51
|
Yin J, Lei Q, Luo X, Jiang T, Zou X, Schneider A, H K Xu H, Zhao L, Ma D. Degradable hydrogel fibers encapsulate and deliver metformin and periodontal ligament stem cells for dental and periodontal regeneration. J Appl Oral Sci 2023; 31:e20220447. [PMID: 37132700 PMCID: PMC10159044 DOI: 10.1590/1678-7757-2022-0447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/08/2023] [Indexed: 05/04/2023] Open
Abstract
Human periodontal ligament stem cells (hPDLSCs) are promising cells for dental and periodontal regeneration. This study aimed to develop novel alginate-fibrin fibers that encapsulates hPDLSCs and metformin, to investigate the effect of metformin on the osteogenic differentiation of hPDLSCs, and to determine the regulatory role of the Shh/Gli1 signaling pathway in the metformin-induced osteogenic differentiation of hPDLSCs for the first time. CCK8 assay was used to evaluate hPDLSCs. Alkaline phosphatase (ALP) staining, alizarin red S staining, and the expression of osteogenic genes were evaluated. Metformin and hPDLSCs were encapsulated in alginate-fibrinogen solutions, which were injected to form alginate-fibrin fibers. The activation of Shh/Gli1 signaling pathway was examined using qRT-PCR and western blot. A mechanistic study was conducted by inhibiting the Shh/Gli1 pathway using GANT61. The administration of 50 μM metformin resulted in a significant upregulation of osteogenic gene expression in hPDLSCs by 1.4-fold compared to the osteogenic induction group (P < 0.01), including ALP and runt-related transcription factor-2 (RUNX2). Furthermore, metformin increased ALP activity by 1.7-fold and bone mineral nodule formation by 2.6-fold (P<0.001). We observed that hPDLSCs proliferated with the degradation of alginate-fibrin fibers, and metformin induced their differentiation into the osteogenic lineage. Metformin also promoted the osteogenic differentiation of hPDLSCs by upregulating the Shh/Gli1 signaling pathway by 3- to 6- fold compared to the osteogenic induction group (P<0.001). The osteogenic differentiation ability of hPDLSCs were decreased 1.3- to 1.6-fold when the Shh/Gli1 pathway was inhibited, according to ALP staining and alizarin red S staining (P<0.01). Metformin enhanced the osteogenic differentiation of hPDLSCs via the Shh/Gli1 signaling pathway. Degradable alginate-fibrin hydrogel fibers encapsulating hPDLSCs and metformin have significant potential for use in dental and periodontal tissue engineering applications. Alginate-fibrin fibers encapsulating hPDLSCs and metformin have a great potential for use in the treatment of maxillofacial bone defects caused by trauma, tumors, and tooth extraction. Additionally, they may facilitate the regeneration of periodontal tissue in patients with periodontitis.
Collapse
Affiliation(s)
- Jingyao Yin
- Southern Medical University, Stomatological Hospital, Department of Endodontics, Guangzhou, Guangdong, China
- Southern Medical University, School of Stomatology, Guangzhou, Guangdong, China
| | - Qian Lei
- Southern Medical University, Stomatological Hospital, Department of Endodontics, Guangzhou, Guangdong, China
- Southern Medical University, School of Stomatology, Guangzhou, Guangdong, China
| | - Xinghong Luo
- Southern Medical University, Stomatological Hospital, Department of Endodontics, Guangzhou, Guangdong, China
| | - Tao Jiang
- Southern Medical University, Stomatological Hospital, Department of Endodontics, Guangzhou, Guangdong, China
- Southern Medical University, School of Stomatology, Guangzhou, Guangdong, China
| | - Xianghui Zou
- Southern Medical University, Stomatological Hospital, Department of Endodontics, Guangzhou, Guangdong, China
- Southern Medical University, School of Stomatology, Guangzhou, Guangdong, China
| | - Abraham Schneider
- University of Maryland School of Dentistry, Department of Oncology and Diagnostic Sciences, Baltimore, Maryland, USA
| | - Hockin H K Xu
- University of Maryland Dental School, Department of Advanced Oral Sciences and Therapeutics, Biomaterials and Tissue Engineering Division, Baltimore, Maryland, USA
- University of Maryland School of Medicine, Marlene and Stewart Greenebaum Cancer Center, Baltimore, Maryland, USA
- University of Maryland School of Medicine, Center for Stem Cell Biology and Regenerative Medicine, Baltimore, Maryland, USA
| | - Liang Zhao
- Shunde Hospital, Department of Trauma and Joint Surgery, Guangzhou, Guangdong, China
- Southern Medical University, Nanfang Hospital, Department of Orthopaedic Surgery, Guangzhou, Guangdong, China
| | - Dandan Ma
- Southern Medical University, Stomatological Hospital, Department of Endodontics, Guangzhou, Guangdong, China
- Southern Medical University, School of Stomatology, Guangzhou, Guangdong, China
- University of Maryland Dental School, Department of Advanced Oral Sciences and Therapeutics, Biomaterials and Tissue Engineering Division, Baltimore, Maryland, USA
| |
Collapse
|
52
|
Li S, Ni Y, Li C, Xiang Q, Zhao Y, Xu H, Huang W, Wang Y, Wang Y, Zhan J, Liu Y. Long noncoding RNA SNHG1 alleviates high glucose-induced vascular smooth muscle cells calcification/senescence by post-transcriptionally regulating Bhlhe40 and autophagy via Atg10. J Physiol Biochem 2023; 79:83-105. [PMID: 36194366 PMCID: PMC9905201 DOI: 10.1007/s13105-022-00924-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022]
Abstract
Long noncoding RNAs (lncRNAs) are emerging regulators of vascular diseases, yet their role in diabetic vascular calcification/aging remains poorly understood. In this study, we identified a down-expressed lncRNA SNHG1 in high glucose (HG)-induced vascular smooth muscle cells (HA-VSMCs), which induced excessive autophagy and promoted HA-VSMCs calcification/senescence. Overexpression of SNHG1 alleviated HG-induced HA-VSMCs calcification/senescence. The molecular mechanisms of SNHG1 in HA-VSMCs calcification/senescence were explored by RNA pull-down, RNA immunoprecipitation, RNA stability assay, luciferase reporter assay, immunoprecipitation and Western blot assays. In one mechanism, SNHG1 directly interacted with Bhlhe40 mRNA 3'-untranslated region and increased Bhlhe40 mRNA stability and expression. In another mechanism, SNHG1 enhanced Bhlhe40 protein SUMOylation by serving as a scaffold to facilitate the binding of SUMO E3 ligase PIAS3 and Bhlhe40 protein, resulting in increased nuclear translocation of Bhlhe40 protein. Moreover, Bhlhe40 suppressed the expression of Atg10, which is involved in the process of autophagosome formation. Collectively, the protective effect of SNHG1 on HG-induced HA-VSMCs calcification/senescence is accomplished by stabilizing Bhlhe40 mRNA and promoting the nuclear translocation of Bhlhe40 protein. Our study could provide a novel approach for diabetic vascular calcification/aging.
Collapse
Affiliation(s)
- Shuang Li
- Department of Geriatrics, Institute of Aging and Age-Related Disease Research, The Second Xiangya Hospital, Central SouthUniversity, Changsha, 410011, Hunan, China
| | - Yuqing Ni
- Department of Geriatrics, Institute of Aging and Age-Related Disease Research, The Second Xiangya Hospital, Central SouthUniversity, Changsha, 410011, Hunan, China
| | - Chen Li
- Department of Geriatrics, Institute of Aging and Age-Related Disease Research, The Second Xiangya Hospital, Central SouthUniversity, Changsha, 410011, Hunan, China
| | - Qunyan Xiang
- Department of Geriatrics, Institute of Aging and Age-Related Disease Research, The Second Xiangya Hospital, Central SouthUniversity, Changsha, 410011, Hunan, China
| | - Yan Zhao
- Department of Geriatrics, Institute of Aging and Age-Related Disease Research, The Second Xiangya Hospital, Central SouthUniversity, Changsha, 410011, Hunan, China
| | - Hui Xu
- Department of Geriatrics, Institute of Aging and Age-Related Disease Research, The Second Xiangya Hospital, Central SouthUniversity, Changsha, 410011, Hunan, China
| | - Wu Huang
- Department of Geriatrics, Institute of Aging and Age-Related Disease Research, The Second Xiangya Hospital, Central SouthUniversity, Changsha, 410011, Hunan, China
| | - Yanjiao Wang
- Department of Geriatrics, Institute of Aging and Age-Related Disease Research, The Second Xiangya Hospital, Central SouthUniversity, Changsha, 410011, Hunan, China
| | - Yi Wang
- Department of Geriatrics, Institute of Aging and Age-Related Disease Research, The Second Xiangya Hospital, Central SouthUniversity, Changsha, 410011, Hunan, China
| | - Junkun Zhan
- Department of Geriatrics, Institute of Aging and Age-Related Disease Research, The Second Xiangya Hospital, Central SouthUniversity, Changsha, 410011, Hunan, China.
| | - Youshuo Liu
- Department of Geriatrics, Institute of Aging and Age-Related Disease Research, The Second Xiangya Hospital, Central SouthUniversity, Changsha, 410011, Hunan, China.
| |
Collapse
|
53
|
Liu GW, Guzman EB, Menon N, Langer RS. Lipid Nanoparticles for Nucleic Acid Delivery to Endothelial Cells. Pharm Res 2023; 40:3-25. [PMID: 36735106 PMCID: PMC9897626 DOI: 10.1007/s11095-023-03471-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023]
Abstract
Endothelial cells play critical roles in circulatory homeostasis and are also the gateway to the major organs of the body. Dysfunction, injury, and gene expression profiles of these cells can cause, or are caused by, prevalent chronic diseases such as diabetes, cardiovascular disease, and cancer. Modulation of gene expression within endothelial cells could therefore be therapeutically strategic in treating longstanding disease challenges. Lipid nanoparticles (LNP) have emerged as potent, scalable, and tunable carrier systems for delivering nucleic acids, making them attractive vehicles for gene delivery to endothelial cells. Here, we discuss the functions of endothelial cells and highlight some receptors that are upregulated during health and disease. Examples and applications of DNA, mRNA, circRNA, saRNA, siRNA, shRNA, miRNA, and ASO delivery to endothelial cells and their targets are reviewed, as well as LNP composition and morphology, formulation strategies, target proteins, and biomechanical factors that modulate endothelial cell targeting. Finally, we discuss FDA-approved LNPs as well as LNPs that have been tested in clinical trials and their challenges, and provide some perspectives as to how to surmount those challenges.
Collapse
Affiliation(s)
- Gary W Liu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Edward B Guzman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Nandita Menon
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Strand Therapeutics, MA, 02215, Boston, USA
| | - Robert S Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
54
|
Srivastava S, Pawar V, Tyagi A, Sharma K, Kumar V, Shukla S. Immune Modulatory Effects of Ketogenic Diet in Different Disease Conditions. IMMUNO 2022; 3:1-15. [DOI: 10.3390/immuno3010001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
Interceding nutrients have been acquiring increased attention and prominence in the field of healing and deterrence of various disorders. In this light, the present article encompasses several facets of ketogenic diet as an immunomodulator with respect to its expansive clinical applications. Accordingly, several scientific records, models, and case histories, including viral infections, cancer, chronic diseases, e.g., cardiovascular diseases, epilepsy, as well as numerous other neuro-disorders, are assembled, revealing a profound influence of KD in favor of improvement in the patient’s condition. We accentuate possible manifold mechanisms of KD that require further exploration.
Collapse
Affiliation(s)
- Shivani Srivastava
- Department of Pathology, School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Vishakha Pawar
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anuradha Tyagi
- Department of cBRN, Institute of Nuclear Medicine and Allied Science, Delhi 110054, India
| | - Kanti Sharma
- Department of Nutrition Biology, Central University of Haryana, Mahendragarh 123029, India
| | - Vinay Kumar
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, 473 W 12th Ave, Columbus, OH 43210, USA
| | - Surendra Shukla
- Department of Oncology Science, OU Health Stephenson Cancer Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
55
|
Mokgalaboni K, Dludla PV, Nkambule BB. Pharmacological effects of statins in adult patients with type 2 diabetes mellitus: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2022; 101:e32313. [PMID: 36595825 PMCID: PMC9794268 DOI: 10.1097/md.0000000000032313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Due to contradicting findings on impact of statins on endothelial function in type 2 diabetes mellitus especially across the randomized controlled trials (RCTs). With this systematic review, we aim to evaluate whether the use of statins improves endothelial function in adults with type 2 diabetes. We will further highlight if these biomarkers are ideal therapeutic targets for risk for atherosclerosis and cardiovascular disease. METHODS This protocol was carried out according to the preferred reporting items for systematic review and meta-analysis protocols-2015 guideline. The online databases, such as MEDLINE, Scopus, and Web of Sciences, will be targeted using the medical subject heading terms (MeSH) and text words. The review will include clinical studies on the effect of statins on markers of endothelial function in type 2 diabetes. The Cochrane risk of bias guideline will be used to assess the quality and risk of bias. We are planning to use the grading of recommendation assessment, development, and evaluation approach to evaluate the strength and quality of evidence. RESULTS This study will not involve human samples and patient data; hence ethics approval will not be required. The findings will be presented in journal clubs and conferences and published in peer-reviewed journals.
Collapse
Affiliation(s)
- Kabelo Mokgalaboni
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, FL, South Africa
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Phiwayinkosi V. Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
| | - Bongani B. Nkambule
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
56
|
Xie X, Hu L, Mi B, Xue H, Hu Y, Panayi AC, Endo Y, Chen L, Yan C, Lin Z, Li H, Zhou W, Liu G. Metformin alleviates bone loss in ovariectomized mice through inhibition of autophagy of osteoclast precursors mediated by E2F1. Cell Commun Signal 2022; 20:165. [PMID: 36284303 PMCID: PMC9594975 DOI: 10.1186/s12964-022-00966-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Background Postmenopausal bone loss, mainly caused by excessive bone resorption mediated by osteoclasts, has become a global public health burden. Metformin, a hypoglycemic drug, has been reported to have beneficial effects on maintaining bone health. However, the role and underlying mechanism of metformin in ovariectomized (OVX)-induced bone loss is still vague. Results In this study, we demonstrated for the first time that metformin administration alleviated bone loss in postmenopausal women and ovariectomized mice, based on reduced bone resorption markers, increased bone mineral density (BMD) and improvement of bone microstructure. Then, osteoclast precursors administered metformin in vitro and in vivo were collected to examine the differentiation potential and autophagical level. The mechanism was investigated by infection with lentivirus-mediated BNIP3 or E2F1 overexpression. We observed a dramatical inhibition of autophagosome synthesis and osteoclast formation and activity. Treatment with RAPA, an autophagy activator, abrogated the metformin-mediated autophagy downregulation and inhibition of osteoclastogenesis. Additionally, overexpression of E2F1 demonstrated that reduction of OVX-upregulated autophagy mediated by metformin was E2F1 dependent. Mechanistically, metformin-mediated downregulation of E2F1 in ovariectomized mice could downregulate BECN1 and BNIP3 levels, which subsequently perturbed the binding of BECN1 to BCL2. Furthermore, the disconnect between BECN1 and BCL2 was shown by BNIP3 overexpression. Conclusion In summary, we demonstrated the effect and underlying mechanism of metformin on OVX-induced bone loss, which could be, at least in part, ascribed to its role in downregulating autophagy during osteoclastogenesis via E2F1-dependent BECN1 and BCL2 downregulation, suggesting that metformin or E2F1 inhibitor is a potential agent against postmenopausal bone loss. Video abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00966-5.
Collapse
Affiliation(s)
- Xudong Xie
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Liangcong Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Hang Xue
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yiqiang Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Adriana C Panayi
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Yori Endo
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Lang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Chenchen Yan
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Ze Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| | - Wu Zhou
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| |
Collapse
|
57
|
Glaesserella parasuis serotype 5 breaches the porcine respiratory epithelial barrier by inducing autophagy and blocking the cell membrane Claudin-1 replenishment. PLoS Pathog 2022; 18:e1010912. [PMID: 36228044 PMCID: PMC9595547 DOI: 10.1371/journal.ppat.1010912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/25/2022] [Accepted: 10/04/2022] [Indexed: 11/22/2022] Open
Abstract
Glaesserella parasuis (G. parasuis), the primary pathogen of Glässer's disease, colonizes the upper respiratory tract and can break through the epithelial barrier of the respiratory tract, leading to lung infection. However, the underlying mechanisms for this adverse effect remain unclear. The G. parasuis serotype 5 SQ strain (HPS5-SQ) infection decreased the integrity of piglets' lung Occludin and Claudin-1. Autophagy regulates the function of the epithelial barrier and tight junction proteins (TJs) expression. We tested the hypothesis that HPS5-SQ breaking through the porcine respiratory epithelial barrier was linked to autophagy and Claudin-1 degradation. When HPS5-SQ infected swine tracheal epithelial cells (STEC), autophagosomes encapsulated, and autolysosomes degraded oxidatively stressed mitochondria covered with Claudin-1. Furthermore, we found that autophagosomes encapsulating mitochondria resulted in cell membrane Claudin-1 being unable to be replenished after degradation and damaged the respiratory tract epithelial barrier. In conclusion, G. parasuis serotype 5 breaks through the porcine respiratory epithelial barrier by inducing autophagy and interrupting cell membrane Claudin-1 replenishment, clarifying the mechanism of the G. parasuis infection and providing a new potential target for drug design and vaccine development.
Collapse
|
58
|
Jiang J, Meng S, Li L, Duan X, Xu H, Li S. Correlation of acetyl-coenzyme A carboxylase 1 with Th17 and Th1 cells, serving as a potential prognostic biomarker for acute ischemic stroke patients. J Clin Lab Anal 2022; 36:e24607. [PMID: 36059084 PMCID: PMC9550961 DOI: 10.1002/jcla.24607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/28/2022] [Accepted: 07/03/2022] [Indexed: 11/06/2022] Open
Abstract
Background Acetyl‐coenzyme A carboxylase 1 (ACC1) regulates lipid homeostasis, T helper (Th) cell differentiation, oxidative stress, inflammation response, and neurological process, engaging in acute ischemic stroke (AIS) pathogenesis, while its clinical utility in AIS is unclear. Hence, this study intended to explore the correlation among blood ACC1, Th17, and Th1 cells, and ACC1’s potency as a prognostic biomarker for AIS management. Methods ACC1 in peripheral blood mononuclear cells (PBMCs) of 160 AIS patients and 30 controls were determined using RT‐qPCR; blood Th17 and Th1 cells in AIS patients were quantified by flow cytometry. Results ACC1 was increased in AIS patients compared with controls (median (interquartile range): 2.540 (1.753–3.548) vs. 0.980 (0.655–1.743), p < 0.001), which exhibited a good value to reflect AIS risk with the area under the curve of 0.872 (95% CI: 0.805–0.939). Moreover, ACC1 was positively linked with Th17 (r = 0.374, p < 0.001) and Th1 (r = 0.178, p = 0.024) cells in AIS patients. Additionally, ACC1 (r = 0.328, p < 0.001), Th17 (r = 0.272, p = 0.001), and Th1 cells (r = 0.195, p = 0.014) were positively associated with the National Institutes of Health Stroke Scale score in AIS patients. ACC1 high vs. low (p = 0.038) and Th17 high vs. low (p = 0.026) were related to shortened recurrence‐free survival (RFS) in AIS patients, while Th1 cells (p = 0.179) were not correlated with RFS. Whereas ACC1 (p = 0.248), Th17 (p = 0.079), and Th1 cells (p = 0.130) were not linked with overall survival (OS) in AIS patients. Conclusion Circulating ACC1 overexpression correlates with increased Th17, Th1 cells, NIHSS score, and shortened RFS in AIS patients.
Collapse
Affiliation(s)
- Jingjing Jiang
- Department of Geriatrics, HanDan Central Hospital, Handan, China
| | - Shifeng Meng
- Department of Rehabilitation Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Linlin Li
- Department of Geriatrics, HanDan Central Hospital, Handan, China
| | - Xinfei Duan
- Department of Neurology, HanDan Central Hospital, Handan, China
| | - Haifa Xu
- Department of Emergency, HanDan Central Hospital, Handan, China
| | - Shurui Li
- Department of Deanery, HanDan Central Hospital, Handan, China
| |
Collapse
|
59
|
Shen D, Ye X, Li J, Hao X, Jin L, Jin Y, Tong L, Gao F. Metformin Preserves VE–Cadherin in Choroid Plexus and Attenuates Hydrocephalus via VEGF/VEGFR2/p-Src in an Intraventricular Hemorrhage Rat Model. Int J Mol Sci 2022; 23:ijms23158552. [PMID: 35955686 PMCID: PMC9369137 DOI: 10.3390/ijms23158552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
Hydrocephalus induced by intraventricular hemorrhage (IVH) is associated with unfavorable prognosis. The increased permeability of choroid plexus and breakdown of the blood–brain barrier (BBB) was reported as a prominent mechanism of IVH-induced hydrocephalus, and vascular endothelial–cadherin (VE–cadherin) was demonstrated to be relevant. Metformin was reported to protect endothelial junction and preserve permeability widely; however, its role in hydrocephalus remains unclear. In this study, the decreased expression of VE–cadherin in the choroid plexus, accompanied with ventricle dilation, was investigated in an IVH rat model induced by intraventricular injection of autologous blood. Metformin treatment ameliorated hydrocephalus and upregulated VE–cadherin expression in choroid plexus meanwhile. We then observed that the internalization of VE–cadherin caused by the activation of vascular endothelial growth factor (VEGF) signaling after IVH was related to the occurrence of hydrocephalus, whereas it can be reversed by metformin treatment. Restraining VEGF signaling by antagonizing VEGFR2 or inhibiting Src phosphorylation increased the expression of VE–cadherin and decreased the severity of hydrocephalus after IVH. Our study demonstrated that the internalization of VE–cadherin via the activation of VEGF signaling may contribute to IVH-induced hydrocephalus, and metformin may be a potential protector via suppressing this pathway.
Collapse
Affiliation(s)
- Dan Shen
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (D.S.); (X.Y.); (J.L.); (X.H.); (L.J.); (Y.J.)
| | - Xianghua Ye
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (D.S.); (X.Y.); (J.L.); (X.H.); (L.J.); (Y.J.)
| | - Jiawen Li
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (D.S.); (X.Y.); (J.L.); (X.H.); (L.J.); (Y.J.)
| | - Xiaodi Hao
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (D.S.); (X.Y.); (J.L.); (X.H.); (L.J.); (Y.J.)
- Department of Neurology, Henan Province People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Luhang Jin
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (D.S.); (X.Y.); (J.L.); (X.H.); (L.J.); (Y.J.)
| | - Yujia Jin
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (D.S.); (X.Y.); (J.L.); (X.H.); (L.J.); (Y.J.)
| | - Lusha Tong
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (D.S.); (X.Y.); (J.L.); (X.H.); (L.J.); (Y.J.)
- Correspondence: (L.T.); (F.G.)
| | - Feng Gao
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (D.S.); (X.Y.); (J.L.); (X.H.); (L.J.); (Y.J.)
- Correspondence: (L.T.); (F.G.)
| |
Collapse
|
60
|
The proteasome activator REGγ promotes diabetic endothelial impairment by inhibiting HMGA2-GLUT1 pathway. Transl Res 2022; 246:33-48. [PMID: 35367424 DOI: 10.1016/j.trsl.2022.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 11/22/2022]
Abstract
Diabetic vascular endothelial impairment is one of the main causes of death in patients with diabetes lacking adequately defined mechanisms or effective treatments. REGγ, the 11S proteasome activator known to promote the degradation of cellular proteins in a ubiquitin- and ATP-independent manner, emerges as a new regulator in the cardiovascular system. Here, we found that REGγ was upregulated in streptozocin (STZ)-induced diabetic mouse aortic endothelium in vivo and high glucose (HG)-treated vascular endothelial cells (ECs) in vitro. REGγ deficiency ameliorated endothelial impairment in STZ-induced diabetic mice by protecting against a decline in cellular glucose uptake and associated vascular ECs dysfunction by suppressing high mobility group AT-hook 2 (HMGA2) decay. Mechanically, REGγ interacted with and degraded the transcription factor HMGA2 directly, leading to decreased HMGA2 transcriptional activity, subsequently lowered expression of glucose transporter type 1 (GLUT1), and reduced cellular glucose uptake, vascular endothelial dysfunction, and impaired diabetic endothelium. Ablation of endogenous GLUT1 or HMGA2 or overexpressing exogenous HMGA2 in vascular ECs significantly blocked or reestablished the REGγ-dependent action on cellular glucose uptake and vascular endothelial functions of HG stimulation in vitro. Furthermore, exogenously introducing HMGA2 improved diabetic mice endothelial impairment features caused by REGγ in vivo, thereby substantiating a REGγ-HMGA2-GLUT1 pathway in diabetic endothelial impairment. Our findings indicate that modulating REGγ-proteasome activity may be a potential therapeutic approach for diabetic disorders with endothelial impairment.
Collapse
|
61
|
Xu B, Dai W, Liu L, Han H, Zhang J, Du X, Pei X, Fu X. Metformin ameliorates polycystic ovary syndrome in a rat model by decreasing excessive autophagy in ovarian granulosa cells via the PI3K/AKT/mTOR pathway. Endocr J 2022; 69:863-875. [PMID: 35228471 DOI: 10.1507/endocrj.ej21-0480] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common gynecological disease accompanied by a variety of clinical features, including anovulation, hyperandrogenism, and ovarian abnormalities, resulting in infertility. PCOS affects approximately 6%-15% of all reproductive-age women worldwide. Metformin, a popular drug used to treat PCOS in patients, has beneficial effects in reducing hyperandrogenism and inducing ovulation; however, the mechanisms by which metformin ameliorates PCOS are not clear. Hence, we aimed to explore the mechanisms of metformin in treating PCOS. In the present study, we first treated a letrozole-induced PCOS rat model with metformin, detected the pathological recovery of PCOS, and then assessed the effects of metformin on H2O2-induced autophagy in ovarian granulosa cells (GCs) by detecting the level of oxidative stress and the expression of autophagy-associated proteins and key proteins in the PI3K/AKT/mTOR pathway. We demonstrated that metformin ameliorated PCOS in a rat model by downregulating autophagy in GCs, and metformin decreased the levels of oxidative stress and autophagy in H2O2-induced GCs and affected the PI3K/AKT/mTOR signaling pathway. Taken together, our results indicate that metformin ameliorates PCOS in a rat model by decreasing excessive autophagy in GCs via the PI3K/AKT/mTOR pathway, and this study provides evidence for targeted reduction of excessive autophagy of ovarian granulosa cells and improvement of PCOS.
Collapse
Affiliation(s)
- Bo Xu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Wenjie Dai
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Ling Liu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Hang Han
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Jingjing Zhang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Xing Du
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Xufeng Fu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
62
|
Wumei Pill Ameliorates AOM/DSS-Induced Colitis-Associated Colon Cancer through Inhibition of Inflammation and Oxidative Stress by Regulating S-Adenosylhomocysteine Hydrolase- (AHCY-) Mediated Hedgehog Signaling in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4061713. [PMID: 35927991 PMCID: PMC9345734 DOI: 10.1155/2022/4061713] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023]
Abstract
Wumei Pill (WMP) is a traditional Chinese herbal formulation and widely used to treat digestive system diseases in clinical. S-Adenosylhomocysteine hydrolase (AHCY) can catalyze the hydrolysis of S-adenosylhomocysteine to adenosine and homocysteine in living organisms, and its abnormal expression is linked to the pathogenesis of many diseases including colorectal cancer (CRC). A previous study reported that WMP could prevent CRC in mice; however, the underlying mechanisms especially the roles of AHCY in WMP-induced anti-CRC remain largely unknown. Here, we investigated the regulatory roles and potential mechanisms of AHCY in WMP-induced anti-CRC. WMP notably alleviated the azoxymethane/dextran sulfate sodium- (AOM/DSS-) induced colitis-associated colon cancer (CAC) in mice. Besides, WMP inhibited the inflammation and oxidative stress in AOM/DSS-induced CAC mice. AHCY was high expression in clinical samples of colon cancer compared to the adjacent tissues. WMP inhibited the AHCY expression in AOM/DSS-induced CAC mice. An in vitro study found that AHCY overexpression induced cell proliferation, colony formation, invasion, and tumor angiogenesis, whereas its knockdown impaired its oncogenic function. AHCY overexpression enhanced, while its knockdown weakened the inflammation and oxidative stress in colon cancer cells. Interestingly, WMP potently suppressed the hedgehog (Hh) signaling in AOM/DSS-induced CAC mice. A further study showed that AHCY overexpression activated the Hh signaling while AHCY knockdown inactivated the Hh signaling. Moreover, activation of the Hh signaling reversed the effect of AHCY silencing on inflammation and oxidative stress in vitro. In conclusion, WMP alleviated the AOM/DSS-induced CAC through inhibition of inflammation and oxidative stress by regulating AHCY-mediated hedgehog signaling in mice. These findings uncovered a potential molecular mechanism underlying the anti-CAC effect of WMP and suggested WMP as a promising therapeutic candidate for CRC.
Collapse
|
63
|
Zhao F, Satyanarayana G, Zhang Z, Zhao J, Ma XL, Wang Y. Endothelial Autophagy in Coronary Microvascular Dysfunction and Cardiovascular Disease. Cells 2022; 11:2081. [PMID: 35805165 PMCID: PMC9265562 DOI: 10.3390/cells11132081] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 02/06/2023] Open
Abstract
Coronary microvascular dysfunction (CMD) refers to a subset of structural and/or functional disorders of coronary microcirculation that lead to impaired coronary blood flow and eventually myocardial ischemia. Amid the growing knowledge of the pathophysiological mechanisms and the development of advanced tools for assessment, CMD has emerged as a prevalent cause of a broad spectrum of cardiovascular diseases (CVDs), including obstructive and nonobstructive coronary artery disease, diabetic cardiomyopathy, and heart failure with preserved ejection fraction. Of note, the endothelium exerts vital functions in regulating coronary microvascular and cardiac function. Importantly, insufficient or uncontrolled activation of endothelial autophagy facilitates the pathogenesis of CMD in diverse CVDs. Here, we review the progress in understanding the pathophysiological mechanisms of autophagy in coronary endothelial cells and discuss their potential role in CMD and CVDs.
Collapse
Affiliation(s)
- Fujie Zhao
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.Z.); (Z.Z.); (J.Z.); (X.-L.M.)
| | | | - Zheng Zhang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.Z.); (Z.Z.); (J.Z.); (X.-L.M.)
| | - Jianli Zhao
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.Z.); (Z.Z.); (J.Z.); (X.-L.M.)
| | - Xin-Liang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.Z.); (Z.Z.); (J.Z.); (X.-L.M.)
| | - Yajing Wang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.Z.); (Z.Z.); (J.Z.); (X.-L.M.)
| |
Collapse
|
64
|
Deng R, Wang Y, Bu Y, Wu H. BNIP3 mediates the different adaptive responses of fibroblast-like synovial cells to hypoxia in patients with osteoarthritis and rheumatoid arthritis. Mol Med 2022; 28:64. [PMID: 35690741 PMCID: PMC9188199 DOI: 10.1186/s10020-022-00490-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/25/2022] [Indexed: 01/01/2023] Open
Abstract
Background Hypoxia is one of the important characteristics of synovial microenvironment in rheumatoid arthritis (RA), and plays an important role in synovial hyperplasia. In terms of cell survival, fibroblast-like synovial cells (FLSs) are relatively affected by hypoxia. In contrast, fibroblast-like synovial cells from patients with RA (RA-FLSs) are particularly resistant to hypoxia-induced cell death. The purpose of this study was to evaluate whether fibroblast-like synovial cells in patients with osteoarthritis (OA-FLSs) and RA-FLSs have the same adaptation to hypoxia. Methods CCK-8, flow cytometry and BrdU were used to detect the proliferation of OA-FLSs and RA-FLSs under different oxygen concentrations. Apoptosis was detected by AV/PI, TUNEL and Western blot, mitophagy was observed by electron microscope, laser confocal microscope and Western blot, the state of mitochondria was detected by ROS and mitochondrial membrane potential by flow cytometry, BNIP3 and HIF-1α were detected by Western blot and RT-qPCR. The silencing of BNIP3 was achieved by stealth RNA system technology. Results After hypoxia, the survival rate of OA-FLSs decreased, while the proliferation activity of RA-FLSs further increased. Hypoxia induced an increase in apoptosis and inhibition of mitophagy in OA-FLSs, but not in RA-FLSs. Hypoxia led to a more lasting adaptive response. RA-FLSs displayed a more significant increase in the expression of genes transcriptionally regulated by HIF-1α. Interestingly, they showed higher BNIP3 expression than OA-FLSs, and showed stronger mitophagy and proliferation activities. BNIP3 siRNA experiment confirmed the potential role of BNIP3 in the survival of RA-FLSs. Inhibition of BNIP3 resulted in the decrease of cell proliferation, mitophagy and the increase of apoptosis. Conclusion In summary, RA-FLSs maintained intracellular redox balance through mitophagy to promote cell survival under hypoxia. The mitophagy of OA-FLSs was too little to maintain the redox balance of mitochondria, resulting in apoptosis. The difference of mitophagy between OA-FLSs and RA-FLSs under hypoxia is mediated by the level of BNIP3 expression.
Collapse
Affiliation(s)
- Ran Deng
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China.,Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China.,Anhui Province Key Laboratory of Research &, Development of Chinese Medicine, Hefei, 230012, China
| | - Yan Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China.,Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China.,Anhui Province Key Laboratory of Research &, Development of Chinese Medicine, Hefei, 230012, China
| | - Yanhong Bu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China.,Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China.,Anhui Province Key Laboratory of Research &, Development of Chinese Medicine, Hefei, 230012, China
| | - Hong Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China. .,Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China. .,Anhui Province Key Laboratory of Research &, Development of Chinese Medicine, Hefei, 230012, China. .,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
65
|
Mousa IA, Hammady TM, Gad S, Zaitone SA, El-Sherbiny M, Sayed OM. Formulation and Characterization of Metformin-Loaded Ethosomes for Topical Application to Experimentally Induced Skin Cancer in Mice. Pharmaceuticals (Basel) 2022; 15:657. [PMID: 35745575 PMCID: PMC9227071 DOI: 10.3390/ph15060657] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
To achieve the best treatment of skin cancer, drug penetration inside the deepest layers of the skin is an important scientific interest. We designed an ethosome formulation that serves as a carrier for metformin and measured the in vitro skin permeation. We also aimed to measure the antitumor activity of the optimal ethosomal preparation when applied topically to chemically induced skin cancer in mice. We utilized a statistical Box-Behnken experimental design and applied three variables at three levels: lecithin concentration, cholesterol concentration and a mixture of ethanol and isopropyl alcohol concentrations. All formulations were prepared to calculate the entrapment efficiency %, zeta potential, size of the vesicles and drug release % after 1, 2, 4, 8 and 24 h. The size of the vesicles for the formulations was between 124 ± 14.2 nm and 560 ± 127 nm, while the entrapment efficiency was between 97.8 ± 0.23% and 99.4 ± 0.24%, and the drug release % after 8 h was between 38 ± 0.82% and 66 ± 0.52%. All formulations were introduced into the Box-Behnken software, which selected three formulations; then, one was assigned as an optimal formula. The in vivo antitumor activity of metformin-loaded ethosomal gel on skin cancer was greater than the antitumor activity of the gel preparation containing free metformin. Lower lecithin, high ethanol and isopropyl alcohol and moderate cholesterol contents improved the permeation rate. Overall, we can conclude that metformin-loaded ethosomes are a promising remedy for treating skin cancers, and more studies are warranted to approve this activity in other animal models of skin cancers.
Collapse
Affiliation(s)
- Ibrahim A. Mousa
- General Authority of Health Care, Ismailia Governorate, Ismailia 11517, Egypt;
| | - Taha M. Hammady
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Shadeed Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Sawsan A. Zaitone
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh P.O. Box 71666, Saudi Arabia;
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura 3155, Egypt
| | - Ossama M. Sayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Sinai University, Kantra 41636, Egypt;
| |
Collapse
|
66
|
Liu Y, Xiang H, Xiong W, Ouyang J, Liu H, Zhao S, Xiao J, Li J, Shu Z, Wang X, Liu H, Zhang J, Fan J, Li Y, Chen S, Lu H. Glucolipotoxicity induces endothelial cell dysfunction by activating autophagy and inhibiting autophagic flow. Diab Vasc Dis Res 2022; 19:14791641221102513. [PMID: 35549572 PMCID: PMC9125420 DOI: 10.1177/14791641221102513] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES This study aims to determine the role and mechanism of autophagy in endothelial cell dysfunction by glucolipotoxicity. METHODS Human umbilical vein endothelial cells (HUVECs) were treated with high glucose and high palmitic acid. The number of autophagosomes was evaluated by monodansylcadaverine (MDC) staining and transmission electron microscopy (TEM). The expression of autophagy-related proteins (LC3 and P62) was assessed by Western blotting. Capillary tube-like formation was evaluated on Matrigel. Reactive oxygen species (ROS) production was detected by DCFH-DA. Cell apoptosis was measured by Hoechst 33258 staining and flow cytometry. Phosphorylation of AMPK, mTOR, and ULK1 was also analyzed by Western blotting. RESULTS We found that glucolipotoxicity induced autophagy initiation and hindered autophagosomes degradation. Moreover, glucolipotoxicity increased the production of intracellular ROS, decreased the ability of tubular formation, and increased cell apoptosis. However, endothelial cell dysfunction was alleviated by 3-methyladenine, an early-stage autophagy inhibitor. Additionally, glucolipotoxicity promoted the phosphorylation of AMPK and ULK1 and inhibited the phosphorylation of mTOR. CONCLUSIONS Glucolipotoxicity initiates autophagy through the AMPK/mTOR/ULK1 signaling pathway and inhibits autophagic flow, leading to the accumulation of autophagosomes, thereby inducing apoptosis and impairing endothelial cell function.
Collapse
Affiliation(s)
- Yulan Liu
- Health Management Center, Third Xiangya Hospital of Central
South University, Changsha, China
- Department of Cardiology, Third Xiangya Hospital of Central
South University, Changsha, China
| | - Hong Xiang
- Center for Experimental Medicine, Third Xiangya Hospital of Central
South University, Changsha, China
| | - Wenfang Xiong
- Department of Cardiology, Third Xiangya Hospital of Central
South University, Changsha, China
| | - Jie Ouyang
- Department of Cardiology, Third Xiangya Hospital of Central
South University, Changsha, China
| | - Hengdao Liu
- Department of Cardiology, The First Affiliated Hospital of
Zhengzhou University, Zhenzhou, China
| | - Shaoli Zhao
- Department of Cardiology, Third Xiangya Hospital of Central
South University, Changsha, China
| | - Jie Xiao
- Department of Cardiology, Third Xiangya Hospital of Central
South University, Changsha, China
| | - Jialing Li
- Department of Cardiology, Third Xiangya Hospital of Central
South University, Changsha, China
| | - Zhihao Shu
- Department of Cardiology, Third Xiangya Hospital of Central
South University, Changsha, China
| | - Xuewen Wang
- Department of Cardiology, Third Xiangya Hospital of Central
South University, Changsha, China
| | - Huiqin Liu
- Department of Cardiology, Third Xiangya Hospital of Central
South University, Changsha, China
| | - Jing Zhang
- Department of Cardiology, Third Xiangya Hospital of Central
South University, Changsha, China
| | - Jianing Fan
- Department of Cardiology, Third Xiangya Hospital of Central
South University, Changsha, China
| | - Ying Li
- Department of Cardiology, Third Xiangya Hospital of Central
South University, Changsha, China
| | - Shuhua Chen
- Departments of Biochemistry, School
of Life Sciences, Central South
University, Changsha, China
- Shuhua Chen, Department of Biochemistry,
School of Life Sciences, Central South University, 172 Tongzipo Road, Changsha
410013, China.
| | - Hongwei Lu
- Health Management Center, Third Xiangya Hospital of Central
South University, Changsha, China
- Center for Experimental Medicine, Third Xiangya Hospital of Central
South University, Changsha, China
- Hongwei Lu, Center for Experimental
Medicine, Third Xiangya Hospital of Central South University, 138 Tongzipo Road,
Changsha 410013, China.
| |
Collapse
|
67
|
Lai TC, Chen YC, Cheng HH, Lee TL, Tsai JS, Lee IT, Peng KT, Lee CW, Hsu LF, Chen YL. Combined exposure to fine particulate matter and high glucose aggravates endothelial damage by increasing inflammation and mitophagy: the involvement of vitamin D. Part Fibre Toxicol 2022; 19:25. [PMID: 35351169 PMCID: PMC8966234 DOI: 10.1186/s12989-022-00462-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/14/2022] [Indexed: 12/20/2022] Open
Abstract
Background Cardiovascular diseases (CVDs) are related to particulate matter (PM2.5) exposure. Researchers have not clearly determined whether hyperglycemia, a hallmark of diabetes, exacerbates PM2.5-induced endothelial damage. Thus, this study aimed to investigate the combined effects of PM2.5 and high glucose on endothelial damage. Results Here, we treated human umbilical vein endothelial cells (HUVECs) with 30 mM high glucose and 50 μg/mL PM (HG + PM) to simulate endothelial cells exposed to hyperglycemia and air pollution. First, we showed that HUVECs exposed to PM under high glucose conditions exhibited significant increases in cell damage and apoptosis compared with HUVECs exposed to PM or HG alone. In addition, PM significantly increased the production of reactive oxygen species (ROS) in HUVECs and mitochondria treated with HG and decreased the expression of superoxide dismutase 1 (SOD1), a free radical scavenging enzyme. The coexposure group exhibited significantly increased ROS production in cells and mitochondria, a lower mitochondrial membrane potential, and increased levels of the autophagy-related proteins p62, microtubule-associated protein 1 light chain 3β (LC3B), and mitophagy-related protein BCL2 interacting protein 3 (Bnip3). Moreover, autophagosome-like structures were observed in the HG + PM group using transmission electron microscopy. The expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) were also increased through the JNK/p38 signaling pathway in the HG + PM group. As a ROS scavenger, vitamin D treatment effectively protected cells under HG and PM conditions by increasing cell viability, reducing mitochondrial ROS production, and suppressing the formation of mitophagy and inflammation. Furthermore, diabetes was induced in mice by administering streptozotocin (STZ). Mice were treated with PM by intratracheal injection. Vitamin D effectively alleviated oxidative stress, mitophagy, and inflammation in the aortas of mice treated with STZ and PM. Conclusion Taken together, simultaneous exposure to PM and high glucose exerts significant harmful effects on endothelial cells by inducing ROS production, mitophagy, and inflammation, while vitamin D reverses these effects. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-022-00462-1.
Collapse
Affiliation(s)
- Tsai-Chun Lai
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Yu-Chen Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Hui-Hua Cheng
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Tzu-Lin Lee
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Jaw-Shiun Tsai
- Department of Family Medicine, National Taiwan University Hospital, Taipei, 100225, Taiwan.,Center for Complementary and Integrated Medicine, National Taiwan University Hospital, Taipei, 100225, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, 110301, Taiwan
| | - Kuo-Ti Peng
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County, 613016, Taiwan.,College of Medicine, Chang Gung University, Guishan District, Taoyuan City, 333323, Taiwan
| | - Chiang-Wen Lee
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County, 613016, Taiwan. .,Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County, 613016, Taiwan. .,Department of Safety Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City, 243303, Taiwan.
| | - Lee-Fen Hsu
- Department of Respiratory Care, Chang Gung University of Science and Technology, Puzi City, Chiayi County, 613016, Taiwan. .,Division of Neurosurgery, Department of Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County, 613016, Taiwan.
| | - Yuh-Lien Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan.
| |
Collapse
|
68
|
Shhedding New Light on the Role of Hedgehog Signaling in Corneal Wound Healing. Int J Mol Sci 2022; 23:ijms23073630. [PMID: 35408986 PMCID: PMC8998466 DOI: 10.3390/ijms23073630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 01/27/2023] Open
Abstract
The cornea, an anterior ocular tissue that notably serves to protect the eye from external insults and refract light, requires constant epithelium renewal and efficient healing following injury to maintain ocular homeostasis. Although several key cell populations and molecular pathways implicated in corneal wound healing have already been thoroughly investigated, insufficient/impaired or excessive corneal wound healing remains a major clinical issue in ophthalmology, and new avenues of research are still needed to further improve corneal wound healing. Because of its implication in numerous cellular/tissular homeostatic processes and oxidative stress, there is growing evidence of the role of Hedgehog signaling pathway in physiological and pathological corneal wound healing. Reviewing current scientific evidence, Hedgehog signaling and its effectors participate in corneal wound healing mainly at the level of the corneal and limbal epithelium, where Sonic Hedgehog-mediated signaling promotes limbal stem cell proliferation and corneal epithelial cell proliferation and migration following corneal injury. Hedgehog signaling could also participate in corneal epithelial barrier homeostasis and in pathological corneal healing such as corneal injury-related neovascularization. By gaining a better understanding of the role of this double-edged sword in physiological and pathological corneal wound healing, fascinating new research avenues and therapeutic strategies will undoubtedly emerge.
Collapse
|
69
|
Yang Q, Li S, Zhou Z, Yang X, Liu Y, Hao K, Fu M. Trimetazidine mitigates high glucose-induced retinal endothelial dysfunction by inhibiting PI3K/Akt/mTOR pathway-mediated autophagy. Bioengineered 2022; 13:7515-7527. [PMID: 35259050 PMCID: PMC8974130 DOI: 10.1080/21655979.2022.2048993] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Trimetazidine (TMZ), as a metabolic regulator, has been widely testified to exhibit positive therapeutic effects on various disease models, but its role in diabetic retinopathy has not been reported. Therefore, this study was designed with the purpose of exploring the effects of TMZ on high-glucose (HG)-induced retinal endothelial dysfunction and its underlying mechanism. To establish DR model in vitro, 30 mM glucose was applied to induce human retinal endothelial cells (HRECs). Cell proliferation, invasion, and migration were examined by means of Cell Counting Kit-8, transwell, and wound healing assays, respectively. The tubule formation experiment was used to test the tubulogenesis ability and fluorescein isothiocyanate (FITC)-albumin was utilized to measure the permeability of monolayer HRECs. In addition, immunofluorescence and Western blot were employed to detect protein expression. Compared with the HG-induced group, TMZ concentration dependently inhibited the proliferation, migration, and angiogenesis of HG-induced HRECs, decreased the permeability of monolayer HRECs, and increased the protein expression levels of Claudin-5 and VE-cadherin. In addition, TMZ intervention increased the expression of p-PI3K, p-AKT, and p-mTOR but decreased the expression of LC3I, LC3II, and Beclin 1, which were then partially reversed by P13 K inhibitor (LY294002). Moreover, the autophagy agonist rapamycin (RAPA) was also testified to reverse the inhibitory effects of TMZ on the proliferation, migration, and angiogenesis of HG-induced HRECs. In summary, TMZ inhibited excessive autophagy by activating PI3K/Akt/mTOR pathway, thereby improving retinal endothelial dysfunction induced by HG.
Collapse
Affiliation(s)
- Qingsong Yang
- Nanjing Tongren Eye Center, Nanjing Tongren Hospital, School of Medicine Southeast University, Nanjing, P.R. China
| | - Sizhen Li
- Nanjing Tongren Eye Center, Nanjing Tongren Hospital, School of Medicine Southeast University, Nanjing, P.R. China
| | - Zixiu Zhou
- Nanjing Tongren Eye Center, Nanjing Tongren Hospital, School of Medicine Southeast University, Nanjing, P.R. China
| | - Xiaodong Yang
- Nanjing Tongren Eye Center, Nanjing Tongren Hospital, School of Medicine Southeast University, Nanjing, P.R. China
| | - Yating Liu
- Nanjing Tongren Eye Center, Nanjing Tongren Hospital, School of Medicine Southeast University, Nanjing, P.R. China
| | - Kuanxiao Hao
- Nanjing Tongren Eye Center, Nanjing Tongren Hospital, School of Medicine Southeast University, Nanjing, P.R. China
| | - Min Fu
- Nanjing Tongren Eye Center, Nanjing Tongren Hospital, School of Medicine Southeast University, Nanjing, P.R. China
| |
Collapse
|
70
|
Chen Z, Lee HJ, Kim H, Cho S, Kim K. δ-Catenin promotes cell migration and invasion via Bcl-2-regulated suppression of autophagy in prostate cancer cells. Am J Cancer Res 2022; 12:108-122. [PMID: 35141007 PMCID: PMC8822292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023] Open
Abstract
As a member of the catenin family, δ-catenin is overexpressed in many cancers, including prostate cancer, and the role of δ-catenin in prostate tumor growth has been reported. However, the involvement of δ-catenin in the migration and invasion of prostate cancer has rarely been studied. In this study, we innovatively proposed that δ-catenin would enhance the migration and invasion ability of prostate cancer cells. It is worth noting that the molecular mechanism underlying the effect involved the downregulation of autophagy. We demonstrated that δ-catenin could suppress autophagy by Bcl-2-regulated disruption of the Beclin1-Vps34 autophagosome complex. Furthermore, the effect of δ-catenin on promoting cell migration and invasion was dependent upon β-catenin-mediated Bcl-2 transcription. Finally, using rapamycin and bafilomycin, we largely confirmed that the degradation of Snails by autolysosomes may be related to δ-catenin regulated migration and invasion. Overall, our results indicated that δ-catenin promoted cell migration and invasion of prostate cancer cells via Bcl-2-regulated autophagy suppression.
Collapse
Affiliation(s)
- Zhiwei Chen
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National UniversityGwangju 61186, Korea
- School of Pharmaceutical Science, Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
| | - Hyoung Jae Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National UniversityGwangju 61186, Korea
| | - Hangun Kim
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National UniversitySunchon 57922, Korea
| | - Sayeon Cho
- College of Pharmacy, Chung-Ang UniversitySeoul 06974, Korea
| | - Kwonseop Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National UniversityGwangju 61186, Korea
| |
Collapse
|
71
|
Zhuang A, Chai P, Wang S, Zuo S, Yu J, Jia S, Ge S, Jia R, Zhou Y, Shi W, Xu X, Ruan J, Fan X. Metformin promotes histone deacetylation of optineurin and suppresses tumour growth through autophagy inhibition in ocular melanoma. Clin Transl Med 2022; 12:e660. [PMID: 35075807 PMCID: PMC8787022 DOI: 10.1002/ctm2.660] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To explore the therapeutic potential and the underlying mechanism of metformin, an adenosine monophosphate-activated kinase (AMPK) activator, in ocular melanoma. METHODS CCK8, transwell, and colony formation assays were performed to detect the proliferation and migration ability of ocular melanoma cells. A mouse orthotopic xenograft model was built to detect ocular tumor growth in vivo. Western blot, immunofluorescence, and electron microscopy were adopted to evaluate the autophagy levels of ocular melanoma cells, and high-throughput proteomics and CUT & Tag assays were performed to analyze the candidate for autophagy alteration. RESULTS Here, we revealed for the first time that a relatively low dose of metformin induced significant tumorspecific inhibition of the proliferation and migration of ocular melanoma cells both in vitro and in vivo. Intriguingly, we found that metformin significantly attenuated autophagic influx in ocular melanoma cells. Through high-throughput proteomics analysis, we revealed that optineurin (OPTN), which is a key candidate for autophagosome formation and maturation, was significantly downregulated after metformin treatment. Moreover, excessive OPTN expression was associated with an unfavorable prognosis of patients. Most importantly, we found that a histone deacetylase, SIRT1, was significantly upregulated after AMPK activation, resulting in histone deacetylation in the OPTN promoter. CONCLUSIONS Overall, we revealed for the first time that metformin significantly inhibited the progression of ocular melanoma, and verified that metformin acted as an autophagy inhibitor through histone deacetylation of OPTN. This study provides novel insights into metformin - guided suppression of ocular melanoma and the potential mechanism underlying the dual role of metformin in autophagy regulation.
Collapse
Affiliation(s)
- Ai Zhuang
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Peiwei Chai
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Shaoyun Wang
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Sipeng Zuo
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Jie Yu
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Shichong Jia
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Shengfang Ge
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Renbing Jia
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Yixiong Zhou
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Wodong Shi
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Xiaofang Xu
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Jing Ruan
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Xianqun Fan
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| |
Collapse
|
72
|
Graßhoff H, Müller-Fielitz H, Dogbevia GK, Körbelin J, Bannach J, Vahldieck CM, Kusche-Vihrog K, Jöhren O, Müller OJ, Nogueiras R, Prevot V, Schwaninger M. Short regulatory DNA sequences to target brain endothelial cells for gene therapy. J Cereb Blood Flow Metab 2022; 42:104-120. [PMID: 34427142 PMCID: PMC8721777 DOI: 10.1177/0271678x211039617] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Gene vectors targeting CNS endothelial cells allow to manipulate the blood-brain barrier and to correct genetic defects in the CNS. Because vectors based on the adeno-associated virus (AAV) have a limited capacity, it is essential that the DNA sequence controlling gene expression is short. In addition, it must be specific for endothelial cells to avoid off-target effects. To develop improved regulatory sequences with selectivity for brain endothelial cells, we tested the transcriptional activity of truncated promoters of eleven (brain) endothelial-specific genes in combination with short regulatory elements, i.e., the woodchuck post-transcriptional regulatory element (W), the CMV enhancer element (C), and a fragment of the first intron of the Tie2 gene (S), by transfecting brain endothelial cells of three species. Four combinations of regulatory elements and short promoters (Cdh5, Ocln, Slc2a1, and Slco1c1) progressed through this in-vitro pipeline displaying suitable activity. When tested in mice, the regulatory sequences C-Ocln-W and C-Slc2a1-S-W enabled a stronger and more specific gene expression in brain endothelial cells than the frequently used CAG promoter. In summary, the new regulatory elements efficiently control gene expression in brain endothelial cells and may help to specifically target the blood-brain barrier with gene therapy vectors.
Collapse
Affiliation(s)
- Hanna Graßhoff
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Helge Müller-Fielitz
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Godwin K Dogbevia
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Jakob Körbelin
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany.,Department of Oncology, Hematology and Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jacqueline Bannach
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | | | | | - Olaf Jöhren
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Oliver J Müller
- Department of Internal Medicine III (Cardiology, Angiology and Internal Intensive Care Medicine), University Hospital Schleswig-Holstein, University of Kiel, Kiel, Germany.,DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Ruben Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Vincent Prevot
- Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, DISTALZ, European Genomic Institute for Diabetes, University of Lille, Lille, France
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
| |
Collapse
|
73
|
Cheng FF, Liu YL, Du J, Lin JT. Metformin's Mechanisms in Attenuating Hallmarks of Aging and Age-Related Disease. Aging Dis 2022; 13:970-986. [PMID: 35855344 PMCID: PMC9286921 DOI: 10.14336/ad.2021.1213] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/13/2021] [Indexed: 11/01/2022] Open
Affiliation(s)
- Fang-Fang Cheng
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang 453003, China.
| | - Yan-Li Liu
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang 453003, China.
| | - Jang Du
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang 453003, China.
| | - Jun-Tang Lin
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang 453003, China.
- Correspondence should be addressed to: Dr. Jun-Tang Lin, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
74
|
Huang Q, Liu X, Guo SW. Changing prostaglandin E2 (PGE 2) signaling during lesional progression and exacerbation of endometriosis by inhibition of PGE 2 receptor EP2 and EP4. Reprod Med Biol 2021; 21:e12426. [PMID: 34938150 PMCID: PMC8660993 DOI: 10.1002/rmb2.12426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/20/2021] [Accepted: 10/31/2021] [Indexed: 11/10/2022] Open
Abstract
Purpose We investigated the change, if any, in prostaglandin E2 (PGE2) signaling in endometriotic lesions of different developmental stages in mouse. In addition, we evaluated the effect of treatment of mice with induced deep endometriosis (DE) with inhibitors of PGE2 receptor subtypes EP2 and EP4 and metformin. Methods Three mouse experimentations were conducted. In Experiment 1, female Balb/C mice were induced with endometriosis or DE and were serially sacrificed after induction. Experiments 2 and 3 evaluated the effect of treatment with EP2 and EP4 inhibitors and metformin, respectively, in mice with induced DE. Immunohistochemistry analysis of COX-2, EP2, and EP4, along with the extent of lesional fibrosis, was evaluated. Results The immunostaining of COX-2, EP2, and EP4 turned from activation to a stall as lesions progressed. Treatment with EP2/EP4 inhibitors in DE mice exacerbated endometriosis-associated hyperalgesia and promoted fibrogenesis in lesions even though it suppressed the PGE2 signaling dose-dependently. In contrast, treatment with metformin resulted in increased PGE2 signaling, concomitant with improved hyperalgesia, and retarded lesional fibrogenesis. Conclusions The PGE2 signaling diminishes as endometriotic lesions progress. Treatment with EP2/EP4 inhibitors in DE mice exacerbates endometriosis, but metformin appears to be promising seemingly through the induction of the PGE2 signaling.
Collapse
Affiliation(s)
- Qingqing Huang
- Shanghai OB/GYN Hospital Fudan University Shanghai China.,Third Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Xishi Liu
- Shanghai OB/GYN Hospital Fudan University Shanghai China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases Fudan University Shanghai China
| | - Sun-Wei Guo
- Shanghai OB/GYN Hospital Fudan University Shanghai China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases Fudan University Shanghai China
| |
Collapse
|
75
|
Raj V, Natarajan S, C M, Chatterjee S, Ramasamy M, Ramanujam GM, Arasu MV, Al-Dhabi NA, Choi KC, Arockiaraj J, Karuppiah K. Cholecalciferol and metformin protect against lipopolysaccharide-induced endothelial dysfunction and senescence by modulating sirtuin-1 and protein arginine methyltransferase-1. Eur J Pharmacol 2021; 912:174531. [PMID: 34710370 DOI: 10.1016/j.ejphar.2021.174531] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/14/2021] [Accepted: 09/27/2021] [Indexed: 01/07/2023]
Abstract
Endothelial cell activation through nuclear factor-kappa-B (NFkB) and mitogen-activated protein kinases leads to increased biosynthesis of pro-inflammatory mediators, cellular injury and vascular inflammation under lipopolysaccharide (LPS) exposure. Recent studies report that LPS up-regulated global methyltransferase activity. In this study, we observed that a combination treatment with metformin (MET) and cholecalciferol (VD) blocked the LPS-induced S-adenosylmethionine (SAM)-dependent methyltransferase (SDM) activity in Eahy926 cells. We found that LPS challenge (i) increased arginine methylation through up-regulated protein arginine methyltransferase-1 (PRMT1) mRNA, intracellular concentrations of asymmetric dimethylarginine (ADMA) and homocysteine (HCY); (ii) up-regulated cell senescence through mitigated sirtuin-1 (SIRT1) mRNA, nicotinamide adenine dinucleotide (NAD+) concentration, telomerase activity and total antioxidant capacity; and (iii) lead to endothelial dysfunction through compromised nitric oxide (NOx) production. However, these LPS-mediated cellular events in Eahy926 cells were restored by the synergistic effect of MET and VD. Taken together, this study identified that the dual compound effect inhibits LPS-induced protein arginine methylation, endothelial senescence and dysfunction through the components of epigenetic machinery, SIRT1 and PRMT1, which is a previously unidentified function of the test compounds. In silico results identified the presence of vitamin D response element (VDRE) sequence on PRMT1 suggesting that VDR could regulate PRMT1 gene expression. Further characterization of the cellular events associated with the dual compound challenge, using gene silencing approach or adenoviral constructs for SIRT1 and/or PRMT1 under inflammatory stress, could identify therapeutic strategies to address the endothelial consequences in vascular inflammation-mediated atherosclerosis.
Collapse
Affiliation(s)
- Vijay Raj
- Department of Medical Research, Medical College Hospital & Research Center, SRM Institute of Science and Technology, Kattankulathur, 603202, India
| | - Suganya Natarajan
- AU-KBC Research Centre, Madras Institute of Technology, Anna University, Chennai, 600025, India
| | - Marimuthu C
- Gleneagles Global Health City, Chennai, 600100, India
| | - Suvro Chatterjee
- AU-KBC Research Centre, Madras Institute of Technology, Anna University, Chennai, 600025, India
| | - Mohankumar Ramasamy
- Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science and Technology, Kattankulathur, 603202, India
| | - Ganesh Munuswamy Ramanujam
- Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science and Technology, Kattankulathur, 603202, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ki Choon Choi
- Grassland and Forage Division, National Institute of Animal Science, RDA, Seonghwan-Eup, Cheonan-Si, Chungnam, 330-801, Republic of Korea
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603202, India; Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Humanities, Kattankulathur 603203, Chennai, Tamil Nadu, India
| | - Kanchana Karuppiah
- Department of Medical Research, Medical College Hospital & Research Center, SRM Institute of Science and Technology, Kattankulathur, 603202, India.
| |
Collapse
|
76
|
Tulipano G. Integrated or Independent Actions of Metformin in Target Tissues Underlying Its Current Use and New Possible Applications in the Endocrine and Metabolic Disorder Area. Int J Mol Sci 2021; 22:13068. [PMID: 34884872 PMCID: PMC8658259 DOI: 10.3390/ijms222313068] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Metformin is considered the first-choice drug for type 2 diabetes treatment. Actually, pleiotropic effects of metformin have been recognized, and there is evidence that this drug may have a favorable impact on health beyond its glucose-lowering activity. In summary, despite its long history, metformin is still an attractive research opportunity in the field of endocrine and metabolic diseases, age-related diseases, and cancer. To this end, its mode of action in distinct cell types is still in dispute. The aim of this work was to review the current knowledge and recent findings on the molecular mechanisms underlying the pharmacological effects of metformin in the field of metabolic and endocrine pathologies, including some endocrine tumors. Metformin is believed to act through multiple pathways that can be interconnected or work independently. Moreover, metformin effects on target tissues may be either direct or indirect, which means secondary to the actions on other tissues and consequent alterations at systemic level. Finally, as to the direct actions of metformin at cellular level, the intracellular milieu cooperates to cause differential responses to the drug between distinct cell types, despite the primary molecular targets may be the same within cells. Cellular bioenergetics can be regarded as the primary target of metformin action. Metformin can perturb the cytosolic and mitochondrial NAD/NADH ratio and the ATP/AMP ratio within cells, thus affecting enzymatic activities and metabolic and signaling pathways which depend on redox- and energy balance. In this context, the possible link between pyruvate metabolism and metformin actions is extensively discussed.
Collapse
Affiliation(s)
- Giovanni Tulipano
- Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
77
|
Wang Z, Li Y, Yao J, Yu S, Yu H, Men L, Du J. Selenoprotein S attenuates high glucose and/or ox-LDL-induced endothelium injury by regulating Akt/mTOR signaling and autophagy. Int J Biochem Cell Biol 2021; 141:106111. [PMID: 34715363 DOI: 10.1016/j.biocel.2021.106111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/30/2021] [Accepted: 10/22/2021] [Indexed: 12/17/2022]
Abstract
Glucolipid metabolism disorder in diabetes mellitus (DM) causes human endothelial injury and autophagy dysfunction is an important cause of endothelial dysfunction (ED). Selenoprotein S (SelS) could protect endothelium from oxidative stress, inflammatory responses, and apoptosis. This study assessed the effect of SelS on autophagy in glucolipid metabolic disorders and protection of the resulted vascular endothelial injury. The results showed that high glucose (HG), high oxidized low-density lipoprotein (HL), and HG combined with HL (HGL) could reduce viability of human aortic endothelial cells (HAECs), induce HAECs injury and increase SelS expression in a time-dependent manner. HG, HL, and HGL also initially induced autophagy but later reduced it in HAECs, while activity of the Akt/mTOR signaling was inhibited, especially in HGL culture of HAECs. SelS overexpression reduced the endothelial injury and autophagy and activated the Akt/mTOR signaling in HG, HL and HGL-cultured HAECs, compared to the control. Conversely, knockdown of SelS expression had the opposite effects on HAECs. In conclusion, SelS demonstrated a protective effect on endothelial injury induced by high glucose and/or ox-LDL and the underlying molecular events might be related to its regulation of HAECs autophagy by activating the Akt/mTOR signaling. SelS could be a potential intervention target in prevention and treatment of diabetic vascular complications.
Collapse
Affiliation(s)
- Zinan Wang
- Department of Endocrinology, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Xigang District, Dalian 116011, China; Department of Nutrition, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Xigang District, Dalian 116011, China. sunny27---@163.com
| | - Yu Li
- Department of Endocrinology, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Xigang District, Dalian 116011, China; Dalian Key Laboratory of Prevention and Treatment of Metabolic Diseases and the Vascular Complications, 222 Zhongshan Road, Xigang District, Dalian 116011, China.
| | - Junjie Yao
- Department of Endocrinology, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Xigang District, Dalian 116011, China; Dalian Key Laboratory of Prevention and Treatment of Metabolic Diseases and the Vascular Complications, 222 Zhongshan Road, Xigang District, Dalian 116011, China.
| | - Shanshan Yu
- Department of Endocrinology, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Xigang District, Dalian 116011, China; Dalian Key Laboratory of Prevention and Treatment of Metabolic Diseases and the Vascular Complications, 222 Zhongshan Road, Xigang District, Dalian 116011, China.
| | - Hao Yu
- Department of Endocrinology, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Xigang District, Dalian 116011, China; Dalian Key Laboratory of Prevention and Treatment of Metabolic Diseases and the Vascular Complications, 222 Zhongshan Road, Xigang District, Dalian 116011, China.
| | - Lili Men
- Department of Endocrinology, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Xigang District, Dalian 116011, China; Dalian Key Laboratory of Prevention and Treatment of Metabolic Diseases and the Vascular Complications, 222 Zhongshan Road, Xigang District, Dalian 116011, China.
| | - Jianling Du
- Department of Endocrinology, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Xigang District, Dalian 116011, China; Dalian Key Laboratory of Prevention and Treatment of Metabolic Diseases and the Vascular Complications, 222 Zhongshan Road, Xigang District, Dalian 116011, China.
| |
Collapse
|
78
|
Wang N, Wang L, Zhang C, Tan HY, Zhang Y, Feng Y. Berberine suppresses advanced glycation end products-associated diabetic retinopathy in hyperglycemic mice. Clin Transl Med 2021; 11:e569. [PMID: 34841704 PMCID: PMC8567055 DOI: 10.1002/ctm2.569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 01/08/2023] Open
Affiliation(s)
- Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Leilei Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.,Department of Ophthalmology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Eye Disease Prevention and Treatment Center, Shanghai, China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Hor-Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.,School of Chinese Medicine, Hong Kong Baptists University, Hong Kong, China
| | - Yinjian Zhang
- Department of Ophthalmology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| |
Collapse
|
79
|
Chen L, Yin Y, Liu G. Metformin alleviates bevacizumab-induced vascular endothelial injury by up-regulating GDF15 and activating the PI3K/AKT/FOXO/PPARγ signaling pathway. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1547. [PMID: 34790753 PMCID: PMC8576656 DOI: 10.21037/atm-21-4764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/02/2021] [Indexed: 01/04/2023]
Abstract
Background Previous studies have reported that the combination of metformin and bevacizumab exhibit favorable efficacy in the treatment of cancer patients, and metformin possesses effects on relieving vascular injury in multiple diseases. Nonetheless, the effect of metformin in alleviating bevacizumab-induced vascular injury remains unknown. Therefore, the present study aimed to investigate the impact of metformin on apoptosis, vascular endothelial injury marker expressions, and inflammation in human umbilical vein endothelial cells (HUVECs), as well as its possible molecular mechanism. Methods HUVECs were treated with bevacizumab, metformin or both, and subsequently treated with growth differentiation factor 15 (GDF15) overexpression plasmid, negative control (NC) plasmid, GDF15 small interfering ribonucleic acid (siRNA), NC siRNA, and the phosphoinositide 3-kinase (PI3K) inhibitor LY294002, respectively. After treatment, apoptosis, levels of endothelial injury biomarkers and the potential downstream proteins were detected. Results Bevacizumab increased the levels of apoptosis, vascular endothelial injury marker expressions and pro-inflammatory cytokine expressions in HUVECs, while metformin alleviated these effects in bevacizumab-treated HUVECs. Furthermore, GDF15 overexpression reduced the apoptosis, vascular endothelial injury marker expressions, pro-inflammatory cytokine expressions, and activated the PI3K/protein kinase B (AKT)/forkhead box O (FOXO)/peroxisome proliferator-activated receptor γ (PPARγ) signaling pathway in bevacizumab-treated HUVECs. Subsequently, GDF15 siRNA reduced the effects of metformin on the bevacizumab-induced vascular endothelial injury (as described above) in HUEVCs. Lastly, the PI3K inhibitor exhibited similar effects to those of GDF15 siRNA in bevacizumab-treated HUVECs. Conclusions Metformin protected against bevacizumab-induced vascular endothelial injury via activation of GDF15 and the PI3K/AKT/FOXO/PPARγ signaling pathway.
Collapse
Affiliation(s)
- Liqiang Chen
- Cardiovascular Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yajuan Yin
- Cardiovascular Department, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Gang Liu
- Cardiovascular Department, The First Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
80
|
Chen X, Tong G, Fan J, Shen Y, Wang N, Gong W, Hu Z, Zhu K, Li X, Jin L, Cong W, Xiao J, Zhu Z. FGF21 promotes migration and differentiation of epidermal cells during wound healing via SIRT1-dependent autophagy. Br J Pharmacol 2021; 179:1102-1121. [PMID: 34608629 DOI: 10.1111/bph.15701] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Migration and differentiation of epidermal cells are essential for epidermal regeneration during wound healing. Fibroblast growth factor 21 (FGF21) plays key roles in mediating a variety of biological activities. However, its role in skin wound healing remains unknown. EXPERIMENTAL APPROACH Fgf21 knockout (Fgf21 KO) mice were used to determine the effect of FGF21 on wound healing. The source of FGF21 and its target cells were determined by immunohistochemistry, immunoblotting, and ELISA assay. Moreover, Sirt1flox/flox and Atg7flox/flox mice were constructed and injected with the epidermal-specific Cre virus to elucidate the underlying mechanisms. Migration and differentiation of keratinocytes were evaluated in vitro by cell scratch assays, immunofluorescence, and qRT-RCR. The effects were further assessed when SIRT1, ATG7, ATG5, BECN1, and P53 were silenced. Interactions between SIRT1 and autophagy-related genes were assessed using immunoprecipitation assays. KEY RESULTS FGF21 was active in fibroblasts and promoted migration and differentiation of keratinocytes following injury. After wounding, SIRT1 expression and autophagosome synthesis were lower in Fgf21 KO mice. Depletion of ATG7 in keratinocytes counteracted the FGF21-induced increases in migration and differentiation, suggesting that autophagy is required for the FGF21-mediated pro-healing effects. Furthermore, epithelial-specific Sirt1 knockout abolished the FGF21-mediated improvements of autophagy and wound healing. Silencing of SIRT1 in keratinocytes, which decreased deacetylation of p53 and autophagy-related proteins, revealed that FGF21-induced autophagy during wound healing was SIRT1-dependent. CONCLUSIONS AND IMPLICATIONS FGF21 is a key regulator of keratinocyte migration and differentiation during wound healing. FGF21 may be a novel therapeutic target to accelerate would healing.
Collapse
Affiliation(s)
- Xixi Chen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China.,Department of Pharmacy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Gaozan Tong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Junfu Fan
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yingjie Shen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Nan Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Wenjie Gong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Zijing Hu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Kunxuan Zhu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Xiaokun Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Litai Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Weitao Cong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jian Xiao
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Zhongxin Zhu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
81
|
Chang XM, Xiao F, Pan Q, Wang XX, Guo LX. Sitagliptin attenuates endothelial dysfunction independent of its blood glucose controlling effect. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:425-437. [PMID: 34448460 PMCID: PMC8405439 DOI: 10.4196/kjpp.2021.25.5.425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 01/11/2023]
Abstract
Although the contributions of sitagliptin to endothelial dysfunction in diabetes mellitus were previously reported, the mechanisms still undefined. Autophagy plays an important role in the development of diabetes mellitus, but its role in diabetic macrovascular complications is unclear. This study aims to observe the effect of sitagliptin on macrovascular endothelium in diabetes and explore the role of autophagy in this process. Diabetic rats were induced through administration of high-fat diet and intraperitoneal injection of streptozotocin. Then diabetic rats were treated with or without sitagliptin for 12 weeks. Endothelial damage and autophagy were measured. Human umbilical vein endothelial cells were cultured either in normal glucose or in high glucose medium and intervened with different concentrations of sitagliptin. Rapamycin was used to induce autophagy. Cell viability, apoptosis and autophagy were detected. The expressions of proteins in c-Jun N-terminal kinase (JNK)-Bcl-2-Beclin-1 pathway were measured. Sitagliptin attenuated injuries of endothelium in vivo and in vitro. The expression of microtubuleassociated protein 1 light chain 3 II (LC3II) and beclin-1 were increased in aortas of diabetic rats and cells cultured with high-glucose, while sitagliptin inhibited the over-expression of LC3II and beclin-1. In vitro pre-treatment with sitagliptin decreased rapamycin-induced autophagy. However, after pretreatment with rapamycin, the protective effect of sitagliptin on endothelial cells was abolished. Further studies revealed sitagliptin increased the expression of Bcl-2, while inhibited the expression of JNK in vivo. Sitagliptin attenuates injuries of vascular endothelial cells caused by high glucose through inhibiting over-activated autophagy. JNK-Bcl-2-Beclin-1 pathway may be involved in this process.
Collapse
Affiliation(s)
- Xin-Miao Chang
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P. R. China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P. R. China
| | - Fei Xiao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P. R. China
| | - Qi Pan
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P. R. China
| | - Xiao-Xia Wang
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P. R. China
| | - Li-Xin Guo
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P. R. China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P. R. China
| |
Collapse
|
82
|
Feng X, Chen W, Ni X, Little PJ, Xu S, Tang L, Weng J. Metformin, Macrophage Dysfunction and Atherosclerosis. Front Immunol 2021; 12:682853. [PMID: 34163481 PMCID: PMC8215340 DOI: 10.3389/fimmu.2021.682853] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/07/2021] [Indexed: 12/17/2022] Open
Abstract
Metformin is one of the most widely prescribed hypoglycemic drugs and has the potential to treat many diseases. More and more evidence shows that metformin can regulate the function of macrophages in atherosclerosis, including reducing the differentiation of monocytes and inhibiting the inflammation, oxidative stress, polarization, foam cell formation and apoptosis of macrophages. The mechanisms by which metformin regulates the function of macrophages include AMPK, AMPK independent targets, NF-κB, ABCG5/8, Sirt1, FOXO1/FABP4 and HMGB1. On the basis of summarizing these studies, we further discussed the future research directions of metformin: single-cell RNA sequencing, neutrophil extracellular traps (NETs), epigenetic modification, and metformin-based combination drugs. In short, macrophages play an important role in a variety of diseases, and improving macrophage dysfunction may be an important mechanism for metformin to expand its pleiotropic pharmacological profile. In addition, the combination of metformin with other drugs that improve the function of macrophages (such as SGLT2 inhibitors, statins and IL-1β inhibitors/monoclonal antibodies) may further enhance the pleiotropic therapeutic potential of metformin in conditions such as atherosclerosis, obesity, cancer, dementia and aging.
Collapse
Affiliation(s)
- Xiaojun Feng
- Department of Pharmacy, the First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Wenxu Chen
- Department of Pharmacy, the First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Xiayun Ni
- Department of Pharmacy, the First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Peter J. Little
- Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, QLD, Australia
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD, Australia
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China( USTC), Hefei, China
| | - Liqin Tang
- Department of Pharmacy, the First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Jianping Weng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China( USTC), Hefei, China
| |
Collapse
|
83
|
Liu L, Huang S, Xu M, Gong Y, Li D, Wan C, Wu H, Tang Q. Isoquercitrin protects HUVECs against high glucose‑induced apoptosis through regulating p53 proteasomal degradation. Int J Mol Med 2021; 48:122. [PMID: 33982778 PMCID: PMC8121554 DOI: 10.3892/ijmm.2021.4955] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/12/2021] [Indexed: 02/06/2023] Open
Abstract
High glucose (HG)-induced endothelial apoptosis serves an important role in the vascular dysfunction associated with diabetes mellitus (DM). It has been reported that isoquercitrin (IQC), a flavonoid glucoside, possesses an anti-DM effect, but the mechanism requires further investigation. The present study investigated the effect of IQC against HG-induced apoptosis in human umbilical vein endothelial cells (HUVECs) and explored its molecular mechanism. HUVECs were treated with 5 or 30 mM glucose for 48 h. Endothelial cell viability was monitored using the Cell Counting Kit-8 assay. Mitochondrial membrane potential was detected by JC-1 staining. Apoptosis was observed by TUNEL staining and flow cytometry. Western blotting was used for the analysis of apoptosis-associated proteins Bax, Bcl-2, cleaved (C)-caspase3, total-caspase3, p53 and phosphorylated p53. Reverse transcription-quantitative PCR was used to analyze the mRNA expression levels of Bax, Bcl-2 and p53. Immunofluorescence staining was utilized to detect the expression levels and distribution of p53 and ubiquitin specific peptidase 10 (USP10) in HUVECs. The results revealed that IQC significantly attenuated HG-induced endothelial apoptosis, as shown by decreased apoptotic cells observed by TUNEL, JC-1 staining and flow cytometry. Moreover, under HG stress, IQC treatment markedly inhibited the increased expression levels of the pro-apoptotic proteins p53, Bax and C-caspase3, and increased the expression levels of the anti-apoptotic protein Bcl-2 in HUVECs. However, the anti-apoptotic effect of IQC against HG was partially blunted by increasing p53 protein levels in vitro. IQC influenced the mRNA expression levels of Bax and Bcl-2 in response to HG, but it did not affect the transcription of p53. Notably, IQC inhibited the HG-induced phosphorylation of p53 at Ser15 and the nuclear transport of USP10, destabilizing p53 and increasing the proteasomal degradation of the p53 protein. The current findings revealed that IQC exerted a protective effect against the HG-induced apoptosis of endothelial cells by regulating the proteasomal degradation of the p53 protein, suggesting that IQC may be used as a novel therapeutic compound to ameliorate DM-induced vascular complications.
Collapse
Affiliation(s)
- Libo Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Sihui Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Man Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yan Gong
- Pharmacy Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Dan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Chunxia Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Haiming Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
84
|
Liu G, Wu F, Wu H, Wang Y, Jiang X, Hu P, Tong X. Inactivation of cysteine 674 in the sarcoplasmic/endoplasmic reticulum calcium ATPase 2 causes retinopathy in the mouse. Exp Eye Res 2021; 207:108559. [PMID: 33848522 DOI: 10.1016/j.exer.2021.108559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/01/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
Diabetic retinopathy is a multifactorial microvascular complication, and its pathogenesis hasn't been fully elucidated. The irreversible oxidation of cysteine 674 (C674) in the sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) was increased in the type 1 diabetic retinal vasculature. SERCA2 C674S knock-in (SKI) mouse line that half of C674 was replaced by serine 674 (S674) was used to study the effect of C674 inactivation on retinopathy. Compared with wild type (WT) mice, SKI mice had increased number of acellular capillaries and pericyte loss similar to those in type 1 diabetic WT mice. In the retina of SKI mice, pro-apoptotic proteins and intracellular Ca2+-dependent signaling pathways increased, while anti-apoptotic proteins and vessel density decreased. In endothelial cells, C674 inactivation increased the expression of pro-apoptotic proteins, damaged mitochondria, and induced cell apoptosis. These results suggest that a possible mechanism of retinopathy induced by type 1 diabetes is the interruption of calcium homeostasis in the retina by oxidation of C674. C674 is a key to maintain retinal health. Its inactivation can cause retinopathy similar to type 1 diabetes by promoting apoptosis. SERCA2 might be a potential target for the prevention and treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Gang Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China; Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Fuhua Wu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Haixia Wu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Yaping Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Xiaoli Jiang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Pingping Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.
| | - Xiaoyong Tong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
85
|
Henderson JM, Weber C, Santovito D. Beyond Self-Recycling: Cell-Specific Role of Autophagy in Atherosclerosis. Cells 2021; 10:cells10030625. [PMID: 33799835 PMCID: PMC7998923 DOI: 10.3390/cells10030625] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial vessel wall and underlies the development of cardiovascular diseases, such as myocardial infarction and ischemic stroke. As such, atherosclerosis stands as the leading cause of death and disability worldwide and intensive scientific efforts are made to investigate its complex pathophysiology, which involves the deregulation of crucial intracellular pathways and intricate interactions between diverse cell types. A growing body of evidence, including in vitro and in vivo studies involving cell-specific deletion of autophagy-related genes (ATGs), has unveiled the mechanistic relevance of cell-specific (endothelial, smooth-muscle, and myeloid cells) defective autophagy in the processes of atherogenesis. In this review, we underscore the recent insights on autophagy's cell-type-dependent role in atherosclerosis development and progression, featuring the relevance of canonical catabolic functions and emerging noncanonical mechanisms, and highlighting the potential therapeutic implications for prevention and treatment of atherosclerosis and its complications.
Collapse
Affiliation(s)
- James M. Henderson
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU), D-80336 Munich, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, D-80336 Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU), D-80336 Munich, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, D-80336 Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
- Munich Cluster for Systems Neurology (SyNergy), D-80336 Munich, Germany
- Correspondence: (C.W.); (D.S.)
| | - Donato Santovito
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU), D-80336 Munich, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, D-80336 Munich, Germany
- Institute for Genetic and Biomedical Research, UoS of Milan, National Research Council, I-09042 Milan, Italy
- Correspondence: (C.W.); (D.S.)
| |
Collapse
|
86
|
Meng F, Sun N, Liu D, Jia J, Xiao J, Dai H. BCL2L13: physiological and pathological meanings. Cell Mol Life Sci 2021; 78:2419-2428. [PMID: 33201252 PMCID: PMC11073179 DOI: 10.1007/s00018-020-03702-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023]
Abstract
BCL2L13 is a BCL2-like protein. It has been discovered for two decades, now on the way to be a hotspot of research with its physiological and pathological meanings found in recent years. Start with the pro-apoptotic activity, there have been reported consecutively that BCL2L13 could also induce mitochondrial fragmentation, inhibit cell death and promote mitophagy. Similar to BNIP3, BCL2L13 cannot be indiscriminately categorized into pro- or anti-apoptotic proteins. It anchors in the mitochondrial outer membrane, and expresses in various cells and tissues. This article reviews for the first time that BCL2L13 functions in physiological processes, such as growth and development and energy metabolism, and its dysregulation participating in pathological processes, including cancer, bacterial infection, cardiovascular diseases and degenerative diseases, suggesting its important roles in these events.
Collapse
Affiliation(s)
- Fei Meng
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, Anhui, China
| | - Naitong Sun
- Department of Hematology, the Third People's Hospital of Yancheng, Yancheng, 224001, China
| | - Dongyan Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, Anhui, China
| | - Jia Jia
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, Anhui, China
| | - Jun Xiao
- Department of Urology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Haiming Dai
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, Anhui, China.
| |
Collapse
|
87
|
Adalsteinsson JA, Muzumdar S, Waldman R, Wu R, Ratner D, Feng H, Ungar J, Silverberg JI, Olafsdottir GH, Kristjansson AK, Tryggvadottir L, Jonasson JG. Metformin is associated with decreased risk of basal cell carcinoma: A whole-population case-control study from Iceland. J Am Acad Dermatol 2021; 85:56-61. [PMID: 33610593 DOI: 10.1016/j.jaad.2021.02.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/11/2021] [Accepted: 02/14/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Metformin has anticarcinogenic properties and is also known to inhibit the sonic hedgehog pathway, but population-based studies analyzing the potential protective effect for basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are needed. OBJECTIVES To delineate the association between metformin use and invasive SCC, SCC in situ (SCCis), and BCC. METHODS A population-based case-control study design was employed using all 6880 patients diagnosed in Iceland between 2003-2017 with first-time BCC, SCCis, or invasive SCC, and 69,620 population controls. Multivariate odds ratios (ORs) were calculated using conditional logistic regression. RESULTS Metformin was associated with a lower risk of developing BCC (OR, 0.71; 95% confidence interval [CI], 0.61-0.83), even at low doses. No increased risk of developing SCC was observed. SCCis risk was mildly elevated in the 501-1500 daily dose unit category (OR, 1.40; 95% CI, 1.00-1.96). LIMITATIONS This study was retrospective in nature with the inability to adjust for ultraviolet exposure, Fitzpatrick skin type, and comorbidities. CONCLUSION Metformin is associated with decreased risk of BCC development, even at low doses. Metformin might have potential as a chemoprotective agent for patients at high risk of BCC, although this will need confirmation in future studies.
Collapse
Affiliation(s)
- Jonas A Adalsteinsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland; Department of Dermatology, University of Connecticut, Farmington, Connecticut.
| | - Sonal Muzumdar
- Department of Dermatology, University of Connecticut, Farmington, Connecticut
| | - Reid Waldman
- Department of Dermatology, University of Connecticut, Farmington, Connecticut
| | - Rong Wu
- Connecticut Convergence Institute for Translation in Regenerative Engineering, Farmington, Connecticut
| | - Désirée Ratner
- Department of Dermatology, New York University Langone Health, New York, New York
| | - Hao Feng
- Department of Dermatology, University of Connecticut, Farmington, Connecticut
| | - Jonathan Ungar
- Mount Sinai Department of Dermatology, New York, New York
| | - Jonathan I Silverberg
- The George Washington University School of Medicine and Health Sciences, Washington, DC
| | | | | | - Laufey Tryggvadottir
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland; Icelandic Cancer Registry, Reykjavik, Iceland
| | - Jon Gunnlaugur Jonasson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland; Department of Pathology, Landspitali National-University Hospital, Reykjavik, Iceland
| |
Collapse
|
88
|
Gao L, Yang X, Liang B, Jia Y, Tan S, Chen A, Cao P, Zhang Z, Zheng S, Sun L, Zhang F, Shao J. Autophagy-induced p62 accumulation is required for curcumol to regulate KLF5-mediated angiogenesis in liver sinusoidal endothelial cells. Toxicology 2021; 452:152707. [PMID: 33549628 DOI: 10.1016/j.tox.2021.152707] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/20/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023]
Abstract
Liver pathological angiogenesis is considered to be one of the key events in the development of liver fibrosis. Autophagy is a defense and stress regulation mechanism. However, whether autophagy regulates pathological angiogenesis in liver fibrosis is still questionable. Here, we aimed to study how curcumol regulated liver sinusoidal endothelial cells (LSECs) angiogenesis through autophagy. We found that curcumol (10, 20 and 40 μM) could inhibit the expression of angiogenesis markers in the LSECs. Importantly, we showed that curcumol might influence LSEC pathological angiogenesis by regulating autophagy level. Furthermore, we indicated that the transcription factor Krüppel-like factor 5 (KLF5) was considered as a key target for curcumol to regulate LSEC angiogenesis. Interestingly, we also suggested that autophagy was as a potential mechanism for curcumol to restrain KLF5 expression. Increased autophagy level could impair the suppression effect of curcumol on KLF5. Fascinatingly, our results indicated that curcumol inhibited autophagy and led to p62 accumulation, which might be a regulation mechanism of KLF5 degradation. Finally, in mice liver fibrosis model, we unanimously showed that curcumol (30 mg/kg) inhibited pathological angiogenesis by reducing LSEC autophagy level and suppressing KLF5 expression. Collectively, these results provided a deeper insight into the molecular mechanism of curcumol to inhibit LSEC pathological angiogenesis during liver fibrosis.
Collapse
Affiliation(s)
- Liyuan Gao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiang Yang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, China
| | - Baoyu Liang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Jia
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shanzhong Tan
- Department of Integrated TCM and Western Medicine, Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Anping Chen
- Department of Pathology, School of Medicine, Saint Louis University, St Louis, USA
| | - Peng Cao
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lixia Sun
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Jiangjuan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
89
|
Lu G, Wu Z, Shang J, Xie Z, Chen C, Zhang C. The effects of metformin on autophagy. Biomed Pharmacother 2021; 137:111286. [PMID: 33524789 DOI: 10.1016/j.biopha.2021.111286] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Metformin is the first-line option for treating newly diagnosed diabetic patients and also involved in other pharmacological actions, including antitumor effect, anti-aging effect, polycystic ovarian syndrome prevention, cardiovascular action, and neuroprotective effect, etc. However, the mechanisms of metformin actions were not fully illuminated. Recently, increasing researches showed that autophagy is a vital medium of metformin playing pharmacological actions. Nevertheless, results on the effects of metformin on autophagy were inconsistent. Apart from few clinical evidences, more data focused on kinds of no-clinical models. First, many studies showed that metformin could induce autophagy via a number of signaling pathways, including AMPK-related signaling pathways (e.g. AMPK/mTOR, AMPK/CEBPD, MiTF/TFE, AMPK/ULK1, and AMPK/miR-221), Redd1/mTOR, STAT, SIRT, Na+/H+ exchangers, MAPK/ERK, PK2/PKR/AKT/ GSK3β, and TRIB3. Secondly, some signaling pathways were involved in the process of metformin inhibiting autophagy, such as AMPK-related signaling pathways (AMPK/NF-κB and other undetermined AMPK-related signaling pathways), Hedgehog, miR-570-3p, miR-142-3p, and MiR-3127-5p. Thirdly, two types of signaling pathways including PI3K/AKT/mTOR and endoplasmic reticulum (ER) stress could bidirectionally impact the effectiveness of metformin on autophagy. Finally, multiple signal pathways were reviewed collectively in terms of affecting the effectiveness of metformin on autophagy. The pharmacological effects of metformin combining its actions on autophagy were also discussed. It would help better apply metformin to treat diseases in term of mediating autophagy.
Collapse
Affiliation(s)
- Guangli Lu
- School of Business, Henan University, Henan, Kaifeng, China
| | - Zhen Wu
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Henan, Kaifeng, China
| | - Jia Shang
- School of Kaifeng Culture and Tourism, Henan, Kaifeng, China
| | - Zhenxing Xie
- School of Basic Medicine, Henan University, Henan, Kaifeng, Jinming Avenue, 475004, China.
| | - Chaoran Chen
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Henan, Kaifeng, China.
| | - Chuning Zhang
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Henan, Kaifeng, China
| |
Collapse
|
90
|
Salvatore T, Pafundi PC, Galiero R, Rinaldi L, Caturano A, Vetrano E, Aprea C, Albanese G, Di Martino A, Ricozzi C, Imbriani S, Sasso FC. Can Metformin Exert as an Active Drug on Endothelial Dysfunction in Diabetic Subjects? Biomedicines 2020; 9:biomedicines9010003. [PMID: 33375185 PMCID: PMC7822116 DOI: 10.3390/biomedicines9010003] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular mortality is a major cause of death among in type 2 diabetes (T2DM). Endothelial dysfunction (ED) is a well-known important risk factor for the development of diabetes cardiovascular complications. Therefore, the prevention of diabetic macroangiopathies by preserving endothelial function represents a major therapeutic concern for all National Health Systems. Several complex mechanisms support ED in diabetic patients, frequently cross-talking each other: uncoupling of eNOS with impaired endothelium-dependent vascular response, increased ROS production, mitochondrial dysfunction, activation of polyol pathway, generation of advanced glycation end-products (AGEs), activation of protein kinase C (PKC), endothelial inflammation, endothelial apoptosis and senescence, and dysregulation of microRNAs (miRNAs). Metformin is a milestone in T2DM treatment. To date, according to most recent EASD/ADA guidelines, it still represents the first-choice drug in these patients. Intriguingly, several extraglycemic effects of metformin have been recently observed, among which large preclinical and clinical evidence support metformin’s efficacy against ED in T2DM. Metformin seems effective thanks to its favorable action on all the aforementioned pathophysiological ED mechanisms. AMPK pharmacological activation plays a key role, with metformin inhibiting inflammation and improving ED. Therefore, aim of this review is to assess metformin’s beneficial effects on endothelial dysfunction in T2DM, which could preempt development of atherosclerosis.
Collapse
Affiliation(s)
- Teresa Salvatore
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via De Crecchio 7, I-80138 Naples, Italy;
| | - Pia Clara Pafundi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Concetta Aprea
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Gaetana Albanese
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Anna Di Martino
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Carmen Ricozzi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Simona Imbriani
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
- Correspondence: ; Tel.: +39-081-566-5010
| |
Collapse
|
91
|
Wang G, Lin F, Wan Q, Wu J, Luo M. Mechanisms of action of metformin and its regulatory effect on microRNAs related to angiogenesis. Pharmacol Res 2020; 164:105390. [PMID: 33352227 DOI: 10.1016/j.phrs.2020.105390] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/07/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023]
Abstract
Angiogenesis is rapidly initiated in response to pathological conditions and is a key target for pharmaceutical intervention in various malignancies. Anti-angiogenic therapy has emerged as a potential and effective therapeutic strategy for treating cancer and cardiovascular-related diseases. Metformin, a first-line oral antidiabetic agent for type 2 diabetes mellitus (T2DM), not only reduces blood glucose levels and improves insulin sensitivity and exerts cardioprotective effects but also shows benefits against cancers, cardiovascular diseases, and other diverse diseases and regulates angiogenesis. MicroRNAs (miRNAs) are endogenous noncoding RNA molecules with a length of approximately 19-25 bases that are widely involved in controlling various human biological processes. A large number of miRNAs are involved in the regulation of cardiovascular cell function and angiogenesis, of which miR-21 not only regulates vascular cell proliferation, migration and apoptosis but also plays an important role in angiogenesis. The relationship between metformin and abnormal miRNA expression has gradually been revealed in the context of numerous diseases and has received increasing attention. This paper reviews the drug-target interactions and drug repositioning events of metformin that influences vascular cells and has benefits on angiogenesis-mediated effects. Furthermore, we use miR-21 as an example to explain the specific molecular mechanism underlying metformin-mediated regulation of the miRNA signaling pathway controlling angiogenesis and vascular protective effects. These findings may provide a new therapeutic target and theoretical basis for the clinical prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Gang Wang
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Fang Lin
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Qin Wan
- Department of Endocrinology, Nephropathy Clinical Medical Research Center of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Jianbo Wu
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States.
| | - Mao Luo
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
92
|
Han WM, Chen XC, Li GR, Wang Y. Acacetin Protects Against High Glucose-Induced Endothelial Cells Injury by Preserving Mitochondrial Function via Activating Sirt1/Sirt3/AMPK Signals. Front Pharmacol 2020; 11:607796. [PMID: 33519472 PMCID: PMC7844858 DOI: 10.3389/fphar.2020.607796] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/25/2020] [Indexed: 12/16/2022] Open
Abstract
The strategy of decreasing atherosclerotic cardiovascular disorder is imperative for reducing premature death and improving quality of life in patients with diabetes mellitus. The aim of this study was to investigate whether the natural flavone acacetin could protect against endothelial injury induced by high glucose and attenuate diabetes-accelerated atherosclerosis in streptozotocin-(STZ) induced diabetic ApoE−/− mice model. It was found that in human umbilical vein endothelial cells (HUVECs) cultured with normal 5.5 mM or high 33 mM glucose, acacetin (0.3–3 μM) exerted strong cytoprotective effects by reversing high glucose-induced viability reduction and reducing apoptosis and excess production of intracellular reactive oxygen species (ROS) and malondialdehyde in a concentration-dependent manner. Acacetin countered high glucose-induced depolarization of mitochondrial membrane potential and reduction of ATP product and mitoBcl-2/mitoBax ratio. Silencing Sirt3 abolished the beneficial effects of acacetin. Further analysis revealed that these effects of acacetin rely on Sirt1 activation by increasing NAD+ followed by increasing Sirt3, pAMPK and PGC-1α. In STZ-diabetic mice, acacetin significantly upregulated the decreased signaling molecules (i.e. SOD, Bcl-2, PGC-1α, pAMPK, Sirt3 and Sirt1) in aorta tissue and attenuated atherosclerosis. These results indicate that vascular endothelial protection of acacetin by activating Sirt1/Sirt3/AMPK signals is likely involved in alleviating diabetes-accelerated atherosclerosis by preserving mitochondrial function, which suggests that acacetin may be a drug candidate for treating cardiovascular disorder in patients with diabetes.
Collapse
Affiliation(s)
- Wei-Min Han
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Xu-Chang Chen
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Gui-Rong Li
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, China.,Nanjing Amazigh Pharma Limited, Nanjing, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
93
|
Li JR, Ou YC, Wu CC, Wang JD, Lin SY, Wang YY, Chen WY, Liao SL, Chen CJ. Endoplasmic reticulum stress and autophagy contributed to cadmium nephrotoxicity in HK-2 cells and Sprague-Dawley rats. Food Chem Toxicol 2020; 146:111828. [PMID: 33127495 DOI: 10.1016/j.fct.2020.111828] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 01/05/2023]
Abstract
Excessive accumulation of cadmium is known to cause nephrotoxicity by targeting renal proximal tubular epithelial cells. Studies showed an essential role of autophagy in cadmium-induced nephrotoxicity; however, its underlying mechanisms accompanied by autophagy are incompletely understood. Using an HK-2 human renal proximal tubular epithelial cell line as a study model, sustained exposure of cadmium chloride (CdCl2) was shown to cause cell viability loss, which was alleviated by inhibitors of autophagy but not apoptosis. Data from molecular and biochemical studies revealed an induction of autophagy proteins, intracellular acidic vesicles, and autophagic flux in CdCl2-treated cells. However, there was little sign of apoptosis-related changes. Pharmacological and genetic studies indicated an elevation of Endoplasmic Reticulum (ER) stress, Forkhead Box Class O (FoxO3a), Bcl-2 Interacting Protein 3 (Bnip3), and Beclin1, as well as their involvement in cadmium-induced autophagy and autophagic cell death. Renal injury, histological changes, and molecular marker of ER stress, FoxO3a, Bnip3, and autophagy were observed in the kidney cortex of CdCl2-exposed Sprague-Dawley rats. These observations indicate that ER stress, FoxO3a, Bnip3, and autophagy signaling were actively involved in cadmium-induced nephrotoxicity. Additionally, FoxO3a may act as a linking molecule to convey ER stress signals to Bnip3 and autophagy machinery upon cadmium exposure.
Collapse
Affiliation(s)
- Jian-Ri Li
- Division of Urology, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Nursing, HungKuang University, Taichung, Taiwan
| | - Yen-Chuan Ou
- Department of Urology, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Chih-Cheng Wu
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Financial Engineering, Providence University, Taichung, Taiwan; Department of Data Science and Big Data Analytics, Providence University, Taichung, Taiwan
| | - Jiaan-Der Wang
- Children's Medical Center, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung, Taiwan
| | - Shih-Yi Lin
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ya-Yu Wang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Family Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan; Ph.D. Program in Translational Medicine, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
94
|
Targeting autophagy to overcome drug resistance: further developments. J Hematol Oncol 2020; 13:159. [PMID: 33239065 PMCID: PMC7687716 DOI: 10.1186/s13045-020-01000-2] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/15/2020] [Indexed: 12/13/2022] Open
Abstract
Inhibiting cell survival and inducing cell death are the main approaches of tumor therapy. Autophagy plays an important role on intracellular metabolic homeostasis by eliminating dysfunctional or unnecessary proteins and damaged or aged cellular organelles to recycle their constituent metabolites that enable the maintenance of cell survival and genetic stability and even promotes the drug resistance, which severely limits the efficacy of chemotherapeutic drugs. Currently, targeting autophagy has a seemingly contradictory effect to suppress and promote tumor survival, which makes the effect of targeting autophagy on drug resistance more confusing and fuzzier. In the review, we summarize the regulation of autophagy by emerging ways, the action of targeting autophagy on drug resistance and some of the new therapeutic approaches to treat tumor drug resistance by interfering with autophagy-related pathways. The full-scale understanding of the tumor-associated signaling pathways and physiological functions of autophagy will hopefully open new possibilities for the treatment of tumor drug resistance and the improvement in clinical outcomes.
Collapse
|
95
|
Xiang X, Wang L, Zhou L, Chen Y, Xia H. Metformin upregulates the expression of Gli1 in vascular endothelial cells in hyperoxia-exposed neonatal mice. Am J Transl Res 2020; 12:6092-6106. [PMID: 33194016 PMCID: PMC7653632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Bronchopulmonary dysplasia (BPD) is characterized by arrested alveolar and vascular development in premature infants. Metformin protects against the cardiovascular impairment induced by diabetes. The aim of this study was to investigate whether metformin could also enhance pulmonary vascular development in hyperoxic neonatal mice and investigate possible mechanisms involved. C57BL/6J newborn mice were randomly assigned to either of two groups - the room air group or the hyperoxia group - within 12 h postnatally. The mice were subcutaneously injected with metformin (100 mg/kg) or saline for 14 days. Lung morphology and PECAM-1 (CD31) expression in the lung were evaluated at postnatal days 7 and 14. Ki-67 and Gli1 expression in vascular endothelial cells was evaluated at postnatal day 14 by immunofluorescence staining. Flow cytometry (FCM) was also used to analyze Gli1 expression. Human umbilical vein endothelial cell (HUVECs) were used to investigate the role of metformin in vascular proliferation and tubular formation under 90% oxygen in vitro by cell counting Kti-8 (CCK8) assays and tube formation assays. Exposure to hyperoxia resulted in impaired lung development in newborn mice. Metformin enhanced the terminal airspace and radial alveolar count in newborn mice thus exposed. Immunohistochemistry staining and western blot assays revealed that metformin enhanced the expression of CD31 in hyperoxia-exposed newborn mice. Immunofluorescence staining showed that metformin enhanced the expression of Ki-67 in vascular endothelial cells. Furthermore, both immunofluorescence staining and FCM demonstrated that metformin increased Gli1 expression in vascular endothelial cells. Additionally, cell counting Kit-8 (CCK8) and viability assays of HUVECs in vitro both indicated that metformin improved the vascular proliferation and tube formation of HUVECs under 90% oxygen. These results indicated that metformin enhanced lung vascular development and upregulated the expression of Gli1 in the pulmonary vascular endothelial cells in hyperoxic neonatal mice.
Collapse
Affiliation(s)
- Xiaowen Xiang
- Department of Neonatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200092, China
| | - Li Wang
- Department of Neonatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200092, China
| | - Lin Zhou
- Department of Neonatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200092, China
| | - Yanru Chen
- Department of Neonatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200092, China
| | - Hongping Xia
- Department of Neonatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200092, China
| |
Collapse
|
96
|
Sun CC, Lai YN, Wang WH, Xu XM, Li XQ, Wang H, Zheng JY, Zheng JQ. Metformin Ameliorates Gestational Diabetes Mellitus-Induced Endothelial Dysfunction via Downregulation of p65 and Upregulation of Nrf2. Front Pharmacol 2020; 11:575390. [PMID: 33162888 PMCID: PMC7581851 DOI: 10.3389/fphar.2020.575390] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/07/2020] [Indexed: 01/14/2023] Open
Abstract
Gestational diabetes mellitus (GDM) causes oxidative stress in mothers and infants and causes vascular endothelial dysfunction, which is a key factor for maternal and fetal cardiovascular diseases in the later stage of GDM, seriously threatening the life and health of mothers and infants. Nowadays, metformin (MET) has been discovered to improve endothelial function, but studies regarding the mechanism of MET improving endothelial cell function and alleviating endothelial function under hyperglycemia are still extremely limited. We aimed to investigate whether MET exerts its protective role against hyperglycemia-induced endothelial dysfunction through p65 and Nrf2. In our studies, applying cell migration assay and tube formation assay, we observed an obvious improvement of endothelial function under MET-treated, as characterized by that MET accelerated GDM-attenuated migration and angiogenesis of HUVECs. And ELISA assay results uncovered that Nrf2 expression level was decreased in GDM placenta, HVUECs and maternal serum comparing with normal group, however activation Nrf2 largely ameliorated tube formation under hyperglycemic condition. Furthermore, MET elevated the Nrf2 expression level and the level of nuclear Nrf2 accumulation in hyperglycemic HUVECs. Besides, preliminary evidence predicted that Nrf2 expression was modulated by transcription factor p65, which was increased in GDM peripheral blood, placenta and HUVECs, and suppression of p65 could recover GDM-induced suppression of angiogenesis. In addition, we also confirmed MET restores the GDM-induced angiogenesis impairment may via downregulation of p65 and upregulation of Nrf2. Taken together, the endothelial protective effect of MET under GDM (HG) conditions could be partly attributed to its role in downregulating p65 and upregulating Nrf2.
Collapse
Affiliation(s)
- Cong Cong Sun
- Wenzhou Key Laboratory of Obstetrics and Gynecology, The Third Affiliated Clinical Institute of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou Maternal and Child Health Care Hospital, Wenzhou, China
| | - Ya Nan Lai
- Wenzhou Key Laboratory of Obstetrics and Gynecology, The Third Affiliated Clinical Institute of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou Maternal and Child Health Care Hospital, Wenzhou, China
| | - Wen Huan Wang
- Wenzhou Key Laboratory of Obstetrics and Gynecology, The Third Affiliated Clinical Institute of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou Maternal and Child Health Care Hospital, Wenzhou, China
| | - Xiao Min Xu
- Wenzhou Key Laboratory of Obstetrics and Gynecology, The Third Affiliated Clinical Institute of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou Maternal and Child Health Care Hospital, Wenzhou, China
| | - Xiao Qing Li
- Wenzhou Key Laboratory of Obstetrics and Gynecology, The Third Affiliated Clinical Institute of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou Maternal and Child Health Care Hospital, Wenzhou, China
| | - Hai Wang
- Wenzhou Key Laboratory of Obstetrics and Gynecology, The Third Affiliated Clinical Institute of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou Maternal and Child Health Care Hospital, Wenzhou, China
| | - Jia Yong Zheng
- Wenzhou Key Laboratory of Obstetrics and Gynecology, The Third Affiliated Clinical Institute of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou Maternal and Child Health Care Hospital, Wenzhou, China
| | - Jian Qiong Zheng
- Department of Obstetrics and Gynecology, The Third Affiliated Clinical Institute of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou Maternal and Child Health Care Hospital, Wenzhou, China
| |
Collapse
|
97
|
Zhou K, Zheng Z, Li Y, Han W, Zhang J, Mao Y, Chen H, Zhang W, Liu M, Xie L, Zhang H, Xu H, Xiao J. TFE3, a potential therapeutic target for Spinal Cord Injury via augmenting autophagy flux and alleviating ER stress. Am J Cancer Res 2020; 10:9280-9302. [PMID: 32802192 PMCID: PMC7415792 DOI: 10.7150/thno.46566] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/20/2020] [Indexed: 12/11/2022] Open
Abstract
Background and Aim: Increasing evidence suggests that spinal cord injury (SCI)-induced defects in autophagic flux may contribute to an impaired ability for neurological repair following injury. Transcription factor E3 (TFE3) plays a crucial role in oxidative metabolism, lysosomal homeostasis, and autophagy induction. Here, we investigated the role of TFE3 in modulating autophagy following SCI and explored its impact on neurological recovery. Methods: Histological analysis via HE, Nissl and Mason staining, survival rate analysis, and behavioral testing via BMS and footprint analysis were used to determine functional recovery after SCI. Quantitative real-time polymerase chain reaction, Western blotting, immunofluorescence, TUNEL staining, enzyme-linked immunosorbent assays, and immunoprecipitation were applied to examine levels of autophagy flux, ER-stress-induced apoptosis, oxidative stress, and AMPK related signaling pathways. In vitro studies using PC12 cells were performed to discern the relationship between ROS accumulation and autophagy flux blockade. Results: Our results showed that in SCI, defects in autophagy flux contributes to ER stress, leading to neuronal death. Furthermore, SCI enhances the production of reactive oxygen species (ROS) that induce lysosomal dysfunction to impair autophagy flux. We also showed that TFE3 levels are inversely correlated with ROS levels, and increased TFE3 levels can lead to improved outcomes. Finally, we showed that activation of TFE3 after SCI is partly regulated by AMPK-mTOR and AMPK-SKP2-CARM1 signaling pathways. Conclusions: TFE3 is an important regulator in ROS-mediated autophagy dysfunction following SCI, and TFE3 may serve as a promising target for developing treatments for SCI.
Collapse
|
98
|
Tian D, Xiang Y, Tang Y, Ge Z, Li Q, Zhang Y. Circ-ADAM9 targeting PTEN and ATG7 promotes autophagy and apoptosis of diabetic endothelial progenitor cells by sponging mir-20a-5p. Cell Death Dis 2020; 11:526. [PMID: 32661238 PMCID: PMC7359341 DOI: 10.1038/s41419-020-02745-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/16/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
Abstract
Dysfunction of endothelial progenitor cells (EPCs) is a key factor in vascular complications of diabetes mellitus. Although the roles of microRNAs and circular RNAs in regulating cell functions have been thoroughly studied, their role in regulating autophagy and apoptosis of EPCs remains to be elucidated. This study investigated the roles of mir-20a-5p and its predicted target circ-ADAM9 in EPCs treated with high glucose (30 mM) and in a diabetic mouse hind limb ischemia model. It is found that Mir-20a-5p inhibited autophagy and apoptosis of EPCs induced by high-concentration glucose. Further, mir-20a-5p could inhibit the expression of PTEN and ATG7 in EPCs, and promote the phosphorylation of AKT and mTOR proteins under high-glucose condition. Investigation of the underlying mechanism revealed that circ-ADAM9, as a miRNA sponges of mir-20a-5p, promoted autophagy and apoptosis of EPCs induced by high-concentration glucose. Circ-ADAM9 upregulated PTEN and ATG7 in interaction with mir-20a-5p, and inhibited the phosphorylation of AKT and mTOR to aggravate autophagy and apoptosis of EPCs under high glucose. In addition, silencing of circ-ADAM9 increased microvessel formation in the hind limbs of diabetic mice. Our findings disclose a novel autophagy/apoptosis-regulatory pathway that is composed of mir-20a-5p, circ-ADAM9, PTEN, and ATG7. Circ-ADAM9 is a potential novel target for regulating the function of diabetic EPCs and angiogenesis.
Collapse
Affiliation(s)
- Ding Tian
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yin Xiang
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yong Tang
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhuowang Ge
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qianhui Li
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yachen Zhang
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
99
|
Russell KL, Gorgulho CM, Allen A, Vakaki M, Wang Y, Facciabene A, Lee D, Roy P, Buchser WJ, Appleman LJ, Maranchie J, Storkus WJ, Lotze MT. Inhibiting Autophagy in Renal Cell Cancer and the Associated Tumor Endothelium. ACTA ACUST UNITED AC 2020; 25:165-177. [PMID: 31135523 PMCID: PMC10395074 DOI: 10.1097/ppo.0000000000000374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The clear cell subtype of kidney cancer encompasses most renal cell carcinoma cases and is associated with the loss of von Hippel-Lindau gene function or expression. Subsequent loss or mutation of the other allele influences cellular stress responses involving nutrient and hypoxia sensing. Autophagy is an important regulatory process promoting the disposal of unnecessary or degraded cellular components, tightly linked to almost all cellular processes. Organelles and proteins that become damaged or that are no longer needed in the cell are sequestered and digested in autophagosomes upon fusing with lysosomes, or alternatively, released via vesicular exocytosis. Tumor development tends to disrupt the regulation of the balance between this process and apoptosis, permitting prolonged cell survival and increased replication. Completed trials of autophagic inhibitors using hydroxychloroquine in combination with other anticancer agents including rapalogues and high-dose interleukin 2 have now been reported. The complex nature of autophagy and the unique biology of clear cell renal cell carcinoma warrant further understanding to better develop the next generation of relevant anticancer agents.
Collapse
Affiliation(s)
| | | | - Abigail Allen
- Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | | | | | - Andrea Facciabene
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | | | - Partha Roy
- Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | | | | | | | | | | |
Collapse
|
100
|
Role of Non-coding RNA in Diabetic Cardiomyopathy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:181-195. [PMID: 32285412 DOI: 10.1007/978-981-15-1671-9_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetic cardiomyopathy (DCM) is the leading cause of morbidity and mortality in diabetic population worldwide, characteristic by cardiomyocyte hypertrophy, apoptosis and myocardial interstitial fibrosis and eventually developing into heart failure. Non-coding RNAs, such as microRNAs (miRNAs), circular RNAs (circRNAs), long non-coding RNAs (lncRNAs) and other RNAs without the protein encoding function were emerging as a popular regulator in various types of processes during human diseases. The evidences have shown that miRNAs are regulators in diabetic cardiomyopathy, such as insulin resistance, cardiomyocytes apoptosis, and inflammatory, especially their protective effect on heart function. Besides that, the functions of lncRNAs and circRNAs have been gradually confirmed in recent years, and their functions in DCM have become increasingly prominent. We highlighted the nonnegligible roles of non-coding RNAs in the pathological process of DCM and showed the future possibilities of these non-coding RNAs in DCM treatment. In this chapter, we summarized the present advance of the researches in this filed and raised the concern and the prospect in the future.
Collapse
|