cambridge, MA, USA
| | - Alfonso Cayota
- Functional Genomics Unit, Institut Pasteur de Montevideo, Uruguay
- Department of Medicine, University Hospital, Universidad de la República, Uruguay
| |
Collapse
|
54
|
Lorenc T, Chrzanowski J, Olejarz W. Current Perspectives on Clinical Use of Exosomes as a Personalized Contrast Media and Theranostics. Cancers (Basel) 2020; 12:E3386. [PMID: 33207614 PMCID: PMC7698051 DOI: 10.3390/cancers12113386] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/08/2020] [Accepted: 11/14/2020] [Indexed: 02/07/2023] Open
Abstract
An appropriate combination of biomarkers and imaging technologies will become standard practice in the future. Because the incidence of and mortality from cancers is rising, the further study of new approaches for the early detection and precise characterization of tumors is essential. Extracellular vesicles (EVs), including exosomes, prove to have great potential when it comes to diagnosis and targeted therapy. Due to their natural ability to pass through biological barriers, depending on their origin, EVs can accumulate at defined sites, including tumors, preferentially. This manuscript discusses the difficulties and simplicities of processing cell-derived materials, packaging diverse groups of agents in EVs, and activating the biological complex. Developing exosome-based diagnostic techniques to detect disease precisely and early as well as treat disease marks a new era of personalized radiology and nuclear medicine. As circulating drug delivery vehicles for novel therapeutic modalities, EVs offer a new platform for cancer theranostic.
Collapse
Affiliation(s)
- Tomasz Lorenc
- Ist Department of Clinical Radiology, Medical University of Warsaw, 5 Chalubinskiego Street, 02-004 Warsaw, Poland
| | - Julian Chrzanowski
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.C.); (W.O.)
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Wioletta Olejarz
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.C.); (W.O.)
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
55
|
Espinosa-Riquer ZP, Segura-Villalobos D, Ramírez-Moreno IG, Pérez Rodríguez MJ, Lamas M, Gonzalez-Espinosa C. Signal Transduction Pathways Activated by Innate Immunity in Mast Cells: Translating Sensing of Changes into Specific Responses. Cells 2020; 9:E2411. [PMID: 33158024 PMCID: PMC7693401 DOI: 10.3390/cells9112411] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022] Open
Abstract
Mast cells (MCs) constitute an essential cell lineage that participates in innate and adaptive immune responses and whose phenotype and function are influenced by tissue-specific conditions. Their mechanisms of activation in type I hypersensitivity reactions have been the subject of multiple studies, but the signaling pathways behind their activation by innate immunity stimuli are not so well described. Here, we review the recent evidence regarding the main molecular elements and signaling pathways connecting the innate immune receptors and hypoxic microenvironment to cytokine synthesis and the secretion of soluble or exosome-contained mediators in this cell type. When known, the positive and negative control mechanisms of those pathways are presented, together with their possible implications for the understanding of mast cell-driven chronic inflammation. Finally, we discuss the relevance of the knowledge about signaling in this cell type in the recognition of MCs as central elements on innate immunity, whose remarkable plasticity converts them in sensors of micro-environmental discontinuities and controllers of tissue homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | - Claudia Gonzalez-Espinosa
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur. Calzada de los Tenorios No. 235, Col. Granjas Coapa, Mexico City 14330, Mexico; (Z.P.E.-R.); (D.S.-V.); (I.G.R.-M.); (M.J.P.R.); (M.L.)
| |
Collapse
|
56
|
Falduto GH, Pfeiffer A, Luker A, Metcalfe DD, Olivera A. Emerging mechanisms contributing to mast cell-mediated pathophysiology with therapeutic implications. Pharmacol Ther 2020; 220:107718. [PMID: 33130192 DOI: 10.1016/j.pharmthera.2020.107718] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
Mast cells are tissue-resident immune cells that play key roles in the initiation and perpetuation of allergic inflammation, usually through IgE-mediated mechanisms. Mast cells are, however, evolutionary ancient immune cells that can be traced back to urochordates and before the emergence of IgE antibodies, suggesting their involvement in antibody-independent biological functions, many of which are still being characterized. Herein, we summarize recent advances in understanding the roles of mast cells in health and disease, partly through the study of emerging non-IgE receptors such as the Mas-related G protein-coupled receptor X2, implicated in pseudo-allergic reactions as well as in innate defense and neuronal sensing; the mechano-sensing adhesion G protein-coupled receptor E2, variants of which are associated with familial vibratory urticaria; and purinergic receptors, which orchestrate tissue damage responses similarly to the IL-33 receptor. Recent evidence also points toward novel mechanisms that contribute to mast cell-mediated pathophysiology. Thus, in addition to releasing preformed mediators contained in granules and synthesizing mediators de novo, mast cells also secrete extracellular vesicles, which convey biological functions. Understanding their release, composition and uptake within a variety of clinical conditions will contribute to the understanding of disease specific pathology and likely lead the way to novel therapeutic approaches. We also discuss recent advances in the development of therapies targeting mast cell activity, including the ligation of inhibitory ITIM-containing receptors, and other strategies that suppress mast cells or responses to mediators for the management of mast cell-related diseases.
Collapse
Affiliation(s)
- Guido H Falduto
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Annika Pfeiffer
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andrea Luker
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dean D Metcalfe
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ana Olivera
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
57
|
O'Brien K, Breyne K, Ughetto S, Laurent LC, Breakefield XO. RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat Rev Mol Cell Biol 2020; 21:585-606. [PMID: 32457507 PMCID: PMC7249041 DOI: 10.1038/s41580-020-0251-y] [Citation(s) in RCA: 1146] [Impact Index Per Article: 229.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
The term 'extracellular vesicles' refers to a heterogeneous population of vesicular bodies of cellular origin that derive either from the endosomal compartment (exosomes) or as a result of shedding from the plasma membrane (microvesicles, oncosomes and apoptotic bodies). Extracellular vesicles carry a variety of cargo, including RNAs, proteins, lipids and DNA, which can be taken up by other cells, both in the direct vicinity of the source cell and at distant sites in the body via biofluids, and elicit a variety of phenotypic responses. Owing to their unique biology and roles in cell-cell communication, extracellular vesicles have attracted strong interest, which is further enhanced by their potential clinical utility. Because extracellular vesicles derive their cargo from the contents of the cells that produce them, they are attractive sources of biomarkers for a variety of diseases. Furthermore, studies demonstrating phenotypic effects of specific extracellular vesicle-associated cargo on target cells have stoked interest in extracellular vesicles as therapeutic vehicles. There is particularly strong evidence that the RNA cargo of extracellular vesicles can alter recipient cell gene expression and function. During the past decade, extracellular vesicles and their RNA cargo have become better defined, but many aspects of extracellular vesicle biology remain to be elucidated. These include selective cargo loading resulting in substantial differences between the composition of extracellular vesicles and source cells; heterogeneity in extracellular vesicle size and composition; and undefined mechanisms for the uptake of extracellular vesicles into recipient cells and the fates of their cargo. Further progress in unravelling the basic mechanisms of extracellular vesicle biogenesis, transport, and cargo delivery and function is needed for successful clinical implementation. This Review focuses on the current state of knowledge pertaining to packaging, transport and function of RNAs in extracellular vesicles and outlines the progress made thus far towards their clinical applications.
Collapse
Affiliation(s)
- Killian O'Brien
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Koen Breyne
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Stefano Ughetto
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Oncology, University of Turin, Candiolo, Italy
| | - Louise C Laurent
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA.
- Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA.
| | - Xandra O Breakefield
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
58
|
Emerging Insights on the Biological Impact of Extracellular Vesicle-Associated ncRNAs in Multiple Myeloma. Noncoding RNA 2020; 6:ncrna6030030. [PMID: 32764460 PMCID: PMC7549345 DOI: 10.3390/ncrna6030030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence indicates that extracellular vesicles (EVs) released from both tumor cells and the cells of the bone marrow microenvironment contribute to the pathobiology of multiple myeloma (MM). Recent studies on the mechanisms by which EVs exert their biological activity have indicated that the non-coding RNA (ncRNA) cargo is key in mediating their effect on MM development and progression. In this review, we will first discuss the role of EV-associated ncRNAs in different aspects of MM pathobiology, including proliferation, angiogenesis, bone disease development, and drug resistance. Finally, since ncRNAs carried by MM vesicles have also emerged as a promising tool for early diagnosis and therapy response prediction, we will report evidence of their potential use as clinical biomarkers.
Collapse
|
59
|
Tosar JP, Cayota A. Extracellular tRNAs and tRNA-derived fragments. RNA Biol 2020; 17:1149-1167. [PMID: 32070197 PMCID: PMC7549618 DOI: 10.1080/15476286.2020.1729584] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 01/08/2023] Open
Abstract
Fragmentation of tRNAs generates a family of small RNAs collectively known as tRNA-derived fragments. These fragments vary in sequence and size but have been shown to regulate many processes involved in cell homoeostasis and adaptations to stress. Additionally, the field of extracellular RNAs (exRNAs) is rapidly growing because exRNAs are a promising source of biomarkers in liquid biopsies, and because exRNAs seem to play key roles in intercellular and interspecies communication. Herein, we review recent descriptions of tRNA-derived fragments in the extracellular space in all domains of life, both in biofluids and in cell culture. The purpose of this review is to find consensus on which tRNA-derived fragments are more prominent in each extracellular fraction (including extracellular vesicles, lipoproteins and ribonucleoprotein complexes). We highlight what is becoming clear and what is still controversial in this field, in order to stimulate future hypothesis-driven studies which could clarify the role of full-length tRNAs and tRNA-derived fragments in the extracellular space.
Collapse
Affiliation(s)
- Juan Pablo Tosar
- Analytical Biochemistry Unit, Nuclear Research Center, Faculty of Science, Universidad de la República, Montevideo, Uruguay
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Alfonso Cayota
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Department of Medicine, University Hospital, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
60
|
Veziroglu EM, Mias GI. Characterizing Extracellular Vesicles and Their Diverse RNA Contents. Front Genet 2020; 11:700. [PMID: 32765582 PMCID: PMC7379748 DOI: 10.3389/fgene.2020.00700] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022] Open
Abstract
Cells release nanometer-scale, lipid bilayer-enclosed biomolecular packages (extracellular vesicles; EVs) into their surrounding environment. EVs are hypothesized to be intercellular communication agents that regulate physiological states by transporting biomolecules between near and distant cells. The research community has consistently advocated for the importance of RNA contents in EVs by demonstrating that: (1) EV-related RNA contents can be detected in a liquid biopsy, (2) disease states significantly alter EV-related RNA contents, and (3) sensitive and specific liquid biopsies can be implemented in precision medicine settings by measuring EV-derived RNA contents. Furthermore, EVs have medical potential beyond diagnostics. Both natural and engineered EVs are being investigated for therapeutic applications such as regenerative medicine and as drug delivery agents. This review focuses specifically on EV characterization, analysis of their RNA content, and their functional implications. The NIH extracellular RNA communication (ERC) program has catapulted human EV research from an RNA profiling standpoint by standardizing the pipeline for working with EV transcriptomics data, and creating a centralized database for the scientific community. There are currently thousands of RNA-sequencing profiles hosted on the Extracellular RNA Atlas alone (Murillo et al., 2019), encompassing a variety of human biofluid types and health conditions. While a number of significant discoveries have been made through these studies individually, integrative analyses of these data have thus far been limited. A primary focus of the ERC program over the next five years is to bring higher resolution tools to the EV research community so that investigators can isolate and analyze EV sub-populations, and ultimately single EVs sourced from discrete cell types, tissues, and complex biofluids. Higher resolution techniques will be essential for evaluating the roles of circulating EVs at a level which impacts clinical decision making. We expect that advances in microfluidic technologies will drive near-term innovation and discoveries about the diverse RNA contents of EVs. Long-term translation of EV-based RNA profiling into a mainstay medical diagnostic tool will depend upon identifying robust patterns of circulating genetic material that correlate with a change in health status.
Collapse
Affiliation(s)
- Eren M. Veziroglu
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States
| | - George I. Mias
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
61
|
Guay C, Jacovetti C, Bayazit MB, Brozzi F, Rodriguez-Trejo A, Wu K, Regazzi R. Roles of Noncoding RNAs in Islet Biology. Compr Physiol 2020; 10:893-932. [PMID: 32941685 DOI: 10.1002/cphy.c190032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The discovery that most mammalian genome sequences are transcribed to ribonucleic acids (RNA) has revolutionized our understanding of the mechanisms governing key cellular processes and of the causes of human diseases, including diabetes mellitus. Pancreatic islet cells were found to contain thousands of noncoding RNAs (ncRNAs), including micro-RNAs (miRNAs), PIWI-associated RNAs, small nucleolar RNAs, tRNA-derived fragments, long non-coding RNAs, and circular RNAs. While the involvement of miRNAs in islet function and in the etiology of diabetes is now well documented, there is emerging evidence indicating that other classes of ncRNAs are also participating in different aspects of islet physiology. The aim of this article will be to provide a comprehensive and updated view of the studies carried out in human samples and rodent models over the past 15 years on the role of ncRNAs in the control of α- and β-cell development and function and to highlight the recent discoveries in the field. We not only describe the role of ncRNAs in the control of insulin and glucagon secretion but also address the contribution of these regulatory molecules in the proliferation and survival of islet cells under physiological and pathological conditions. It is now well established that most cells release part of their ncRNAs inside small extracellular vesicles, allowing the delivery of genetic material to neighboring or distantly located target cells. The role of these secreted RNAs in cell-to-cell communication between β-cells and other metabolic tissues as well as their potential use as diabetes biomarkers will be discussed. © 2020 American Physiological Society. Compr Physiol 10:893-932, 2020.
Collapse
Affiliation(s)
- Claudiane Guay
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Cécile Jacovetti
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Mustafa Bilal Bayazit
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Flora Brozzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Adriana Rodriguez-Trejo
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Kejing Wu
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
62
|
Gandham S, Su X, Wood J, Nocera AL, Alli SC, Milane L, Zimmerman A, Amiji M, Ivanov AR. Technologies and Standardization in Research on Extracellular Vesicles. Trends Biotechnol 2020; 38:1066-1098. [PMID: 32564882 PMCID: PMC7302792 DOI: 10.1016/j.tibtech.2020.05.012] [Citation(s) in RCA: 307] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022]
Abstract
Extracellular vesicles (EVs) are phospholipid bilayer membrane-enclosed structures containing RNAs, proteins, lipids, metabolites, and other molecules, secreted by various cells into physiological fluids. EV-mediated transfer of biomolecules is a critical component of a variety of physiological and pathological processes. Potential applications of EVs in novel diagnostic and therapeutic strategies have brought increasing attention. However, EV research remains highly challenging due to the inherently complex biogenesis of EVs and their vast heterogeneity in size, composition, and origin. There is a need for the establishment of standardized methods that address EV heterogeneity and sources of pre-analytical and analytical variability in EV studies. Here, we review technologies developed for EV isolation and characterization and discuss paths toward standardization in EV research.
Collapse
Affiliation(s)
- Srujan Gandham
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Xianyi Su
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115, USA
| | - Jacqueline Wood
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115, USA
| | - Angela L Nocera
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Sarath Chandra Alli
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115, USA; Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Lara Milane
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Alan Zimmerman
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115, USA
| | - Mansoor Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Alexander R Ivanov
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
63
|
Gieseler F, Ender F. Extracellular Vesicles and Cell-Cell Communication: New Insights and New Therapeutic Strategies Not Only in Oncology. Int J Mol Sci 2020; 21:ijms21124331. [PMID: 32570703 PMCID: PMC7352511 DOI: 10.3390/ijms21124331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023] Open
|
64
|
Driedonks TA, Mol S, de Bruin S, Peters AL, Zhang X, Lindenbergh MF, Beuger BM, van Stalborch AMD, Spaan T, de Jong EC, van der Vries E, Margadant C, van Bruggen R, Vlaar AP, Groot Kormelink T, Nolte-‘T Hoen EN. Y-RNA subtype ratios in plasma extracellular vesicles are cell type- specific and are candidate biomarkers for inflammatory diseases. J Extracell Vesicles 2020; 9:1764213. [PMID: 32944168 PMCID: PMC7448942 DOI: 10.1080/20013078.2020.1764213] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/20/2019] [Accepted: 02/25/2020] [Indexed: 02/07/2023] Open
Abstract
Major efforts are made to characterize the presence of microRNA (miRNA) and messenger RNA in blood plasma to discover novel disease-associated biomarkers. MiRNAs in plasma are associated to several types of macromolecular structures, including extracellular vesicles (EV), lipoprotein particles (LPP) and ribonucleoprotein particles (RNP). RNAs in these complexes are recovered at variable efficiency by commonly used EV- and RNA isolation methods, which causes biases and inconsistencies in miRNA quantitation. Besides miRNAs, various other non-coding RNA species are contained in EV and present within the pool of plasma extracellular RNA. Members of the Y-RNA family have been detected in EV from various cell types and are among the most abundant non-coding RNA types in plasma. We previously showed that shuttling of full-length Y-RNA into EV released by immune cells is modulated by microbial stimulation. This indicated that Y-RNAs could contribute to the functional properties of EV in immune cell communication and that EV-associated Y-RNAs could have biomarker potential in immune-related diseases. Here, we investigated which macromolecular structures in plasma contain full length Y-RNA and whether the levels of three Y-RNA subtypes in plasma (Y1, Y3 and Y4) change during systemic inflammation. Our data indicate that the majority of full length Y-RNA in plasma is stably associated to EV. Moreover, we discovered that EV from different blood-related cell types contain cell-type-specific Y-RNA subtype ratios. Using a human model for systemic inflammation, we show that the neutrophil-specific Y4/Y3 ratios and PBMC-specific Y3/Y1 ratios were significantly altered after induction of inflammation. The plasma Y-RNA ratios strongly correlated with the number and type of immune cells during systemic inflammation. Cell-type-specific "Y-RNA signatures" in plasma EV can be determined without prior enrichment for EV, and may be further explored as simple and fast test for diagnosis of inflammatory responses or other immune-related diseases.
Collapse
Affiliation(s)
- Tom A.P. Driedonks
- Department Of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Sanne Mol
- Department Of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department Of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Sanne de Bruin
- Department of Intensive Care, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Anna-Linda Peters
- Department Of Anesthesiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Xiaogang Zhang
- Department Of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marthe F.S. Lindenbergh
- Department Of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Boukje M. Beuger
- Department Of Blood Cell Research, Sanquin Research, and Landsteiner Laboratory, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Anne-Marieke D. van Stalborch
- Molecular Cell Biology Laboratory, Department Of Molecular and Cellular Hemostasis, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Thom Spaan
- Department Of Infectious Diseases & Immunity, Division of Virology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Esther C. de Jong
- Department Of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Erhard van der Vries
- Department Of Infectious Diseases & Immunity, Division of Virology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Coert Margadant
- Molecular Cell Biology Laboratory, Department Of Molecular and Cellular Hemostasis, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Robin van Bruggen
- Department Of Blood Cell Research, Sanquin Research, and Landsteiner Laboratory, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Alexander P.J. Vlaar
- Department of Intensive Care, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Tom Groot Kormelink
- Department Of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Esther N.M. Nolte-‘T Hoen
- Department Of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
65
|
Ma Q, Liang M, Limjunyawong N, Dan Y, Xing J, Li J, Xu J, Dou C. Osteoclast-derived apoptotic bodies show extended biological effects of parental cell in promoting bone defect healing. Theranostics 2020; 10:6825-6838. [PMID: 32550906 PMCID: PMC7295057 DOI: 10.7150/thno.45170] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/03/2020] [Indexed: 01/08/2023] Open
Abstract
Apoptotic bodies (ABs) traditionally considered as garbage bags that enclose residual components of dead cells are gaining increasing attentions due to their potential roles in intercellular communications. In bone turn over, at the end of bone resorption phase, most osteoclasts undergo apoptosis, generating large amounts of ABs. However, it remains unclear of the role of osteoclast-derived ABs in bone remodeling. Methods: Staurosporine (STS) was used to apoptotic induction and differential centrifugation was used to isolate ABs. Western blotting, flowcytometry and Transmission electron microscopy (TEM) were performed for ABs identification, while whole transcriptome of ABs from osteoclasts at different stages was detected by RNA-seq. VENN analysis and gene set enrichment analysis (GSEA) were performed to compare the profile similarities between ABs and parental cells. In vitro efficacy of ABs on angiogenesis and osteogenesis were evaluated by tube formation assay and ALP staining. In vivo, calvarial defect mice model was used to assess the effects of ABs-modified decalcified bone matrix (DBM) scaffolds on angiogenesis and osteogenesis. Results: Here we mapped the whole transcriptome paralleled with small RNA profiling of osteoclast derived ABs at distinct differentiation stages. Whole transcriptome analysis revealed significant differences in RNA signatures among the ABs generated from osteoclasts at different stages. By comparing with parental osteoclast RNA profiles, we found that the transcriptome of ABs exhibited high similarities with the corresponding parental cells. Functionally, in vitro and in vivo studies showed that similar with the parental cells, pOC-ABs potentiated endothelial progenitor cell proliferation and differentiation, whereas mOC-ABs promoted osteogenic differentiation. The inherited biological effects of ABs were shown mediated by several enriched lncRNAs of which the interference abolished AB functions. Conclusions: Our study revealed the total RNA profiles of osteoclast derived ABs and demonstrated their biological functions. Both gene set and functional analysis indicated that osteoclast derived ABs are biologically similar with the parental cells suggesting their bridging role in osteoclast-osteoblast coupling in bone remodeling.
Collapse
|
66
|
Balbi C, Costa A, Barile L, Bollini S. Message in a Bottle: Upgrading Cardiac Repair into Rejuvenation. Cells 2020; 9:cells9030724. [PMID: 32183455 PMCID: PMC7140681 DOI: 10.3390/cells9030724] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/05/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
Ischaemic cardiac disease is associated with a loss of cardiomyocytes and an intrinsic lack of myocardial renewal. Recent work has shown that the heart retains limited cardiomyocyte proliferation, which remains inefficient when facing pathological conditions. While broadly active in the neonatal mammalian heart, this mechanism becomes quiescent soon after birth, suggesting loss of regenerative potential with maturation into adulthood. A key question is whether this temporary regenerative window can be enhanced via appropriate stimulation and further extended. Recently the search for novel therapeutic approaches for heart disease has centred on stem cell biology. The “paracrine effect” has been proposed as a promising strategy to boost endogenous reparative and regenerative mechanisms from within the cardiac tissue by exploiting the modulatory potential of soluble stem cell-secreted factors. As such, growing interest has been specifically addressed towards stem/progenitor cell-secreted extracellular vesicles (EVs), which can be easily isolated in vitro from cell-conditioned medium. This review will provide a comprehensive overview of the current paradigm on cardiac repair and regeneration, with a specific focus on the role and mechanism(s) of paracrine action of EVs from cardiac stromal progenitors as compared to exogenous stem cells in order to discuss the optimal choice for future therapy. In addition, the challenges to overcoming translational EV biology from bench to bedside for future cardiac regenerative medicine will be discussed.
Collapse
Affiliation(s)
- Carolina Balbi
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Foundation, 6900 Lugano, Switzerland;
| | - Ambra Costa
- Regenerative Medicine Laboratory, Dept. of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy;
| | - Lucio Barile
- Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Foundation, 6900 Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
- Correspondence: (L.B.); (S.B.)
| | - Sveva Bollini
- Regenerative Medicine Laboratory, Dept. of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy;
- Correspondence: (L.B.); (S.B.)
| |
Collapse
|
67
|
Crescitelli R, Lässer C, Jang SC, Cvjetkovic A, Malmhäll C, Karimi N, Höög JL, Johansson I, Fuchs J, Thorsell A, Gho YS, Olofsson Bagge R, Lötvall J. Subpopulations of extracellular vesicles from human metastatic melanoma tissue identified by quantitative proteomics after optimized isolation. J Extracell Vesicles 2020; 9:1722433. [PMID: 32128073 PMCID: PMC7034452 DOI: 10.1080/20013078.2020.1722433] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 01/08/2023] Open
Abstract
The majority of extracellular vesicle (EV) studies conducted to date have been performed on cell lines with little knowledge on how well these represent the characteristics of EVs in vivo. The aim of this study was to establish a method to isolate and categorize subpopulations of EVs isolated directly from tumour tissue. First we established an isolation protocol for subpopulations of EVs from metastatic melanoma tissue, which included enzymatic treatment (collagenase D and DNase). Small and large EVs were isolated with differential ultracentrifugation, and these were further separated into high and low-density (HD and LD) fractions. All EV subpopulations were then analysed in depth using electron microscopy, Bioanalyzer®, nanoparticle tracking analysis, and quantitative mass spectrometry analysis. Subpopulations of EVs with distinct size, morphology, and RNA and protein cargo could be isolated from the metastatic melanoma tissue. LD EVs showed an RNA profile with the presence of 18S and 28S ribosomal subunits. In contrast, HD EVs had RNA profiles with small or no peaks for ribosomal RNA subunits. Quantitative proteomics showed that several proteins such as flotillin-1 were enriched in both large and small LD EVs, while ADAM10 were exclusively enriched in small LD EVs. In contrast, mitofilin was enriched only in the large EVs. We conclude that enzymatic treatments improve EV isolation from dense fibrotic tissue without any apparent effect on molecular or morphological characteristics. By providing a detailed categorization of several subpopulations of EVs isolated directly from tumour tissues, we might better understand the function of EVs in tumour biology and their possible use in biomarker discovery.
Collapse
Affiliation(s)
- Rossella Crescitelli
- Krefting Research Centre, Institute of Medicine Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Lässer
- Krefting Research Centre, Institute of Medicine Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Su Chul Jang
- Krefting Research Centre, Institute of Medicine Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Aleksander Cvjetkovic
- Krefting Research Centre, Institute of Medicine Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Carina Malmhäll
- Krefting Research Centre, Institute of Medicine Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Nasibeh Karimi
- Krefting Research Centre, Institute of Medicine Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Johanna L Höög
- Krefting Research Centre, Institute of Medicine Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Department of Chemistry and Molecular Biology, Faculty of Natural Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Iva Johansson
- Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Johannes Fuchs
- Proteomic Core Facility, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Annika Thorsell
- Proteomic Core Facility, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Yong Song Gho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - R Olofsson Bagge
- Sahlgrenska Cancer Center, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Surgery, Sahlgrenska University Hospital, Gothenburg, Region Västra Götaland, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
68
|
Leidal AM, Huang HH, Marsh T, Solvik T, Zhang D, Ye J, Kai F, Goldsmith J, Liu JY, Huang YH, Monkkonen T, Vlahakis A, Huang EJ, Goodarzi H, Yu L, Wiita AP, Debnath J. The LC3-conjugation machinery specifies the loading of RNA-binding proteins into extracellular vesicles. Nat Cell Biol 2020; 22:187-199. [PMID: 31932738 PMCID: PMC7007875 DOI: 10.1038/s41556-019-0450-y] [Citation(s) in RCA: 319] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022]
Abstract
Traditionally viewed as an autodigestive pathway, autophagy also facilitates cellular secretion; however, the mechanisms underlying these processes remain unclear. Here, we demonstrate that components of the autophagy machinery specify secretion within extracellular vesicles (EVs). Using a proximity-dependent biotinylation proteomics strategy, we identify 200 putative targets of LC3-dependent secretion. This secretome consists of a highly interconnected network enriched in RNA-binding proteins (RBPs) and EV cargoes. Proteomic and RNA profiling of EVs identifies diverse RBPs and small non-coding RNAs requiring the LC3-conjugation machinery for packaging and secretion. Focusing on two RBPs, heterogeneous nuclear ribonucleoprotein K (HNRNPK) and scaffold-attachment factor B (SAFB), we demonstrate that these proteins interact with LC3 and are secreted within EVs enriched with lipidated LC3. Furthermore, their secretion requires the LC3-conjugation machinery, neutral sphingomyelinase 2 (nSMase2) and LC3-dependent recruitment of factor associated with nSMase2 activity (FAN). Hence, the LC3-conjugation pathway controls EV cargo loading and secretion.
Collapse
Affiliation(s)
- Andrew M Leidal
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Hector H Huang
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Timothy Marsh
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Tina Solvik
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Dachuan Zhang
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jordan Ye
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - FuiBoon Kai
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Juliet Goldsmith
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Jennifer Y Liu
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Yu-Hsin Huang
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Teresa Monkkonen
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Ariadne Vlahakis
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Eric J Huang
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, Department of Urology, and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Li Yu
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Arun P Wiita
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Jayanta Debnath
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
69
|
Liang Y, Huang S, Qiao L, Peng X, Li C, Lin K, Xie G, Li J, Lin L, Yin Y, Liao H, Li Q, Li L. Characterization of protein, long noncoding RNA and microRNA signatures in extracellular vesicles derived from resting and degranulated mast cells. J Extracell Vesicles 2019; 9:1697583. [PMID: 31853339 PMCID: PMC6913652 DOI: 10.1080/20013078.2019.1697583] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 08/24/2019] [Accepted: 09/11/2019] [Indexed: 12/27/2022] Open
Abstract
Mast cells (MCs) are known to participate in a variety of patho-physiological processes depending largely on the intragranular mediators and the production of cytokines and chemokines during degranulation. Recently, extracellular vesicles (EVs) have been implicated important functions for MCs, but the components of MC-derived EVs have not yet been well-characterized. In this study, we aimed to identify signatures of proteins, long non-coding RNAs (lncRNAs), and microRNAs (miRNAs) in EVs derived from resting (Rest-EV) and degranulated (Sti-EV) MCs by differential ultracentrifugation. Using tandem mass tag (TMT)-based quantitative proteomics technology and RNA sequencing, we identified a total of 1988 proteins, 397 lncRNAs, and 272 miRNAs in Rest-EV and Sti-EV. The proteins include common EVs markers (cytoskeletal proteins), MCs markers (FcεRI and tryptase), and some preformed MCs mediators (lysosomal enzymes) as well. The global expression profiles of lncRNAs and miRNAs identified, for the first time, from Rest-EV and Sti-EV, strongly suggest a potential regulatory function of MC-derived EVs. We have also performed Western blotting and qRT-PCR analysis to further verify some of the proteins, lncRNAs, and miRNAs identified from Rest-EV and Sti-EV. Our findings will help to elucidate the functions of MC-derived EVs, and provide a reference dataset for future translational studies involving MC-derived EVs.
Collapse
Affiliation(s)
- Yuting Liang
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Sheng Huang
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Longwei Qiao
- Center for Reproduction and Genetics, Suzhou Hospital affiliated to Nanjing Medical University, Suzhou, China
| | - Xia Peng
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Chong Li
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Kun Lin
- Department of Laboratory Medicine, The Affiliated Hospital of Putian University, Putian Univeristy, Putian, China
| | - Guogang Xie
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jia Li
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Lihui Lin
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yue Yin
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Huanjin Liao
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Qian Li
- Department of Clinical Laboratory, Shanghai First People's Hospital Baoshan Branch, Shanghai, China
| | - Li Li
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
70
|
Benmoussa A, Laugier J, Beauparlant CJ, Lambert M, Droit A, Provost P. Complexity of the microRNA transcriptome of cow milk and milk-derived extracellular vesicles isolated via differential ultracentrifugation. J Dairy Sci 2019; 103:16-29. [PMID: 31677838 DOI: 10.3168/jds.2019-16880] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/11/2019] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) are small gene-regulatory noncoding RNA that are highly enriched in cow milk. They are encapsulated in different extracellular vesicle (EV) subsets that protect them from the extracellular milieu and the harsh conditions of the gastrointestinal tract during digestion. Here, we isolated pellets enriched in 4 different EV subsets, via differential ultracentrifugation of commercial cow milk: 12,000 × g (P12K), 35,000 × g (P35K), 70,000 × g (P70K), and 100,000 × g (P100K). Small RNA sequencing (sRNA-Seq) analyses revealed an unprecedented level of diversity in the complete miRNA repertoire and features of unfractionated cow milk and derived EV subsets. Although 5 miRNA sequences represented more than 50% of all miRNAs, milk EV exhibited heterogeneous content of miRNAs and isomeric variants (termed isomiR): P100K EV were enriched in reference miRNA sequences, and P12K and P35K EV in related isomiR. Incubation of milk EV with human cultured HeLa cells led to cellular enrichment in miRNA miR-223, which was concomitant with decreased expression of a reporter gene placed under the control of miR-223, thereby demonstrating the functionality of miR-223. These results suggest that cow milk EV may transfer their miRNAs to human cells and regulate recipient cell gene expression programming in a manner as complex as that of their miRNA transcriptome. The biological activity and relevance of the different milk EV subsets and bioactive mediators, including small noncoding RNA, in health and disease, warrants further investigation.
Collapse
Affiliation(s)
- Abderrahim Benmoussa
- Centre Hospitalier Universitaire de Québec Research Center/Centre Hospitalier de l'Université Laval, Quebec G1V 4G2, Canada; Department of Microbiology, Infectious Diseases and Immunology and Faculty of Medicine, Université Laval, Quebec G1V 0A6, Canada
| | - Jonathan Laugier
- Centre Hospitalier Universitaire de Québec Research Center/Centre Hospitalier de l'Université Laval, Quebec G1V 4G2, Canada; Department of Microbiology, Infectious Diseases and Immunology and Faculty of Medicine, Université Laval, Quebec G1V 0A6, Canada
| | - Charles Joly Beauparlant
- Centre Hospitalier Universitaire de Québec Research Center/Centre Hospitalier de l'Université Laval, Quebec G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Axe Endocrinologie - Néphrologie du Centre de recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Québec City, Québec, Canada
| | - Marine Lambert
- Centre Hospitalier Universitaire de Québec Research Center/Centre Hospitalier de l'Université Laval, Quebec G1V 4G2, Canada; Department of Microbiology, Infectious Diseases and Immunology and Faculty of Medicine, Université Laval, Quebec G1V 0A6, Canada
| | - Arnaud Droit
- Centre Hospitalier Universitaire de Québec Research Center/Centre Hospitalier de l'Université Laval, Quebec G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Axe Endocrinologie - Néphrologie du Centre de recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Québec City, Québec, Canada
| | - Patrick Provost
- Centre Hospitalier Universitaire de Québec Research Center/Centre Hospitalier de l'Université Laval, Quebec G1V 4G2, Canada; Department of Microbiology, Infectious Diseases and Immunology and Faculty of Medicine, Université Laval, Quebec G1V 0A6, Canada.
| |
Collapse
|
71
|
Isolation and characterization of microvesicles from mesenchymal stem cells. Methods 2019; 177:50-57. [PMID: 31669353 DOI: 10.1016/j.ymeth.2019.10.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem or stromal cells are currently under clinical investigation for multiple diseases. While their mechanism of action is still not fully elucidated, vesicles secreted by MSCs are believed to recapitulate their therapeutic potentials to some extent. Microvesicles (MVs), also called as microparticles or ectosome, are among secreted vesicles that could transfer cytoplasmic cargo, including RNA and proteins, from emitting (source) cells to recipient cells. Given the importance of MVs, we here attempted to establish a method to isolate and characterize MVs secreted from unmodified human bone marrow derived MSCs (referred to as native MSCs, and their microvesicles as Native-MVs) and IFNγ stimulated MSCs (referred to as IFNγ-MSCs, and their microvesicles as IFNγ-MVs). We first describe an ultracentrifugation technique to isolate MVs from the conditioned cell culture media of MSCs. Next, we describe characterization and quality control steps to analyze the protein and RNA content of MVs. Finally, we examined the potential of MVs to exert immunomodulatory effects through induction of regulatory T cells (Tregs). Secretory vesicles from MSCs are promising alternatives for cell therapy with applications in drug delivery, regenerative medicine, and immunotherapy.
Collapse
|
72
|
Shelke GV, Yin Y, Jang SC, Lässer C, Wennmalm S, Hoffmann HJ, Li L, Gho YS, Nilsson JA, Lötvall J. Endosomal signalling via exosome surface TGFβ-1. J Extracell Vesicles 2019; 8:1650458. [PMID: 31595182 PMCID: PMC6764367 DOI: 10.1080/20013078.2019.1650458] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 06/24/2019] [Accepted: 07/25/2019] [Indexed: 12/24/2022] Open
Abstract
Extracellular vesicles such as exosomes convey biological messages between cells, either by surface-to-surface interaction or by shuttling of bioactive molecules to a recipient cell's cytoplasm. Here we show that exosomes released by mast cells harbour both active and latent transforming growth factor β-1 (TGFβ-1) on their surfaces. The latent form of TGFβ-1 is associated with the exosomes via heparinase-II and pH-sensitive elements. These vesicles traffic to the endocytic compartment of recipient human mesenchymal stem cells (MSCs) within 60 min of exposure. Further, the exosomes-associated TGFβ-1 is retained within the endosomal compartments at the time of signalling, which results in prolonged cellular signalling compared to free-TGFβ-1. These exosomes induce a migratory phenotype in primary MSCs involving SMAD-dependent pathways. Our results show that mast cell-derived exosomes are decorated with latent TGFβ-1 and are retained in recipient MSC endosomes, influencing recipient cell migratory phenotype. We conclude that exosomes can convey signalling within endosomes by delivering bioactive surface ligands to this intracellular compartment.
Collapse
Affiliation(s)
- Ganesh Vilas Shelke
- Krefting Research Centre, Institute of Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Surgery, Institute of Clinical Sciences, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Yanan Yin
- Krefting Research Centre, Institute of Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Su Chul Jang
- Krefting Research Centre, Institute of Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Lässer
- Krefting Research Centre, Institute of Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Stefan Wennmalm
- Royal Institute of Technology-KTH, Department of Applied Physics, Experimental Biomolecular Physics Group, SciLife Laboratory, Solna, Sweden
| | - Hans Jürgen Hoffmann
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of respiratory and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Li Li
- Department of Laboratory Medicine, Shanghai First People's Hospital, Shanghai JiaoTong University, Shanghai, China
| | - Yong Song Gho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jonas Andreas Nilsson
- Department of Surgery, Institute of Clinical Sciences, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
73
|
Corso G, Heusermann W, Trojer D, Görgens A, Steib E, Voshol J, Graff A, Genoud C, Lee Y, Hean J, Nordin JZ, Wiklander OPB, El Andaloussi S, Meisner-Kober N. Systematic characterization of extracellular vesicle sorting domains and quantification at the single molecule - single vesicle level by fluorescence correlation spectroscopy and single particle imaging. J Extracell Vesicles 2019; 8:1663043. [PMID: 31579435 PMCID: PMC6758720 DOI: 10.1080/20013078.2019.1663043] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EV) convey biological information by transmitting macromolecules between cells and tissues and are of great promise as pharmaceutical nanocarriers, and as therapeutic per se. Strategies for customizing the EV surface and cargo are being developed to enable their tracking, visualization, loading with pharmaceutical agents and decoration of the surface with tissue targeting ligands. While much progress has been made in the engineering of EVs, an exhaustive comparative analysis of the most commonly exploited EV-associated proteins, as well as a quantification at the molecular level are lacking. Here, we selected 12 EV-related proteins based on MS-proteomics data for comparative quantification of their EV engineering potential. All proteins were expressed with fluorescent protein (FP) tags in EV-producing cells; both parent cells as well as the recovered vesicles were characterized biochemically and biophysically. Using Fluorescence Correlation Spectroscopy (FCS) we quantified the number of FP-tagged molecules per vesicle. We observed different loading efficiencies and specificities for the different proteins into EVs. For the candidates showing the highest loading efficiency in terms of engineering, the molecular levels in the vesicles did not exceed ca 40-60 fluorescent proteins per vesicle upon transient overexpression in the cells. Some of the GFP-tagged EV reporters showed quenched fluorescence and were either non-vesicular, despite co-purification with EVs, or comprised a significant fraction of truncated GFP. The co-expression of each target protein with CD63 was further quantified by widefield and confocal imaging of single vesicles after double transfection of parent cells. In summary, we provide a quantitative comparison for the most commonly used sorting proteins for bioengineering of EVs and introduce a set of biophysical techniques for straightforward quantitative and qualitative characterization of fluorescent EVs to link single vesicle analysis with single molecule quantification.
Collapse
Affiliation(s)
- Giulia Corso
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Wolf Heusermann
- Novartis Institutes for Biomedical Research, Basel, Switzerland.,Imaging Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Dominic Trojer
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - André Görgens
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - Emmanuelle Steib
- Novartis Institutes for Biomedical Research, Basel, Switzerland.,Department of Cell Biology, Sciences III, University of Geneva, Geneva Switzerland
| | - Johannes Voshol
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Alexandra Graff
- Facility for advanced imaging and microscopy, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Christel Genoud
- Facility for advanced imaging and microscopy, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Yi Lee
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Cancer and Stratified Oncology 5, Astar Genome Institute of Singapore, Singapore
| | - Justin Hean
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Joel Z Nordin
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Nicole Meisner-Kober
- Novartis Institutes for Biomedical Research, Basel, Switzerland.,Department of Biosciences, University of Salzburg, Salzburg, Austria
| |
Collapse
|
74
|
Lázaro-Ibáñez E, Lässer C, Shelke GV, Crescitelli R, Jang SC, Cvjetkovic A, García-Rodríguez A, Lötvall J. DNA analysis of low- and high-density fractions defines heterogeneous subpopulations of small extracellular vesicles based on their DNA cargo and topology. J Extracell Vesicles 2019; 8:1656993. [PMID: 31497265 PMCID: PMC6719264 DOI: 10.1080/20013078.2019.1656993] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles have the capacity to transfer lipids, proteins, and nucleic acids between cells, thereby influencing the recipient cell's phenotype. While the role of RNAs in EVs has been extensively studied, the function of DNA remains elusive. Here, we distinguished novel heterogeneous subpopulations of small extracellular vesicles (sEVs) based on their DNA content and topology. Low- and high-density sEV subsets from a human mast cell line (HMC-1) and an erythroleukemic cell line (TF-1) were separated using high-resolution iodixanol density gradients to discriminate the nature of the DNA cargo of the sEVs. Paired comparisons of the sEV-associated DNA and RNA molecules showed that RNA was more abundant than DNA and that most of the DNA was present in the high-density fractions, demonstrating that sEV subpopulations have different DNA content. DNA was predominately localised on the outside or surface of sEVs, with only a small portion being protected from enzymatic degradation. Whole-genome sequencing identified DNA fragments spanning all chromosomes and mitochondrial DNA when sEVs were analysed in bulk. Our work contributes to the understanding of how DNA is associated with sEVs and thus provides direction for distinguishing subtypes of EVs based on their DNA cargo and topology.
Collapse
Affiliation(s)
- Elisa Lázaro-Ibáñez
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Cecilia Lässer
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Ganesh Vilas Shelke
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Rossella Crescitelli
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Su Chul Jang
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Aleksander Cvjetkovic
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Anaís García-Rodríguez
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
75
|
Zeng JH, Lu W, Liang L, Chen G, Lan HH, Liang XY, Zhu X. Prognosis of clear cell renal cell carcinoma (ccRCC) based on a six-lncRNA-based risk score: an investigation based on RNA-sequencing data. J Transl Med 2019; 17:281. [PMID: 31443717 PMCID: PMC6708203 DOI: 10.1186/s12967-019-2032-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 08/18/2019] [Indexed: 02/07/2023] Open
Abstract
Background The scientific understanding of long non-coding RNAs (lncRNAs) has improved in recent decades. Nevertheless, there has been little research into the role that lncRNAs play in clear cell renal cell carcinoma (ccRCC). More lncRNAs are assumed to influence the progression of ccRCC via their own molecular mechanisms. Methods This study investigated the prognostic significance of differentially expressed lncRNAs by mining high-throughput lncRNA-sequencing data from The Cancer Genome Atlas (TCGA) containing 13,198 lncRNAs from 539 patients. Differentially expressed lncRNAs were assessed using the R packages edgeR and DESeq. The prognostic significance of lncRNAs was measured using univariate Cox proportional hazards regression. ccRCC patients were then categorized into high- and low-score cohorts based on the cumulative distribution curve inflection point the of risk score, which was generated by the multivariate Cox regression model. Samples from the TCGA dataset were divided into training and validation subsets to verify the prognostic risk model. Bioinformatics methods, gene set enrichment analysis, and protein–protein interaction networks, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes analyses were subsequently used. Results It was found that the risk score based on 6 novel lncRNAs (CTA-384D8.35, CTD-2263F21.1, LINC01510, RP11-352G9.1, RP11-395B7.2, RP11-426C22.4) exhibited superior prognostic value for ccRCC. Moreover, we categorized the cases into two groups (high-risk and low-risk), and also examined related pathways and genetic differences between them. Kaplan–Meier curves indicated that the median survival time of patients in the high-risk group was 73.5 months, much shorter than that of the low-risk group (112.6 months; P < 0.05). Furthermore, the risk score predicted the 5-year survival of all 539 ccRCC patients (AUC at 5 years, 0.683; concordance index [C-index], 0.853; 95% CI 0.817–0.889). The training set and validation set also showed similar performance (AUC at 5 years, 0.649 and 0.681, respectively; C-index, 0.822 and 0.891; 95% CI 0.774–0.870 and 0.844–0.938). Conclusions The results of this study can be applied to analyzing various prognostic factors, leading to new possibilities for clinical diagnosis and prognosis of ccRCC.
Collapse
Affiliation(s)
- Jiang-Hui Zeng
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangxi Medical University/Nanning Second People's Hospital, 13 Dancun Road, Nanning, 530031, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Wei Lu
- Department of Pathology, The Third Affiliated Hospital of Guangxi Medical University/Nanning Second People's Hospital, 13 Dancun Road, Nanning, 530031, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Liang Liang
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, 166 Daxuedong Road, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hui-Hua Lan
- Department of Clinical Laboratory, The People's Hospital of Guangxi Zhuang Autonomous Region, 6 Taoyuan Road, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiu-Yun Liang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangxi Medical University/Nanning Second People's Hospital, 13 Dancun Road, Nanning, 530031, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xu Zhu
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangxi Medical University/Nanning Second People's Hospital, 13 Dancun Road, Nanning, 530031, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
76
|
Kolev NG, Rajan KS, Tycowski KT, Toh JY, Shi H, Lei Y, Michaeli S, Tschudi C. The vault RNA of Trypanosoma brucei plays a role in the production of trans-spliced mRNA. J Biol Chem 2019; 294:15559-15574. [PMID: 31439669 DOI: 10.1074/jbc.ra119.008580] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/07/2019] [Indexed: 11/06/2022] Open
Abstract
The vault ribonucleoprotein (RNP), comprising vault RNA (vtRNA) and telomerase-associated protein 1 (TEP1), is found in many eukaryotes. However, previous studies of vtRNAs, for example in mammalian cells, have failed to reach a definitive conclusion about their function. vtRNAs are related to Y RNAs, which are complexed with Ro protein and influence Ro's function in noncoding RNA (ncRNA) quality control and processing. In Trypanosoma brucei, the small noncoding TBsRNA-10 was first described in a survey of the ncRNA repertoire in this organism. Here, we report that TBsRNA-10 in T. brucei is a vtRNA, based on its association with TEP1 and sequence similarity to those of other known and predicted vtRNAs. We observed that like vtRNAs in other species, TBsRNA-10 is transcribed by RNA polymerase III, which in trypanosomes also generates the spliceosomal U-rich small nuclear RNAs. In T. brucei, spliced leader (SL)-mediated trans-splicing of pre-mRNAs is an obligatory step in gene expression, and we found here that T. brucei's vtRNA is highly enriched in a non-nucleolar locus in the cell nucleus implicated in SL RNP biogenesis. Using a newly developed permeabilized cell system for the bloodstream form of T. brucei, we show that down-regulated vtRNA levels impair trans-spliced mRNA production, consistent with a role of vtRNA in trypanosome mRNA metabolism. Our results suggest a common theme for the functions of vtRNAs and Y RNAs. We conclude that by complexing with their protein-binding partners TEP1 and Ro, respectively, these two RNA species modulate the metabolism of various RNA classes.
Collapse
Affiliation(s)
- Nikolay G Kolev
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut 06536
| | - K Shanmugha Rajan
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Kazimierz T Tycowski
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536
| | - Justin Y Toh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut 06536
| | - Huafang Shi
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut 06536
| | - Yuling Lei
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut 06536
| | - Shulamit Michaeli
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Christian Tschudi
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut 06536
| |
Collapse
|
77
|
Ressel S, Rosca A, Gordon K, Buck AH. Extracellular RNA in viral-host interactions: Thinking outside the cell. WILEY INTERDISCIPLINARY REVIEWS. RNA 2019; 10:e1535. [PMID: 30963709 PMCID: PMC6617787 DOI: 10.1002/wrna.1535] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/15/2022]
Abstract
Small RNAs and their associated RNA interference (RNAi) pathways underpin diverse mechanisms of gene regulation and genome defense across all three kingdoms of life and are integral to virus-host interactions. In plants, fungi and many animals, an ancestral RNAi pathway exists as a host defense mechanism whereby viral double-stranded RNA is processed to small RNAs that enable recognition and degradation of the virus. While this antiviral RNAi pathway is not generally thought to be present in mammals, other RNAi mechanisms can influence infection through both viral- and host-derived small RNAs. Furthermore, a burgeoning body of data suggests that small RNAs in mammals can function in a non-cell autonomous manner to play various roles in cell-to-cell communication and disease through their transport in extracellular vesicles. While vesicular small RNAs have not been proposed as an antiviral defense pathway per se, there is increasing evidence that the export of host- or viral-derived RNAs from infected cells can influence various aspects of the infection process. This review discusses the current knowledge of extracellular RNA functions in viral infection and the technical challenges surrounding this field of research. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA in Disease and Development > RNA in Disease Regulatory RNAs/RNAi/Riboswitches > RNAi: Mechanisms of Action.
Collapse
Affiliation(s)
- Sarah Ressel
- Institute of Immunology and Infection Research, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Adelina Rosca
- Department of VirologyCarol Davila University of Medicine and PharmacyBucharestRomania
| | - Katrina Gordon
- Institute of Immunology and Infection Research, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Amy H. Buck
- Institute of Immunology and Infection Research, School of Biological SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|
78
|
Riazifar M, Mohammadi MR, Pone EJ, Yeri A, Lässer C, Segaliny AI, McIntyre LL, Shelke GV, Hutchins E, Hamamoto A, Calle EN, Crescitelli R, Liao W, Pham V, Yin Y, Jayaraman J, Lakey JRT, Walsh CM, Van Keuren-Jensen K, Lotvall J, Zhao W. Stem Cell-Derived Exosomes as Nanotherapeutics for Autoimmune and Neurodegenerative Disorders. ACS NANO 2019; 13:6670-6688. [PMID: 31117376 PMCID: PMC6880946 DOI: 10.1021/acsnano.9b01004] [Citation(s) in RCA: 392] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
To dissect therapeutic mechanisms of transplanted stem cells and develop exosome-based nanotherapeutics in treating autoimmune and neurodegenerative diseases, we assessed the effect of exosomes secreted from human mesenchymal stem cells (MSCs) in treating multiple sclerosis using an experimental autoimmune encephalomyelitis (EAE) mouse model. We found that intravenous administration of exosomes produced by MSCs stimulated by IFNγ (IFNγ-Exo) (i) reduced the mean clinical score of EAE mice compared to PBS control, (ii) reduced demyelination, (iii) decreased neuroinflammation, and (iv) upregulated the number of CD4+CD25+FOXP3+ regulatory T cells (Tregs) within the spinal cords of EAE mice. Co-culture of IFNγ-Exo with activated peripheral blood mononuclear cells (PBMCs) cells in vitro reduced PBMC proliferation and levels of pro-inflammatory Th1 and Th17 cytokines including IL-6, IL-12p70, IL-17AF, and IL-22 yet increased levels of immunosuppressive cytokine indoleamine 2,3-dioxygenase. IFNγ-Exo could also induce Tregs in vitro in a murine splenocyte culture, likely mediated by a third-party accessory cell type. Further, IFNγ-Exo characterization by deep RNA sequencing suggested that IFNγ-Exo contains anti-inflammatory RNAs, where their inactivation partially hindered the exosomes potential to induce Tregs. Furthermore, we found that IFNγ-Exo harbors multiple anti-inflammatory and neuroprotective proteins. These results not only shed light on stem cell therapeutic mechanisms but also provide evidence that MSC-derived exosomes can potentially serve as cell-free therapies in creating a tolerogenic immune response to treat autoimmune and central nervous system disorders.
Collapse
Affiliation(s)
- Milad Riazifar
- Department of Pharmaceutical Sciences, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, Edwards Life Sciences Center for Advanced Cardiovascular Technology, Department of Biomedical Engineering, and Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - M. Rezaa Mohammadi
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Egest J. Pone
- Department of Pharmaceutical Sciences, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, Edwards Life Sciences Center for Advanced Cardiovascular Technology, Department of Biomedical Engineering, and Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697, United States
- Department of Physiology and Biophysics, Vaccine Research and Development Center, University of California, Irvine, Irvine, California 92697, United States
| | - Ashish Yeri
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona 85004, United States
| | - Cecilia Lässer
- Krefting Research Center, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Aude I. Segaliny
- Department of Pharmaceutical Sciences, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, Edwards Life Sciences Center for Advanced Cardiovascular Technology, Department of Biomedical Engineering, and Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Laura L. McIntyre
- Department of Molecular Biology and Biochemistry, Sue and Bill Gross Stem Cell Center, Multiple Sclerosis Research Center, University of California, Irvine, Irvine, California 92697, United States
| | - Ganesh Vilas Shelke
- Krefting Research Center, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
- Department of Surgery, Institute of Clinical Sciences, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg 41345, Sweden
| | - Elizabeth Hutchins
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona 85004, United States
| | - Ashley Hamamoto
- Department of Pharmaceutical Sciences, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, Edwards Life Sciences Center for Advanced Cardiovascular Technology, Department of Biomedical Engineering, and Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Erika N. Calle
- Department of Pharmaceutical Sciences, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, Edwards Life Sciences Center for Advanced Cardiovascular Technology, Department of Biomedical Engineering, and Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Rossella Crescitelli
- Krefting Research Center, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Wenbin Liao
- Department of Pharmaceutical Sciences, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, Edwards Life Sciences Center for Advanced Cardiovascular Technology, Department of Biomedical Engineering, and Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Victor Pham
- Department of Pharmaceutical Sciences, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, Edwards Life Sciences Center for Advanced Cardiovascular Technology, Department of Biomedical Engineering, and Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Yanan Yin
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jayapriya Jayaraman
- Department of Pharmaceutical Sciences, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, Edwards Life Sciences Center for Advanced Cardiovascular Technology, Department of Biomedical Engineering, and Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Jonathan R. T. Lakey
- Department of Surgery, University of California, Irvine, Orange, California 92868, United States
| | - Craig M. Walsh
- Department of Molecular Biology and Biochemistry, Sue and Bill Gross Stem Cell Center, Multiple Sclerosis Research Center, University of California, Irvine, Irvine, California 92697, United States
| | - Kendall Van Keuren-Jensen
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona 85004, United States
| | - Jan Lotvall
- Krefting Research Center, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Weian Zhao
- Department of Pharmaceutical Sciences, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, Edwards Life Sciences Center for Advanced Cardiovascular Technology, Department of Biomedical Engineering, and Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697, United States
- Corresponding Author:
| |
Collapse
|
79
|
Jablonska J, Pietrowska M, Ludwig S, Lang S, Thakur BK. Challenges in the Isolation and Proteomic Analysis of Cancer Exosomes-Implications for Translational Research. Proteomes 2019; 7:proteomes7020022. [PMID: 31096692 PMCID: PMC6631388 DOI: 10.3390/proteomes7020022] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 12/21/2022] Open
Abstract
Exosomes belong to the group of extracellular vesicles (EVs) that derive from various cell populations and mediate intercellular communication in health and disease. Like hormones or cytokines, exosomes released by cells can play a potent role in the communication between the cell of origin and distant cells in the body to maintain homeostatic or pathological processes, including tumorigenesis. The nucleic acids, and lipid and protein cargo present in the exosomes are involved in a myriad of carcinogenic processes, including cell proliferation, tumor angiogenesis, immunomodulation, and metastasis formation. The ability of exosomal proteins to mediate direct functions by interaction with other cells qualifies them as tumor-specific biomarkers and targeted therapeutic approaches. However, the heterogeneity of plasma-derived exosomes consistent of (a) exosomes derived from all kinds of body cells, including cancer cells and (b) contamination of exosome preparation with other extracellular vesicles, such as apoptotic bodies, makes it challenging to obtain solid proteomics data for downstream clinical application. In this manuscript, we review these challenges beginning with the choice of different isolation methods, through the evaluation of obtained exosomes and limitations in the process of proteome analysis of cancer-derived exosomes to identify novel protein targets with functional impact in the context of translational oncology.
Collapse
Affiliation(s)
- Jadwiga Jablonska
- Translational Oncology, Department of Otorhinolaryngology, University Hospital Essen, 45147 Essen, Germany.
| | - Monika Pietrowska
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie Institute⁻Oncology Center, Gliwice Branch, 44-100 Gliwice, Poland.
| | - Sonja Ludwig
- Translational Oncology, Department of Otorhinolaryngology, University Hospital Essen, 45147 Essen, Germany.
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, 45147 Essen, Germany.
| | - Stephan Lang
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, 45147 Essen, Germany.
| | - Basant Kumar Thakur
- Cancer Exosome Research Lab, Department of Pediatric Hematology and Oncology, University Hospital Essen, 45147 Essen, Germany.
| |
Collapse
|
80
|
Srinivasan S, Yeri A, Cheah PS, Chung A, Danielson K, De Hoff P, Filant J, Laurent CD, Laurent LD, Magee R, Moeller C, Murthy VL, Nejad P, Paul A, Rigoutsos I, Rodosthenous R, Shah RV, Simonson B, To C, Wong D, Yan IK, Zhang X, Balaj L, Breakefield XO, Daaboul G, Gandhi R, Lapidus J, Londin E, Patel T, Raffai RL, Sood AK, Alexander RP, Das S, Laurent LC. Small RNA Sequencing across Diverse Biofluids Identifies Optimal Methods for exRNA Isolation. Cell 2019; 177:446-462.e16. [PMID: 30951671 PMCID: PMC6557167 DOI: 10.1016/j.cell.2019.03.024] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/29/2018] [Accepted: 03/11/2019] [Indexed: 12/16/2022]
Abstract
Poor reproducibility within and across studies arising from lack of knowledge regarding the performance of extracellular RNA (exRNA) isolation methods has hindered progress in the exRNA field. A systematic comparison of 10 exRNA isolation methods across 5 biofluids revealed marked differences in the complexity and reproducibility of the resulting small RNA-seq profiles. The relative efficiency with which each method accessed different exRNA carrier subclasses was determined by estimating the proportions of extracellular vesicle (EV)-, ribonucleoprotein (RNP)-, and high-density lipoprotein (HDL)-specific miRNA signatures in each profile. An interactive web-based application (miRDaR) was developed to help investigators select the optimal exRNA isolation method for their studies. miRDar provides comparative statistics for all expressed miRNAs or a selected subset of miRNAs in the desired biofluid for each exRNA isolation method and returns a ranked list of exRNA isolation methods prioritized by complexity, expression level, and reproducibility. These results will improve reproducibility and stimulate further progress in exRNA biomarker development.
Collapse
Affiliation(s)
- Srimeenakshi Srinivasan
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ashish Yeri
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Pike See Cheah
- Neurology and Radiology Services and Program in Neuroscience, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA; Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia
| | - Allen Chung
- Department of Surgery, University of California, San Francisco and VA Medical Center San Francisco, San Francisco, CA 94121, USA
| | - Kirsty Danielson
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter De Hoff
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Justyna Filant
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Clara D Laurent
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA; Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lucie D Laurent
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Rogan Magee
- Computational Medicine Center, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Courtney Moeller
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Venkatesh L Murthy
- Department of Medicine, Division of Cardiovascular Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA
| | - Parham Nejad
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anu Paul
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Isidore Rigoutsos
- Computational Medicine Center, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Rodosthenis Rodosthenous
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ravi V Shah
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bridget Simonson
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cuong To
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - David Wong
- Department of Surgery, University of California, San Francisco and VA Medical Center San Francisco, San Francisco, CA 94121, USA
| | | | - Xuan Zhang
- Neurology and Radiology Services and Program in Neuroscience, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Leonora Balaj
- Neurology and Radiology Services and Program in Neuroscience, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA; Department of Neurosurgery, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Xandra O Breakefield
- Neurology and Radiology Services and Program in Neuroscience, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | | | - Roopali Gandhi
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jodi Lapidus
- Oregon Health Sciences University, Portland, OR, USA
| | - Eric Londin
- Computational Medicine Center, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Robert L Raffai
- Department of Surgery, University of California, San Francisco and VA Medical Center San Francisco, San Francisco, CA 94121, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Saumya Das
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Louise C Laurent
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
81
|
Murillo OD, Thistlethwaite W, Rozowsky J, Subramanian SL, Lucero R, Shah N, Jackson AR, Srinivasan S, Chung A, Laurent CD, Kitchen RR, Galeev T, Warrell J, Diao JA, Welsh JA, Hanspers K, Riutta A, Burgstaller-Muehlbacher S, Shah RV, Yeri A, Jenkins LM, Ahsen ME, Cordon-Cardo C, Dogra N, Gifford SM, Smith JT, Stolovitzky G, Tewari AK, Wunsch BH, Yadav KK, Danielson KM, Filant J, Moeller C, Nejad P, Paul A, Simonson B, Wong DK, Zhang X, Balaj L, Gandhi R, Sood AK, Alexander RP, Wang L, Wu C, Wong DTW, Galas DJ, Van Keuren-Jensen K, Patel T, Jones JC, Das S, Cheung KH, Pico AR, Su AI, Raffai RL, Laurent LC, Roth ME, Gerstein MB, Milosavljevic A. exRNA Atlas Analysis Reveals Distinct Extracellular RNA Cargo Types and Their Carriers Present across Human Biofluids. Cell 2019; 177:463-477.e15. [PMID: 30951672 PMCID: PMC6616370 DOI: 10.1016/j.cell.2019.02.018] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 11/06/2018] [Accepted: 02/11/2019] [Indexed: 12/11/2022]
Abstract
To develop a map of cell-cell communication mediated by extracellular RNA (exRNA), the NIH Extracellular RNA Communication Consortium created the exRNA Atlas resource (https://exrna-atlas.org). The Atlas version 4P1 hosts 5,309 exRNA-seq and exRNA qPCR profiles from 19 studies and a suite of analysis and visualization tools. To analyze variation between profiles, we apply computational deconvolution. The analysis leads to a model with six exRNA cargo types (CT1, CT2, CT3A, CT3B, CT3C, CT4), each detectable in multiple biofluids (serum, plasma, CSF, saliva, urine). Five of the cargo types associate with known vesicular and non-vesicular (lipoprotein and ribonucleoprotein) exRNA carriers. To validate utility of this model, we re-analyze an exercise response study by deconvolution to identify physiologically relevant response pathways that were not detected previously. To enable wide application of this model, as part of the exRNA Atlas resource, we provide tools for deconvolution and analysis of user-provided case-control studies.
Collapse
Affiliation(s)
- Oscar D Murillo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - William Thistlethwaite
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joel Rozowsky
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Sai Lakshmi Subramanian
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rocco Lucero
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Neethu Shah
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andrew R Jackson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Srimeenakshi Srinivasan
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Allen Chung
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Surgical Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - Clara D Laurent
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | | | - Timur Galeev
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Jonathan Warrell
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - James A Diao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA; Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA
| | - Joshua A Welsh
- Translational Nanobiology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | - Ravi V Shah
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ashish Yeri
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lisa M Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, NIH, Bethesda, MD 20892, USA
| | - Mehmet E Ahsen
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carlos Cordon-Cardo
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Navneet Dogra
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; IBM T.J. Watson Research Center, IBM Research, Yorktown Heights, NY 10598, USA
| | - Stacey M Gifford
- IBM T.J. Watson Research Center, IBM Research, Yorktown Heights, NY 10598, USA
| | - Joshua T Smith
- IBM T.J. Watson Research Center, IBM Research, Yorktown Heights, NY 10598, USA
| | - Gustavo Stolovitzky
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; IBM T.J. Watson Research Center, IBM Research, Yorktown Heights, NY 10598, USA
| | - Ashutosh K Tewari
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Benjamin H Wunsch
- IBM T.J. Watson Research Center, IBM Research, Yorktown Heights, NY 10598, USA
| | - Kamlesh K Yadav
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Sema4, Stamford, CT 06902, USA
| | - Kirsty M Danielson
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Justyna Filant
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Courtney Moeller
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Parham Nejad
- Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anu Paul
- Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bridget Simonson
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - David K Wong
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Surgical Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - Xuan Zhang
- Exosome Diagnostics, Inc., Waltham, MA 02451, USA
| | - Leonora Balaj
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Roopali Gandhi
- Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Liang Wang
- Department of Pathology and MCW Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Chunlei Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - David T W Wong
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - David J Galas
- Pacific Northwest Research Institute, Seattle, WA 98122, USA
| | | | - Tushar Patel
- Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jennifer C Jones
- Translational Nanobiology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Saumya Das
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kei-Hoi Cheung
- Department of Emergency Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | - Andrew I Su
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Robert L Raffai
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Surgical Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - Louise C Laurent
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Matthew E Roth
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mark B Gerstein
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA; Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT 06520, USA; Department of Computer Science, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
82
|
Rozowsky J, Kitchen RR, Park JJ, Galeev TR, Diao J, Warrell J, Thistlethwaite W, Subramanian SL, Milosavljevic A, Gerstein M. exceRpt: A Comprehensive Analytic Platform for Extracellular RNA Profiling. Cell Syst 2019; 8:352-357.e3. [PMID: 30956140 DOI: 10.1016/j.cels.2019.03.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/31/2019] [Accepted: 03/06/2019] [Indexed: 01/09/2023]
Abstract
Small RNA sequencing has been widely adopted to study the diversity of extracellular RNAs (exRNAs) in biofluids; however, the analysis of exRNA samples can be challenging: they are vulnerable to contamination and artifacts from different isolation techniques, present in lower concentrations than cellular RNA, and occasionally of exogenous origin. To address these challenges, we present exceRpt, the exRNA-processing toolkit of the NIH Extracellular RNA Communication Consortium (ERCC). exceRpt is structured as a cascade of filters and quantifications prioritized based on one's confidence in a given set of annotated RNAs. It generates quality control reports and abundance estimates for RNA biotypes. It is also capable of characterizing mappings to exogenous genomes, which, in turn, can be used to generate phylogenetic trees. exceRpt has been used to uniformly process all ∼3,500 exRNA-seq datasets in the public exRNA Atlas and is available from genboree.org and github.gersteinlab.org/exceRpt.
Collapse
Affiliation(s)
- Joel Rozowsky
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Robert R Kitchen
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Jonathan J Park
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Timur R Galeev
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - James Diao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Jonathan Warrell
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - William Thistlethwaite
- Bioinformatics Research Laboratory, Molecular and Human Genetics Department, Baylor College of Medicine, Houston, TX, USA
| | - Sai L Subramanian
- Bioinformatics Research Laboratory, Molecular and Human Genetics Department, Baylor College of Medicine, Houston, TX, USA
| | - Aleksandar Milosavljevic
- Bioinformatics Research Laboratory, Molecular and Human Genetics Department, Baylor College of Medicine, Houston, TX, USA
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA; Department of Computer Science, Yale University, New Haven, CT, USA.
| |
Collapse
|
83
|
Karttunen J, Heiskanen M, Lipponen A, Poulsen D, Pitkänen A. Extracellular Vesicles as Diagnostics and Therapeutics for Structural Epilepsies. Int J Mol Sci 2019; 20:E1259. [PMID: 30871144 PMCID: PMC6470789 DOI: 10.3390/ijms20061259] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicles (EVs) are small vesicles involved in intercellular communication. Data is emerging that EVs and their cargo have potential as diagnostic biomarkers and treatments for brain diseases, including traumatic brain injury and epilepsy. Here, we summarize the current knowledge regarding changes in EV numbers and cargo in status epilepticus (SE) and traumatic brain injury (TBI), which are clinically significant etiologies for acquired epileptogenesis in animals and humans. We also review encouraging data, which suggests that EVs secreted by stem cells may serve as recovery-enhancing treatments for SE and TBI. Using Gene Set Enrichment Analysis, we show that brain EV-related transcripts are positively enriched in rodent models of epileptogenesis and epilepsy, and altered in response to anti-seizure drugs. These data suggest that EVs show promise as biomarkers, treatments and drug targets for epilepsy. In parallel to gathering conceptual knowledge, analytics platforms for the isolation and analysis of EV contents need to be further developed.
Collapse
Affiliation(s)
- Jenni Karttunen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Mette Heiskanen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Anssi Lipponen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - David Poulsen
- University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Clinical and Translational Research Center (CTRC), Department of Neurosurgery, Buffalo, NY 14203, USA.
| | - Asla Pitkänen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
84
|
Benmoussa A, Provost P. Milk MicroRNAs in Health and Disease. Compr Rev Food Sci Food Saf 2019; 18:703-722. [PMID: 33336926 DOI: 10.1111/1541-4337.12424] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/19/2018] [Accepted: 12/24/2018] [Indexed: 02/06/2023]
Abstract
MicroRNAs are small noncoding RNAs responsible for regulating 40% to 60% of gene expression at the posttranscriptional level. The discovery of circulating microRNAs in several biological fluids opened the path for their study as biomarkers and long-range cell-to-cell communication mediators. Their transfer between individuals in the case of blood transfusion, for example, and their high enrichment in milk have sparked the interest for microRNA transfer through diet, especially from mothers to infants during breastfeeding. The extension of such paradigm led to the study of milk microRNAs in the case of cow or goat milk consumption in adults. Here we provide a comprehensive critical review of the key findings surrounding milk microRNAs in human, cow, and goat milk among other species. We discuss the data on their biological properties, their use as disease biomarkers, their transfer between individuals or species, and their putative or verified functions in health and disease of infants and adult consumers. This work is based on all the literature available and integrates all the results, theories, debates, and validation studies available so far on milk microRNAs and related areas of investigations. We critically discuss the limitations and outline future aspects and avenues to explore in this rapidly growing field of research that could impact public health through infant milk formulations or new therapies. We hope that this comprehensive review of the literature will provide insight for all teams investigating milk RNAs' biological activities and help ensure the quality of future reports.
Collapse
Affiliation(s)
- Abderrahim Benmoussa
- CHUQ Research Center/CHUL, 2705 Blvd Laurier, Quebec, QC, G1V 4G2, Canada.,Dept. of Microbiology-Infectious Disease and Immunity and Faculty of Medicine, Univ. Laval, Quebec, QC, G1V 0A6, Canada
| | - Patrick Provost
- CHUQ Research Center/CHUL, 2705 Blvd Laurier, Quebec, QC, G1V 4G2, Canada.,Dept. of Microbiology-Infectious Disease and Immunity and Faculty of Medicine, Univ. Laval, Quebec, QC, G1V 0A6, Canada
| |
Collapse
|
85
|
Turchinovich A, Drapkina O, Tonevitsky A. Transcriptome of Extracellular Vesicles: State-of-the-Art. Front Immunol 2019; 10:202. [PMID: 30873152 PMCID: PMC6404625 DOI: 10.3389/fimmu.2019.00202] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/23/2019] [Indexed: 12/21/2022] Open
Abstract
Exosomes and microvesicles are two major categories of extracellular vesicles (EVs) released by almost all cell types and are highly abundant in biological fluids. Both the molecular composition of EVs and their release are thought to be strictly regulated by external stimuli. Multiple studies have consistently demonstrated that EVs transfer proteins, lipids and RNA between various cell types, thus mediating intercellular communication, and signaling. Importantly, small non-coding RNAs within EVs are thought to be major contributors to the molecular events occurring in the recipient cell. Furthermore, RNA cargo in exosomes and microvesicles could hold tremendous potential as non-invasive biomarkers for multiple disorders, including pathologies of the immune system. This mini-review is aimed to provide the state-of-the-art in the EVs-associated RNA transcriptome field, as well as the comprehensive analysis of previous studies characterizing RNA content within EVs released by various cells using next-generation sequencing. Finally, we highlight the technical challenges associated with obtaining pure EVs and deep sequencing of the EV-associated RNAs.
Collapse
Affiliation(s)
- Andrey Turchinovich
- SciBerg e.Kfm, Mannheim, Germany.,Molecular Epidemiology C080, German Cancer Research Center, Heidelberg, Germany
| | - Oxana Drapkina
- National Medical Research Center for Preventive Medicine, Moscow, Russia
| | - Alexander Tonevitsky
- Department of Cell Biology, Higher School of Economics, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia.,SRC BioClinicum, Moscow, Russia
| |
Collapse
|
86
|
Rocha S, Carvalho J, Oliveira P, Voglstaetter M, Schvartz D, Thomsen AR, Walter N, Khanduri R, Sanchez J, Keller A, Oliveira C, Nazarenko I. 3D Cellular Architecture Affects MicroRNA and Protein Cargo of Extracellular Vesicles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1800948. [PMID: 30828519 PMCID: PMC6382357 DOI: 10.1002/advs.201800948] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/30/2018] [Indexed: 05/05/2023]
Abstract
The success of malignant tumors is conditioned by the intercellular communication between tumor cells and their microenvironment, with extracellular vesicles (EVs) acting as main mediators. While the value of 3D conditions to study tumor cells is well established, the impact of cellular architecture on EV content and function is not investigated yet. Here, a recently developed 3D cell culture microwell array is adapted for EV production and a comprehensive comparative analysis of biochemical features, RNA and proteomic profiles of EVs secreted by 2D vs 3D cultures of gastric cancer cells, is performed. 3D cultures are significantly more efficient in producing EVs than 2D cultures. Global upregulation of microRNAs and downregulation of proteins in 3D are observed, indicating their dynamic coregulation in response to cellular architecture, with the ADP-ribosylation factor 6 signaling pathway significantly downregulated in 3D EVs. The data strengthen the biological relevance of cellular architecture for production and cargo of EVs.
Collapse
Affiliation(s)
- Sara Rocha
- i3S—Instituto de Investigação e Inovação em SaúdeUniversidade do PortoRua Alfredo Allen 2084200‐135PortoPortugal
- Ipatimup—Institute of Molecular Pathology and ImmunologyUniversity of PortoRua Júlio Amaral de Carvalho 454200‐135PortoPortugal
- ICBAS—Instituto de Ciências Biomédicas Abel SalazarUniversidade do PortoR. Jorge de Viterbo Ferreira 2284050‐313PortoPortugal
| | - Joana Carvalho
- i3S—Instituto de Investigação e Inovação em SaúdeUniversidade do PortoRua Alfredo Allen 2084200‐135PortoPortugal
- Ipatimup—Institute of Molecular Pathology and ImmunologyUniversity of PortoRua Júlio Amaral de Carvalho 454200‐135PortoPortugal
| | - Patrícia Oliveira
- i3S—Instituto de Investigação e Inovação em SaúdeUniversidade do PortoRua Alfredo Allen 2084200‐135PortoPortugal
- Ipatimup—Institute of Molecular Pathology and ImmunologyUniversity of PortoRua Júlio Amaral de Carvalho 454200‐135PortoPortugal
| | - Maren Voglstaetter
- Institute for Infection Prevention and Hospital EpidemiologyMedical Center—University of FreiburgFaculty of MedicineUniversity of FreiburgBreisacherstr. 115b79106FreiburgGermany
| | - Domitille Schvartz
- Department of Human Protein SciencesCentre Médical UniversitaireRue Michel‐Servet 1CH1211GenevaSwitzerland
| | - Andreas R. Thomsen
- Department of Radiation OncologyMedical Center—University of FreiburgHugstaetterstr 55Freiburg79106Germany
- German Cancer Consortium (DKTK)Partner Site Freiburg and German Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
| | - Nadia Walter
- Department of Human Protein SciencesCentre Médical UniversitaireRue Michel‐Servet 1CH1211GenevaSwitzerland
| | - Richa Khanduri
- Institute for Infection Prevention and Hospital EpidemiologyMedical Center—University of FreiburgFaculty of MedicineUniversity of FreiburgBreisacherstr. 115b79106FreiburgGermany
| | - Jean‐Charles Sanchez
- Department of Human Protein SciencesCentre Médical UniversitaireRue Michel‐Servet 1CH1211GenevaSwitzerland
| | - Andreas Keller
- Clinical BioinformaticsUniversity HospitalSaarland UniversityKirrberger Straße, Building E2.166123SaarbrückenGermany
| | - Carla Oliveira
- i3S—Instituto de Investigação e Inovação em SaúdeUniversidade do PortoRua Alfredo Allen 2084200‐135PortoPortugal
- Ipatimup—Institute of Molecular Pathology and ImmunologyUniversity of PortoRua Júlio Amaral de Carvalho 454200‐135PortoPortugal
- Department Pathology and OncologyFaculty of MedicineUniversity of PortoAlameda Prof. Hernâni Monteiro4200‐319PortoPortugal
| | - Irina Nazarenko
- Institute for Infection Prevention and Hospital EpidemiologyMedical Center—University of FreiburgFaculty of MedicineUniversity of FreiburgBreisacherstr. 115b79106FreiburgGermany
- German Cancer Consortium (DKTK)Partner Site Freiburg and German Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
| |
Collapse
|
87
|
Elsemüller AK, Tomalla V, Gärtner U, Troidl K, Jeratsch S, Graumann J, Baal N, Hackstein H, Lasch M, Deindl E, Preissner KT, Fischer S. Characterization of mast cell-derived rRNA-containing microvesicles and their inflammatory impact on endothelial cells. FASEB J 2019; 33:5457-5467. [PMID: 30702929 DOI: 10.1096/fj.201801853rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tissue-resident mast cells (MCs) are well known for their role in inflammatory responses and allergic and anaphylactic reactions, but they also contribute to processes of arterial remodeling. Although ribosomes and cytosolic RNAs are located around secretory granules in mature MCs, their functional role in MC responses remains unexplored. Previous studies by our group characterized extracellular RNA (eRNA) as an inflammatory and pathogenetic factor in vitro and in vivo. In the present study, RNA-containing MCs and eRNA were located in close proximity to growing collateral arteries in vivo. In vitro, various agonists were found to induce the degranulation of MCs and the concomitant release of eRNA in association with microvesicles (MVs). The liberation of eRNA from MCs was abolished by MC stabilizers or by preventing the increase of intracellular Ca2+ in MCs. eRNA was found to be mainly contained inside MVs, as demonstrated by electron microscopy and immunocytochemistry. The exposure to and the uptake of MC-released MVs by cultured endothelial cells increased their expression of cytokines, such as monocyte chemoattractant protein or IL-6, in a dose- and time-dependent manner. These results indicate that RNA-containing MC-derived MVs are likely to be involved in inflammatory responses, relevant, for example, to processes of vascular remodeling.-Elsemüller, A.-K., Tomalla, V., Gärtner, U., Troidl, K., Jeratsch, S., Graumann, J., Baal, N., Hackstein, H., Lasch, M., Deindl, E., Preissner, K. T., Fischer, S. Characterization of mast cell-derived rRNA-containing microvesicles and their inflammatory impact on endothelial cells.
Collapse
Affiliation(s)
| | - Vanessa Tomalla
- Department of Biochemistry, Medical Faculty, Justus Liebig University, Giessen, Germany
| | - Ulrich Gärtner
- Department of Anatomy and Cell Biology, Justus Liebig University, Giessen, Germany
| | - Kerstin Troidl
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Vascular and Endovascular Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - Sylvia Jeratsch
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Johannes Graumann
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Nelli Baal
- Department of Clinical Immunology and Transfusion Medicine, Medical Faculty, Justus Liebig University, Giessen, Germany
| | - Holger Hackstein
- Department of Transfusion Medicine and Haemostaseology, University Hospital Erlangen-Friedrich Alexander University, Erlangen, Germany
| | - Manuel Lasch
- Walter Brendel Centre of Experimental Medicine, Medical Center of the University of Munich-Ludwig Maximilian University, Munich, Germany; and.,Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Elisabeth Deindl
- Walter Brendel Centre of Experimental Medicine, Medical Center of the University of Munich-Ludwig Maximilian University, Munich, Germany; and
| | - Klaus T Preissner
- Department of Biochemistry, Medical Faculty, Justus Liebig University, Giessen, Germany
| | - Silvia Fischer
- Department of Biochemistry, Medical Faculty, Justus Liebig University, Giessen, Germany
| |
Collapse
|
88
|
Sadik N, Cruz L, Gurtner A, Rodosthenous RS, Dusoswa SA, Ziegler O, Van Solinge TS, Wei Z, Salvador-Garicano AM, Gyorgy B, Broekman M, Balaj L. Extracellular RNAs: A New Awareness of Old Perspectives. Methods Mol Biol 2019; 1740:1-15. [PMID: 29388131 DOI: 10.1007/978-1-4939-7652-2_1] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Extracellular RNA (exRNA) has recently expanded as a highly important area of study in biomarker discovery and cancer therapeutics. exRNA consists of diverse RNA subpopulations that are normally protected from degradation by incorporation into membranous vesicles or by lipid/protein association. They are found circulating in biofluids, and have proven highly promising for minimally invasive diagnostic and prognostic purposes, particularly in oncology. Recent work has made progress in our understanding of exRNAs-from their biogenesis, compartmentalization, and vesicle packaging to their various applications as biomarkers and therapeutics, as well as the new challenges that arise in isolation and purification for accurate and reproducible analysis. Here we review the most recent advancements in exRNA research.
Collapse
Affiliation(s)
- Noah Sadik
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lilian Cruz
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alessandra Gurtner
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Rodosthenis S Rodosthenous
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sophie A Dusoswa
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands.,Amsterdam Infection & Immunity Institute, VU University Medical Center, Amsterdam, The Netherlands.,Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Olivia Ziegler
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Thomas Sebastiaan Van Solinge
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA.,Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Zhiyun Wei
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Bence Gyorgy
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Marike Broekman
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Department of Neurosurgery, Brain Center Rudolf Magnus University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leonora Balaj
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
89
|
Exosome-Mediated Signaling in Epithelial to Mesenchymal Transition and Tumor Progression. J Clin Med 2018; 8:jcm8010026. [PMID: 30591649 PMCID: PMC6352067 DOI: 10.3390/jcm8010026] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022] Open
Abstract
Growing evidence points to exosomes as key mediators of cell⁻cell communication, by transferring their specific cargo (e.g., proteins, lipids, DNA and RNA molecules) from producing to receiving cells. In cancer, the regulation of the exosome-mediated intercellular communication may be reshaped, inducing relevant changes in gene expression of recipient cells in addition to microenvironment alterations. Notably, exosomes may deliver signals able to induce the transdifferentiation process known as Epithelial-to-Mesenchymal Transition (EMT). In this review, we summarize recent findings on the role of exosomes in tumor progression and EMT, highlighting current knowledge on exosome-mediated intercellular communication in tumor-niche establishment, migration, invasion, and metastasis processes. This body of evidence suggests the relevance of taking into account exosome-mediated signaling and its multifaceted aspects to develop innovative anti-tumoral therapeutic approaches.
Collapse
|
90
|
Claridge B, Kastaniegaard K, Stensballe A, Greening DW. Post-translational and transcriptional dynamics - regulating extracellular vesicle biology. Expert Rev Proteomics 2018; 16:17-31. [PMID: 30457403 DOI: 10.1080/14789450.2019.1551135] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Extracellular vesicles (EVs) are secreted into their extracellular environment, contain a specific repertoire of cellular cargo, and represent a novel vehicle for cell-cell communication. Protein post-translational modifications (PTMs) are emerging as major effectors of EV biology and function, and in turn, regulate cellular signaling. Areas covered: Discovery and investigation of PTMs such as methylation, glycosylation, acetylation, phosphorylation, sumoylation, and many others has established fundamental roles for PTMs within EVs and associated EV function. The application of enrichment strategies for modifications, high-resolution quantitative mass spectrometry-based proteomics, and improved technological approaches have provided key insights into identification and characterization of EV-based PTMs. Recently, an overwhelming appreciation for the diversity of modifications, including post-transcriptional modifications, dynamic roles of these modifications, and their emerging interplay, including protein-protein, protein-lipid, protein-RNA, and variable RNA modifications, is emerging. At a cellular level, such interplay is essential for gene expression/genome organization, protein function and localization, RNA metabolism, cell division, and cell signaling. Expert commentary: The understanding of these modifications and interactions will provide strategies toward how distinct cargo is localized, sorted, and delivered through EVs to mediate intercellular function, with further understanding of such modifications and intermolecular interactions will provide advances in EV-based therapeutic strategies.
Collapse
Affiliation(s)
- Bethany Claridge
- a Department of Biochemistry and Genetics , La Trobe Institute for Molecular Science, La Trobe University , Melbourne , Australia
| | - Kenneth Kastaniegaard
- b Department of Health Science and Technology , Laboratory for Medical Mass Spectrometry, Aalborg University , Aalborg Ø , Denmark
| | - Allan Stensballe
- b Department of Health Science and Technology , Laboratory for Medical Mass Spectrometry, Aalborg University , Aalborg Ø , Denmark
| | - David W Greening
- a Department of Biochemistry and Genetics , La Trobe Institute for Molecular Science, La Trobe University , Melbourne , Australia
| |
Collapse
|
91
|
Almiñana C, Tsikis G, Labas V, Uzbekov R, da Silveira JC, Bauersachs S, Mermillod P. Deciphering the oviductal extracellular vesicles content across the estrous cycle: implications for the gametes-oviduct interactions and the environment of the potential embryo. BMC Genomics 2018; 19:622. [PMID: 30134841 PMCID: PMC6103977 DOI: 10.1186/s12864-018-4982-5] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/31/2018] [Indexed: 12/21/2022] Open
Abstract
Background The success of early reproductive events depends on an appropriate communication between gametes/embryos and the oviduct. Extracellular vesicles (EVs) contained in oviductal secretions have been suggested as new players in mediating this crucial cross-talk by transferring their cargo (proteins, mRNA and small ncRNA) from cell to cell. However, little is known about the oviductal EVs (oEVS) composition and their implications in the reproductive success. The aim of the study was to determine the oEVs content at protein, mRNA and small RNA level and to examine whether the oEVs content is under the hormonal influence of the estrous cycle. Results We identified the presence of oEVs, exosomes and microvesicles, in the bovine oviductal fluid at different stages of the estrous cycle (postovulatory-stage, early luteal phase, late luteal phase and pre-ovulatory stage) and demonstrated that their composition is under hormonal regulation. RNA-sequencing identified 903 differentially expressed transcripts (FDR < 0.001) in oEVs across the estrous cycle. Moreover, small RNA-Seq identified the presence of different types of ncRNAs (miRNAs, rRNA fragments, tRNA fragments, snRNA, snoRNA, and other ncRNAs), which were partially also under hormonal influence. Major differences were found between post-ovulatory and the rest of the stages analyzed for mRNAs. Interesting miRNAs identified in oEVs and showing differential abundance among stages, miR-34c and miR-449a, have been associated with defective cilia in the oviduct and infertility. Furthermore, functional annotation of the differentially abundant mRNAs identified functions related to exosome/vesicles, cilia expression, embryo development and many transcripts encoding ribosomal proteins. Moreover, the analysis of oEVs protein content also revealed changes across the estrous cycle. Mass spectrometry identified 336 clusters of proteins in oEVs, of which 170 were differentially abundant across the estrous cycle (p-value< 0.05, ratio < 0.5 or ratio > 2). Our data revealed proteins related to early embryo development and gamete-oviduct interactions as well as numerous ribosomal proteins. Conclusions Our study provides with the first molecular signature of oEVs across the bovine estrous cycle, revealing marked differences between post- and pre-ovulatory stages. Our findings contribute to a better understanding of the potential role of oEVs as modulators of gamete/embryo-maternal interactions and their implications for the reproductive success. Electronic supplementary material The online version of this article (10.1186/s12864-018-4982-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- C Almiñana
- Department for Farm Animals, University of Zurich, Genetics and Functional Genomics, Clinic of Reproductive Medicine, VetSuisse Faculty Zurich, Zurich, Switzerland. .,UMR85 PRC, INRA, CNRS 7247, Université de Tours, IFCE, 37380, Nouzilly, France.
| | - G Tsikis
- UMR85 PRC, INRA, CNRS 7247, Université de Tours, IFCE, 37380, Nouzilly, France
| | - V Labas
- UMR85 PRC, INRA, CNRS 7247, Université de Tours, IFCE, 37380, Nouzilly, France.,Plate-forme CIRE, Pôle d'Analyse et d'Imagerie des Biomolécules, INRA, CHRU de Tours, Université de Tours, 37380, Nouzilly, France
| | - R Uzbekov
- Laboratoire Biologie Cellulaire et Microscopie Electronique, Faculté de Médecine, Université François Rabelais, 10 boulevard Tonnellé, 37032, Tours, France.,Faculty of Bioengineering and Bioinformatics, Moscow State University, 119992, Moscow, Russia
| | - J C da Silveira
- Department of Veterinary Medicine, University of Sao Paulo, Pirassununga, Sao Paulo, Brazil
| | - S Bauersachs
- Department for Farm Animals, University of Zurich, Genetics and Functional Genomics, Clinic of Reproductive Medicine, VetSuisse Faculty Zurich, Zurich, Switzerland
| | - P Mermillod
- UMR85 PRC, INRA, CNRS 7247, Université de Tours, IFCE, 37380, Nouzilly, France
| |
Collapse
|
92
|
Karimi N, Cvjetkovic A, Jang SC, Crescitelli R, Hosseinpour Feizi MA, Nieuwland R, Lötvall J, Lässer C. Detailed analysis of the plasma extracellular vesicle proteome after separation from lipoproteins. Cell Mol Life Sci 2018; 75:2873-2886. [PMID: 29441425 PMCID: PMC6021463 DOI: 10.1007/s00018-018-2773-4] [Citation(s) in RCA: 376] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/03/2018] [Accepted: 02/01/2018] [Indexed: 12/15/2022]
Abstract
The isolation of extracellular vesicles (EVs) from blood is of great importance to understand the biological role of circulating EVs and to develop EVs as biomarkers of disease. Due to the concurrent presence of lipoprotein particles, however, blood is one of the most difficult body fluids to isolate EVs from. The aim of this study was to develop a robust method to isolate and characterise EVs from blood with minimal contamination by plasma proteins and lipoprotein particles. Plasma and serum were collected from healthy subjects, and EVs were isolated by size-exclusion chromatography (SEC), with most particles being present in fractions 8-12, while the bulk of the plasma proteins was present in fractions 11-28. Vesicle markers peaked in fractions 7-11; however, the same fractions also contained lipoprotein particles. The purity of EVs was improved by combining a density cushion with SEC to further separate lipoprotein particles from the vesicles, which reduced the contamination of lipoprotein particles by 100-fold. Using this novel isolation procedure, a total of 1187 proteins were identified in plasma EVs by mass spectrometry, of which several proteins are known as EV-associated proteins but have hitherto not been identified in the previous proteomic studies of plasma EVs. This study shows that SEC alone is unable to completely separate plasma EVs from lipoprotein particles. However, combining SEC with a density cushion significantly improved the separation of EVs from lipoproteins and allowed for a detailed analysis of the proteome of plasma EVs, thus making blood a viable source for EV biomarker discovery.
Collapse
Affiliation(s)
- Nasibeh Karimi
- Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Aleksander Cvjetkovic
- Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Su Chul Jang
- Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Codiak BioSciences, Cambridge, MA, 02139, USA
| | - Rossella Crescitelli
- Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, Department of Clinical Chemistry, and Vesicle Observation Centre, Academic Medical Centre of the University of Amsterdam, Amsterdam, The Netherlands
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Lässer
- Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
93
|
Rupert DLM, Mapar M, Shelke GV, Norling K, Elmeskog M, Lötvall JO, Block S, Bally M, Agnarsson B, Höök F. Effective Refractive Index and Lipid Content of Extracellular Vesicles Revealed Using Optical Waveguide Scattering and Fluorescence Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8522-8531. [PMID: 29923735 DOI: 10.1021/acs.langmuir.7b04214] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Extracellular vesicles (EVs) are generating a growing interest because of the key roles they play in various biological processes and because of their potential use as biomarkers in clinical diagnostics and as efficient carriers in drug-delivery and gene-therapy applications. Their full exploitation, however, depends critically on the possibility to classify them into different subpopulations, a task that in turn relies on efficient means to identify their unique biomolecular and physical signatures. Because of the large heterogeneity of EV samples, such information remains rather elusive, and there is accordingly a need for new and complementary characterization schemes that can help expand the library of distinct EV features. In this work, we used surface-sensitive waveguide scattering microscopy with single EV resolution to characterize two subsets of similarly sized EVs that were preseparated based on their difference in buoyant density. Unexpectedly, the scattering intensity distribution revealed that the scattering intensity of the high-density (HD) population was on an average a factor of three lower than that of the low-density (LD) population. By further labeling the EV samples with a self-inserting lipid-membrane dye, the scattering and fluorescence intensities from EVs could be simultaneously measured and correlated at the single-particle level. The labeled HD sample exhibited not only lower fluorescence and scattering intensities but also lower effective refractive index ( n ≈ 1.35) compared with the LD EVs ( n ≈ 1.38), indicating that both the lipid and protein contents were indeed lower in the HD EVs. Although separation in density gradients of similarly sized EVs is usually linked to differences in biomolecular content, we suggest based on these observations that the separation rather reflects the ability of the solute of the gradient to penetrate the lipid membrane enclosing the EVs, that is, the two gradient bands are more likely because of the differences in membrane permeability than to differences in biomolecular content of the EVs.
Collapse
Affiliation(s)
- Déborah L M Rupert
- Department of Physics , Chalmers University of Technology , 41296 Gothenburg , Sweden
| | - Mokhtar Mapar
- Department of Physics , Chalmers University of Technology , 41296 Gothenburg , Sweden
| | - Ganesh Vilas Shelke
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition , University of Gothenburg , 40530 Gothenburg , Sweden
| | - Karin Norling
- Department of Physics , Chalmers University of Technology , 41296 Gothenburg , Sweden
| | - Mathias Elmeskog
- Department of Physics , Chalmers University of Technology , 41296 Gothenburg , Sweden
| | - Jan O Lötvall
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition , University of Gothenburg , 40530 Gothenburg , Sweden
| | - Stephan Block
- Department of Physics , Chalmers University of Technology , 41296 Gothenburg , Sweden
| | - Marta Bally
- Department of Physics , Chalmers University of Technology , 41296 Gothenburg , Sweden
- Institut Curie, Centre de Recherche, CNRS, UMR168, Physico-Chimie Curie , Paris 75016 , France
| | - Björn Agnarsson
- Department of Physics , Chalmers University of Technology , 41296 Gothenburg , Sweden
| | - Fredrik Höök
- Department of Physics , Chalmers University of Technology , 41296 Gothenburg , Sweden
| |
Collapse
|
94
|
Heterogeneity and interplay of the extracellular vesicle small RNA transcriptome and proteome. Sci Rep 2018; 8:10813. [PMID: 30018314 PMCID: PMC6050237 DOI: 10.1038/s41598-018-28485-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 06/15/2018] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs) mediate cell-to-cell communication by delivering or displaying macromolecules to their recipient cells. While certain broad-spectrum EV effects reflect their protein cargo composition, others have been attributed to individual EV-loaded molecules such as specific miRNAs. In this work, we have investigated the contents of vesicular cargo using small RNA sequencing of cells and EVs from HEK293T, RD4, C2C12, Neuro2a and C17.2. The majority of RNA content in EVs (49–96%) corresponded to rRNA-, coding- and tRNA fragments, corroborating with our proteomic analysis of HEK293T and C2C12 EVs which showed an enrichment of ribosome and translation-related proteins. On the other hand, the overall proportion of vesicular small RNA was relatively low and variable (2-39%) and mostly comprised of miRNAs and sequences mapping to piRNA loci. Importantly, this is one of the few studies, which systematically links vesicular RNA and protein cargo of vesicles. Our data is particularly useful for future work in unravelling the biological mechanisms underlying vesicular RNA and protein sorting and serves as an important guide in developing EVs as carriers for RNA therapeutics.
Collapse
|
95
|
Alibhai FJ, Tobin SW, Yeganeh A, Weisel RD, Li RK. Emerging roles of extracellular vesicles in cardiac repair and rejuvenation. Am J Physiol Heart Circ Physiol 2018; 315:H733-H744. [PMID: 29949381 DOI: 10.1152/ajpheart.00100.2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cell therapy has received significant attention as a therapeutic approach to restore cardiac function after myocardial infarction. Accumulating evidence supports that beneficial effects observed with cell therapy are due to paracrine secretion of multiple factors from transplanted cells, which alter the tissue microenvironment and orchestrate cardiac repair processes. Of these paracrine factors, extracellular vesicles (EVs) have emerged as a key effector of cell therapy. EVs regulate cellular function through the transfer of cargo, such as microRNAs and proteins, which act on multiple biological pathways within recipient cells. These discoveries have led to the development of cell-free therapies using EVs to improve cardiac repair after a myocardial infarction. Here, we present an overview of the current use of EVs to enhance cardiac repair after myocardial infarction. We also discuss the emerging use of EVs for rejuvenation-based therapies. Finally, future directions for the use of EVs as therapeutic agents for cardiac regenerative medicine are also discussed.
Collapse
Affiliation(s)
- Faisal J Alibhai
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network , Toronto, Ontario , Canada
| | - Stephanie W Tobin
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network , Toronto, Ontario , Canada
| | - Azadeh Yeganeh
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network , Toronto, Ontario , Canada
| | - Richard D Weisel
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network , Toronto, Ontario , Canada.,Division of Cardiac Surgery, Department of Surgery, University of Toronto , Toronto, Ontario , Canada
| | - Ren-Ke Li
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network , Toronto, Ontario , Canada.,Division of Cardiac Surgery, Department of Surgery, University of Toronto , Toronto, Ontario , Canada
| |
Collapse
|
96
|
Tkach M, Kowal J, Théry C. Why the need and how to approach the functional diversity of extracellular vesicles. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0479. [PMID: 29158309 PMCID: PMC5717434 DOI: 10.1098/rstb.2016.0479] [Citation(s) in RCA: 241] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2017] [Indexed: 12/15/2022] Open
Abstract
In the past decade, cell-to-cell communication mediated by exosomes has attracted growing attention from biomedical scientists and physicians, leading to several recent publications in top-tier journals. Exosomes are generally defined as secreted membrane vesicles, or extracellular vesicles (EVs), corresponding to the intraluminal vesicles of late endosomal compartments, which are secreted upon fusion of multi-vesicular endosomes with the cell's plasma membrane. Cells, however, were shown to release other types of EVs, for instance, by direct budding off their plasma membrane. Some of these EVs share with exosomes major biophysical and biochemical characteristics, such as size, density and membrane orientation, which impose difficulties in their efficient separation. Despite frequent claims in the literature, whether exosomes really display more important patho/physiological functions, or are endowed with higher potential as diagnostic or therapeutic tools than other EVs, is not yet convincingly demonstrated. In this opinion article, we describe reasons for this lack of precision knowledge in the current stage of the EV field, we review recently described approaches to overcome these caveats, and we propose ways to improve our knowledge on the respective functions of distinct EVs, which will be crucial for future development of well-designed EV-based clinical applications. This article is part of the discussion meeting issue ‘Extracellular vesicles and the tumour microenvironment’.
Collapse
Affiliation(s)
- Mercedes Tkach
- Institut Curie, PSL Research University, INSERM U932, 26 rue d'Ulm, 75005 Paris, France
| | - Joanna Kowal
- Institut Curie, PSL Research University, INSERM U932, 26 rue d'Ulm, 75005 Paris, France
| | - Clotilde Théry
- Institut Curie, PSL Research University, INSERM U932, 26 rue d'Ulm, 75005 Paris, France
| |
Collapse
|
97
|
Buschmann D, Kirchner B, Hermann S, Märte M, Wurmser C, Brandes F, Kotschote S, Bonin M, Steinlein OK, Pfaffl MW, Schelling G, Reithmair M. Evaluation of serum extracellular vesicle isolation methods for profiling miRNAs by next-generation sequencing. J Extracell Vesicles 2018; 7:1481321. [PMID: 29887978 PMCID: PMC5990937 DOI: 10.1080/20013078.2018.1481321] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/18/2018] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EVs) are intercellular communicators with key functions in physiological and pathological processes and have recently garnered interest because of their diagnostic and therapeutic potential. The past decade has brought about the development and commercialization of a wide array of methods to isolate EVs from serum. Which subpopulations of EVs are captured strongly depends on the isolation method, which in turn determines how suitable resulting samples are for various downstream applications. To help clinicians and scientists choose the most appropriate approach for their experiments, isolation methods need to be comparatively characterized. Few attempts have been made to comprehensively analyse vesicular microRNAs (miRNAs) in patient biofluids for biomarker studies. To address this discrepancy, we set out to benchmark the performance of several isolation principles for serum EVs in healthy individuals and critically ill patients. Here, we compared five different methods of EV isolation in combination with two RNA extraction methods regarding their suitability for biomarker discovery-focused miRNA sequencing as well as biological characteristics of captured vesicles. Our findings reveal striking method-specific differences in both the properties of isolated vesicles and the ability of associated miRNAs to serve in biomarker research. While isolation by precipitation and membrane affinity was highly suitable for miRNA-based biomarker discovery, methods based on size-exclusion chromatography failed to separate patients from healthy volunteers. Isolated vesicles differed in size, quantity, purity and composition, indicating that each method captured distinctive populations of EVs as well as additional contaminants. Even though the focus of this work was on transcriptomic profiling of EV-miRNAs, our insights also apply to additional areas of research. We provide guidance for navigating the multitude of EV isolation methods available today and help researchers and clinicians make an informed choice about which strategy to use for experiments involving critically ill patients.
Collapse
Affiliation(s)
- Dominik Buschmann
- Institute of Human Genetics, University Hospital, LMU Munich, Munich, Germany.,Division of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Benedikt Kirchner
- Division of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.,Dr. von Hauner Children's Hospital, LMU Munich, Munich, Germany
| | - Stefanie Hermann
- Division of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Melanie Märte
- Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Christine Wurmser
- Chair of Animal Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Florian Brandes
- Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany
| | | | | | - Ortrud K Steinlein
- Institute of Human Genetics, University Hospital, LMU Munich, Munich, Germany
| | - Michael W Pfaffl
- Division of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Gustav Schelling
- Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Marlene Reithmair
- Institute of Human Genetics, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
98
|
Exosomes in Myocardial Repair: Advances and Challenges in the Development of Next-Generation Therapeutics. Mol Ther 2018; 26:1635-1643. [PMID: 29807783 DOI: 10.1016/j.ymthe.2018.04.024] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 01/08/2023] Open
Abstract
Myocardial disease is a leading cause of morbidity and mortality worldwide. Given the limited regenerative capacity of the human heart following myocardial injury, stem cell-based therapies have emerged as a promising approach for improving cardiac repair and function. The discovery of extracellular vesicles including exosomes as a key component of the beneficial function of stem cells has generated hope for their use to advance cell-based regenerative therapies for cardiac repair. Exosomes secreted from stem cells are membranous bionanovesicles, naturally loaded with various proteins, lipids, and nucleic acids. They have been found to have anti-apoptotic, anti-fibrotic, as well as pro-angiogenic effects, all of which are crucial to restore function of the damaged myocardium. In this brief review, we will focus on the latest research and debates on cardiac repair and regenerative potential of exosomes from a variety of sources such as cardiac and non-cardiac stem and progenitor cells, somatic cells, and body fluids. We will also highlight important barriers involved in translating these findings into developing clinically suitable exosome-based therapies.
Collapse
|
99
|
Supercritical assisted process for the efficient production of liposomes containing antibiotics for ocular delivery. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.04.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
100
|
Li F, Kaczor-Urbanowicz KE, Sun J, Majem B, Lo HC, Kim Y, Koyano K, Rao SL, Kang SY, Kim SM, Kim KM, Kim S, Chia D, Elashoff D, Grogan TR, Xiao X, Wong DTW. Characterization of Human Salivary Extracellular RNA by Next-generation Sequencing. Clin Chem 2018; 64:1085-1095. [PMID: 29685897 DOI: 10.1373/clinchem.2017.285072] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/28/2018] [Indexed: 11/06/2022]
Abstract
BACKGROUND It was recently discovered that abundant and stable extracellular RNA (exRNA) species exist in bodily fluids. Saliva is an emerging biofluid for biomarker development for noninvasive detection and screening of local and systemic diseases. Use of RNA-Sequencing (RNA-Seq) to profile exRNA is rapidly growing; however, no single preparation and analysis protocol can be used for all biofluids. Specifically, RNA-Seq of saliva is particularly challenging owing to high abundance of bacterial contents and low abundance of salivary exRNA. Given the laborious procedures needed for RNA-Seq library construction, sequencing, data storage, and data analysis, saliva-specific and optimized protocols are essential. METHODS We compared different RNA isolation methods and library construction kits for long and small RNA sequencing. The role of ribosomal RNA (rRNA) depletion also was evaluated. RESULTS The miRNeasy Micro Kit (Qiagen) showed the highest total RNA yield (70.8 ng/mL cell-free saliva) and best small RNA recovery, and the NEBNext library preparation kits resulted in the highest number of detected human genes [5649-6813 at 1 reads per kilobase RNA per million mapped (RPKM)] and small RNAs [482-696 microRNAs (miRNAs) and 190-214 other small RNAs]. The proportion of human RNA-Seq reads was much higher in rRNA-depleted saliva samples (41%) than in samples without rRNA depletion (14%). In addition, the transfer RNA (tRNA)-derived RNA fragments (tRFs), a novel class of small RNAs, were highly abundant in human saliva, specifically tRF-4 (4%) and tRF-5 (15.25%). CONCLUSIONS Our results may help in selection of the best adapted methods of RNA isolation and small and long RNA library constructions for salivary exRNA studies.
Collapse
Affiliation(s)
- Feng Li
- Institute of Diagnostic in Chinese Medicine, Hunan University of Chinese Medicine, Hunan, China.,Center for Oral/Head & Neck Oncology Research, School of Dentistry, University of California at Los Angeles, Los Angeles, CA
| | - Karolina Elżbieta Kaczor-Urbanowicz
- Center for Oral/Head & Neck Oncology Research, School of Dentistry, University of California at Los Angeles, Los Angeles, CA.,Department of Orthodontics, School of Dentistry, University of California at Los Angeles, Los Angeles, CA
| | - Jie Sun
- Medical School of Shenzhen University, Shenzhen, Guangdong, China
| | - Blanca Majem
- Biomedical Research Unit in Gynecology, Vall d'Hebron Research Institute (VHIR) and University Hospital, University Autonoma of Barcelona (UAB), Barcelona, Spain
| | - Hsien-Chun Lo
- Department of Integrative Biology and Physiology, University of California at Los Angeles, Los Angeles, CA
| | - Yong Kim
- Center for Oral/Head & Neck Oncology Research, School of Dentistry, University of California at Los Angeles, Los Angeles, CA
| | - Kikuye Koyano
- Department of Integrative Biology and Physiology, University of California at Los Angeles, Los Angeles, CA
| | - Shannon Liu Rao
- Center for Oral/Head & Neck Oncology Research, School of Dentistry, University of California at Los Angeles, Los Angeles, CA
| | - So Young Kang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Su Mi Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - David Chia
- Department of Pathology & Laboratory Medicine, University of California at Los Angeles, Los Angeles, CA
| | - David Elashoff
- Department of Biostatistics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA
| | - Tristan R Grogan
- Department of Biostatistics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA
| | - Xinshu Xiao
- Department of Integrative Biology and Physiology, University of California at Los Angeles, Los Angeles, CA
| | - David T W Wong
- Center for Oral/Head & Neck Oncology Research, School of Dentistry, University of California at Los Angeles, Los Angeles, CA; .,Department of Biomedical Engineering, School of Engineering, University of California at Los Angeles, Los Angeles, CA.,Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA.,Department of Head and Neck Surgery/Otolaryngology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA
| |
Collapse
|