51
|
Šimják P, Cinkajzlová A, Anderlová K, Pařízek A, Mráz M, Kršek M, Haluzík M. The role of obesity and adipose tissue dysfunction in gestational diabetes mellitus. J Endocrinol 2018; 238:R63-R77. [PMID: 29743342 DOI: 10.1530/joe-18-0032] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/08/2018] [Indexed: 12/15/2022]
Abstract
Gestational diabetes mellitus is defined as diabetes diagnosed in the second or third trimester of pregnancy in patients with no history of diabetes prior to gestation. It is the most common complication of pregnancy. The underlying pathophysiology shares some common features with type 2 diabetes mellitus (T2DM) combining relatively insufficient insulin secretion with increased peripheral insulin resistance. While a certain degree of insulin resistance is the physiological characteristics of the second half of pregnancy, it is significantly more pronounced in patients with gestational diabetes. Adipose tissue dysfunction and subclinical inflammation in obesity are well-described causes of increased insulin resistance in non-pregnant subjects and are often observed in individuals with T2DM. Emerging evidence of altered adipokine expression and local inflammation in adipose tissue in patients with gestational diabetes suggests an important involvement of adipose tissue in its etiopathogenesis. This review aims to summarize current knowledge of adipose tissue dysfunction and its role in the development of gestational diabetes. We specifically focus on the significance of alterations of adipokines and immunocompetent cells number and phenotype in fat. Detailed understanding of the role of adipose tissue in gestational diabetes may provide new insights into its pathophysiology and open new possibilities of its prevention and treatment.
Collapse
Affiliation(s)
- Patrik Šimják
- Department of Gynaecology and Obstetrics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Anna Cinkajzlová
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Kateřina Anderlová
- Department of Gynaecology and Obstetrics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
- 3rd Department of Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Antonín Pařízek
- Department of Gynaecology and Obstetrics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Miloš Mráz
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Michal Kršek
- 3rd Department of Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
- 2nd Internal Department, 3rd Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, Prague, Czech Republic
| | - Martin Haluzík
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
52
|
Hawkins LJ, Al-Attar R, Storey KB. Transcriptional regulation of metabolism in disease: From transcription factors to epigenetics. PeerJ 2018; 6:e5062. [PMID: 29922517 PMCID: PMC6005171 DOI: 10.7717/peerj.5062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022] Open
Abstract
Every cell in an individual has largely the same genomic sequence and yet cells in different tissues can present widely different phenotypes. This variation arises because each cell expresses a specific subset of genomic instructions. Control over which instructions, or genes, are expressed is largely controlled by transcriptional regulatory pathways. Each cell must assimilate a huge amount of environmental input, and thus it is of no surprise that transcription is regulated by many intertwining mechanisms. This large regulatory landscape means there are ample possibilities for problems to arise, which in a medical context means the development of disease states. Metabolism within the cell, and more broadly, affects and is affected by transcriptional regulation. Metabolism can therefore contribute to improper transcriptional programming, or pathogenic metabolism can be the result of transcriptional dysregulation. Here, we discuss the established and emerging mechanisms for controling transcription and how they affect metabolism in the context of pathogenesis. Cis- and trans-regulatory elements, microRNA and epigenetic mechanisms such as DNA and histone methylation, all have input into what genes are transcribed. Each has also been implicated in diseases such as metabolic syndrome, various forms of diabetes, and cancer. In this review, we discuss the current understanding of these areas and highlight some natural models that may inspire future therapeutics.
Collapse
Affiliation(s)
- Liam J Hawkins
- Institute of Biochemistry, Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Rasha Al-Attar
- Institute of Biochemistry, Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Kenneth B Storey
- Institute of Biochemistry, Department of Biology, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
53
|
Hui LL, Li AM, Nelson EAS, Leung GM, Lee SL, Schooling CM. In utero exposure to gestational diabetes and adiposity: does breastfeeding make a difference? Int J Obes (Lond) 2018; 42:1317-1325. [PMID: 29777227 DOI: 10.1038/s41366-018-0077-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 02/01/2018] [Accepted: 03/05/2018] [Indexed: 11/09/2022]
Abstract
BACKGROUND/OBJECTIVES Short-term breastfeeding from mothers with gestational diabetes (GDM) may programme metabolism and increase offspring diabetes risk. We examined the association of in utero GDM exposure with adiposity from infancy to adolescence, and whether any association was modified by breastfeeding during early infancy. METHODS In the prospective Chinese birth cohort "Children of 1997" (n = 7342, 88% follow-up rate), generalised estimate equations with multiple imputation were used to assess associations of in utero GDM exposure with age- and sex-specific body mass index (BMI) z-score during infancy (3 and 9 months), childhood (2- < 8 years) and adolescence (8-16 years), adjusted for sex, parity, maternal age, birth place, preeclampisa, smoking, and family socio-economic position. We also tested whether the associations differed by mode of infant feeding (always formula-fed, mixed, always breastfed) during the first three months of life. RESULTS In utero GDM exposure (7.5%) was associated with a lower BMI z-score during infancy (-0.13, 95% confidence interval (CI) -0.22, -0.05) but higher BMI z-scores during childhood (0.14, 95% CI 0.03, 0.25) and adolescence (0.25 95% CI 0.11, 0.38). Breastfeeding for the first three months did not modify the association of in utero GDM status with subsequent BMI (all p values for interaction >0.4). CONCLUSIONS In utero GDM exposure was associated with greater adiposity during childhood and adolescence. Breastfeeding in early infancy from mothers with GDM was not associated with greater adiposity in children and thus should still be encouraged.
Collapse
Affiliation(s)
- L L Hui
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.,School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - A M Li
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - E A S Nelson
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - G M Leung
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - S L Lee
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - C M Schooling
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China. .,CUNY Graduate School of Public Health and Health Policy, New York, NY, USA.
| |
Collapse
|
54
|
Kerr B, Leiva A, Farías M, Contreras-Duarte S, Toledo F, Stolzenbach F, Silva L, Sobrevia L. Foetoplacental epigenetic changes associated with maternal metabolic dysfunction. Placenta 2018; 69:146-152. [PMID: 29699712 DOI: 10.1016/j.placenta.2018.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/08/2018] [Accepted: 04/09/2018] [Indexed: 02/08/2023]
Abstract
Metabolic-related diseases are attributed to a sedentary lifestyle and eating habits, and there is now an increased awareness regarding pregnancy as a preponderant window in the programming of adulthood health and disease. The developing foetus is susceptible to the maternal environment; hence, any unfavourable condition will result in foetal physiological adaptations that could have a permanent impact on its health. Some of these alterations are maintained via epigenetic modifications capable of modifying gene expression in metabolism-related genes. Children born to mothers with dyslipidaemia, pregestational or gestational obesity, and gestational diabetes mellitus, have a predisposition to develop metabolic alterations during adulthood. CpG methylation-associated alterations to the expression of several genes in the human placenta play a crucial role in the mother-to-foetus transfer of nutrients and macromolecules. Identification of epigenetic modifications in metabolism-related tissues of offspring from metabolic-altered pregnancies is essential to obtain insights into foetal programming controlling newborn, childhood, and adult metabolism. This review points out the importance of the foetal milieu in the programming and development of human disease and provides evidence of this being the underlying mechanism for the development of adulthood metabolic disorders in maternal dyslipidaemia, pregestational or gestational obesity, and gestational diabetes mellitus.
Collapse
Affiliation(s)
- Bredford Kerr
- Laboratory of Biology, Centro de Estudios Científicos (CECs), Valdivia 5110466, Chile.
| | - Andrea Leiva
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Marcelo Farías
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Susana Contreras-Duarte
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Fernando Toledo
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Basic Sciences, Faculty of Sciences, Universidad Del Bío-Bío, Chillán 3780000, Chile
| | - Francisca Stolzenbach
- Laboratory of Biology, Centro de Estudios Científicos (CECs), Valdivia 5110466, Chile; Faculty of Science, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Luis Silva
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen (UMCG), Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029, Queensland, Australia.
| |
Collapse
|
55
|
Estampador AC, Franks PW. Precision Medicine in Obesity and Type 2 Diabetes: The Relevance of Early-Life Exposures. Clin Chem 2018; 64:130-141. [DOI: 10.1373/clinchem.2017.273540] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/29/2017] [Indexed: 12/11/2022]
Abstract
Abstract
BACKGROUND
Type 2 diabetes is highly prevalent and devastating. Obesity is a diabetogenic factor, driving insulin resistance and a compensatory demand for increased insulin secretion from the pancreatic β cells; a failure to address this demand results in diabetes. Accordingly, primary and secondary prevention of obesity are at the core of diabetes prevention programs. The development of obesity and declining β-cell function often span many years or decades before diabetes is clinically manifest. Thus, characterizing the early-life process and risk factors that set disease trajectories may yield novel targets for early intervention and help improve the accuracy of prediction algorithms, factors germane to the emerging field of precision medicine.
CONTENT
Here, we overview the concepts of precision medicine and fetal programming. We discuss the barriers to preventing obesity and type 2 diabetes in adulthood and present the rationale for considering early-life events in this context. In so doing, we discuss proof-of-concept studies and cutting-edge technological developments that are likely to transform current thinking on the etiology and pathogenesis of obesity and type 2 diabetes. We also review the factors hampering progress, including the success and failures of pregnancy intervention trials.
SUMMARY
Obesity and type 2 diabetes are among the major health and economic burdens of our time. Defeating these diseases is likely to require life-course approaches, which may include aggressive interventions informed by biomarker profiling undertaken during early life.
Collapse
Affiliation(s)
- Angela C Estampador
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
- Danish Diabetes Academy, Odense, Denmark
| | - Paul W Franks
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
- Department of Nutrition, Harvard School of Public Health, Boston, MA
- Oxford Center for Diabetes, Endocrinology, and Metabolism, Radcliff Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
56
|
Tobi EW, Slieker RC, Luijk R, Dekkers KF, Stein AD, Xu KM, Slagboom PE, van Zwet EW, Lumey LH, Heijmans BT. DNA methylation as a mediator of the association between prenatal adversity and risk factors for metabolic disease in adulthood. SCIENCE ADVANCES 2018; 4:eaao4364. [PMID: 29399631 PMCID: PMC5792223 DOI: 10.1126/sciadv.aao4364] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 01/03/2018] [Indexed: 05/05/2023]
Abstract
Although it is assumed that epigenetic mechanisms, such as changes in DNA methylation (DNAm), underlie the relationship between adverse intrauterine conditions and adult metabolic health, evidence from human studies remains scarce. Therefore, we evaluated whether DNAm in whole blood mediated the association between prenatal famine exposure and metabolic health in 422 individuals exposed to famine in utero and 463 (sibling) controls. We implemented a two-step analysis, namely, a genome-wide exploration across 342,596 cytosine-phosphate-guanine dinucleotides (CpGs) for potential mediators of the association between prenatal famine exposure and adult body mass index (BMI), serum triglycerides (TG), or glucose concentrations, which was followed by formal mediation analysis. DNAm mediated the association of prenatal famine exposure with adult BMI and TG but not with glucose. DNAm at PIM3 (cg09349128), a gene involved in energy metabolism, mediated 13.4% [95% confidence interval (CI), 5 to 28%] of the association between famine exposure and BMI. DNAm at six CpGs, including TXNIP (cg19693031), influencing β cell function, and ABCG1 (cg07397296), affecting lipid metabolism, together mediated 80% (95% CI, 38.5 to 100%) of the association between famine exposure and TG. Analyses restricted to those exposed to famine during early gestation identified additional CpGs mediating the relationship with TG near PFKFB3 (glycolysis) and METTL8 (adipogenesis). DNAm at the CpGs involved was associated with gene expression in an external data set and correlated with DNAm levels in fat depots in additional postmortem data. Our data are consistent with the hypothesis that epigenetic mechanisms mediate the influence of transient adverse environmental factors in early life on long-term metabolic health. The specific mechanism awaits elucidation.
Collapse
Affiliation(s)
- Elmar W. Tobi
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, 2300 RC Leiden, Netherlands
- Division of Human Nutrition, Wageningen University and Research, 6708 WE Wageningen, Netherlands
| | - Roderick C. Slieker
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - René Luijk
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, 2300 RC Leiden, Netherlands
- Medical Statistics, Department of Biomedical Data Sciences, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - Koen F. Dekkers
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - Aryeh D. Stein
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Kate M. Xu
- Medical Statistics, Department of Biomedical Data Sciences, Leiden University Medical Center, 2300 RC Leiden, Netherlands
- Faculty of Psychology and Educational Sciences, Welten Institute, Open University of the Netherlands, 6419 AT Heerlen, Netherlands
| | | | - P. Eline Slagboom
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - Erik W. van Zwet
- Medical Statistics, Department of Biomedical Data Sciences, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - L. H. Lumey
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, 2300 RC Leiden, Netherlands
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Bastiaan T. Heijmans
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| |
Collapse
|
57
|
Mechanick JI, Zhao S, Garvey WT. Leptin, An Adipokine With Central Importance in the Global Obesity Problem. Glob Heart 2017; 13:113-127. [PMID: 29248361 DOI: 10.1016/j.gheart.2017.10.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 10/25/2017] [Indexed: 02/08/2023] Open
Abstract
Leptin has central importance in the global obesity and cardiovascular disease problem. Leptin is principally secreted by adipocytes and acts in the hypothalamus to suppress appetite and food intake, increase energy expenditure, and regulate body weight. Based on clinical translation of specific and networked actions, leptin affects the cardiovascular system and may be a marker and driver of cardiometabolic risk factors with interventions that are actionable by cardiologists. Leptin subnetwork analysis demonstrates a statistically significant role for ethnoculturally and socioeconomically appropriate lifestyle intervention in cardiovascular disease. Emergent mechanistic components and potential diagnostic or therapeutic targets include hexokinase 3, urocortins, clusterin, sialic acid-binding immunoglobulin-like lectin 6, C-reactive protein, platelet glycoprotein VI, albumin, pentraxin 3, ghrelin, obestatin prepropeptide, leptin receptor, neuropeptide Y, and corticotropin-releasing factor receptor 1. Emergent associated symptoms include weight change, eating disorders, vascular necrosis, chronic fatigue, and chest pain. Leptin-targeted therapies are reported for lipodystrophy and leptin deficiency, but they are investigational for leptin resistance, obesity, and other chronic diseases.
Collapse
Affiliation(s)
- Jeffrey I Mechanick
- Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Division of Endocrinology, Diabetes, and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Shan Zhao
- Basepaws Inc., Redondo Beach, CA, USA
| | - W Timothy Garvey
- Department of Nutritional Sciences and Diabetes Research Center, University of Alabama at Birmingham, Birmingham, AL, USA; Geriatric Research Education and Clinical Center, Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA
| |
Collapse
|
58
|
Statistical and integrative system-level analysis of DNA methylation data. Nat Rev Genet 2017; 19:129-147. [PMID: 29129922 DOI: 10.1038/nrg.2017.86] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Epigenetics plays a key role in cellular development and function. Alterations to the epigenome are thought to capture and mediate the effects of genetic and environmental risk factors on complex disease. Currently, DNA methylation is the only epigenetic mark that can be measured reliably and genome-wide in large numbers of samples. This Review discusses some of the key statistical challenges and algorithms associated with drawing inferences from DNA methylation data, including cell-type heterogeneity, feature selection, reverse causation and system-level analyses that require integration with other data types such as gene expression, genotype, transcription factor binding and other epigenetic information.
Collapse
|
59
|
Arathimos R, Suderman M, Sharp GC, Burrows K, Granell R, Tilling K, Gaunt TR, Henderson J, Ring S, Richmond RC, Relton CL. Epigenome-wide association study of asthma and wheeze in childhood and adolescence. Clin Epigenetics 2017; 9:112. [PMID: 29046734 PMCID: PMC5640901 DOI: 10.1186/s13148-017-0414-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 10/02/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Asthma heritability has only been partially explained by genetic variants and is known to be sensitive to environmental factors, implicating epigenetic modifications such as DNA methylation in its pathogenesis. METHODS Using data collected in the Avon Longitudinal Study of Parents and Children (ALSPAC), we assessed associations of asthma and wheeze with DNA methylation at 7.5 and 16.5 years, at over 450,000 CpG sites in DNA from the peripheral blood of approx. 1000 participants. We used Mendelian randomization (MR), a method of causal inference that uses genetic variants as instrumental variables, to infer the direction of association between DNA methylation and asthma. RESULTS We identified 302 CpGs associated with current asthma status (FDR-adjusted P value < 0.05) and 445 with current wheeze status at 7.5 years, with substantial overlap between the two. Genes annotated to the 302 associated CpGs were enriched for pathways related to movement of cellular/subcellular components, locomotion, interleukin-4 production and eosinophil migration. All associations attenuated when adjusted for eosinophil and neutrophil cell count estimates. At 16.5 years, two sites were associated with current asthma after adjustment for cell counts. The CpGs mapped to the AP2A2 and IL5RA genes, with a - 2.32 [95% CI - 1.47, - 3.18] and - 2.49 [95% CI - 1.56, - 3.43] difference in percentage methylation in asthma cases respectively. Two-sample bi-directional MR indicated a causal effect of asthma on DNA methylation at several CpG sites at 7.5 years. However, associations did not persist after adjustment for multiple testing. There was no evidence of a causal effect of asthma on DNA methylation at either of the two CpG sites at 16.5 years. CONCLUSION The majority of observed associations are driven by higher eosinophil cell counts in asthma cases, acting as an intermediate phenotype, with important implications for future studies of DNA methylation in atopic diseases.
Collapse
Affiliation(s)
- Ryan Arathimos
- School of Social and Community Medicine, University of Bristol, Bristol, UK
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Oakfield House, Bristol, BS8 2BN UK
| | - Matthew Suderman
- School of Social and Community Medicine, University of Bristol, Bristol, UK
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Oakfield House, Bristol, BS8 2BN UK
| | - Gemma C. Sharp
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Oakfield House, Bristol, BS8 2BN UK
- School of Oral and Dental Sciences, University of Bristol, Bristol, UK
| | - Kimberley Burrows
- School of Social and Community Medicine, University of Bristol, Bristol, UK
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Oakfield House, Bristol, BS8 2BN UK
| | - Raquel Granell
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Kate Tilling
- School of Social and Community Medicine, University of Bristol, Bristol, UK
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Oakfield House, Bristol, BS8 2BN UK
| | - Tom R. Gaunt
- School of Social and Community Medicine, University of Bristol, Bristol, UK
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Oakfield House, Bristol, BS8 2BN UK
| | - John Henderson
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Susan Ring
- School of Social and Community Medicine, University of Bristol, Bristol, UK
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Oakfield House, Bristol, BS8 2BN UK
| | - Rebecca C. Richmond
- School of Social and Community Medicine, University of Bristol, Bristol, UK
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Oakfield House, Bristol, BS8 2BN UK
| | - Caroline L. Relton
- School of Social and Community Medicine, University of Bristol, Bristol, UK
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Oakfield House, Bristol, BS8 2BN UK
| |
Collapse
|
60
|
Kadakia R, Zheng Y, Zhang Z, Zhang W, Hou L, Josefson JL. Maternal pre-pregnancy BMI downregulates neonatal cord blood LEP methylation. Pediatr Obes 2017; 12 Suppl 1:57-64. [PMID: 27933755 PMCID: PMC5462869 DOI: 10.1111/ijpo.12204] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/02/2016] [Accepted: 10/28/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND Neonatal adiposity has many determinants and may be a risk factor for future obesity. Epigenetic regulation of metabolically important genes is a potential contributor. OBJECTIVES The objective of the study is to determine whether methylation changes in the LEP gene in cord blood DNA are impacted by the maternal environment or affect neonatal adiposity measures. METHODS A cross-sectional study of 114 full-term neonates born to healthy mothers with normal glucose tolerance was performed. Cord blood was assayed for leptin and genome-wide DNA methylation profiles via the Illumina 450K platform. Neonatal body composition was measured by air displacement plethysmography. Multivariate linear regression models and semi-partial correlation coefficients were used to analyze associations. False discovery rate was estimated to account for multiple comparisons. RESULTS Maternal pre-pregnancy BMI was associated with decreased methylation at five CpG sites near the LEP transcription start site in an adjusted model (false discovery rate <0.022 for each site). The association between maternal BMI and cord blood leptin approached significance (r = 0.18, p = 0.054). Cord blood leptin was positively correlated with neonatal adiposity measures including birth weight (r = 0.45, p < 0.001), fat mass (r = 0.47, p < 0.001) and percent body fat (r = 0.44, p < 0.001). CONCLUSIONS Maternal pre-pregnancy BMI is strongly associated with decreased cord blood LEP gene methylation and may mediate the well-known association between maternal pre-pregnancy BMI and neonatal adiposity.
Collapse
Affiliation(s)
- Rachel Kadakia
- Division of Endocrinology, Ann and Robert H. Lurie Children’s Hospital of Chicago and Department of Pediatrics, Northwestern University Feinberg School of Medicine
| | - Yinan Zheng
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine,Health Sciences Integrated PhD Program, Northwestern University Feinberg School of Medicine
| | - Zhou Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine,Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine,Robert H. Lurie Cancer Center, Northwestern University Feinberg School of Medicine
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine,Robert H. Lurie Cancer Center, Northwestern University Feinberg School of Medicine
| | - Jami L Josefson
- Division of Endocrinology, Ann and Robert H. Lurie Children’s Hospital of Chicago and Department of Pediatrics, Northwestern University Feinberg School of Medicine
| |
Collapse
|
61
|
Abstract
We tested the hypothesis that gestational diabetes mellitus (GDM) alters the DNA methylation pattern of the fetal serotonin transporter gene (SLC6A4), and examined the functional relevance of DNA methylation for regulation of the SLC6A4 expression in the human placenta. The study included 50 mother-infant pairs. Eighteen mothers were diagnosed with GDM and 32 had normal glucose tolerance (NGT). All neonates were of normal birth weight and born at term by planned Cesarean section. DNA and RNA were isolated from samples of tissue collected from the fetal side of the placenta immediately after delivery. DNA methylation was quantified at 7 CpG sites within the SLC6A4 distal promoter region using PCR amplification of bisulfite treated DNA and subsequent DNA sequencing. SLC6A4 mRNA levels were measured by reverse transcription—quantitative PCR (RT-qPCR). Functional SLC6A4 polymorphisms (5HTTLPR, STin2, rs25531) were genotyped using standard PCR-based procedures. Average DNA methylation across the 7 analyzed loci was decreased in the GDM as compared to the NGT group (by 27.1%, p = 0.037) and negatively correlated, before and after adjustment for potential confounder/s, with maternal plasma glucose levels at the 24th to 28th week of gestation (p<0.05). Placental SLC6A4 mRNA levels were inversely correlated with average DNA methylation (p = 0.010) while no statistically significant association was found with the SLC6A4 genotypes (p>0.05). The results suggest that DNA methylation of the fetal SLC6A4 gene is sensitive to the maternal metabolic state in pregnancy. They also indicate a predominant role of epigenetic over genetic mechanisms in the regulation of SLC6A4 expression in the human placenta. Longitudinal studies in larger cohorts are needed to verify these results and determine to which degree placental SLC6A4 changes may contribute to long-term outcomes of infants exposed to GDM.
Collapse
|
62
|
Moen GH, Sommer C, Prasad RB, Sletner L, Groop L, Qvigstad E, Birkeland KI. MECHANISMS IN ENDOCRINOLOGY: Epigenetic modifications and gestational diabetes: a systematic review of published literature. Eur J Endocrinol 2017; 176:R247-R267. [PMID: 28232369 DOI: 10.1530/eje-16-1017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/16/2017] [Accepted: 02/22/2017] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To summarize the current knowledge on epigenetic alterations in mother and offspring subjected to gestational diabetes (GDM) and indicate future topics for research. DESIGN Systematic review. METHODS We performed extensive searches in PubMed, EMBASE and Google scholar, using a combination of the search terms: GDM, gestational diabetes, epigenetic(s), methylation, histone modification, histone methylation, histone acetylation, microRNA and miRNA. Studies that compared women diagnosed with GDM and healthy controls were included. Two authors independently scanned the abstracts, and all included papers were read by at least two authors. The searches were completed on October 31st, 2016. RESULTS We identified 236 articles, of which 43 were considered relevant for this systematic review. Studies published showed that epigenetic alterations could be found in both mothers with GDM and their offspring. However, differences in methodology, diagnostic criteria for GDM and populations studied, together with a limited number of published studies and small sample sizes, preclude clear conclusions about the role of epigenetic modifications in transmitting risk from GDM mothers to their offspring. CONCLUSION The current research literature suggests that GDM may have impact on epigenetic modifications in the mother and offspring. However, larger studies that include multiple cohorts of GDM patients and their offspring are needed.
Collapse
Affiliation(s)
- Gunn-Helen Moen
- Department of EndocrinologyMorbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of MedicineUniversity of Oslo, Institute of Clinical Medicine, Oslo, Norway
| | - Christine Sommer
- Department of EndocrinologyMorbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Rashmi B Prasad
- Department of Clinical SciencesDiabetes and Endocrinology CRC, Lund University Diabetes Centre, Malmö, Sweden
| | - Line Sletner
- Department of Pediatric and Adolescents MedicineAkershus University Hospital, Lørenskog, Norway
- MRC Lifecourse Epidemiology UnitUniversity of Southampton, Southampton General Hospital, Southampton, UK
| | - Leif Groop
- Department of Clinical SciencesDiabetes and Endocrinology CRC, Lund University Diabetes Centre, Malmö, Sweden
- Finnish Institute of Molecular Medicine (FIMM)Helsinki University, Helsinki, Finland
| | - Elisabeth Qvigstad
- Department of EndocrinologyMorbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Kåre I Birkeland
- Department of EndocrinologyMorbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of MedicineUniversity of Oslo, Institute of Clinical Medicine, Oslo, Norway
- Department of Transplantation MedicineOslo University Hospital, Oslo, Norway
| |
Collapse
|
63
|
Houshmand-Oeregaard A, Hansen NS, Hjort L, Kelstrup L, Broholm C, Mathiesen ER, Clausen TD, Damm P, Vaag A. Differential adipokine DNA methylation and gene expression in subcutaneous adipose tissue from adult offspring of women with diabetes in pregnancy. Clin Epigenetics 2017; 9:37. [PMID: 28413567 PMCID: PMC5390345 DOI: 10.1186/s13148-017-0338-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 03/31/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Offspring of women with diabetes in pregnancy are at increased risk of type 2 diabetes mellitus (T2DM), potentially mediated by epigenetic mechanisms. The adipokines leptin, adiponectin, and resistin (genes: LEP, ADIPOQ, RETN) play key roles in the pathophysiology of T2DM. We hypothesized that offspring exposed to maternal diabetes exhibit alterations in epigenetic regulation of subcutaneous adipose tissue (SAT) adipokine transcription. We studied adipokine plasma levels, SAT gene expression, and DNA methylation of LEP, ADIPOQ, and RETN in adult offspring of women with gestational diabetes (O-GDM, N = 82) or type 1 diabetes (O-T1DM, N = 67) in pregnancy, compared to offspring of women from the background population (O-BP, N = 57). RESULTS Compared to O-BP, we found elevated plasma leptin and resistin levels in O-T1DM, decreased gene expression of all adipokines in O-GDM, decreased RETN expression in O-T1DM, and increased LEP and ADIPOQ methylation in O-GDM. In multivariate regression analysis, O-GDM remained associated with increased ADIPOQ methylation and decreased ADIPOQ and RETN gene expression and O-T1DM remained associated with decreased RETN expression after adjustment for potential confounders and mediators. CONCLUSIONS In conclusion, offspring of women with diabetes in pregnancy exhibit increased ADIPOQ DNA methylation and decreased ADIPOQ and RETN gene expression in SAT. However, altered methylation and expression levels were not reflected in plasma protein levels, and the functional implications of these findings remain uncertain.
Collapse
Affiliation(s)
- Azadeh Houshmand-Oeregaard
- Center for Pregnant Women with Diabetes, Department of Obstetrics, Rigshospitalet, Dept. 7821, Blegdamsvej 9, 2100 Copenhagen, Denmark.,Diabetes and Metabolism, Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark.,Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ninna S Hansen
- Diabetes and Metabolism, Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark.,Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Danish Diabetes Academy/Danish PhD School of Molecular Metabolism, Odense, Denmark
| | - Line Hjort
- Diabetes and Metabolism, Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark.,Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Danish Diabetes Academy/Danish PhD School of Molecular Metabolism, Odense, Denmark
| | - Louise Kelstrup
- Center for Pregnant Women with Diabetes, Department of Obstetrics, Rigshospitalet, Dept. 7821, Blegdamsvej 9, 2100 Copenhagen, Denmark.,Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christa Broholm
- Diabetes and Metabolism, Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
| | - Elisabeth R Mathiesen
- Center for Pregnant Women with Diabetes, Department of Obstetrics, Rigshospitalet, Dept. 7821, Blegdamsvej 9, 2100 Copenhagen, Denmark.,Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Center for Pregnant Women with Diabetes, Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
| | - Tine D Clausen
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Gynecology and Obstetrics, Nordsjaellands Hospital, University of Copenhagen, Hilleroed, Denmark
| | - Peter Damm
- Center for Pregnant Women with Diabetes, Department of Obstetrics, Rigshospitalet, Dept. 7821, Blegdamsvej 9, 2100 Copenhagen, Denmark.,Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Allan Vaag
- Diabetes and Metabolism, Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark.,Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,AstraZeneca, Mölndal, Sweden
| |
Collapse
|
64
|
Gupta V, Walia GK, Sachdeva MP. 'Mendelian randomization': an approach for exploring causal relations in epidemiology. Public Health 2017; 145:113-119. [PMID: 28359378 DOI: 10.1016/j.puhe.2016.12.033] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/01/2016] [Accepted: 12/20/2016] [Indexed: 11/17/2022]
Abstract
OBJECTIVES To assess the current status of Mendelian randomization (MR) approach in effectively influencing the observational epidemiology for examining causal relationships. METHODS Narrative review on studies related to principle, strengths, limitations, and achievements of MR approach. RESULTS Observational epidemiological studies have repeatedly produced several beneficiary associations which were discarded when tested by standard randomized controlled trials (RCTs). The technique which is more feasible, highly similar to RCTs, and has the potential to establish a causal relationship between modifiable exposures and disease outcomes is known as MR. The technique uses genetic variants related to modifiable traits/exposures as instruments for detecting causal and directional associations with outcomes. CONCLUSIONS In the last decade, the approach of MR has methodologically developed and progressed to a stage of high acceptance among the epidemiologists and is gradually expanding the landscape of causal relationships in non-communicable chronic diseases.
Collapse
Affiliation(s)
- V Gupta
- Department of Anthropology, University of Delhi, Delhi 110007, India
| | - G K Walia
- Public Health Foundation of India, Gurgaon 122002, India
| | - M P Sachdeva
- Department of Anthropology, University of Delhi, Delhi 110007, India
| |
Collapse
|
65
|
Dunstan J, Bressler JP, Moran TH, Pollak JS, Hirsch AG, Bailey-Davis L, Glass TA, Schwartz BS. Associations of LEP, CRH, ICAM-1, and LINE-1 methylation, measured in saliva, with waist circumference, body mass index, and percent body fat in mid-childhood. Clin Epigenetics 2017; 9:29. [PMID: 28360946 PMCID: PMC5372250 DOI: 10.1186/s13148-017-0327-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/18/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Genetics explains a small proportion of variance in body mass index at the population level. Epigenetics, commonly measured by gene methylation, holds promise for understanding obesity risk factors and mechanisms. METHODS Participants were 431 adolescents aged 10-15 years. BMI z-score, waist circumference z-score, and percent body fat were measured. Saliva samples were collected and methylation of promoter regions of four candidate genes or sequences (LEP, ICAM-1, CRH, and LINE-1) were measured in 3-4 CpG sites each. Linear regression was used to identify associations of methylation with obesity-related outcomes. RESULTS After adjusting for age, in sex-stratified analysis, the three obesity-related outcomes were negatively associated with LEP methylation in obese boys only. There were no associations of methylation of the other genes or sequences and the obesity-related outcomes. CONCLUSIONS Our results are consistent with prior studies that reported sex differences in associations of obesity-related outcomes with LEP methylation, and also as would be expected in adipose tissue, the source of circulating leptin. The findings suggest that saliva might be an acceptable tissue for epigenetics studies in adolescents.
Collapse
Affiliation(s)
- Jocelyn Dunstan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA
| | - Joseph P. Bressler
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA
| | - Timothy H. Moran
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD USA
| | - Jonathan S. Pollak
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA
| | - Annemarie G. Hirsch
- Department of Epidemiology and Health Services Research, Geisinger Health System, Danville, PA USA
| | - Lisa Bailey-Davis
- Department of Epidemiology and Health Services Research, Geisinger Health System, Danville, PA USA
| | - Thomas A. Glass
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA
| | - Brian S. Schwartz
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA
- Department of Epidemiology and Health Services Research, Geisinger Health System, Danville, PA USA
| |
Collapse
|
66
|
Godfrey KM, Reynolds RM, Prescott SL, Nyirenda M, Jaddoe VWV, Eriksson JG, Broekman BFP. Influence of maternal obesity on the long-term health of offspring. Lancet Diabetes Endocrinol 2017; 5:53-64. [PMID: 27743978 PMCID: PMC5245733 DOI: 10.1016/s2213-8587(16)30107-3] [Citation(s) in RCA: 653] [Impact Index Per Article: 81.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/07/2016] [Accepted: 05/25/2016] [Indexed: 01/01/2023]
Abstract
In addition to immediate implications for pregnancy complications, increasing evidence implicates maternal obesity as a major determinant of offspring health during childhood and later adult life. Observational studies provide evidence for effects of maternal obesity on her offspring's risks of obesity, coronary heart disease, stroke, type 2 diabetes, and asthma. Maternal obesity could also lead to poorer cognitive performance and increased risk of neurodevelopmental disorders, including cerebral palsy. Preliminary evidence suggests potential implications for immune and infectious-disease-related outcomes. Insights from experimental studies support causal effects of maternal obesity on offspring outcomes, which are mediated at least partly through changes in epigenetic processes, such as alterations in DNA methylation, and perhaps through alterations in the gut microbiome. Although the offspring of obese women who lose weight before pregnancy have a reduced risk of obesity, few controlled intervention studies have been done in which maternal obesity is reversed and the consequences for offspring have been examined. Because the long-term effects of maternal obesity could have profound public health implications, there is an urgent need for studies on causality, underlying mechanisms, and effective interventions to reverse the epidemic of obesity in women of childbearing age and to mitigate consequences for offspring.
Collapse
Affiliation(s)
- Keith M Godfrey
- MRC Lifecourse Epidemiology Unit and NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK.
| | - Rebecca M Reynolds
- Endocrinology Unit, University/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, Scotland, UK
| | - Susan L Prescott
- School of Paediatrics and Child Health, and Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Moffat Nyirenda
- London School of Hygiene & Tropical Medicine, London, UK; College of Medicine, University of Malawi, Blantyre, Malawi
| | - Vincent W V Jaddoe
- Departments of Epidemiology and Pediatrics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Johan G Eriksson
- Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Folkhälsan Research Center, Helsinki, Finland
| | - Birit F P Broekman
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; National University Health System, Singapore, Singaporre
| |
Collapse
|
67
|
Cheung OKW, Cheng ASL. Gender Differences in Adipocyte Metabolism and Liver Cancer Progression. Front Genet 2016; 7:168. [PMID: 27703473 PMCID: PMC5029146 DOI: 10.3389/fgene.2016.00168] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/05/2016] [Indexed: 12/12/2022] Open
Abstract
Liver cancer is the third most common cancer type and the second leading cause of deaths in men. Large population studies have demonstrated remarkable gender disparities in the incidence and the cumulative risk of liver cancer. A number of emerging risk factors regarding metabolic alterations associated with obesity, diabetes and dyslipidemia have been ascribed to the progression of non-alcoholic fatty liver diseases (NAFLD) and ultimately liver cancer. The deregulation of fat metabolism derived from excessive insulin, glucose, and lipid promotes cancer-causing inflammatory signaling and oxidative stress, which eventually triggers the uncontrolled hepatocellular proliferation. This review presents the current standing on the gender differences in body fat compositions and their mechanistic linkage with the development of NAFLD-related liver cancer, with an emphasis on genetic, epigenetic and microRNA control. The potential roles of sex hormones in instructing adipocyte metabolic programs may help unravel the mechanisms underlying gender dimorphism in liver cancer and identify the metabolic targets for disease management.
Collapse
Affiliation(s)
- Otto K-W Cheung
- School of Biomedical Sciences, The Chinese University of Hong Kong Hong Kong, China
| | - Alfred S-L Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong Hong Kong, China; State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong Hong Kong, China
| |
Collapse
|
68
|
Affiliation(s)
- Joanna D Holbrook
- NIHR Southampton Biomedical Research Centre, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK.,Singapore Institute for Clinical Sciences (SICS), A*STAR, Brenner Centre for Molecular Medicine, 30 Medical Drive, 117609, Singapore
| |
Collapse
|
69
|
Latvala A, Ollikainen M. Mendelian randomization in (epi)genetic epidemiology: an effective tool to be handled with care. Genome Biol 2016; 17:156. [PMID: 27418254 PMCID: PMC4944517 DOI: 10.1186/s13059-016-1018-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
A study examining blood lipid traits takes epigenomics approaches to the next level by using carefully performed Mendelian randomization to assess causality rather than simply reporting associations. See related research article: http://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-1000-6
Collapse
Affiliation(s)
- Antti Latvala
- Finnish Twin Cohort Study, Department of Public Health, University of Helsinki, 00290, Helsinki, Finland
| | - Miina Ollikainen
- Finnish Twin Cohort Study, Department of Public Health, University of Helsinki, 00290, Helsinki, Finland. .,Institute for Molecular Medicine Finland, FIMM, University of Helsinki, 00290, Helsinki, Finland.
| |
Collapse
|
70
|
Côté S, Gagné-Ouellet V, Guay SP, Allard C, Houde AA, Perron P, Baillargeon JP, Gaudet D, Guérin R, Brisson D, Hivert MF, Bouchard L. PPARGC1α gene DNA methylation variations in human placenta mediate the link between maternal hyperglycemia and leptin levels in newborns. Clin Epigenetics 2016; 8:72. [PMID: 27340502 PMCID: PMC4918074 DOI: 10.1186/s13148-016-0239-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 06/13/2016] [Indexed: 11/10/2022] Open
Abstract
Background Children exposed to gestational diabetes mellitus (GDM) are at a higher risk of developing obesity and type 2 diabetes. This susceptibility might involve brown adipose tissue (BAT), which is suspected to protect against obesity. The objective of this study is to assess whether fetal exposure to maternal hyperglycemia is associated with DNA methylation variations in genes involved in BAT genesis and activation. Methods DNA methylation levels at the PRDM16, BMP7, CTBP2, and PPARGC1α gene loci were measured in placenta samples using bisulfite pyrosequencing in E-21 (n = 133; 33 cases of GDM) and the HumanMethylation450 array in Gen3G (n = 172, all from non-diabetic women) birth cohorts. Glucose tolerance was assessed in all women using an oral glucose tolerance test at the second trimester of pregnancy. Participating women were extensively phenotyped throughout pregnancy, and placenta and cord blood samples were collected at birth. Results We report that maternal glycemia at the second and third trimester of pregnancy are correlated with variations in DNA methylation levels at PRDM16, BMP7, and PPARGC1α and with cord blood leptin levels. Variations in PRDM16 and PPARGC1α DNA methylation levels were also correlated with cord blood leptin levels. Mediation analyses support that DNA methylation variations at the PPARGC1α gene locus explain 0.8 % of the cord blood leptin levels variance independently of maternal fasting glucose levels (p = 0.05). Conclusions These results suggest that maternal glucose in pregnancy could produce variations in DNA methylation in BAT-related genes and that some of these DNA methylation marks seem to mediate the impact of maternal glycemia on cord blood leptin levels, an adipokine regulating body weight. Electronic supplementary material The online version of this article (doi:10.1186/s13148-016-0239-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sandra Côté
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC Canada.,ECOGENE-21 Laboratory and Lipid Clinic, CIUSSS du Saguenay-Lac-Saint-Jean - Hôpital de Chicoutimi, Saguenay, QC Canada
| | - Valérie Gagné-Ouellet
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC Canada.,ECOGENE-21 Laboratory and Lipid Clinic, CIUSSS du Saguenay-Lac-Saint-Jean - Hôpital de Chicoutimi, Saguenay, QC Canada
| | - Simon-Pierre Guay
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC Canada.,ECOGENE-21 Laboratory and Lipid Clinic, CIUSSS du Saguenay-Lac-Saint-Jean - Hôpital de Chicoutimi, Saguenay, QC Canada
| | - Catherine Allard
- Department of Mathematics, Université de Sherbrooke, Sherbrooke, QC Canada
| | - Andrée-Anne Houde
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC Canada.,ECOGENE-21 Laboratory and Lipid Clinic, CIUSSS du Saguenay-Lac-Saint-Jean - Hôpital de Chicoutimi, Saguenay, QC Canada
| | - Patrice Perron
- ECOGENE-21 Laboratory and Lipid Clinic, CIUSSS du Saguenay-Lac-Saint-Jean - Hôpital de Chicoutimi, Saguenay, QC Canada.,Department of Medicine, Université de Sherbrooke, Sherbrooke, QC Canada
| | | | - Daniel Gaudet
- ECOGENE-21 Laboratory and Lipid Clinic, CIUSSS du Saguenay-Lac-Saint-Jean - Hôpital de Chicoutimi, Saguenay, QC Canada.,Department of Medicine, Université de Montréal, Montréal, QC Canada
| | - Renée Guérin
- Department of Medical Biology, Chicoutimi Hospital, Saguenay, QC Canada
| | - Diane Brisson
- ECOGENE-21 Laboratory and Lipid Clinic, CIUSSS du Saguenay-Lac-Saint-Jean - Hôpital de Chicoutimi, Saguenay, QC Canada.,Department of Medicine, Université de Montréal, Montréal, QC Canada
| | - Marie-France Hivert
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC Canada.,Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, MA USA
| | - Luigi Bouchard
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC Canada.,ECOGENE-21 Laboratory and Lipid Clinic, CIUSSS du Saguenay-Lac-Saint-Jean - Hôpital de Chicoutimi, Saguenay, QC Canada
| |
Collapse
|
71
|
Richmond RC, Sharp GC, Ward ME, Fraser A, Lyttleton O, McArdle WL, Ring SM, Gaunt TR, Lawlor DA, Davey Smith G, Relton CL. DNA Methylation and BMI: Investigating Identified Methylation Sites at HIF3A in a Causal Framework. Diabetes 2016; 65:1231-44. [PMID: 26861784 PMCID: PMC4839211 DOI: 10.2337/db15-0996] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 02/01/2016] [Indexed: 12/18/2022]
Abstract
Multiple differentially methylated sites and regions associated with adiposity have now been identified in large-scale cross-sectional studies. We tested for replication of associations between previously identified CpG sites at HIF3A and adiposity in ∼1,000 mother-offspring pairs from the Avon Longitudinal Study of Parents and Children (ALSPAC). Availability of methylation and adiposity measures at multiple time points, as well as genetic data, allowed us to assess the temporal associations between adiposity and methylation and to make inferences regarding causality and directionality. Overall, our results were discordant with those expected if HIF3A methylation has a causal effect on BMI and provided more evidence for causality in the reverse direction (i.e., an effect of BMI on HIF3A methylation). These results are based on robust evidence from longitudinal analyses and were also partially supported by Mendelian randomization analysis, although this latter analysis was underpowered to detect a causal effect of BMI on HIF3A methylation. Our results also highlight an apparent long-lasting intergenerational influence of maternal BMI on offspring methylation at this locus, which may confound associations between own adiposity and HIF3A methylation. Further work is required to replicate and uncover the mechanisms underlying the direct and intergenerational effect of adiposity on DNA methylation.
Collapse
Affiliation(s)
- Rebecca C Richmond
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, U.K. School of Social and Community Medicine, University of Bristol, Bristol, U.K
| | - Gemma C Sharp
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, U.K. School of Social and Community Medicine, University of Bristol, Bristol, U.K.
| | - Mary E Ward
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, U.K. School of Social and Community Medicine, University of Bristol, Bristol, U.K
| | - Abigail Fraser
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, U.K. School of Social and Community Medicine, University of Bristol, Bristol, U.K
| | - Oliver Lyttleton
- School of Social and Community Medicine, University of Bristol, Bristol, U.K
| | - Wendy L McArdle
- School of Social and Community Medicine, University of Bristol, Bristol, U.K
| | - Susan M Ring
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, U.K. School of Social and Community Medicine, University of Bristol, Bristol, U.K
| | - Tom R Gaunt
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, U.K. School of Social and Community Medicine, University of Bristol, Bristol, U.K
| | - Debbie A Lawlor
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, U.K. School of Social and Community Medicine, University of Bristol, Bristol, U.K
| | - George Davey Smith
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, U.K. School of Social and Community Medicine, University of Bristol, Bristol, U.K
| | - Caroline L Relton
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, U.K. School of Social and Community Medicine, University of Bristol, Bristol, U.K. Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, U.K
| |
Collapse
|
72
|
Xuan Y, Li XH, Hu ZQ, Teng ZM, Hu DJ. A Mendelian Randomization Study of Plasma Homocysteine and Multiple Myeloma. Sci Rep 2016; 6:25204. [PMID: 27126524 PMCID: PMC4850434 DOI: 10.1038/srep25204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 04/08/2016] [Indexed: 12/14/2022] Open
Abstract
Observational studies have demonstrated an association between elevated homocysteine (Hcy) level and risk of multiple myeloma (MM). However, it remains unclear whether this relationship is causal. We conducted a Mendelian randomization (MR) study to evaluate whether genetically increased Hcy level influences the risk of MM. We used the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism as an instrumental variable, which affects the plasma Hcy levels. Estimate of its effect on plasma Hcy level was based on a recent genome-wide meta-analysis of 44,147 individuals, while estimate of its effect on MM risk was obtained through meta-analysis of case-control studies with 2,092 cases and 4,954 controls. By combining these two estimates, we found that per one standard-deviation (SD) increase in natural log-transformed plasma Hcy levels conferred a 2.67-fold increase in risk for MM (95% confidence interval (CI): 1.12–6.38; P = 2.7 × 10−2). Our study suggests that elevated Hcy levels are causally associated with an increased risk of developing MM. Whether Hcy-lowering therapy can prevent MM merits further investigation in long-term randomized controlled trials (RCTs).
Collapse
Affiliation(s)
- Yang Xuan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Department of Epidemiology &Biostatistics, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xiao-Hong Li
- Department of Rehabilitation Medicine, First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Zhong-Qian Hu
- Department of Ultrasound, Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Zhi-Mei Teng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Department of Epidemiology &Biostatistics, School of Public Health, Southeast University, Nanjing 210009, China
| | - Dao-Jun Hu
- Department of Clinical Laboratory, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Chongming Branch, Shanghai 202150, China
| |
Collapse
|
73
|
Lemche E, Chaban OS, Lemche AV. Neuroendocrinological and Epigenetic Mechanisms Subserving Autonomic Imbalance and HPA Dysfunction in the Metabolic Syndrome. Front Neurosci 2016; 10:142. [PMID: 27147943 PMCID: PMC4830841 DOI: 10.3389/fnins.2016.00142] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/21/2016] [Indexed: 12/18/2022] Open
Abstract
Impact of environmental stress upon pathophysiology of the metabolic syndrome (MetS) has been substantiated by epidemiological, psychophysiological, and endocrinological studies. This review discusses recent advances in the understanding of causative roles of nutritional factors, sympathomedullo-adrenal (SMA) and hypothalamic-pituitary adrenocortical (HPA) axes, and adipose tissue chronic low-grade inflammation processes in MetS. Disturbances in the neuroendocrine systems for leptin, melanocortin, and neuropeptide Y (NPY)/agouti-related protein systems have been found resulting directly in MetS-like conditions. The review identifies candidate risk genes from factors shown critical for the functioning of each of these neuroendocrine signaling cascades. In its meta-analytic part, recent studies in epigenetic modification (histone methylation, acetylation, phosphorylation, ubiquitination) and posttranscriptional gene regulation by microRNAs are evaluated. Several studies suggest modification mechanisms of early life stress (ELS) and diet-induced obesity (DIO) programming in the hypothalamic regions with populations of POMC-expressing neurons. Epigenetic modifications were found in cortisol (here HSD11B1 expression), melanocortin, leptin, NPY, and adiponectin genes. With respect to adiposity genes, epigenetic modifications were documented for fat mass gene cluster APOA1/C3/A4/A5, and the lipolysis gene LIPE. With regard to inflammatory, immune and subcellular metabolism, PPARG, NKBF1, TNFA, TCF7C2, and those genes expressing cytochrome P450 family enzymes involved in steroidogenesis and in hepatic lipoproteins were documented for epigenetic modifications.
Collapse
Affiliation(s)
- Erwin Lemche
- Section of Cognitive Neuropsychiatry, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London London, UK
| | - Oleg S Chaban
- Section of Psychosomatic Medicine, Bogomolets National Medical University Kiev, Ukraine
| | - Alexandra V Lemche
- Department of Medical Science, Institute of Clinical Research Berlin, Germany
| |
Collapse
|
74
|
Zhang Y, Ren J. Epigenetics and obesity cardiomyopathy: From pathophysiology to prevention and management. Pharmacol Ther 2016; 161:52-66. [PMID: 27013344 DOI: 10.1016/j.pharmthera.2016.03.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Uncorrected obesity has been associated with cardiac hypertrophy and contractile dysfunction. Several mechanisms for this cardiomyopathy have been identified, including oxidative stress, autophagy, adrenergic and renin-angiotensin aldosterone overflow. Another process that may regulate effects of obesity is epigenetics, which refers to the heritable alterations in gene expression or cellular phenotype that are not encoded on the DNA sequence. Advances in epigenome profiling have greatly improved the understanding of the epigenome in obesity, where environmental exposures during early life result in an increased health risk later on in life. Several mechanisms, including histone modification, DNA methylation and non-coding RNAs, have been reported in obesity and can cause transcriptional suppression or activation, depending on the location within the gene, contributing to obesity-induced complications. Through epigenetic modifications, the fetus may be prone to detrimental insults, leading to cardiac sequelae later in life. Important links between epigenetics and obesity include nutrition, exercise, adiposity, inflammation, insulin sensitivity and hepatic steatosis. Genome-wide studies have identified altered DNA methylation patterns in pancreatic islets, skeletal muscle and adipose tissues from obese subjects compared with non-obese controls. In addition, aging and intrauterine environment are associated with differential DNA methylation. Given the intense research on the molecular mechanisms of the etiology of obesity and its complications, this review will provide insights into the current understanding of epigenetics and pharmacological and non-pharmacological (such as exercise) interventions targeting epigenetics as they relate to treatment of obesity and its complications. Particular focus will be on DNA methylation, histone modification and non-coding RNAs.
Collapse
Affiliation(s)
- Yingmei Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA.
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA.
| |
Collapse
|
75
|
Guay SP, Légaré C, Brisson D, Mathieu P, Bossé Y, Gaudet D, Bouchard L. Epigenetic and genetic variations at the TNNT1 gene locus are associated with HDL-C levels and coronary artery disease. Epigenomics 2016; 8:359-71. [PMID: 26950807 DOI: 10.2217/epi.15.120] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
AIM To assess whether epigenetic and genetic variations at the TNNT1 gene locus are associated with high-density lipoprotein cholesterol (HDL-C) and coronary artery disease (CAD). Patients, materials & methods: TNNT1 DNA methylation and c.-20G>A polymorphism were genotyped in subjects with and without familial hypercholesterolemia (FH). RESULTS Lower TNNT1 DNA methylation levels were independently associated with lower HDL-C levels and with the TNNT1 c.-20G>A polymorphism. In FH men, carriers of the TNNT1 c.-20G>A polymorphism had lower HDL-C levels and an increased risk of CAD compared with noncarriers. In non-FH men, a higher TNNT1 DNA methylation level was associated with CAD. CONCLUSION These results suggest that TNNT1 genetic and epigenetic variations are associated with HDL-C levels and CAD.
Collapse
Affiliation(s)
- Simon-Pierre Guay
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.,ECOGENE-21 & Lipid Clinic, Chicoutimi Hospital, Saguenay, QC G7H 5H6, Canada
| | - Cécilia Légaré
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.,ECOGENE-21 & Lipid Clinic, Chicoutimi Hospital, Saguenay, QC G7H 5H6, Canada
| | - Diane Brisson
- ECOGENE-21 & Lipid Clinic, Chicoutimi Hospital, Saguenay, QC G7H 5H6, Canada.,Department of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Patrick Mathieu
- Centre de recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC G1V 0A6, Canada
| | - Yohan Bossé
- Centre de recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC G1V 0A6, Canada.,Department of Molecular Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Daniel Gaudet
- ECOGENE-21 & Lipid Clinic, Chicoutimi Hospital, Saguenay, QC G7H 5H6, Canada.,Department of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Luigi Bouchard
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.,ECOGENE-21 & Lipid Clinic, Chicoutimi Hospital, Saguenay, QC G7H 5H6, Canada
| |
Collapse
|
76
|
Su R, Wang C, Feng H, Lin L, Liu X, Wei Y, Yang H. Alteration in Expression and Methylation of IGF2/H19 in Placenta and Umbilical Cord Blood Are Associated with Macrosomia Exposed to Intrauterine Hyperglycemia. PLoS One 2016; 11:e0148399. [PMID: 26840070 PMCID: PMC4739655 DOI: 10.1371/journal.pone.0148399] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/18/2016] [Indexed: 12/16/2022] Open
Abstract
Objective Macrosomia is one of the most common complications in gestational diabetes mellitus. Insulin-like growth factor 2 and H19 are two of the imprinted candidate genes that are involved in fetal growth and development. Change in methylation at differentially methylated region of the insulin-like growth factor 2 and H19 has been proved to be an early event related to the programming of metabolic profile, including macrosomia and small for gestational age in offspring. Here we hypothesize that alteration in methylation at differentially methylated region of the insulin-like growth factor 2 and H19 is associated with macrosomia induced by intrauterine hyperglycemia. Results The expression of insulin-like growth factor 2 is significant higher in gestational diabetes mellitus group (GDM group) compared to normal glucose tolerance group (NGT group) both in umbilical cord blood and placenta, while the expression of H19 is significant lower in GDM group in umbilical cord blood. The expression of insulin-like growth factor 2 is significant higher in normal glucose tolerance with macrosomia group (NGT-M) compared to normal glucose tolerance with normal birthweight group (NGT-NBW group) both in placenta and umbilical cord blood. A model with interaction term of gene expression of IGF2 and H19 found that IGF2 and the joint action of IGF2 and H19 in placenta showed significantly relationship with GDM/NGT and GDM-NBW/NGT-NBW. A borderline significant association was seen among IGF2 and H19 in cord blood and GDM-M/NGT-M. The methylation level at different CpG sites of insulin-like growth factor 2 and H19 in umbilical cord blood was also significantly different among groups. Based on the multivariable linear regression analysis, the methylation of the insulin-like growth factor 2 / H19 is closely related to birth weight and intrauterine hyperglycemia. Conclusions We confirmed the existence of alteration in DNA methylation in umbilical cord blood exposed to intrauterine hyperglycemia and reported a functional role in regulating gene associated with insulin-like growth factor 2/H19. Both of these might be the underlying pathogenesis of macrosomia. We also provided the evidence of strong associations between methylation of insulin-like growth factor 2/H19 and macrosomia induced by intrauterine hyperglycemia.
Collapse
Affiliation(s)
- Rina Su
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Chen Wang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Hui Feng
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Li Lin
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Xinyue Liu
- Pharmaceutical Outcomes and Policy, College of Pharmacy, University of Florida, Florida, United States of America
| | - Yumei Wei
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
- * E-mail: (HXY); (YMW)
| | - Huixia Yang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
- * E-mail: (HXY); (YMW)
| |
Collapse
|
77
|
High maternal sodium intake alters sex-specific renal renin-angiotensin system components in newborn Wistar offspring. J Dev Orig Health Dis 2016; 7:282-289. [PMID: 26818798 DOI: 10.1017/s2040174416000015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study aimed to evaluate the systemic and renal renin-angiotensin-aldosterone system (RAAS) at birth in male and female offspring and in mothers fed a high sodium diet (HSD) before and during gestation. Female Wistar rats were fed a HSD (8.0% NaCl) or a normal sodium diet (1.3% NaCl) from 8 weeks of age until delivery of their first litter. Maternal body weight, tail blood pressure, and food and water intake were evaluated. The litter sizes were assessed, and the body and kidney weights of the offspring were measured. Both mothers and offspring were euthanized immediately following the birth of the pups to evaluate plasma renin activity (PRA), renal renin content (RRC), renal angiotensin-converting enzyme (ACE) activity, renal angiotensin (Ang) II content, serum aldosterone (ALDO) levels, and renal cortical and medullary renin messenger RNA expression. In mothers in the HSD group, water intake and kidney mass were higher, whereas renal ACE activity, Ang II, PRA, ALDO and RRC were decreased. In the offspring of HSD-fed dams, the body and kidney mass were lower in both genders, renal ACE activity was lower in females and renal Ang II was lower in males. PRA, RRC, renin gene expression and ALDO levels did not differ between the groups of offspring. The data presented herein showed that a maternal HSD during pregnancy induces low birth weight and a sex-specific response in the RAAS in offspring.
Collapse
|
78
|
Monteiro LJ, Norman JE, Rice GE, Illanes SE. Fetal programming and gestational diabetes mellitus. Placenta 2015; 48 Suppl 1:S54-S60. [PMID: 26724985 DOI: 10.1016/j.placenta.2015.11.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/26/2015] [Accepted: 11/29/2015] [Indexed: 01/11/2023]
Abstract
Gestational diabetes mellitus is defined by new-onset glucose intolerance during pregnancy. About 2-5% of all pregnant women develop gestational diabetes during their pregnancies and the prevalence has increased considerably during the last decade. This metabolic condition is manifested when pancreatic β-cells lose their ability to compensate for increased insulin resistance during pregnancy, however, the pathogenesis of the disease remains largely unknown. Gestational diabetes is strongly associated with adverse pregnancy outcome as well as with long-term adverse effects on the offspring which likely occurs due to epigenetic modifications of the fetal genome. In the current review we address gestational diabetes and the short and long term complications for both mothers and offspring focusing on the importance of fetal programming in conferring risk of developing diseases in adulthood.
Collapse
Affiliation(s)
- Lara J Monteiro
- Department of Obstetrics & Gynecology, Laboratory of Reproductive Biology, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile
| | - Jane E Norman
- Tommy's Centre for Fetal and Maternal Health, Medical Research Council Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Gregory E Rice
- Centre for Clinical Diagnostics, Faculty of Medicine and Biomedical Sciences, University of Queensland Centre for Clinical Research, Brisbane, QLD, Australia
| | - Sebastián E Illanes
- Department of Obstetrics & Gynecology, Laboratory of Reproductive Biology, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile; Centre for Clinical Diagnostics, Faculty of Medicine and Biomedical Sciences, University of Queensland Centre for Clinical Research, Brisbane, QLD, Australia.
| |
Collapse
|
79
|
Relton CL, Davey Smith G. Mendelian randomization: applications and limitations in epigenetic studies. Epigenomics 2015; 7:1239-43. [PMID: 26639554 PMCID: PMC5330409 DOI: 10.2217/epi.15.88] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Caroline L Relton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
| |
Collapse
|
80
|
Schofield J, Bhatnagar D. The impact of gestational hypercholesterolaemia on origins of disease. Atherosclerosis 2015; 243:652-3. [DOI: 10.1016/j.atherosclerosis.2015.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 10/07/2015] [Indexed: 01/01/2023]
|
81
|
Sears C, Hivert MF. Examination of Pathways Linking Maternal Glycemia During Pregnancy and Increased Risk for Type 2 Diabetes in Offspring. Can J Diabetes 2015; 39:443-4. [DOI: 10.1016/j.jcjd.2015.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
82
|
Patel N, Pasupathy D, Poston L. Determining the consequences of maternal obesity for offspring health. Exp Physiol 2015; 100:1421-8. [PMID: 26464224 DOI: 10.1113/ep085132] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/05/2015] [Indexed: 12/20/2022]
Abstract
NEW FINDINGS What is the topic of this review? Observational studies have highlighted the association of increasing maternal body mass index with offspring adiposity and the subsequent risk of cardiometabolic disorders in adulthood. The in utero environment has become a target for intervention in order to reduce the burden of obesity, despite the mechanistic pathways of this association remaining unclear. What advances does it highlight? This short review provides a critical appraisal of the recent literature, including biological pathways and strategies to address causal relationships. The global obesity epidemic has been causally linked to changes in diet and lifestyle. Observational data and animal studies have now highlighted associations between in utero environmental exposures and increased susceptibility to obesity and related cardiometabolic disorders in later life. Maternal body mass index has been reported to show an independent association with offspring adiposity from an early age and to play an important role in the predisposition to obesity and metabolic disease in later life. Thus, the in utero environment has been the focus of recent targeted interventions to improve public health. In this review, we summarize recent progress in this field, including the use of animal models to investigate mechanistic links between maternal obesity and offspring metabolic risk. We then assess the level of evidence and challenges in establishing causal inferences from present birth cohorts.
Collapse
Affiliation(s)
- Nashita Patel
- Division of Women's Health, Women's Health Academic Centre, Faculty of Life Sciences and Medicine, King's College London, St Thomas' Hospital, London, UK
| | - Dharmintra Pasupathy
- Division of Women's Health, Women's Health Academic Centre, Faculty of Life Sciences and Medicine, King's College London, St Thomas' Hospital, London, UK
| | - Lucilla Poston
- Division of Women's Health, Women's Health Academic Centre, Faculty of Life Sciences and Medicine, King's College London, St Thomas' Hospital, London, UK
| |
Collapse
|
83
|
Relton CL, Hartwig FP, Davey Smith G. From stem cells to the law courts: DNA methylation, the forensic epigenome and the possibility of a biosocial archive. Int J Epidemiol 2015; 44:1083-93. [PMID: 26424516 PMCID: PMC5279868 DOI: 10.1093/ije/dyv198] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The growth in epigenetics continues to attract considerable cross-disciplinary interest, apparently representing an opportunity to move beyond genomics towards the goal of understanding phenotypic variability from molecular through organismal to the societal level. The epigenome may also harbour useful information about life-time exposures (measured or unmeasured) irrespective of their influence on health or disease, creating the potential for a person-specific biosocial archive . Furthermore such data may prove of use in providing identifying information, providing the possibility of a future forensic epigenome . The mechanisms involved in ensuring that environmentally induced epigenetic changes perpetuate across the life course remain unclear. Here we propose a potential role of adult stem cells in maintaining epigenetic states provides a useful basis for formulating such epidemiologically-relevant concepts.
Collapse
Affiliation(s)
- Caroline L Relton
- MRC Integrative Epidemiology Unit, School of Social & Community Medicine, University of Bristol, Bristol, UK
| | | | - George Davey Smith
- MRC Integrative Epidemiology Unit, School of Social & Community Medicine, University of Bristol, Bristol, UK
| |
Collapse
|
84
|
Loke YJ, Hannan AJ, Craig JM. The Role of Epigenetic Change in Autism Spectrum Disorders. Front Neurol 2015; 6:107. [PMID: 26074864 PMCID: PMC4443738 DOI: 10.3389/fneur.2015.00107] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 04/28/2015] [Indexed: 12/14/2022] Open
Abstract
Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental disorders characterized by problems with social communication, social interaction, and repetitive or restricted behaviors. ASD are comorbid with other disorders including attention deficit hyperactivity disorder, epilepsy, Rett syndrome, and Fragile X syndrome. Neither the genetic nor the environmental components have been characterized well enough to aid diagnosis or treatment of non-syndromic ASD. However, genome-wide association studies have amassed evidence suggesting involvement of hundreds of genes and a variety of associated genetic pathways. Recently, investigators have turned to epigenetics, a prime mediator of environmental effects on genomes and phenotype, to characterize changes in ASD that constitute a molecular level on top of DNA sequence. Though in their infancy, such studies have the potential to increase our understanding of the etiology of ASD and may assist in the development of biomarkers for its prediction, diagnosis, prognosis, and eventually in its prevention and intervention. This review focuses on the first few epigenome-wide association studies of ASD and discusses future directions.
Collapse
Affiliation(s)
- Yuk Jing Loke
- Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne , Parkville, VIC , Australia
| | - Anthony John Hannan
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne , Parkville, VIC , Australia
| | - Jeffrey Mark Craig
- Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne , Parkville, VIC , Australia
| |
Collapse
|
85
|
Leptin resistance in obesity: An epigenetic landscape. Life Sci 2015; 140:57-63. [PMID: 25998029 DOI: 10.1016/j.lfs.2015.05.003] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/02/2015] [Accepted: 05/12/2015] [Indexed: 01/14/2023]
Abstract
Leptin is an adipocyte-secreted hormone that inhibits food intake and stimulates energy expenditure through interactions with neuronal pathways in the brain, particularly pathways involving the hypothalamus. Intact functioning of the leptin route is required for body weight and energy homeostasis. Given its function, the discovery of leptin increased expectations for the treatment of obesity. However, most obese individuals and subjects with a predisposition to regain weight after losing it have leptin concentrations than lean individuals, but despite the anorexigenic function of this hormone, appetite is not effectively suppressed in these individuals. This phenomenon has been deemed leptin resistance and could be the result of impairments at a number of levels in the leptin signalling pathway, including reduced access of the hormone to its receptor due to changes in receptor expression or changes in post-receptor signal transduction. Epigenetic regulation of the leptin signalling circuit could be a potential mechanism of leptin function disturbance. This review discusses the molecular mechanisms, particularly the epigenetic regulation mechanisms, involved in leptin resistance associated with obesity and the therapeutic potential of these molecular mechanisms in the battle against the obesity pandemic.
Collapse
|