51
|
Methods Used for Enhancing the Bioavailability of Oral Curcumin in Randomized Controlled Trials: A Meta-Research Study. Pharmaceuticals (Basel) 2022; 15:ph15080939. [PMID: 36015087 PMCID: PMC9416704 DOI: 10.3390/ph15080939] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 01/27/2023] Open
Abstract
It is unknown how randomized controlled trials (RCTs) approach the problem related to curcumin bioavailability. We analyzed methods and reporting regarding the bioavailability of systemic oral curcumin used in RCTs. We searched PubMed on 12 September 2020, to find articles reporting RCTs that used curcumin as an intervention. We extracted data about trial characteristics, curcumin products used, methods for improving curcumin bioavailability, and mentions of curcumin bioavailability. We included 165 RCTs. The most common category of intervention was simply described as “curcumin” or “curcuminoids” without a commercial name. There were 107 (64%) manuscripts that reported that they used methods to enhance the oral bioavailability of curcuminoids used in their intervention; 25 different methods were reported. The most common method was the addition of piperine (23%). Phospholipidated curcumin, a combination of curcumin and turmeric oils, nanomicellar curcumin, and colloidal dispersion of curcumin were the next most common methods. Fourteen trials (8.4%) compared more than one different curcumin product; nine (7.9%) trials compared the bioavailability/pharmacokinetics of curcumin products. In conclusion, a high number of diverse methods were used, and very few trials compared different curcumin products. More studies are needed to explore the comparative bioavailability and efficacy of different curcumin products.
Collapse
|
52
|
Gao TH, Liao W, Lin LT, Zhu ZP, Lu MG, Fu CM, Xie T. Curcumae rhizoma and its major constituents against hepatobiliary disease: Pharmacotherapeutic properties and potential clinical applications. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154090. [PMID: 35580439 DOI: 10.1016/j.phymed.2022.154090] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/25/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Hepatobiliary disease currently serves as an urgent health issue in public due to health-modulating factors such as extension of life expectancy, increasingly sedentary lifestyles and over-nutrition. A definite treatment remains lacking owing to different stages of the disease itself and its intricate pathogenesis. Traditional Chinese medicine (TCM) has been gradually popularized in clinic with the satisfactory efficacy and good safety. Curcumae Rhizoma (called E Zhu, EZ in Chinese) is a representative herb, which has been used to treat hepatobiliary disease for thousands of years. PURPOSE To systematically summarize the recent research advances on the pharmacological activities of EZ and its constituents, explain the underlying mechanisms of preventing and treating hepatobiliary diseases, and assess the shortcomings of existing work. Besides, ethnopharmacology, phytochemicals, and toxicology of EZ have been researched. METHODS The information about EZ was collected from various sources including classic books about Chinese herbal medicine, and scientific databases including Web of Science, PubMed, ScienceDirect, Springer, ACS, SCOPUS, CNKI, CSTJ, and WANFANG using keywords given below and terms like pharmacological and phytochemical details of this plant. RESULTS The chemical constituents isolated and identified from EZ, such as terpenoids including β-elemene, furanodiene, germacrone, etc. and curcuminoids including curcumin, demethoxycurcumin, bisdemethoxycurcumin, etc. prove to have hepatoprotective effect, anti-liver fibrotic effect, anti-fatty liver effect, anti-liver neoplastic effect, and cholagogic effect through TGF-β1/Smad, JNK1/2-ROS, NF-κB and other anti-inflammatory and antioxidant signaling pathways. Also, EZ is often combined with other Chinese herbs in the treatment of hepatobiliary diseases with good clinical efficacy and no obvious adverse reactions. CONCLUSION It provides a preclinical basis for the efficacy of EZ as an effective therapeutic agent for the prevention and treatment of hepatobiliary diseases. Even so, the further studies still needed to alleviate hepatotoxicity and expand clinical application.
Collapse
Affiliation(s)
- Tian-Hui Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Wan Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Li-Ting Lin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zong-Ping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mei-Gui Lu
- Huachiew TCM Hospital, Bangkok 10100, Thailand
| | - Chao-Mei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tian Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
53
|
Vesco G, Brambati M, Scapinello L, Penoni A, Mella M, Masson M, Gaware V, Maspero A, Nardo L. Asymmetric Phenyl Substitution: An Effective Strategy to Enhance the Photosensitizing Potential of Curcuminoids. Pharmaceuticals (Basel) 2022; 15:843. [PMID: 35890142 PMCID: PMC9321223 DOI: 10.3390/ph15070843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
Curcumin has been demonstrated to exhibit photosensitized bactericidal activity. However, the full exploitation of curcumin as a photo-pharmaceutical active principle is hindered by fast deactivation of the excited state through the transfer of the enol proton to the keto oxygen. Introducing an asymmetry in the molecular structure through acting on the phenyl substituents is expected to be a valuable strategy to impair this undesired de-excitation mechanism competing with the therapeutically relevant ones. In this study, two asymmetric curcumin analogs were synthesized and characterized as to their electronic-state transition spectroscopic properties. Fluorescence decay distributions were also reconstructed. Their analysis confirmed the substantial stabilization of the fluorescent state with respect to the parent compound. Nuclear magnetic resonance experiments were performed with the aim of determining the structural features of the keto-enol ring and the strength of the keto-enol hydrogen bond. Electronic structure calculations were also undertaken to elucidate the effects of substitution on the features of the keto-enol semi-aromatic system and the proneness to proton transfer. Finally, their singlet oxygen-generation efficiency was compared to that of curcumin through the 9,10-dimethylanthracene fluorescent assay.
Collapse
Affiliation(s)
- Guglielmo Vesco
- Department of Science and High Technology, Università degli Studi dell’Insubria, Via Valleggio 11, 22100 Como, Italy; (G.V.); (M.B.); (L.S.); (A.P.); (M.M.)
| | - Martino Brambati
- Department of Science and High Technology, Università degli Studi dell’Insubria, Via Valleggio 11, 22100 Como, Italy; (G.V.); (M.B.); (L.S.); (A.P.); (M.M.)
| | - Luca Scapinello
- Department of Science and High Technology, Università degli Studi dell’Insubria, Via Valleggio 11, 22100 Como, Italy; (G.V.); (M.B.); (L.S.); (A.P.); (M.M.)
| | - Andrea Penoni
- Department of Science and High Technology, Università degli Studi dell’Insubria, Via Valleggio 11, 22100 Como, Italy; (G.V.); (M.B.); (L.S.); (A.P.); (M.M.)
| | - Massimo Mella
- Department of Science and High Technology, Università degli Studi dell’Insubria, Via Valleggio 11, 22100 Como, Italy; (G.V.); (M.B.); (L.S.); (A.P.); (M.M.)
| | - Màr Masson
- School of Health Sciences, University of Iceland, Saemundargata 2, 102 Reykjavìk, Iceland; (M.M.); (V.G.)
| | - Vivek Gaware
- School of Health Sciences, University of Iceland, Saemundargata 2, 102 Reykjavìk, Iceland; (M.M.); (V.G.)
| | - Angelo Maspero
- Department of Science and High Technology, Università degli Studi dell’Insubria, Via Valleggio 11, 22100 Como, Italy; (G.V.); (M.B.); (L.S.); (A.P.); (M.M.)
| | - Luca Nardo
- Department of Science and High Technology, Università degli Studi dell’Insubria, Via Valleggio 11, 22100 Como, Italy; (G.V.); (M.B.); (L.S.); (A.P.); (M.M.)
| |
Collapse
|
54
|
Mahmoudi A, Kesharwani P, Majeed M, Teng Y, Sahebkar A. Recent advances in nanogold as a promising nanocarrier for curcumin delivery. Colloids Surf B Biointerfaces 2022; 215:112481. [PMID: 35453063 DOI: 10.1016/j.colsurfb.2022.112481] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022]
Abstract
Curcumin is a natural polyphenolic compound that has promising therapeutic benefits. However, curcumin suffers from low aqueous solubility and poor bioavailability following oral administration, which are severe constraints to its full therapeutic potential. An exciting approach to resolving such challenges has been to incorporate curcumin into gold nanoparticles (AuNPs) to improve its unfavorable physicochemical and biopharmaceutical properties. Growing evidence shows that AuNPs increase cytotoxicity and apoptotic effect of curcumin on cancer cells. Moreover, AuNPs has the potential to enhance curcumin's cellular uptake and antioxidant properties. In addition, numerous benefits have been suggested for exploiting the curcumin's gold (Au) NPs as simple preparation and functionalization. Therefore, we can take advantage of the nanogold combination with curcumin in several therapeutic methods like photothermal therapy and theranostic nanocarrier. Here, we focus on the therapeutic properties of Au/curcumin NPs and the way to improve biocompatibility and bioavailability for curcumin encapsulation, intending to enhance their anticancer and antioxidant capacities. The present review also discusses the utilization and impact of Au NPs as a drug/gene delivery system/platform and various methods for the synthesis of Au/curcumin NPs.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | | | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
55
|
Rossi RE, Chen J, Caplin ME. The Role of Diet and Supplements in the Prevention and Progression of COVID-19: Current Knowledge and Open Issues. Prev Nutr Food Sci 2022; 27:137-149. [PMID: 35919576 PMCID: PMC9309075 DOI: 10.3746/pnf.2022.27.2.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/22/2022] [Accepted: 03/22/2022] [Indexed: 01/08/2023] Open
Abstract
A healthy diet and dietary supplements have gained attention as potential co-adjuvants in managing and preventing coronavirus disease 2019 (COVID-19). This paper critically reviews the current evidence regarding the impact of diet and supplements on the prevention and progression of COVID-19. According to available data, a healthy diet and normal weight are considered protective factors. Regarding dietary supplementation, the most robust results from human studies are for vitamin C, which appears to decrease inflammatory markers and suppress cytokine storm. A small, randomized trial showed that a high dose of vitamin D significantly reduced the need for intensive care unit treatment of patients requiring hospitalization for COVID-19. According to retrospective human studies, there is limited evidence for vitamin E and selenium supplements. Animal studies have investigated the effects of green tea and curcumin. Xanthohumol and probiotics, interesting for their antiviral, anti-inflammatory, and immunoregulatory properties, need formal clinical study. In summary, there is promising evidence supporting the role of diet and supplements as co-adjuvants in the treatment of COVID-19. Further studies and properly designed clinical trials are necessary to draw more robust conclusions; however, it is not unreasonable to take a pragmatic approach and promote the use of appropriate diet and supplements to counter the effects of COVID-19, ideally with a mechanism to assess outcomes.
Collapse
Affiliation(s)
- Roberta Elisa Rossi
- Hepatology and Hepato-Pancreatic-Biliary Surgery and Liver Transplantation, Fondazione IRCCS, Istituto Nazionale Tumori, Milan, MI 20133, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, MI 20122, Italy
| | - Jie Chen
- Department of Gastroenterology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510275, China
| | - Martyn Evan Caplin
- Centre for Gastroenterology, Royal Free Hospital, London NW3 2QG, UK
- Division of Medicine, Faculty of Medical Sciences, University College London, London WC1E 6BT, UK
| |
Collapse
|
56
|
Tambawala H, Batra S, Shirapure Y, More AP. Curcumin- A Bio-based Precursor for Smart and Active Food Packaging Systems: A Review. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2022; 30:2177-2208. [DOI: 10.1007/s10924-022-02372-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/31/2021] [Indexed: 01/04/2025]
|
57
|
Zong TX, Silveira AP, Morais JAV, Sampaio MC, Muehlmann LA, Zhang J, Jiang CS, Liu SK. Recent Advances in Antimicrobial Nano-Drug Delivery Systems. NANOMATERIALS 2022; 12:nano12111855. [PMID: 35683711 PMCID: PMC9182179 DOI: 10.3390/nano12111855] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/28/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022]
Abstract
Infectious diseases are among the major health issues of the 21st century. The substantial use of antibiotics over the years has contributed to the dissemination of multidrug resistant bacteria. According to a recent report by the World Health Organization, antibacterial (ATB) drug resistance has been one of the biggest challenges, as well as the development of effective long-term ATBs. Since pathogens quickly adapt and evolve through several strategies, regular ATBs usually may result in temporary or noneffective treatments. Therefore, the demand for new therapies methods, such as nano-drug delivery systems (NDDS), has aroused huge interest due to its potentialities to improve the drug bioavailability and targeting efficiency, including liposomes, nanoemulsions, solid lipid nanoparticles, polymeric nanoparticles, metal nanoparticles, and others. Given the relevance of this subject, this review aims to summarize the progress of recent research in antibacterial therapeutic drugs supported by nanobiotechnological tools.
Collapse
Affiliation(s)
- Tong-Xin Zong
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (T.-X.Z.); (J.Z.)
| | - Ariane Pandolfo Silveira
- Institute of Biological Sciences, University of Brasília, Brasilia 70910900, Brazil; (A.P.S.); (J.A.V.M.); (M.C.S.)
| | | | - Marina Carvalho Sampaio
- Institute of Biological Sciences, University of Brasília, Brasilia 70910900, Brazil; (A.P.S.); (J.A.V.M.); (M.C.S.)
| | - Luis Alexandre Muehlmann
- Institute of Biological Sciences, University of Brasília, Brasilia 70910900, Brazil; (A.P.S.); (J.A.V.M.); (M.C.S.)
- Faculty of Ceilandia, University of Brasilia, Brasilia 72220900, Brazil
- Correspondence: (L.A.M.); (C.-S.J.); (S.-K.L.)
| | - Juan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (T.-X.Z.); (J.Z.)
| | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (T.-X.Z.); (J.Z.)
- Correspondence: (L.A.M.); (C.-S.J.); (S.-K.L.)
| | - Shan-Kui Liu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (T.-X.Z.); (J.Z.)
- Correspondence: (L.A.M.); (C.-S.J.); (S.-K.L.)
| |
Collapse
|
58
|
Jin T, Zhang Y, Botchway BOA, Zhang J, Fan R, Zhang Y, Liu X. Curcumin can improve Parkinson's disease via activating BDNF/PI3k/Akt signaling pathways. Food Chem Toxicol 2022; 164:113091. [PMID: 35526734 DOI: 10.1016/j.fct.2022.113091] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 02/07/2023]
Abstract
Parkinson's disease is a common progressive neurodegenerative disease, and presently has no curative agent. Curcumin, as one of the natural polyphenols, has great potential in neurodegenerative diseases and other different pathological settings. The brain-derived neurotrophic factor (BDNF) and phosphatidylinositol 3 kinase (PI3k)/protein kinase B (Akt) signaling pathways are significantly involved nerve regeneration and anti-apoptotic activities. Currently, relevant studies have confirmed that curcumin has an optimistic impact on neuroprotection via regulating BDNF and PI3k/Akt signaling pathways in neurodegenerative disease. Here, we summarized the relationship between BDNF and PI3k/Akt signaling pathway, the main biological functions and neuroprotective effects of curcumin via activating BDNF and PI3k/Akt signaling pathways in Parkinson's disease. This paper illustrates that curcumin, as a neuroprotective agent, can delay the progression of Parkinson's disease by protecting nerve cells.
Collapse
Affiliation(s)
- Tian Jin
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Zhang
- Department of Pharmacology, Medical College, Shaoxing University, Zhejiang, China
| | - Ruihua Fan
- School of Life Science, Shaoxing University, Zhejiang, China
| | - Yufeng Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China.
| |
Collapse
|
59
|
Wei Y, Li K, Zhao W, He Y, Shen H, Yuan J, Pi C, Zhang X, Zeng M, Fu S, Song X, Lee RJ, Zhao L. The Effects of a Novel Curcumin Derivative Loaded Long-Circulating Solid Lipid Nanoparticle on the MHCC-97H Liver Cancer Cells and Pharmacokinetic Behavior. Int J Nanomedicine 2022; 17:2225-2241. [PMID: 35607705 PMCID: PMC9123937 DOI: 10.2147/ijn.s363237] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/01/2022] [Indexed: 01/15/2023] Open
Abstract
Purpose Methods Results Conclusion
Collapse
Affiliation(s)
- Yumeng Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Ke Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Wenmei Zhao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Yingmeng He
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Department of Pharmacy, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Hongping Shen
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Clinical Trial Center, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Jiyuan Yuan
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Clinical Trial Center, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Chao Pi
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Xiaomei Zhang
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, Institute of Medicinal Chemistry of Chinese Medicine, Chongqing Academy of Chinese Materia Medica, Chongqing, 400065, People’s Republic of China
| | - Mingtang Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Shaozhi Fu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Xinjie Song
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, 310023, People’s Republic of China
- Department of Food Science and Technology, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Robert J Lee
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, the Ohio State University, Columbus, OH, 43210, USA
- Correspondence: Robert J Lee, The Ohio State University, 500 W 12th Ave, Columbus, OH, 43210, USA, Tel +1-614-292-4172, Fax +1-614-292-4172, Email
| | - Ling Zhao
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Ling Zhao, Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, Sichuan, 646000, People’s Republic of China, Tel +86 830 3160093, Fax +86 830 3160093, Email
| |
Collapse
|
60
|
Kothaplly S, Alukapally S, Nagula N, Maddela R. Superior Bioavailability of a Novel Curcumin Formulation in Healthy Humans Under Fasting Conditions. Adv Ther 2022; 39:2128-2138. [PMID: 35294738 PMCID: PMC9056459 DOI: 10.1007/s12325-022-02081-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/08/2022] [Indexed: 12/26/2022]
Abstract
BACKGROUND Despite its broad range of biological activities, use of curcumin is limited because of poor bioavailability. Here we report a novel curcumin formulation, Curcuwin Ultra+ (CU+), with superior bioavailability as compared to 95% turmeric extract (TUR 1800). METHODS A randomized, double-blind, three-treatment, crossover oral bioavailability study was conducted in 24 healthy volunteers under fasting conditions. Subjects received a single dose of CU+ 250 mg, 500 mg and 1900 mg of TUR1800 as per randomization schedule and blood samples were collected at 4 h and 0 h before dosing, and 0.5, 1, 2, 3, 4, 5, 6, 8, 10, 12, 24 h post dose. Total curcuminoids were measured as curcumin, demethoxycurcumin, bisdemethoxycurcumin, and tetrahydrocurcumin using a validated LC-MS/MS method. RESULTS CU+ achieved a significantly higher (p < 0.05) maximum plasma concentration (Cmax) and total systemic exposure (AUC0-6 and AUC0-12) for total curcuminoids as compared to TUR 1800. We observed 101 and 100 times higher Cmax respectively for 250 and 500 mg doses of CU+ as compared to 1900 mg of TUR1800. Similarly, AUC0-6 was 144 and 149 times higher whereas AUC0-12 was 99 and 113 times higher respectively for 250 and 500 mg doses of CU+ as compared to 1900 mg dose of TUR1800. Further, CU+ showed 40% faster absorption (p < 0.05). No safety issues were observed. CONCLUSION CU+, which is designed for increased absorption and protection of curcuminoids from intestinal degradation, demonstrated superior bioavailability as compared to TUR1800 at considerably smaller doses. Additional clinical studies will help to demonstrate the impact of its increased bioavailability on efficacy. CLINICAL TRIAL REGISTRATION CTRI/2020/10/028508 (Clinical Trials Registry-India).
Collapse
Affiliation(s)
- Sudhakar Kothaplly
- ClinSync Clinical Research Pvt. Ltd., JSR Mall, Plot No. 7 to 18, Survey # 225, Opposite Mythri Nagar, Madinaguda, Hyderabad, Telangana 500 050 India
| | - Shankar Alukapally
- ClinSync Clinical Research Pvt. Ltd., JSR Mall, Plot No. 7 to 18, Survey # 225, Opposite Mythri Nagar, Madinaguda, Hyderabad, Telangana 500 050 India
| | - Nagaraju Nagula
- ClinSync Clinical Research Pvt. Ltd., JSR Mall, Plot No. 7 to 18, Survey # 225, Opposite Mythri Nagar, Madinaguda, Hyderabad, Telangana 500 050 India
| | - Rambabu Maddela
- ClinSync Clinical Research Pvt. Ltd., JSR Mall, Plot No. 7 to 18, Survey # 225, Opposite Mythri Nagar, Madinaguda, Hyderabad, Telangana 500 050 India
| |
Collapse
|
61
|
Parama D, Girisa S, Khatoon E, Kumar A, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. An Overview of the Pharmacological Activities of Scopoletin against Different Chronic Diseases. Pharmacol Res 2022; 179:106202. [DOI: 10.1016/j.phrs.2022.106202] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/24/2022]
|
62
|
Allegri P, Cimino L, Davis JL, Tugal-Tutkun I. Assessment of the Anti-inflammatory Effects of NORFLO® ORO in Acute Relapses of HLA-B27-associated Autoimmune Uveitis: A Multicenter, Randomized, Placebo-controlled, Double-blind Clinical Study. Ocul Immunol Inflamm 2022; 31:526-535. [PMID: 35353651 DOI: 10.1080/09273948.2022.2039210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND An effective therapy to reduce the number and severity of HLA-B27-related acute anterior uveitis (AAU) recurrences represents a clinical need. Curcumin is a promising therapeutic option in various inflammatory eye diseases. To enhance its absorption and eye tissue selectivity, a phospholipidic-curcumin complex (PHBC) has been formulated (Iphytoone®, Eye Pharma S.p.A.). AIMS This study investigates if PHBC is effective and safe to decrease the number and intensity of HLA-B27-related AAU relapses. METHODS HLA-B27-related AAU patients were randomly divided to receive PHBC or placebo for 12 months (NCT03584724). RESULTS Compared with the previous year, the number of relapses decreased in both groups. The proportion of responders was significantly higher in the PBHC group. The severity of attacks was comparable. The study drug was well tolerated. CONCLUSIONS A beneficial effect of PHBC treatment is suggested because the proportion of responders was significantly higher in this group of patients.
Collapse
Affiliation(s)
- Pia Allegri
- Uveitis and Inflammatory Eye Diseases Referral Center, Rapallo Hospital, Genova, Italy
| | - Luca Cimino
- Ocular Immunology Unit, Azienda USL-IRCCS Reggio Emilia, Reggio Emilia, Italy
| | - Janet L Davis
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ilknur Tugal-Tutkun
- Department of Ophthalmology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | | |
Collapse
|
63
|
Role of Induced Programmed Cell Death in the Chemopreventive Potential of Apigenin. Int J Mol Sci 2022; 23:ijms23073757. [PMID: 35409117 PMCID: PMC8999072 DOI: 10.3390/ijms23073757] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
The flavonoid apigenin (4′,5,7-trihydroxyflavone), which is one of the most widely distributed phytochemicals in the plant kingdom, is one of the most thoroughly investigated phenolic components. Previous studies have attributed the physiological effects of apigenin to its anti-allergic, antibacterial, antidiabetic, anti-inflammatory, antioxidant, antiviral, and blood-pressure-lowering properties, and its documented anticancer properties have been attributed to the induction of apoptosis and autophagy, the inhibition of inflammation, angiogenesis, and cell proliferation, and the regulation of cellular responses to oxidative stress and DNA damage. The most well-known mechanism for the compound’s anticancer effects in human cancer cell lines is apoptosis, followed by autophagy, and studies have also reported that apigenin induces novel cell death mechanisms, such as necroptosis and ferroptosis. Therefore, the aim of this paper is to review the therapeutic potential of apigenin as a chemopreventive agent, as well as the roles of programmed cell death mechanisms in the compound’s chemopreventive properties.
Collapse
|
64
|
Anti-Inflammatory and Antioxidant Chinese Herbal Medicines: Links between Traditional Characters and the Skin Lipoperoxidation “Western” Model. Antioxidants (Basel) 2022; 11:antiox11040611. [PMID: 35453296 PMCID: PMC9030610 DOI: 10.3390/antiox11040611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
The relationship between lipid peroxidation and inflammation has been accepted as a paradigm in the field of topical inflammation. The underlying biochemical mechanisms may be summarised as unspecific oxidative damage followed by specific oxidative processes as the physio pathological response in skin tissues. In this experimental review we hypothesise that the characteristics attributed by Traditional Chinese Medicine (TCM) to herbal drugs can be linked to their biomolecular activities within the framework of the above paradigm. To this end, we review and collect experimental data from several TCM herbal drugs to create 2D-3D pharmacological and biochemical spaces that are further reduced to a bidimensional combined space. When multivariate analysis is applied to the latter, it unveils a series of links between TCM herbal characters and the skin lipoperoxidation “Western” model. With the help of these patterns and a focused review on their chemical, pharmacological and antioxidant properties we show that cleansing herbs of bitter and cold nature acting through removal of toxins—including P. amurense, Coptis chinensis, S. baicalensis and F. suspensa—are highly correlated with strong inhibition of both lipid peroxidation and eicosanoids production. Sweet drugs—such as A. membranaceus, A. sinensis and P. cocos—act through a specific inhibition of the eicosanoids production. The therapeutic value of the remaining drugs—with low antioxidant or anti-inflammatory activity—seems to be based on their actions on the Qi with the exception of furanocoumarin containing herbs—A. dahurica and A. pubescens—which “expel wind”. A further observation from our results is that the drugs present in the highly active “Cleansing herbs” cluster are commonly used and may be interchangeable. Our work may pave the way to a translation between two medical systems with radically different philosophies and help the prioritisation of active ingredients with specific biomolecular activities of interest for the treatment of skin conditions.
Collapse
|
65
|
Kashyap VK, Peasah-Darkwah G, Dhasmana A, Jaggi M, Yallapu MM, Chauhan SC. Withania somnifera: Progress towards a Pharmaceutical Agent for Immunomodulation and Cancer Therapeutics. Pharmaceutics 2022; 14:pharmaceutics14030611. [PMID: 35335986 PMCID: PMC8954542 DOI: 10.3390/pharmaceutics14030611] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/05/2022] [Accepted: 03/05/2022] [Indexed: 02/01/2023] Open
Abstract
Chemotherapy is one of the prime treatment options for cancer. However, the key issues with traditional chemotherapy are recurrence of cancer, development of resistance to chemotherapeutic agents, affordability, late-stage detection, serious health consequences, and inaccessibility. Hence, there is an urgent need to find innovative and cost-effective therapies that can target multiple gene products with minimal adverse reactions. Natural phytochemicals originating from plants constitute a significant proportion of the possible therapeutic agents. In this article, we reviewed the advances and the potential of Withania somnifera (WS) as an anticancer and immunomodulatory molecule. Several preclinical studies have shown the potential of WS to prevent or slow the progression of cancer originating from various organs such as the liver, cervix, breast, brain, colon, skin, lung, and prostate. WS extracts act via various pathways and provide optimum effectiveness against drug resistance in cancer. However, stability, bioavailability, and target specificity are major obstacles in combination therapy and have limited their application. The novel nanotechnology approaches enable solubility, stability, absorption, protection from premature degradation in the body, and increased circulation time and invariably results in a high differential uptake efficiency in the phytochemical’s target cells. The present review primarily emphasizes the insights of WS source, chemistry, and the molecular pathways involved in tumor regression, as well as developments achieved in the delivery of WS for cancer therapy using nanotechnology. This review substantiates WS as a potential immunomodulatory, anticancer, and chemopreventive agent and highlights its potential use in cancer treatment.
Collapse
Affiliation(s)
- Vivek K. Kashyap
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Godwin Peasah-Darkwah
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Anupam Dhasmana
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Murali M. Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- Correspondence: (M.M.Y.); (S.C.C.); Tel.: +1-956-296-1734 (M.M.Y.); +1-956-296-5000 (S.C.C.)
| | - Subhash C. Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- Correspondence: (M.M.Y.); (S.C.C.); Tel.: +1-956-296-1734 (M.M.Y.); +1-956-296-5000 (S.C.C.)
| |
Collapse
|
66
|
Yao T, Su W, Han S, Lu Y, Xu Y, Chen M, Wang Y. Recent Advances in Traditional Chinese Medicine for Treatment of Podocyte Injury. Front Pharmacol 2022; 13:816025. [PMID: 35281899 PMCID: PMC8914202 DOI: 10.3389/fphar.2022.816025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/12/2022] [Indexed: 12/03/2022] Open
Abstract
Podocyte is also called glomerular epithelial cell, which has been considered as the final gatekeeper of glomerular filtration barrier (GFB). As a major contributor to proteinuria, podocyte injury underlies a variety of glomerular diseases and becomes the challenge to patients and their families in general. At present, the therapeutic methods of podocyte injury mainly include angiotensin-converting enzyme inhibitors or angiotensin receptor blockers, steroid and immunosuppressive medications. Nevertheless, the higher cost and side effects seriously disturb patients with podocyte injury. Promisingly, traditional Chinese medicine (TCM) has received an increasing amount of attention from different countries in the treatment of podocyte injury by invigorating spleen and kidney, clearing heat and eliminating dampness, as well enriching qi and activating blood. Therefore, we searched articles published in peer-reviewed English-language journals through Google Scholar, PubMed, Web of Science, and Science Direct. The protective effects of active ingredients, herbs, compound prescriptions, acupuncture and moxibustion for treatment of podocyte injury were further summarized and analyzed. Meanwhile, we discussed feasible directions for future development, and analyzed existing deficiencies and shortcomings of TCM in the treatment of podocyte injury. In conclusion, this paper shows that TCM treatments can serve as promising auxiliary therapeutic methods for the treatment of podocyte injury.
Collapse
Affiliation(s)
- Tianwen Yao
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenxiang Su
- Department of Nephrology, The People’s Hospital of Mengzi, Mengzi, China
| | - Shisheng Han
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Lu
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanqiu Xu
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Chen
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Wang
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Yi Wang,
| |
Collapse
|
67
|
Banik K, Khatoon E, Harsha C, Rana V, Parama D, Thakur KK, Bishayee A, Kunnumakkara AB. Wogonin and its analogs for the prevention and treatment of cancer: A systematic review. Phytother Res 2022; 36:1854-1883. [DOI: 10.1002/ptr.7386] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/18/2021] [Accepted: 01/08/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Kishore Banik
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering Indian Institute of Technology‐Guwahati Guwahati India
- DBT‐AIST International Center for Translational and Environmental Research Indian Institute of Technology‐Guwahati Guwahati India
| | - Elina Khatoon
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering Indian Institute of Technology‐Guwahati Guwahati India
- DBT‐AIST International Center for Translational and Environmental Research Indian Institute of Technology‐Guwahati Guwahati India
| | - Choudhary Harsha
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering Indian Institute of Technology‐Guwahati Guwahati India
- DBT‐AIST International Center for Translational and Environmental Research Indian Institute of Technology‐Guwahati Guwahati India
| | - Varsha Rana
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering Indian Institute of Technology‐Guwahati Guwahati India
- DBT‐AIST International Center for Translational and Environmental Research Indian Institute of Technology‐Guwahati Guwahati India
| | - Dey Parama
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering Indian Institute of Technology‐Guwahati Guwahati India
- DBT‐AIST International Center for Translational and Environmental Research Indian Institute of Technology‐Guwahati Guwahati India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering Indian Institute of Technology‐Guwahati Guwahati India
- DBT‐AIST International Center for Translational and Environmental Research Indian Institute of Technology‐Guwahati Guwahati India
| | - Anupam Bishayee
- College of Osteopathic medicine Lake Erie College of Osteopathic Medicine Bradenton Florida USA
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering Indian Institute of Technology‐Guwahati Guwahati India
- DBT‐AIST International Center for Translational and Environmental Research Indian Institute of Technology‐Guwahati Guwahati India
| |
Collapse
|
68
|
Saifi B, Haftcheshmeh SM, Feligioni M, Izadpanah E, Rahimi K, Hassanzadeh K, Mohammadi A, Sahebkar A. An overview of the therapeutic effects of curcumin in reproductive disorders with a focus on the antiinflammatory and immunomodulatory activities. Phytother Res 2022; 36:808-823. [PMID: 35041229 DOI: 10.1002/ptr.7360] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/24/2022]
Abstract
Curcumin, the polyphenolic compound obtained from turmeric, has several pharmacological properties. These properties include antioxidant, antimicrobial, anti-angiogenic, anticarcinogenic, antiinflammatory, and immunomodulatory activities. Therefore, the clinical efficacy of this substance has been largely investigated for curing numerous disorders. Based on a growing body of literature, this review aimed to investigate curcumin's molecular and clinical effects on reproduction and related disorders. Curcumin in the female reproductive system attenuates folliculogenesis, promotes apoptosis of oocytes and blastocyst, and decreases embryo implantation and survival. Curcumin at <100 mg concentration shows protective effects against testicular injury. The concentration of >250 mg of curcumin exhibits immobilizing action on sperms, and at 500 mg concentration completely blocks pregnancy. Curcumin inhibits vaginal infections, attenuates the severity of the premenstrual syndrome, ameliorates inflammatory conditions in polycystic ovary syndrome, improves preeclampsia, and prevents ectopic endometrial lesions. Taken together, curcumin, because of the numerous biological activities, low level of toxicity, and lower adverse effects compared to the synthetic drugs, could be considered as a protective agent for preserving the semen quality parameters, a contraceptive, and chemotherapeutic or chemopreventive agent, as well as an appropriate agent for the treatment of female reproductive disorders.
Collapse
Affiliation(s)
- Bita Saifi
- Department of Anatomy, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran
| | | | - Marco Feligioni
- Laboratory of Neuronal Cell Signaling, EBRI Rita Levi-Montalcini Foundation, Rome, Italy.,Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico, Milan, Italy
| | - Esmael Izadpanah
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Kaveh Rahimi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Kambiz Hassanzadeh
- Laboratory of Neuronal Cell Signaling, EBRI Rita Levi-Montalcini Foundation, Rome, Italy.,Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico, Milan, Italy
| | - Asadollah Mohammadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Western Australia, Australia.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
69
|
Kumar A, Singam A, Swaminathan G, Killi N, Tangudu NK, Jose J, Gundloori Vn R, Dinesh Kumar L. Combinatorial therapy using RNAi and curcumin nano-architectures regresses tumors in breast and colon cancer models. NANOSCALE 2022; 14:492-505. [PMID: 34913453 DOI: 10.1039/d1nr04411g] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cancer is a debilitating disease and one of the leading causes of death in the world. In spite of the current clinical management being dependent on applying robust pathological variables and well-defined therapeutic strategies, there is an imminent need for novel and targeted therapies with least side effects. RNA interference (RNAi) has gained attention due to its precise potential for targeting multiple genes involved in cancer progression. Nanoparticles with their enhanced permeability and retention (EPR) effect have been found to overcome the limitations of RNAi-based therapies. With their high transportation capacity, nanocarriers can target RNAi molecules to tumor tissues and protect them from enzymatic degradation. Accumulating evidence has shown that tyrosine kinase Ephb4 is overexpressed in various cancers. Therefore, we report here the development and pre-clinical validation of curcumin-chitosan-loaded: eudragit-coated nanocomposites conjugated with Ephb4 shRNA as a feasible bio-drug to suppress breast and colon cancers. The proposed bio-drug is non-toxic and bio-compatible with a higher uptake efficiency and through our experimental results we have demonstrated the effective site-specific delivery of this biodrug and the successfull silencing of their respective target genes in vivo in autochthonous knockout models of breast and colon cancer. While mammary tumors showed a considerable decrease in size, oral administration of the biodrug conjugate to Apc knockout colon models prolonged the animal survival period by six months. Hence, this study has provided empirical proof that the combinatorial approach involving RNA interference and nanotechnology is a promising alliance for next-generation cancer therapeutics.
Collapse
Affiliation(s)
- Aviral Kumar
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CCMB) Uppal Road, Hyderabad, 500007, Telangana, India.
| | - Amarnath Singam
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Guruprasadh Swaminathan
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CCMB) Uppal Road, Hyderabad, 500007, Telangana, India.
| | - Naresh Killi
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Naveen Kumar Tangudu
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CCMB) Uppal Road, Hyderabad, 500007, Telangana, India.
| | - Jedy Jose
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CCMB) Uppal Road, Hyderabad, 500007, Telangana, India.
| | - Rathna Gundloori Vn
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Lekha Dinesh Kumar
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CCMB) Uppal Road, Hyderabad, 500007, Telangana, India.
| |
Collapse
|
70
|
Kumar A, Hegde M, Parama D, Kunnumakkara AB. Curcumin: The Golden Nutraceutical on the Road to Cancer Prevention and Therapeutics. A Clinical Perspective. Crit Rev Oncog 2022; 27:33-63. [PMID: 37183937 DOI: 10.1615/critrevoncog.2023045587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Cancer is considered as the major public health scourge of the 21st century. Although remarkable strides were made for developing targeted therapeutics, these therapies suffer from lack of efficacy, high cost, and debilitating side effects. Therefore, the search for safe, highly efficacious, and affordable therapies is paramount for establishing a treatment regimen for this deadly disease. Curcumin, a known natural, bioactive, polyphenol compound from the spice turmeric (Curcuma longa), has been well documented for its wide range of pharmacological and biological activities. A plethora of literature indicates its potency as an anti-inflammatory and anti-cancer agent. Curcumin exhibits anti-neoplastic attributes via regulating a wide array of biological cascades involved in mutagenesis, proliferation, apoptosis, oncogene expression, tumorigenesis, and metastasis. Curcumin has shown a wide range of pleiotropic anti-proliferative effect in multiple cancers and is a known inhibitor of varied oncogenic elements, including nuclear factor kappa B (NF-κB), c-myc, cyclin D1, Bcl-2, VEGF, COX-2, NOS, tumor necrosis factor alpha (TNF-α), interleukins, and MMP-9. Further, curcumin targets different growth factor receptors and cell adhesion molecules involved in tumor growth and progression, making it a most promising nutraceutical for cancer therapy. To date, curcumin-based therapeutics have completed more than 50 clinical trials for cancer. Although creative experimentation is still elucidating the immense potential of curcumin, systematic validation by proper randomized clinical trials warrant its transition from lab to bedside. Therefore, this review summarizes the outcome of diverse clinical trials of curcumin in various cancer types.
Collapse
Affiliation(s)
- Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam-781039, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam-781039, India
| | - Dey Parama
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Assam-781039, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam-781039, India
| |
Collapse
|
71
|
Maio ACD, Basile G, Iacopetta D, Catalano A, Ceramella J, Cafaro D, Saturnino C, Sinicropi MS. The significant role of nutraceutical compounds in ulcerative colitis treatment. Curr Med Chem 2021; 29:4216-4234. [PMID: 34961429 DOI: 10.2174/0929867329666211227121321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 11/22/2022]
Abstract
Ulcerative colitis (UC) is a type of inflammatory bowel disease (IBD) mainly affecting the colon and the rectum. Its main characters are represented by relapsing and remitting mucosal inflammation, starting in the rectum and typically extending continuously proximally through part or the entire colon. UC pathogenesis depends on multiple factors, such as genetic predisposition, defects in the epithelial barrier, dysregulated immune responses, and environmental causes. The most frequent symptoms are abdominal pain, weight loss, mucus discharge, bloody diarrhoea, incontinence, nocturnal defecations, fever, and anemia. Existing therapies for UC include 5-aminosalicylic acid (5-ASA) and its derivatives, steroids, immunosuppressants and biological drugs. However, limited efficacy and unwanted adverse effects hardly limit these strategies of treatment. In the last decades, research studies have been driven towards complementary and alternative medicines for the treatment of UC. Various nutraceuticals have exhibited promising results in modulating intestinal inflammation meanwhile improving symptoms. These compounds possess a wide spectrum of positive health effects evidenced by in vitro studies, characterized by their involvement in antioxidant defenses, cell proliferation, and gene expression. The present review analyzes the available data about the different types of nutraceuticals and their potential effectiveness as adjuvant therapy of IBD, with particular emphasis to UC.
Collapse
Affiliation(s)
- Azzurra Chiara De Maio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Giovanna Basile
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70126 Bari, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Danilo Cafaro
- Proctology Surgery, Tropea Hospital, Vibo Valentia, Italy
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| |
Collapse
|
72
|
Mokgalaboni K, Ntamo Y, Ziqubu K, Nyambuya TM, Nkambule BB, Mazibuko-Mbeje SE, Gabuza KB, Chellan N, Tiano L, Dludla PV. Curcumin supplementation improves biomarkers of oxidative stress and inflammation in conditions of obesity, type 2 diabetes and NAFLD: updating the status of clinical evidence. Food Funct 2021; 12:12235-12249. [PMID: 34847213 DOI: 10.1039/d1fo02696h] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Oxidative stress and inflammation remain the major complications implicated in the development and progression of metabolic complications, including obesity, type 2 diabetes (T2D) and nonalcoholic fatty liver disease (NAFLD). In fact, due to their abundant antioxidant and anti-inflammatory properties, there is a general interest in understanding the therapeutic effects of some major food-derived bioactive compounds like curcumin against diverse metabolic diseases. Hence, a systematic search, through prominent online databases such as MEDLINE, Scopus, and Google Scholar was done focusing on randomized controlled trials (RCTs) reporting on the impact of curcumin supplementation in individuals with diverse metabolic complications, including obesity, T2D and NAFLD. Summarized findings suggest that curcumin supplementation can significantly reduce blood glucose and triglycerides levels, including markers of liver function like alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in patients with T2D and NAFLD. Importantly, this effect was consistent with the reduction of predominant markers of oxidative stress and inflammation, such as the levels of malonaldehyde (MDA), tumor necrosis factor-alpha (TNF-α), high sensitivity C-reactive protein (hs-CRP) and monocyte chemoattractant protein-1 (MCP-1) in these patients. Although RCTs suggest that curcumin is beneficial in ameliorating some metabolic complications, future research is still necessary to enhance its absorption and bioavailability profile, while also optimizing the most effective therapeutic doses.
Collapse
Affiliation(s)
- Kabelo Mokgalaboni
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Yonela Ntamo
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.
| | - Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | - Tawanda M Nyambuya
- Department of Health Sciences, Namibia University of Science and Technology, Windhoek 9000, Namibia
| | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | | | - Kwazikwakhe B Gabuza
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Nireshni Chellan
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa. .,Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.
| |
Collapse
|
73
|
Sohn SI, Priya A, Balasubramaniam B, Muthuramalingam P, Sivasankar C, Selvaraj A, Valliammai A, Jothi R, Pandian S. Biomedical Applications and Bioavailability of Curcumin-An Updated Overview. Pharmaceutics 2021; 13:2102. [PMID: 34959384 PMCID: PMC8703330 DOI: 10.3390/pharmaceutics13122102] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/25/2021] [Accepted: 12/03/2021] [Indexed: 02/07/2023] Open
Abstract
Curcumin, a yellow-colored molecule derived from the rhizome of Curcuma longa, has been identified as the bioactive compound responsible for numerous pharmacological activities of turmeric, including anticancer, antimicrobial, anti-inflammatory, antioxidant, antidiabetic, etc. Nevertheless, the clinical application of curcumin is inadequate due to its low solubility, poor absorption, rapid metabolism and elimination. Advancements in recent research have shown several components and techniques to increase the bioavailability of curcumin. Combining with adjuvants, encapsulating in carriers and formulating in nanoforms, in combination with other bioactive agents, synthetic derivatives and structural analogs of curcumin, have shown increased efficiency and bioavailability, thereby augmenting the range of applications of curcumin. The scope for incorporating biotechnology and nanotechnology in amending the current drawbacks would help in expanding the biomedical applications and clinical efficacy of curcumin. Therefore, in this review, we provide a comprehensive overview of the plethora of therapeutic potentials of curcumin, their drawbacks in efficient clinical applications and the recent advancements in improving curcumin's bioavailability for effective use in various biomedical applications.
Collapse
Affiliation(s)
- Soo-In Sohn
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| | - Arumugam Priya
- Department of Biotechnology, Alagappa University, Karaikudi 630003, India; (A.P.); (P.M.); (R.J.)
| | | | - Pandiyan Muthuramalingam
- Department of Biotechnology, Alagappa University, Karaikudi 630003, India; (A.P.); (P.M.); (R.J.)
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, India
| | - Chandran Sivasankar
- Department of Food Science and Technology, Pondicherry University, Pondicherry 605014, India;
| | - Anthonymuthu Selvaraj
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA;
| | - Alaguvel Valliammai
- Department of Environmental Hydrology and Microbiology, Ben-Gurion University of the Negev, Beersheba 84990, Israel;
| | - Ravi Jothi
- Department of Biotechnology, Alagappa University, Karaikudi 630003, India; (A.P.); (P.M.); (R.J.)
| | - Subramani Pandian
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| |
Collapse
|
74
|
Treatments for the amelioration of persistent factors in complex anal fistula. Biotechnol Lett 2021; 44:23-31. [PMID: 34799826 DOI: 10.1007/s10529-021-03207-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/12/2021] [Indexed: 10/19/2022]
Abstract
Anal fistulae are abnormal hollow connections between the wall of the anal canal and the perianal skin around the anus that have remained a burden on the medical sector for centuries. The complexity of this disease is attributed to a number of factors such as the degree of associated sphincter muscle, concomitant illnesses, existence of multiple fistulous tracts and the number of previous interventions. Persistence of a complex anal fistula can cause a decline in patient's physical quality of life as well as impact on the psychological status of patients who often suffer from anxiety and depression. Surgical intervention remains the gold standard for treatment, however; the risk of incontinence and high recurrence potential has led to interest into developing alternative treatment approaches such as the use of biologics, bioactives and biomaterials. One potential reason for these varied outcomes could be the multifactorial interplay between genetic, immune-related, environmental, and microbial persistence factors on tissue regeneration. Recent observations have proposed that adverse inflammatory mediators may contribute more than microbial factors. The moderate to high success rates of biotechnological advances (mesenchymal stem cells and biomaterial scaffolds) show promise as therapies for the amelioration of adverse persistent factors while facilitating a means to closing the fistula tract. The purpose of this review is to outline recent advances in biologics and combination therapies to treat persistent factors associated with complex anal fistula.
Collapse
|
75
|
Prajapati J, Rao P, Poojara L, Goswami D, Acharya D, Patel SK, Rawal RM. Unravelling the antifungal mode of action of curcumin by potential inhibition of CYP51B: A computational study validated in vitro on mucormycosis agent, Rhizopus oryzae. Arch Biochem Biophys 2021; 712:109048. [PMID: 34600893 DOI: 10.1016/j.abb.2021.109048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/09/2021] [Accepted: 09/29/2021] [Indexed: 11/28/2022]
Abstract
Like human, fungi too are known to share lot of structural similarities amongst their CYPs (Cytochrome P450 super family of enzymes) which allows antifungal 'azole' compounds to interact with CYPs of human. Clotrimazole, an 'azole' antifungal drug, is a known inhibitor of fungal CYP named CYP51B. Curcumin, a phytochemical obtained from Curcuma longa has the ability to interact with several different human CYPs to induce inhibition. The sequence and the structural similarities amongst both human and fungal CYPs suggest a strong possibility for curcumin to interact with fungal CYP51B to behave like an antifungal agent. To test this hypothesis a study was designed involving mucormycosis agent, Rhizopus oryzae. The ability of curcumin to interact with fungal CYP51B was analysed computationally through molecular docking, MM-GBSA and Molecular Dynamics (MD) simulation assessment. Further, interaction profile for fungal CYP51B-curcumin was compared with human CYP3A4-curcumin, as there are published evidence describing curcumin as an inhibitor of human CYPs. Additionally, to validate in silico findings, an in vitro assay was performed to examine the antifungal potentials of curcumin on the R. oryzae. Conclusive results allow us to determine a plausible mode of action of curcumin to act as an antifungal against a mucormycosis agent.
Collapse
Affiliation(s)
- Jignesh Prajapati
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Priyashi Rao
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Lipi Poojara
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Dweipayan Goswami
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Dhaval Acharya
- Department of Microbiology, B N Patel Institute of Paramedical and Sciences, Anand, 388001, Gujarat, India
| | - Saumya K Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Rakesh M Rawal
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
| |
Collapse
|
76
|
Shedding light on curcumin stability. Fitoterapia 2021; 156:105084. [PMID: 34785239 DOI: 10.1016/j.fitote.2021.105084] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/23/2022]
Abstract
The stability of molecular curcumin (purcumin, 1a) in solution is strongly light-dependent. Under laboratory artificial light, a relative stability is observed only at neutral pH, while more intense light and/or solar light can trigger degradation via a combination of hydrolytic and oxidative fragmentation of the heptadiendione moiety. Minor curcuminoids in commercial curcumin (purcuminoids) can improve the stability of molecular curcumin, but only under conditions of low irradiation. While confirming earlier observations alerting to the instability of purcumin, our results provide new rationales for unexplained differences between previous studies, question the biological relevance of a non-enzymatic degradation for the bioactivity profiles that have been reported for purcumin, and highlight the need of a better characterization of the degradation of purcuminoids under visible light irradiation.
Collapse
|
77
|
Kunnumakkara AB, Rana V, Parama D, Banik K, Girisa S, Henamayee S, Thakur KK, Dutta U, Garodia P, Gupta SC, Aggarwal BB. COVID-19, cytokines, inflammation, and spices: How are they related? Life Sci 2021; 284:119201. [PMID: 33607159 PMCID: PMC7884924 DOI: 10.1016/j.lfs.2021.119201] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/20/2021] [Accepted: 01/30/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cytokine storm is the exaggerated immune response often observed in viral infections. It is also intimately linked with the progression of COVID-19 disease as well as associated complications and mortality. Therefore, targeting the cytokine storm might help in reducing COVID-19-associated health complications. The number of COVID-19 associated deaths (as of January 15, 2021; https://www.worldometers.info/coronavirus/) in the USA is high (1199/million) as compared to countries like India (110/million). Although the reason behind this is not clear, spices may have some role in explaining this difference. Spices and herbs are used in different traditional medicines, especially in countries such as India to treat various chronic diseases due to their potent antioxidant and anti-inflammatory properties. AIM To evaluate the literature available on the anti-inflammatory properties of spices which might prove beneficial in the prevention and treatment of COVID-19 associated cytokine storm. METHOD A detailed literature search has been conducted on PubMed for collecting information pertaining to the COVID-19; the history, origin, key structural features, and mechanism of infection of SARS-CoV-2; the repurposed drugs in use for the management of COVID-19, and the anti-inflammatory role of spices to combat COVID-19 associated cytokine storm. KEY FINDINGS The literature search resulted in numerous in vitro, in vivo and clinical trials that have reported the potency of spices to exert anti-inflammatory effects by regulating crucial molecular targets for inflammation. SIGNIFICANCE As spices are derived from Mother Nature and are inexpensive, they are relatively safer to consume. Therefore, their anti-inflammatory property can be exploited to combat the cytokine storm in COVID-19 patients. This review thus focuses on the current knowledge on the role of spices for the treatment of COVID-19 through suppression of inflammation-linked cytokine storm.
Collapse
Affiliation(s)
- Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| | - Varsha Rana
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sahu Henamayee
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Uma Dutta
- Cell and Molecular Biology Lab, Department of Zoology, Cotton University, Guwahati, Assam 781001, India
| | | | - Subash C Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | | |
Collapse
|
78
|
Banik K, Khatoon E, Hegde M, Thakur KK, Puppala ER, Naidu VGM, Kunnumakkara AB. A novel bioavailable curcumin-galactomannan complex modulates the genes responsible for the development of chronic diseases in mice: A RNA sequence analysis. Life Sci 2021; 287:120074. [PMID: 34687757 DOI: 10.1016/j.lfs.2021.120074] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/10/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Chronic diseases or non-communicable diseases are a major burden worldwide due to the lack of highly efficacious treatment modalities and the serious side effects associated with the available therapies. PURPOSE/STUDY DESIGN A novel self-emulsifying formulation of curcumin with fenugreek galactomannan hydrogel scaffold as a water-dispersible non-covalent curcumin-galactomannan molecular complex (curcumagalactomannosides, CGM) has shown better bioavailability than curcumin and can be used for the prevention and treatment of chronic diseases. However, the exact potential of this formulation has not been studied, which would pave the way for its use for the prevention and treatment of multiple chronic diseases. METHODS The whole transcriptome analysis (RNAseq) was used to identify differentially expressed genes (DEGs) in the liver tissues of mice treated with LPS to investigate the potential of CGM on the prevention and treatment of chronic diseases. Expression analysis using DESeq2 package, GO, and pathway analysis of the differentially expressed transcripts was performed using UniProtKB and KEGG-KAAS server. RESULTS The results showed that 559 genes differentially expressed between the liver tissue of control mice and CGM treated mice (100 mg/kg b.wt. for 14 days), with adjusted p-value below 0.05, of which 318 genes were significantly upregulated and 241 were downregulated. Further analysis showed that 33 genes which were upregulated (log2FC > 8) in the disease conditions were significantly downregulated, and 32 genes which were downregulated (log2FC < -8) in the disease conditions were significantly upregulated after the treatment with CGM. CONCLUSION Overall, our study showed CGM has high potential in the prevention and treatment of multiple chronic diseases.
Collapse
Affiliation(s)
- Kishore Banik
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India
| | - Elina Khatoon
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India
| | - Eswara Rao Puppala
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Educational Research (NIPER) Guwahati, Assam, India
| | - V G M Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Educational Research (NIPER) Guwahati, Assam, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India.
| |
Collapse
|
79
|
Kumar A, Harsha C, Parama D, Girisa S, Daimary UD, Mao X, Kunnumakkara AB. Current clinical developments in curcumin-based therapeutics for cancer and chronic diseases. Phytother Res 2021; 35:6768-6801. [PMID: 34498308 DOI: 10.1002/ptr.7264] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 06/16/2021] [Accepted: 08/14/2021] [Indexed: 12/19/2022]
Abstract
The last decade has seen an unprecedented rise in the prevalence of chronic diseases worldwide. Different mono-targeted approaches have been devised to treat these multigenic diseases, still most of them suffer from limited success due to the off-target debilitating side effects and their inability to target multiple pathways. Hence a safe, efficacious, and multi-targeted approach is the need for the hour to circumvent these challenging chronic diseases. Curcumin, a natural compound extracted from the rhizomes of Curcuma longa, has been under intense scrutiny for its wide medicinal and biological properties. Curcumin is known to manifest antibacterial, antiinflammatory, antioxidant, antifungal, antineoplastic, antifungal, and proapoptotic effects. A plethora of literature has already established the immense promise of curcuminoids in the treatment and clinical management of various chronic diseases like cancer, cardiovascular, metabolic, neurological, inflammatory, and infectious diseases. To date, more than 230 clinical trials have opened investigations to understand the pharmacological aspects of curcumin in human systems. Still, further randomized clinical studies in different ethnic populations warrant its transition to a marketed drug. This review summarizes the results from different clinical trials of curcumin-based therapeutics in the prevention and treatment of various chronic diseases.
Collapse
Affiliation(s)
- Aviral Kumar
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Uzini Devi Daimary
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Xinliang Mao
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| |
Collapse
|
80
|
Lim LM, Hadinoto K. High-Payload Buccal Delivery System of Amorphous Curcumin-Chitosan Nanoparticle Complex in Hydroxypropyl Methylcellulose and Starch Films. Int J Mol Sci 2021; 22:ijms22179399. [PMID: 34502305 PMCID: PMC8430606 DOI: 10.3390/ijms22179399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 12/17/2022] Open
Abstract
Oral delivery of curcumin (CUR) has limited effectiveness due to CUR’s poor systemic bioavailability caused by its first-pass metabolism and low solubility. Buccal delivery of CUR nanoparticles can address the poor bioavailability issue by virtue of avoidance of first-pass metabolism and solubility enhancement afforded by CUR nanoparticles. Buccal film delivery of drug nanoparticles, nevertheless, has been limited to low drug payload. Herein, we evaluated the feasibilities of three mucoadhesive polysaccharides, i.e., hydroxypropyl methylcellulose (HPMC), starch, and hydroxypropyl starch as buccal films of amorphous CUR–chitosan nanoplex at high CUR payload. Both HPMC and starch films could accommodate high CUR payload without adverse effects on the films’ characteristics. Starch films exhibited far superior CUR release profiles at high CUR payload as the faster disintegration time of starch films lowered the precipitation propensity of the highly supersaturated CUR concentration generated by the nanoplex. Compared to unmodified starch, hydroxypropyl starch films exhibited superior CUR release, with sustained release of nearly 100% of the CUR payload in 4 h. Hydroxypropyl starch films also exhibited good payload uniformity, minimal weight/thickness variations, high folding endurance, and good long-term storage stability. The present results established hydroxypropyl starch as the suitable mucoadhesive polysaccharide for high-payload buccal film applications.
Collapse
|
81
|
Ahmadi R, Salari S, Sharifi MD, Reihani H, Rostamiani MB, Behmadi M, Taherzadeh Z, Eslami S, Rezayat SM, Jaafari MR, Elyasi S. Oral nano-curcumin formulation efficacy in the management of mild to moderate outpatient COVID-19: A randomized triple-blind placebo-controlled clinical trial. Food Sci Nutr 2021; 9:4068-4075. [PMID: 34401058 PMCID: PMC8358331 DOI: 10.1002/fsn3.2226] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/13/2021] [Accepted: 02/21/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Curcumin, a natural polyphenolic compound, is proposed as a potential treatment option for patients with coronavirus disease by inhibiting the entry of virus to the cell, encapsulation of the virus and viral protease, as well as modulating various cellular signaling pathways. In this study, the efficacy and safety of nanocurcumin oral formulation has been evaluated in patients with mild-moderate Coronavirus disease 2019 (COVID-19) in outpatient setting. METHODS In this triple-blind randomized placebo-controlled clinical trial, sixty mild to moderate COVID-19 patients in outpatient setting who fulfilled the inclusion criteria were randomly allocated to treatment (n = 30) group to receive oral nanocurcumin formulation (Sinacurcumin soft gel which contains 40 mg curcuminoids as nanomicelles), two soft gels twice a day after food for 2 weeks or placebo (n = 30) group. Patients' symptoms and laboratory data were assessed at baseline and during follow-up period and compared between two groups. RESULTS All symptoms except sore throat resolved faster in the treatment group and the difference was significant for chills, cough and smell and taste disturbances. The CRP serum level was lower in the treatment group at the end of two weeks and the lymphocyte count was significantly higher in treatment group. No significant adverse reaction reported in the treatment group. CONCLUSION Oral nanoformulation of curcumin can significantly improve recovery time in patients with mild to moderate COVID-19 in outpatient setting. Further studies with larger sample size are recommended.
Collapse
Affiliation(s)
- Reza Ahmadi
- Department of Family MedicineSchool of MedicineMashhad University of Medical SciencesMashhadIran
| | - Soofia Salari
- Department of Clinical PharmacySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Mohammad Davood Sharifi
- Faculty of MedicineDepartment of Emergency MedicineMashhad University of Medical sciencesMashhadIran
- Department of Internal MedicineMashhad University of Medical SciencesMashhadIran
| | - Hamidreza Reihani
- Faculty of MedicineDepartment of Emergency MedicineMashhad University of Medical sciencesMashhadIran
- Department of Internal MedicineMashhad University of Medical SciencesMashhadIran
| | | | - Morteza Behmadi
- Faculty of MedicineDepartment of Emergency MedicineMashhad University of Medical sciencesMashhadIran
- Department of Internal MedicineMashhad University of Medical SciencesMashhadIran
| | - Zhila Taherzadeh
- Targeted Drug Delivery Research CenterSchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Saeed Eslami
- Faculty of MedicineDepartment of Medical InformaticsMashhad University of Medical SciencesMashhadIran
| | - Seyed Mahdi Rezayat
- Department of PharmacologySchool of MedicineTehran University of Medical SciencesTehranIran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Pharmaceutical NanotechnologySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Sepideh Elyasi
- Department of Family MedicineSchool of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
82
|
RNA-seq and In Vitro Experiments Reveal the Protective Effect of Curcumin against 5-Fluorouracil-Induced Intestinal Mucositis via IL-6/STAT3 Signaling Pathway. J Immunol Res 2021; 2021:8286189. [PMID: 34337082 PMCID: PMC8318760 DOI: 10.1155/2021/8286189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/10/2021] [Indexed: 11/18/2022] Open
Abstract
Although first-line chemotherapy drugs, including 5-fluorouracil (5-FU), remain one of the major choice for cancer treatment, the clinical use is also accompanied with dose-depending toxicities, such as intestinal mucositis (IM), in cancer patients undergoing treatment. IM-induced gastrointestinal adverse reactions become frequent reason to postpone chemotherapy and have negative impacts on therapeutic outcomes and prognosis. Various studies have evidenced the anticancer role of curcumin in many cancers; except for this effect, studies also indicated a protective role of curcumin in intestinal diseases. Therefore, in this study, we investigated the effect of curcumin on inflammation, intestinal epithelial cell damage in an IM model. 5-FU was used to induce the model of IM in intestinal epithelial cells, and curcumin at different concentrations was administrated. The results showed that curcumin efficiently attenuated 5-FU-induced damage to IEC-6 cells, inhibited the levels of inflammatory cytokines, attenuated the 5-FU-induced inhibition on cell viability, and displayed antiapoptosis effect on IEC-6 cells. Further RNA-sequencing analysis and experiment validation found that curcumin displays its protective effect against 5-FU-induced IM in intestinal epithelial cells by the inhibition of IL-6/STAT3 signaling pathway. Taken together, these findings suggested that curcumin may be provided as a therapeutic agent in prevention and treatment of chemotherapy-induced IM.
Collapse
|
83
|
Sardiñas-Valdés M, García-Galindo HS, Chay-Canul AJ, Velázquez-Martínez JR, Hernández-Becerra JA, Ochoa-Flores AA. Ripening Changes of the Chemical Composition, Proteolysis, and Lipolysis of a Hair Sheep Milk Mexican Manchego-Style Cheese: Effect of Nano-Emulsified Curcumin. Foods 2021; 10:1579. [PMID: 34359451 PMCID: PMC8306841 DOI: 10.3390/foods10071579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 01/28/2023] Open
Abstract
The influence of nano-emulsified curcumin (NEC) added to the hair sheep milk, prior to cheese-making, on the chemical composition, lipolysis, and proteolysis of manchego-style cheeses were evaluated throughout 80 days of ripening. The addition of NEC to the milk resulted in cheeses with the same moisture content (42.23%), total protein (23.16%), and water activity (0.969) (p > 0.05). However, it increased the fat and ash levels from 26.82% and 3.64% in B 10 ppm to 30.08% and 3.85% in C 10 ppm, respectively, at the end of the ripening (p < 0.05). The total phenolic content and antioxidant activity of experimental cheeses increased during ripening, and the fatty acid groups showed significant changes occurred to a greater extent in the first days of ripening (p < 0.05). The lipolysis increased consistently in all cheeses until day 40 of ripening, to decrease at the end, while proteolysis increased during all ripening time in all samples (p < 0.05); the addition of NEC did not alter the primary proteolysis of manchego-style cheeses, but it modified secondary proteolysis and lipolysis (p < 0.05). Principal component analysis was useful for discriminating cheeses according to their chemical composition and classified into four groups according to their ripening time. This research highlights the potential of CNE to fortify dairy foods to enhance their functionality.
Collapse
Affiliation(s)
- Mariam Sardiñas-Valdés
- División Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Teapa, km 25, 86280 Villahermosa, Tabasco, Mexico; (M.S.-V.); (A.J.C.-C.); (J.R.V.-M.)
| | - Hugo Sergio García-Galindo
- Unidad de Investigación y Desarrollo de Alimentos, Instituto Tecnológico de Veracruz, M.A. de Quevedo # 2779, Col. Formando Hogar, 91897 Veracruz, Veracruz, Mexico;
| | - Alfonso Juventino Chay-Canul
- División Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Teapa, km 25, 86280 Villahermosa, Tabasco, Mexico; (M.S.-V.); (A.J.C.-C.); (J.R.V.-M.)
| | - José Rodolfo Velázquez-Martínez
- División Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Teapa, km 25, 86280 Villahermosa, Tabasco, Mexico; (M.S.-V.); (A.J.C.-C.); (J.R.V.-M.)
| | - Josafat Alberto Hernández-Becerra
- División de Procesos Industriales, Universidad Tecnológica de Tabasco, Carretera Villahermosa-Teapa Km 14.6, 86280 Villahermosa, Tabasco, Mexico
| | - Angélica Alejandra Ochoa-Flores
- División Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Teapa, km 25, 86280 Villahermosa, Tabasco, Mexico; (M.S.-V.); (A.J.C.-C.); (J.R.V.-M.)
| |
Collapse
|
84
|
Girisa S, Saikia Q, Bordoloi D, Banik K, Monisha J, Daimary UD, Verma E, Ahn KS, Kunnumakkara AB. Xanthohumol from Hop: Hope for cancer prevention and treatment. IUBMB Life 2021; 73:1016-1044. [PMID: 34170599 DOI: 10.1002/iub.2522] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022]
Abstract
Cancer is a major public health concern due to high mortality and poor quality of life of patients. Despite the availability of advanced therapeutic interventions, most treatment modalities are not efficacious, very expensive, and cause several adverse side effects. The factors such as drug resistance, lack of specificity, and low efficacy of the cancer drugs necessitate developing alternative strategies for the prevention and treatment of this disease. Xanthohumol (XN), a prenylated chalcone present in Hop (Humulus lupulus), has been found to possess prominent activities against aging, diabetes, inflammation, microbial infection, and cancer. Thus, this manuscript thoroughly reviews the literature on the anti-cancer properties of XN and its various molecular targets. XN was found to exert its inhibitory effect on the growth and proliferation of cancer cells via modulation of multiple signaling pathways such as Akt, AMPK, ERK, IGFBP2, NF-κB, and STAT3, and also modulates various proteins such as Notch1, caspases, MMPs, Bcl-2, cyclin D1, oxidative stress markers, tumor-suppressor proteins, and miRNAs. Thus, these reports suggest that XN possesses enormous therapeutic potential against various cancers and could be potentially used as a multi-targeted anti-cancer agent with minimal adverse effects.
Collapse
Affiliation(s)
- Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Queen Saikia
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Devivasha Bordoloi
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Javadi Monisha
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Uzini Devi Daimary
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Elika Verma
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
85
|
Li F, Xu Y, Li X, Wang X, Yang Z, Li W, Cheng W, Yan G. Triblock Copolymer Nanomicelles Loaded with Curcumin Attenuates Inflammation via Inhibiting the NF-κB Pathway in the Rat Model of Cerebral Ischemia. Int J Nanomedicine 2021; 16:3173-3183. [PMID: 34007172 PMCID: PMC8121676 DOI: 10.2147/ijn.s300379] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/22/2021] [Indexed: 12/29/2022] Open
Abstract
AIM Cerebral ischemic injury is one of the debilitating diseases showing that inflammation plays an important role in worsening ischemic damage. Therefore, studying the effects of some potential anti-inflammatory compounds can be very important in the treatment of cerebral ischemic injury. METHODS This study investigated anti-inflammatory effects of triblock copolymer nanomicelles loaded with curcumin (abbreviated as NC) in the brain of rats following transient cerebral ischemia/reperfusion (I/R) injury in stroke. After preparation of NC, their protective effects against bilateral common carotid artery occlusion (BCCAO) were explored by different techniques. Concentrations of free curcumin (C) and NC in liver, kidney, brain, and heart organs, as well as in plasma, were measured using a spectrofluorometer. Western blot analysis was then used to measure NF-κB-p65 protein expression levels. Also, ELISA assay was used to examine the level of cytokines IL-1β, IL-6, and TNF-α. Lipid peroxidation levels were assessed using MDA assay and H&E staining was used for histopathological examination of the hippocampus tissue sections. RESULTS The results showed a higher level of NC compared to C in plasma and organs including the brain, heart, and kidneys. Significant upregulation of NF-κB, IL-1β, IL-6, and TNF-α expressions compared to control was observed in rats after induction of I/R, which leads to an increase in inflammation. However, NC was able to downregulate significantly the level of these inflammatory cytokines compared to C. Also, the level of lipid peroxidation in pre-treated rats with 80mg/kg NC was significantly reduced. CONCLUSION Our findings in the current study demonstrate a therapeutic effect of NC in an animal model of cerebral ischemia/reperfusion (I/R) injury in stroke through the downregulation of NF-κB-p65 protein and inflammatory cytokines.
Collapse
Affiliation(s)
- Fengguang Li
- Department of Neurology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430081, People’s Republic of China
| | - Yan Xu
- Department of Pharmacy, General Hospital of Central Theater Command, Wuhan, 430010, People’s Republic of China
| | - Xing Li
- Department of Neurology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430081, People’s Republic of China
| | - Xinghua Wang
- Department of Neurology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430081, People’s Republic of China
| | - Zhigang Yang
- Department of Neurology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430081, People’s Republic of China
| | - Wanli Li
- Department of Neurology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430081, People’s Republic of China
| | - Wei Cheng
- Department of Neurology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430081, People’s Republic of China
| | - Gangli Yan
- Department of Neurology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430081, People’s Republic of China
| |
Collapse
|
86
|
Tang W, Du M, Zhang S, Jiang H. Therapeutic effect of curcumin on oral diseases: A literature review. Phytother Res 2021; 35:2287-2295. [PMID: 33205472 DOI: 10.1002/ptr.6943] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023]
Abstract
Curcumin (diferuloylmethane) is a polyphenol compound extracted from the rhizome of the plant Curcuma longa. It has the feature of being a yellow or orange pigment with a variety of biological properties, including anti-inflammation, antioxidation, anti-tumor, anti-bacteria, anti-fungus, and wound healing. Previous studies have reported the role of curcumin in treating different inflammatory diseases and tumors in vitro and in vivo. Recently, it has been demonstrated that curcumin has therapeutic benefits in oral mucosal diseases, periodontal diseases, and mouth neoplasms. In this review, we will focus on the therapeutic effects of curcumin on oral diseases.
Collapse
Affiliation(s)
- Weilong Tang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Minquan Du
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shuang Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Han Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
87
|
Armamentarium of anticancer analogues of curcumin: Portray of structural insight, bioavailability, drug-target interaction and therapeutic efficacy. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
88
|
Abdel-Razeq R, Iweir S, Awabdeh T, Barakat F, Abdel-Razeq H. Prolonged Neutropenia and Yellowish Discoloration of the Skin, But Not the Sclera, Following Excessive Turmeric Raw Root Ingestion. Cureus 2021; 13:e14754. [PMID: 34084680 PMCID: PMC8163354 DOI: 10.7759/cureus.14754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2021] [Indexed: 12/02/2022] Open
Abstract
The medicinal use of curcumin has gained popularity in recent years especially so among cancer patients undergoing chemotherapy. In this report, we describe the case of a 51-year-old female breast cancer patient who self-medicated on large amounts of turmeric root infusions while receiving chemotherapy. The patient presented with yellowish discoloration of her skin, but normal-colored sclera. She also had severe neutropenia, which persisted despite halting chemotherapy. When her white blood cell counts returned to normal, only after stopping her turmeric regimen, we determined that her neutropenia is associated with turmeric consumption making this the first report to establish this link. This report demonstrates that, as an alternative form of medication, curcumin consumption should still be monitored in cancer patients. We provide the visible sign of yellowish skin discoloration as a visible aid for healthcare providers in detecting turmeric consumption as a risk factor to be considered in differential diagnoses of unexplained neutropenia.
Collapse
Affiliation(s)
| | - Sereen Iweir
- Office of Scientific Affairs and Research, King Hussein Cancer Center, Amman, JOR
| | - Tala Awabdeh
- Internal Medicine, King Hussein Cancer Center, Amman, JOR
| | - Fareed Barakat
- Pathology and Laboratory Medicine, King Hussein Cancer Center, Amman, JOR
| | - Hikmat Abdel-Razeq
- Internal Medicine, King Hussein Cancer Center, Amman, JOR
- School of Medicine, University of Jordan, Amman, JOR
| |
Collapse
|
89
|
Swentek L, Chung D, Ichii H. Antioxidant Therapy in Pancreatitis. Antioxidants (Basel) 2021; 10:657. [PMID: 33922756 PMCID: PMC8144986 DOI: 10.3390/antiox10050657] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatitis is pathologic inflammation of the pancreas characterized by acinar cell destruction and oxidative stress. Repeated pancreatic insults can result in the development of chronic pancreatitis, characterized by irreversible fibrosis of the pancreas and many secondary sequelae, ultimately leading to the loss of this important organ. We review acute pancreatitis, chronic pancreatitis, and pancreatitis-related complications. We take a close look at the pathophysiology with a focus on oxidative stress and how it contributes to the complications of the disease. We also take a deep dive into the evolution and current status of advanced therapies for management including dietary modification, antioxidant supplementation, and nuclear factor erythroid-2-related factor 2-Kelch-like ECH-associated protein 1(Nrf2-keap1) pathway activation. In addition, we discuss the surgeries aimed at managing pain and preventing further endocrine dysfunction, such as total pancreatectomy with islet auto-transplantation.
Collapse
Affiliation(s)
| | | | - Hirohito Ichii
- Department of Surgery, University of California, Irvine, CA 92868, USA; (L.S.); (D.C.)
| |
Collapse
|
90
|
Barros CHN, Hiebner DW, Fulaz S, Vitale S, Quinn L, Casey E. Synthesis and self-assembly of curcumin-modified amphiphilic polymeric micelles with antibacterial activity. J Nanobiotechnology 2021; 19:104. [PMID: 33849570 PMCID: PMC8045376 DOI: 10.1186/s12951-021-00851-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The ubiquitous nature of bacterial biofilms combined with the enhanced resistance towards antimicrobials has led to the development of an increasing number of strategies for biofilm eradication. Such strategies must take into account the existence of extracellular polymeric substances, which obstruct the diffusion of antibiofilm agents and assists in the maintenance of a well-defended microbial community. Within this context, nanoparticles have been studied for their drug delivery efficacy and easily customised surface. Nevertheless, there usually is a requirement for nanocarriers to be used in association with an antimicrobial agent; the intrinsically antimicrobial nanoparticles are most often made of metals or metal oxides, which is not ideal from ecological and biomedical perspectives. Based on this, the use of polymeric micelles as nanocarriers is appealing as they can be easily prepared using biodegradable organic materials. RESULTS In the present work, micelles comprised of poly(lactic-co-glycolic acid) and dextran are prepared and then functionalised with curcumin. The effect of the functionalisation in the micelle's physical properties was elucidated, and the antibacterial and antibiofilm activities were assessed for the prepared polymeric nanoparticles against Pseudomonas spp. cells and biofilms. It was found that the nanoparticles have good penetration into the biofilms, which resulted in enhanced antibacterial activity of the conjugated micelles when compared to free curcumin. Furthermore, the curcumin-functionalised micelles were efficient at disrupting mature biofilms and demonstrated antibacterial activity towards biofilm-embedded cells. CONCLUSION Curcumin-functionalised poly(lactic-co-glycolic acid)-dextran micelles are novel nanostructures with an intrinsic antibacterial activity tested against two Pseudomonas spp. strains that have the potential to be further exploited to deliver a secondary bioactive molecule within its core.
Collapse
Affiliation(s)
- Caio H N Barros
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland
- National Institute for Bioprocessing Research and Training (NIBRT), Dublin, Ireland
| | - Dishon W Hiebner
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Stephanie Fulaz
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland
| | - Stefania Vitale
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Laura Quinn
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland
| | - Eoin Casey
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland.
| |
Collapse
|
91
|
Girisa S, Kumar A, Rana V, Parama D, Daimary UD, Warnakulasuriya S, Kumar AP, Kunnumakkara AB. From Simple Mouth Cavities to Complex Oral Mucosal Disorders-Curcuminoids as a Promising Therapeutic Approach. ACS Pharmacol Transl Sci 2021; 4:647-665. [PMID: 33860191 PMCID: PMC8033761 DOI: 10.1021/acsptsci.1c00017] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Indexed: 02/08/2023]
Abstract
Oral diseases are among the most common encountered health issues worldwide, which are usually associated with anomalies of the oral cavity, jaws, and salivary glands. Despite the availability of numerous treatment modalities for oral disorders, a limited clinical response has been observed because of the inefficacy of the drugs and countless adverse side effects. Therefore, the development of safe, efficacious, and wide-spectrum therapeutics is imperative in the battle against oral diseases. Curcumin, extracted from the golden spice turmeric, is a well-known natural polyphenol that has been extensively studied for its broad pleiotropic attributes and its ability to modulate multiple biological processes. It is well-documented to target pro-inflammatory mediators like NF-κB, ROS, COX-2, IL-1, IL-2, TGF-β, growth factors, apoptotic proteins, receptors, and various kinases. These properties make curcumin a promising nutraceutical in the treatment of many oral diseases like oral submucous fibrosis, oral mucositis, oral leukoplakia, oral erythroplakia, oral candidiasis, aphthous stomatitis, oral lichen planus, dental caries, periodontitis, and gingivitis. Numerous in vitro and in vivo studies have shown that curcumin alleviates the symptoms of most of the oral complications, including the inhibition of the progression of oral cancer. In this regard, many clinical trials have been completed, and many are ongoing to investigate the "curcumin effect" in oral maladies. Therefore, the current review delineates the mechanistic framework of curcumin's propensity in curbing oral diseases and present outcomes of the clinical trials of curcumin-based therapeutics that can provide a breakthrough in the clinical management of these diseases.
Collapse
Affiliation(s)
- Sosmitha Girisa
- Cancer
Biology Laboratory and DBT-AIST International Center for Translational
and Environmental Research (DAICENTER), Department of Biosciences
and Bioengineering, Indian Institute of
Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| | - Aviral Kumar
- Cancer
Biology Laboratory and DBT-AIST International Center for Translational
and Environmental Research (DAICENTER), Department of Biosciences
and Bioengineering, Indian Institute of
Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| | - Varsha Rana
- Cancer
Biology Laboratory and DBT-AIST International Center for Translational
and Environmental Research (DAICENTER), Department of Biosciences
and Bioengineering, Indian Institute of
Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| | - Dey Parama
- Cancer
Biology Laboratory and DBT-AIST International Center for Translational
and Environmental Research (DAICENTER), Department of Biosciences
and Bioengineering, Indian Institute of
Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| | - Uzini Devi Daimary
- Cancer
Biology Laboratory and DBT-AIST International Center for Translational
and Environmental Research (DAICENTER), Department of Biosciences
and Bioengineering, Indian Institute of
Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| | - Saman Warnakulasuriya
- Department
of Oral Medicine, King’s College
London and WHO Collaborating Centre for Oral Cancer and Precancer, London WC2R 2LS, United Kingdom
| | - Alan Prem Kumar
- Medical
Science Cluster, Cancer Translational Research Programme, Yong Loo
Lin School of Medicine, National University
of Singapore, Singapore 117600, Singapore
- Cancer
Science Institute of Singapore, National
University of Singapore, Singapore 117600, Singapore
- National
University Cancer Institute, National University
Health Systems, Singapore 117600, Singapore
| | - Ajaikumar B. Kunnumakkara
- Cancer
Biology Laboratory and DBT-AIST International Center for Translational
and Environmental Research (DAICENTER), Department of Biosciences
and Bioengineering, Indian Institute of
Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
92
|
|
93
|
Recent Advances in Nanotechnology with Nano-Phytochemicals: Molecular Mechanisms and Clinical Implications in Cancer Progression. Int J Mol Sci 2021; 22:ijms22073571. [PMID: 33808235 PMCID: PMC8036762 DOI: 10.3390/ijms22073571] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 12/19/2022] Open
Abstract
Biocompatible nanoparticles (NPs) containing polymers, lipids (liposomes and micelles), dendrimers, ferritin, carbon nanotubes, quantum dots, ceramic, magnetic materials, and gold/silver have contributed to imaging diagnosis and targeted cancer therapy. However, only some NP drugs, including Doxil® (liposome-encapsulated doxorubicin), Abraxane® (albumin-bound paclitaxel), and Oncaspar® (PEG-Asparaginase), have emerged on the pharmaceutical market to date. By contrast, several phytochemicals that were found to be effective in cultured cancer cells and animal studies have not shown significant efficacy in humans due to poor bioavailability and absorption, rapid clearance, resistance, and toxicity. Research to overcome these drawbacks by using phytochemical NPs remains in the early stages of clinical translation. Thus, in the current review, we discuss the progress in nanotechnology, research milestones, the molecular mechanisms of phytochemicals encapsulated in NPs, and clinical implications. Several challenges that must be overcome and future research perspectives are also described.
Collapse
|
94
|
Design and synthesis of diosgenin derivatives as apoptosis inducers through mitochondria-related pathways. Eur J Med Chem 2021; 217:113361. [PMID: 33740546 DOI: 10.1016/j.ejmech.2021.113361] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/21/2021] [Accepted: 03/03/2021] [Indexed: 12/29/2022]
Abstract
Diosgenin (DSG) has attracted attention recently as a potential anticancer therapeutic agent due to its profound antitumor activity. To better utilize DSG as an antitumor compound, two series of DSG-amino acid ester derivatives (3a-3g and 7a-7g) were designed and synthesized, and their cytotoxic activities against six human cancer cell lines (K562, T24, MNK45, HepG2, A549, and MCF-7) were evaluated. The results obtained showed that a majority of derivatives exhibited cytotoxic activities against these six human tumor cells. Structure-activity relationship analysis revealed that the introduction of l-tryptophan to the C-3 position of DSG and the C-26 position of derivative 5 was the preferred option for these compounds to display significant cytotoxic activities. Among them, compound 7g exhibited significant cytotoxicity against the K562 cell line (IC50 = 4.41 μM) and was 6.8-fold more potent than diosgenin (IC50 = 30.04 μM). Further cellular mechanism studies in K562 cells elucidated that compound 7g triggered mitochondrial-related apoptosis by increasing the generation of intracellular reactive oxygen species (ROS) and decreasing mitochondrial membrane potential (MMP), which was associated with upregulation of the gene and protein expression levels of Bax, downregulation of the gene and protein expression levels of Bcl-2 and activation of the caspase cascade. The above results suggested that compound 7g might be considered a promising scaffold for further modification of more potent anticancer agents.
Collapse
|
95
|
Aswathy M, Banik K, Parama D, Sasikumar P, Harsha C, Joseph AG, Sherin DR, Thanathu MK, Kunnumakkara AB, Vasu RK. Exploring the Cytotoxic Effects of the Extracts and Bioactive Triterpenoids from Dillenia indica against Oral Squamous Cell Carcinoma: A Scientific Interpretation and Validation of Indigenous Knowledge. ACS Pharmacol Transl Sci 2021; 4:834-847. [PMID: 33860206 DOI: 10.1021/acsptsci.1c00011] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 02/08/2023]
Abstract
Triterpenoids are ubiquitously distributed secondary metabolites, primarily scrutinized as a source of medication and preventive measures for various chronic diseases. The ease of isolation and excellent pharmacological properties of triterpenoids are notable reasons behind the exponential rise of extensive research on the bioactive triterpenoids over the past few decades. Herein, we attempted to explore the anticancer potential of the fruit extract of the ethnomedicinal plant Dillenia indica against oral squamous cell carcinoma (OSCC) and have exclusively attributed the efficacy of the extracts to the presence of two triterpenoids, namely, betulinic acid (BA) and koetjapic acid (KA). Preliminary in vitro screening of both BA and KA unveiled that the entities could impart cytotoxicity and induce apoptosis in OSCC cell lines, which were further well-supported by virtual screening based on ligand binding affinity and molecular dynamic simulations. Additionally, the aforementioned metabolites could significantly modulate the critical players such as Akt/mTOR, NF-κB, and JAK/STAT3 signaling pathways involved in the regulation of important hallmarks of cancer like cell survival, proliferation, invasion, angiogenesis, and metastasis. The present findings provide insight and immense scientific support and integrity to a piece of indigenous knowledge. However, in vivo validation is a requisite for moving to clinical trials and developing it as a commercial drug.
Collapse
Affiliation(s)
- Maniyamma Aswathy
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Center for Translational & Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781 039, Assam, India
| | - Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Center for Translational & Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781 039, Assam, India
| | - Parameswaran Sasikumar
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Center for Translational & Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781 039, Assam, India
| | - Anuja Gracy Joseph
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Daisy R Sherin
- Centre for Computational Modeling and Data Engineering, Indian Institute of Information Technology and Management-Kerala (IIITM-K), Thiruvananthapuram 695581, India
| | - Manojkumar K Thanathu
- Centre for Computational Modeling and Data Engineering, Indian Institute of Information Technology and Management-Kerala (IIITM-K), Thiruvananthapuram 695581, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational & Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781 039, Assam, India
| | - Radhakrishnan Kokkuvayil Vasu
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
96
|
Bernardo A, Plumitallo C, De Nuccio C, Visentin S, Minghetti L. Curcumin promotes oligodendrocyte differentiation and their protection against TNF-α through the activation of the nuclear receptor PPAR-γ. Sci Rep 2021; 11:4952. [PMID: 33654147 PMCID: PMC7925682 DOI: 10.1038/s41598-021-83938-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 01/01/2021] [Indexed: 12/21/2022] Open
Abstract
Curcumin is a compound found in the rhizome of Curcuma longa (turmeric) with a large repertoire of pharmacological properties, including anti-inflammatory and neuroprotective activities. The current study aims to assess the effects of this natural compound on oligodendrocyte progenitor (OP) differentiation, particularly in inflammatory conditions. We found that curcumin can promote the differentiation of OPs and to counteract the maturation arrest of OPs induced by TNF-α by a mechanism involving PPAR-γ (peroxisome proliferator activated receptor), a ligand-activated transcription factor with neuroprotective and anti-inflammatory capabilities. Furthermore, curcumin induces the phosphorylation of the protein kinase ERK1/2 known to regulate the transition from OPs to immature oligodendrocytes (OLs), by a mechanism only partially dependent on PPAR-γ. Curcumin is also able to raise the levels of the co-factor PGC1-α and of the cytochrome c oxidase core protein COX1, even when OPs are exposed to TNF-α, through a PPAR-γ-mediated mechanism, in line with the known ability of PPAR-γ to promote mitochondrial integrity and functions, which are crucial for OL differentiation to occur. Altogether, this study provides evidence for a further mechanism of action of curcumin besides its well-known anti-inflammatory properties and supports the suggested therapeutic potential of this nutraceutical in demyelinating diseases.
Collapse
Affiliation(s)
- Antonietta Bernardo
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy. .,National Center for Research and Preclinical and Clinical Evaluation of Drugs, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Cristina Plumitallo
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Chiara De Nuccio
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.,Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Sergio Visentin
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.,National Center for Research and Preclinical and Clinical Evaluation of Drugs, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Luisa Minghetti
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.,Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| |
Collapse
|
97
|
Plant-Derived Anticancer Compounds as New Perspectives in Drug Discovery and Alternative Therapy. Molecules 2021; 26:molecules26041109. [PMID: 33669817 PMCID: PMC7922180 DOI: 10.3390/molecules26041109] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 12/29/2022] Open
Abstract
Despite the recent advances in the field of chemically synthetized pharmaceutical agents, nature remains the main supplier of bioactive molecules. The research of natural products is a valuable approach for the discovery and development of novel biologically active compounds possessing unique structures and mechanisms of action. Although their use belongs to the traditional treatment regimes, plant-derived compounds still cover a large portion of the current-day pharmaceutical agents. Their medical importance is well recognized in the field of oncology, especially as an alternative to the limitations of conventional chemotherapy (severe side effects and inefficacy due to the occurrence of multi-drug resistance). This review offers a comprehensive perspective of the first blockbuster chemotherapeutic agents of natural origin’s (e.g. taxol, vincristine, doxorubicin) mechanism of action using 3D representation. In addition is portrayed the step-by-step evolution from preclinical to clinical evaluation of the most recently studied natural compounds with potent antitumor activity (e.g. resveratrol, curcumin, betulinic acid, etc.) in terms of anticancer mechanisms of action and the possible indications as chemotherapeutic or chemopreventive agents and sensitizers. Finally, this review describes several efficient platforms for the encapsulation and targeted delivery of natural compounds in cancer treatment
Collapse
|
98
|
Rinkunaite I, Simoliunas E, Alksne M, Dapkute D, Bukelskiene V. Anti-inflammatory effect of different curcumin preparations on adjuvant-induced arthritis in rats. BMC Complement Med Ther 2021; 21:39. [PMID: 33478498 PMCID: PMC7819195 DOI: 10.1186/s12906-021-03207-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 01/05/2021] [Indexed: 11/28/2022] Open
Abstract
Background Curcumin, a natural polyphenolic substance, has been known for more than two millennia as having strong anti-inflammatory activity towards multiple ailments, including arthritis. The main drawback of curcumin is its poor solubility in water, which leads to low intestinal absorption and minimal bioavailability. In this study, we aimed to compare the anti-arthritic in vivo effect of different curcumin preparations – basic curcumin extract, micellar curcumin, curcumin mixture with piperine, and microencapsulated curcumin. Methods Arthritis was induced in Wistar rats by complete Freund’s adjuvant, and the severity of arthritis was evaluated daily using the arthritis score system. Curcumin preparations were given to animals per os daily for 20 consecutive days, starting at 6th day after arthritis induction. To determine the inflammatory background, pro-inflammatory cytokines were determined using the ELISA test. In addition, hematologic test, weight change, and limb swelling were tracked. Results Our results indicate that curcumin had a rather weak effect on arthritis progression in the Wistar rat model, microencapsulated curcumin effectively prevented the progression of arthritis – the disease stabilized after 10 days of supplementation. It also reduced the levels of immune cells (neutrophils and leukocytes), as well as pro-inflammatory cytokines – TNFα, IL-1, and IL-6, which levels were close to arthritis-free control. Other formulations of curcumin had lower or no effect on arthritis progression. Conclusion Our study shows that the same concentrations of curcumin had a distinctly expressed positive anti-inflammatory effect depending on the form of its delivery. Specifically, we found that microencapsulated curcumin had the most promising effect for treatment. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03207-3.
Collapse
Affiliation(s)
- Ieva Rinkunaite
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania.
| | - Egidijus Simoliunas
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| | - Milda Alksne
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| | - Dominyka Dapkute
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| | - Virginija Bukelskiene
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| |
Collapse
|
99
|
Acharya B, Chaijaroenkul W, Na-Bangchang K. Therapeutic potential and pharmacological activities of β-eudesmol. Chem Biol Drug Des 2021; 97:984-996. [PMID: 33449412 DOI: 10.1111/cbdd.13823] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/21/2020] [Indexed: 12/24/2022]
Abstract
Herbal medicines are attracting the attention of researchers worldwide. β-Eudesmol is one of the most studied and major bioactive sesquiterpenes, mainly extracted from Atractylodes lancea (Thunb) DC. rhizomes. It has potential anti-tumor and anti-angiogenic activities and is an inhibitor of tumor growth by inhibiting angiogenesis by suppressing CREB activation of the growth factor signaling pathway. It also stimulates neurite outgrowth in rat pheochromocytoma cells with activation of mitogen-activated protein kinases. It may be a promising lead compound for enhancing neural function, and it may help to explain the underlying mechanisms of neural differentiation. In this review, we summarized the currently available clinical and preclinical studies describing the therapeutic applications of β-eudesmol.
Collapse
Affiliation(s)
- Bishwanath Acharya
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Pathum Thani, Thailand
| | - Wanna Chaijaroenkul
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Pathum Thani, Thailand.,Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Pathum Thani, Thailand
| | - Kesara Na-Bangchang
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Pathum Thani, Thailand.,Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Pathum Thani, Thailand.,Drug discovery, and Development Center, Thammasat University, Rangsit Center, Klong Luang, Pathum Thani, Thailand
| |
Collapse
|
100
|
Ahmad B, Rehman SU, Azizullah A, Khan MF, Din SRU, Ahmad M, Ali A, Tahir N, Azam N, Gamallat Y, Rahman KU, Ali M, Safi M, Khan I, Qamer S, Oh DH. Molecular mechanisms of anticancer activities of polyphyllin VII. Chem Biol Drug Des 2021; 97:914-929. [PMID: 33342040 DOI: 10.1111/cbdd.13818] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/04/2020] [Accepted: 12/13/2020] [Indexed: 12/20/2022]
Abstract
Cancer is the leading cause of mortality in the world. The major therapies for cancer treatment are chemotherapy, surgery, and radiation therapy. All these therapies expensive, toxic and show resistance. The plant-derived compounds are considered safe, cost-effective and target cancer through different pathways. In these pathways include oxidative stress, mitochondrial dependent and independent, STAT3, NF-kB, MAPKs, cell cycle, and autophagy pathways. One of the new plants derived compounds is Polyphyllin VII (PPVII), which target cancer through different molecular mechanisms. In literature, there is a review gap of studies on PPVII; therefore in the current review, we summarized the available studies on PPVII to provide a base for future research.
Collapse
Affiliation(s)
- Bashir Ahmad
- Department of Biology (Botany, Zoology, Biochemistry), The University of Haripur, Haripur, Pakistan.,College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Shafiq Ur Rehman
- Department of Biology (Botany, Zoology, Biochemistry), The University of Haripur, Haripur, Pakistan
| | - Azizullah Azizullah
- Department of Biology (Botany, Zoology, Biochemistry), The University of Haripur, Haripur, Pakistan
| | | | - Syed Riaz Ud Din
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Manzoor Ahmad
- Department of Chemistry, Malakand University, Chakdara, Pakistan
| | - Ashraf Ali
- Department of Chemistry, The University of Haripur, Haripur, Pakistan
| | - Naeem Tahir
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Nasir Azam
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yaser Gamallat
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Khalil Ur Rahman
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Muhsin Ali
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Mohammad Safi
- Oncology Department First affiliated Hospital of Dalian Medical University, Dalian, China
| | - Imran Khan
- Department of Food Science and Technology, The University of Haripur, Haripur, Pakistan
| | - Samina Qamer
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|