51
|
Jung DH, Park CS. Resistant starch utilization by Bifidobacterium, the beneficial human gut bacteria. Food Sci Biotechnol 2023; 32:441-452. [PMID: 36911330 PMCID: PMC9992497 DOI: 10.1007/s10068-023-01253-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/01/2023] [Accepted: 01/05/2023] [Indexed: 01/28/2023] Open
Abstract
Resistant starch (RS) reaches the large intestine largely intact, where it is fermented by the gut microbiota, resulting in the production of short-chain fatty acids (SCFAs) that have beneficial effects on the human body. Bifidobacteria are a major species widely used in the probiotic field, and are increased in the gut by RS, indicating their importance in RS metabolism in the intestine. Bifidobacteria have a genetic advantage in starch metabolism as they possess a significant number of starch-degrading enzymes and extraordinary three RS-degrading enzymes, allowing them to utilize RS. However, to date, only three species of RS-degrading bifidobacteria have been reported as single isolates B. adolescentis, B. choerinum, and B. pseudolongum. In this review, we describe recent studies on RS utilization by Bifidobacterium, based on their biochemical characteristics and genetic findings. This review provides a crucial understanding of how bifidobacteria survive in specific niches with abundant RS such as the human gut.
Collapse
Affiliation(s)
- Dong-Hyun Jung
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, 22689 Republic of Korea
- Division of Food and Nutrition, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Cheon-Seok Park
- Department of Food Science and Biotechnology, Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, 17104 Republic of Korea
| |
Collapse
|
52
|
The Interplay of Dietary Fibers and Intestinal Microbiota Affects Type 2 Diabetes by Generating Short-Chain Fatty Acids. Foods 2023; 12:foods12051023. [PMID: 36900540 PMCID: PMC10001013 DOI: 10.3390/foods12051023] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Foods contain dietary fibers which can be classified into soluble and insoluble forms. The nutritional composition of fast foods is considered unhealthy because it negatively affects the production of short-chain fatty acids (SCFAs). Dietary fiber is resistant to digestive enzymes in the gut, which modulates the anaerobic intestinal microbiota (AIM) and fabricates SCFAs. Acetate, butyrate, and propionate are dominant in the gut and are generated via Wood-Ljungdahl and acrylate pathways. In pancreatic dysfunction, the release of insulin/glucagon is impaired, leading to hyperglycemia. SCFAs enhance insulin sensitivity or secretion, beta-cell function, leptin release, mitochondrial function, and intestinal gluconeogenesis in human organs, which positively affects type 2 diabetes (T2D). Research models have shown that SCFAs either enhance the release of peptide YY (PYY) and glucagon-like peptide-1 (GLP-1) from L-cells (entero-endocrine), or promotes the release of leptin hormone in adipose tissues through G-protein receptors GPR-41 and GPR-43. Dietary fiber is a component that influences the production of SCFAs by AIM, which may have beneficial effects on T2D. This review focuses on the effectiveness of dietary fiber in producing SCFAs in the colon by the AIM as well as the health-promoting effects on T2D.
Collapse
|
53
|
Kadyan S, Park G, Singh P, Arjmandi B, Nagpal R. Prebiotic mechanisms of resistant starches from dietary beans and pulses on gut microbiome and metabolic health in a humanized murine model of aging. Front Nutr 2023; 10:1106463. [PMID: 36824174 PMCID: PMC9941547 DOI: 10.3389/fnut.2023.1106463] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023] Open
Abstract
Dietary pulses, being a rich source of fiber and proteins, offer an ideal and inexpensive food choice for older adults to promote gut and metabolic health. However, the prebiotic effects of dietary pulses-derived resistant starches (RS), compared to RS from cereals and tubers, remain relatively underexplored, particularly in context to their gut modulatory potential in old age. We herein investigate the prebiotic effects of pulses-derived RS on the gut microbiome and intestinal health in aged (60-week old) mice colonized with human microbiota. C57B6/J mice were fed for 20 weeks with either a western-style high-fat diet (control; CTL) or CTL diet supplemented (5% w/w) with RS from pinto beans (PTB), black-eyed-peas (BEP), lentils (LEN), chickpeas (CKP), or inulin (INU; reference control). We find that the RS supplementation modulates gut microbiome in a sex-dependent manner. For instance, CKP enriched α-diversity only in females, while β-diversity deviated for both sexes. Further, different RS groups exhibited distinct microbiome differences at bacterial phyla and genera levels. Notably, LEN fostered Firmicutes and depleted Proteobacteria abundance, whereas Bacteroidota was promoted by CKP and INU. Genus Dubosiella increased dominantly in males for all groups except PTB, whilst Faecalibaculum decreased in females by CKP and INU groups. Linear discriminant analysis effect size (LEfSe) and correlational analyzes reveal RS-mediated upregulation of key bacterial genera associated with short-chain fatty acids (butyrate) production and suppression of specific pathobionts. Subsequent machine-learning analysis validate decreased abundance of notorious genera, namely, Enterococcus, Odoribacter, Desulfovibrio, Alistipes and Erysipelatoclostridium among RS groups. CKP and LEN groups partly protected males against post-prandial glycemia. Importantly, RS ameliorated high-fat diet-induced gut hyperpermeability and enhanced expression of tight-junction proteins (claudin-1 and claudin-4), which were more pronounced for LEN. In addition, IL10 upregulation was more prominent for LEN, while TNF-α was downregulated by LEN, CKP, and INU. Together, these findings demonstrate that RS supplementation beneficially modulates the gut microbiome with a reduction in gut leakiness and inflammation, indicating their prebiotic potential for functional food and nutritional applications.
Collapse
Affiliation(s)
- Saurabh Kadyan
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Gwoncheol Park
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Prashant Singh
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Bahram Arjmandi
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, United States
| | | |
Collapse
|
54
|
Hodgkinson K, El Abbar F, Dobranowski P, Manoogian J, Butcher J, Figeys D, Mack D, Stintzi A. Butyrate's role in human health and the current progress towards its clinical application to treat gastrointestinal disease. Clin Nutr 2023; 42:61-75. [PMID: 36502573 DOI: 10.1016/j.clnu.2022.10.024] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/17/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Butyrate is a key energy source for colonocytes and is produced by the gut microbiota through fermentation of dietary fiber. Butyrate is a histone deacetylase inhibitor and also signals through three G-protein coupled receptors. It is clear that butyrate has an important role in gastrointestinal health and that butyrate levels can impact both host and microbial functions that are intimately coupled with each other. Maintaining optimal butyrate levels improves gastrointestinal health in animal models by supporting colonocyte function, decreasing inflammation, maintaining the gut barrier, and promoting a healthy microbiome. Butyrate has also shown protective actions in the context of intestinal diseases such as inflammatory bowel disease, graft-versus-host disease of the gastrointestinal tract, and colon cancer, whereas lower levels of butyrate and/or the microbes which are responsible for producing this metabolite are associated with disease and poorer health outcomes. However, clinical efforts to increase butyrate levels in humans and reverse these negative outcomes have generated mixed results. This article discusses our current understanding of the molecular mechanisms of butyrate action with a focus on the gastrointestinal system, the links between host and microbial factors, and the efforts that are currently underway to apply the knowledge gained from the bench to bedside.
Collapse
Affiliation(s)
- Kendra Hodgkinson
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Faiha El Abbar
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Peter Dobranowski
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Juliana Manoogian
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - James Butcher
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Daniel Figeys
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; School of Pharmaceutical Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - David Mack
- Department of Paediatrics, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8L1, Canada; Children's Hospital of Eastern Ontario Inflammatory Bowel Disease Centre and Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Alain Stintzi
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
55
|
Velraja S, Krishnan N. Effects of Chromium, Inositol and Resistant Starch Supplementation In Pcos: A Systematic Review. BIOMEDICAL AND BIOTECHNOLOGY RESEARCH JOURNAL (BBRJ) 2023. [DOI: 10.4103/bbrj.bbrj_21_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
56
|
Wei X, Yang W, Wang J, Zhang Y, Wang Y, Long Y, Tan B, Wan X. Health Effects of Whole Grains: A Bibliometric Analysis. Foods 2022; 11:foods11244094. [PMID: 36553836 PMCID: PMC9777732 DOI: 10.3390/foods11244094] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Whole grains have been recommended in the diet in most countries, with numerous publications focusing on their health effect. A systematic analysis of these publications on different research methods, regions and perspectives will contribute to an understanding of the innovation pattern in this field. This bibliometric study analyzes the global publication characteristics, hotspots and frontiers of whole grain health benefit research, and discusses the trends and prospects of this topic. The overall number of publications is on the rise, with the United States contributing the most publications. The most cited literature shows that observational studies, systematic reviews and meta-analysis are the most widely used methods. The main focus in this area is on dietary fiber and bioactive substances, while the latter has received increased attention in recent years in particular. With the increasingly prominent problems of hidden hunger and chronic disease, the development of whole grain foods and their optimum intake have gradually become hot topics. In addition to the need to reveal the mechanism of whole grain health effects, consensus needs to be reached on standards and definitions for whole grain foods, and attention should be paid to the retention of taste and healthy nutrients in processing.
Collapse
Affiliation(s)
- Xun Wei
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, China
| | - Wei Yang
- College of Basic Science, Tianjin Agricultural University, Tianjin 300384, China
| | - Jianhui Wang
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, China
| | - Yong Zhang
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, China
| | - Yaxuan Wang
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, China
| | - Yan Long
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, China
| | - Bin Tan
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
- Correspondence: (B.T.); (X.W.); Tel.: +86-132-6143-7257 (B.T.); +86-186-0056-1850 (X.W.)
| | - Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, China
- Correspondence: (B.T.); (X.W.); Tel.: +86-132-6143-7257 (B.T.); +86-186-0056-1850 (X.W.)
| |
Collapse
|
57
|
Li Y, Han M, Song J, Liu S, Wang Y, Su X, Wei K, Xu Z, Li H, Wang Z. The prebiotic effects of soluble dietary fiber mixture on renal anemia and the gut microbiota in end-stage renal disease patients on maintenance hemodialysis: a prospective, randomized, placebo-controlled study. J Transl Med 2022; 20:599. [PMID: 36517799 PMCID: PMC9753397 DOI: 10.1186/s12967-022-03812-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Renal anemia is caused by end-stage renal disease (ESRD) but has a complex etiology. The application of dietary fiber (DF) to regulate the gut microbiota has shown effective therapeutic effects in some diseases, but its role in renal anemia is not clear. The aim of this study was to explore the effect of DF on renal anemia by regulating the gut microbiota and its metabolite, short-chain fatty acids (SCFAs). METHODS A total of 162 ESRD patients were enrolled and randomly distributed into a DF or a control group (received oral DF or potato starch, 10 g/day for 8 weeks). Hemoglobin (Hb), serum iron (Fe2+), serum ferritin (SF), soluble transferrin receptor (sTfR), hepcidin and the dosage of recombinant human erythropoietin (rhEPO) before and after intervention in patients were analyzed. The gut microbiota and SCFAs in both groups were analyzed by 16S rDNA sequencing and gas chromatography-mass spectrometry, respectively. Spearman's correlation test was used to analyze the correlation between the gut microbiota, SCFAs and the hematological indicators. RESULTS Compared with the control group, (1) the patients in the DF group had higher Hb [117.0 (12.5) g/L vs. 94.0 (14.5) g/L, p < 0.001], Fe2+ [13.23 (4.83) μmol/L vs. 10.26 (5.55) μmol/L, p < 0.001], and SF levels [54.15 (86.66) ng/ml vs. 41.48 (36.60) ng/ml, p = 0.003]. (2) The rhEPO dosage in the DF group was not significantly decreased (p = 0.12). (3) Bifidobacterium adolescentis, Lactobacillus and Lactobacillaceae were increased in the DF group, and Lactobacillus and Lactobacillaceae were positively correlated with Hb (r = 0.44, p < 0.001; r = 0.44, p < 0.001) and Fe2+ levels (r = 0.26, p = 0.016; r = 0.26, p = 0.016) and negatively correlated with rhEPO dosage (r = - 0.45, p < 0.001; r = - 0.45, p < 0.001). (4) Patients in the DF group had elevated serum butyric acid (BA) levels [0.80 (1.65) vs. 0.05 (0.04), p < 0.001] and BA levels were positively correlated with Hb (r = 0.26, p = 0.019) and Fe2+ (r = 0.31, p = 0.005) and negatively correlated with rhEPO dosage (r = - 0.36, p = 0.001). Lactobacillus and Lactobacillaceae were positively correlated with BA levels (r = 0.78, p < 0.001; r = 0.78, p < 0.001). CONCLUSION DF may improve renal anemia in ESRD patients by regulating the gut microbiota and SCFAs. Trial registration This study was registered in the China Clinical Trial Registry ( www.chictr.org.cn ) on December 20, 2018 ( ChiCTR1800020232 ).
Collapse
Affiliation(s)
- Yang Li
- grid.410638.80000 0000 8910 6733Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Nephrology, No. 16766 Jingshi Road, Jinan, 250014 Shandong China
| | - Min Han
- grid.410638.80000 0000 8910 6733Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Nephrology, No. 16766 Jingshi Road, Jinan, 250014 Shandong China
| | - Jia Song
- grid.410638.80000 0000 8910 6733Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Nephrology, No. 16766 Jingshi Road, Jinan, 250014 Shandong China ,grid.410638.80000 0000 8910 6733Shandong First Medical University, No. 6699 Qingdao Street, Jinan, 250117 Shandong China
| | - Shijin Liu
- grid.410638.80000 0000 8910 6733Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Nephrology, No. 16766 Jingshi Road, Jinan, 250014 Shandong China ,grid.268079.20000 0004 1790 6079Weifang Medical University, No. 7166 Baotong West Street, Weifang, 261053 Shandong China
| | - Yongjun Wang
- grid.452422.70000 0004 0604 7301Department of Clinical Nutrition, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766 Jingshi Road, Jinan, 250014 Shandong China
| | - Xinhuan Su
- grid.460018.b0000 0004 1769 9639Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021 Shandong China
| | - Kai Wei
- grid.410638.80000 0000 8910 6733Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Nephrology, No. 16766 Jingshi Road, Jinan, 250014 Shandong China
| | - Zhen Xu
- Department of Nephrology, Yuncheng Chengxin Hospital, West of Jiangmiaodeng Tower, Yunzhou Street, Heze, 274700 Shandong China
| | - Hui Li
- Department of Nephrology, People’s Hospital of Lingcheng, No. 245 Zhongxing Road, Dezhou, 253599 Shandong China
| | - Zunsong Wang
- grid.410638.80000 0000 8910 6733Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Nephrology, No. 16766 Jingshi Road, Jinan, 250014 Shandong China
| |
Collapse
|
58
|
Abstract
PURPOSE OF REVIEW To discuss the interplay behind how a high-fibre diet leads to lower blood pressure (BP) via the gut microbiome. RECENT FINDINGS Compelling evidence from meta-analyses support dietary fibre prevents the development of cardiovascular disease and reduces BP. This relation is due to gut microbial metabolites, called short-chain fatty acids (SCFAs), derived from fibre fermentation. The SCFAs acetate, propionate and butyrate lower BP in independent hypertensive models. Mechanisms are diverse but still not fully understood-for example, they include G protein-coupled receptors, epigenetics, immune cells, the renin-angiotensin system and vasculature changes. Lack of dietary fibre leads to changes to the gut microbiota that drive an increase in BP. The mechanisms involved are unknown. The intricate interplay between fibre, the gut microbiota and SCFAs may represent novel therapeutic approaches for high BP. Other gut microbiota-derived metabolites, produced when fibre intake is low, may hold potential therapeutic applications. Further translational evidence is needed.
Collapse
Affiliation(s)
- Chudan Xu
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Melbourne, Australia
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Melbourne, Australia.
- Heart Failure Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia.
| |
Collapse
|
59
|
Recent advances in targeted manipulation of the gut microbiome by prebiotics: from taxonomic composition to metabolic function. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
60
|
Cao S, Li C. Influence of Resistant Starch in Whole Rice on Human Gut Microbiota─From Correlation Implications to Possible Causal Mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12760-12771. [PMID: 36190451 DOI: 10.1021/acs.jafc.2c05380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Rice is the main staple food for a large population around the world, while it generally has a high glycemic index and low resistant starch (RS) content. Although many strategies have been applied to develop healthier rice products with increased RS contents, their actual effects on gut microbiota and human health remain elusive. In this review, currently available production methods of rice RS are briefly summarized, followed by a critical discussion on their interactions with gut microbiota and subsequent effects on human health, from correlation implications to causal mechanisms. Different contents, types, and structures of RS have been produced by strategies such as genetic manipulation and controlling cooking conditions. The difference can largely determine effects of rice RS on gut microbiota composition and metabolites by specific RS-gut microbiota interactions. This review can thus help the rice industry develop rice products with desirable RS contents and structures to generally improve human health.
Collapse
Affiliation(s)
- Senbin Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Cheng Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
- Joint International Research Laboratory of Agriculture Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| |
Collapse
|
61
|
Luk AWS, Mitchell L, Koay YC, O’Sullivan JF, O’Connor H, Hackett DA, Holmes A. Intersection of Diet and Exercise with the Gut Microbiome and Circulating Metabolites in Male Bodybuilders: A Pilot Study. Metabolites 2022; 12:metabo12100911. [PMID: 36295813 PMCID: PMC9608465 DOI: 10.3390/metabo12100911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 12/04/2022] Open
Abstract
Diet, exercise and the gut microbiome are all factors recognised to be significant contributors to cardiometabolic health. However, diet and exercise interventions to modify the gut microbiota to improve health are limited by poor understanding of the interactions between them. In this pilot study, we explored diet–exercise–microbiome dynamics in bodybuilders as they represent a distinctive group that typically employ well-defined dietary strategies and exercise regimes to alter their body composition. We performed longitudinal characterisation of diet, exercise, the faecal microbial community composition and serum metabolites in five bodybuilders during competition preparation and post-competition. All participants reduced fat mass while conserving lean mass during competition preparation, corresponding with dietary energy intake and exercise load, respectively. There was individual variability in food choices that aligned to individualised gut microbial community compositions throughout the study. However, there was a common shift from a high protein, low carbohydrate diet during pre-competition to a more macronutrient-balanced diet post-competition, which was associated with similar changes in the gut microbial diversity across participants. The circulating metabolite profiles also reflected individuality, but a subset of metabolites relating to lipid metabolism distinguished between pre- and post-competition. Changes in the gut microbiome and circulating metabolome were distinct for each individual, but showed common patterns. We conclude that further longitudinal studies will have greater potential than cross-sectional studies in informing personalisation of diet and exercise regimes to enhance exercise outcomes and improve health.
Collapse
Affiliation(s)
- Alison W. S. Luk
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Lachlan Mitchell
- Exercise, Health and Performance, School of Health Sciences, Faculty of Medicine and Health Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Yen Chin Koay
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
- Exercise, Health and Performance, School of Health Sciences, Faculty of Medicine and Health Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
- Heart Research Institute, The University of Sydney, Newtown, NSW 2042, Australia
| | - John F. O’Sullivan
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
- Heart Research Institute, The University of Sydney, Newtown, NSW 2042, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Helen O’Connor
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
- Exercise, Health and Performance, School of Health Sciences, Faculty of Medicine and Health Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Daniel A. Hackett
- Exercise, Health and Performance, School of Health Sciences, Faculty of Medicine and Health Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Andrew Holmes
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
- Correspondence: ; Tel.: +61-2-93512530
| |
Collapse
|
62
|
Arenga pinnata Resistant Starch Modulate Gut Microbiota and Ameliorate Intestinal Inflammation in Aged Mice. Nutrients 2022; 14:nu14193931. [PMID: 36235583 PMCID: PMC9572357 DOI: 10.3390/nu14193931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022] Open
Abstract
This study aimed to compare the regulatory effects of Arenga pinnata retrograded starch (APRS), Arenga pinnata starch (APS), and whole Arenga pinnata flour (APF) on gut microbiota and improvement of intestinal inflammation in aged mice. APF, APS, and APRS altered gut microbiota composition and exhibited different prebiotic effects. Bifidobacterium showed the greatest increase in feces of aged mice fed APF. The abundance of genus Lachnospiraceae_NK4A136 was highest in the APS group. APRS supplementation led to a greatest increasement in abundance of Lactobacillus, Roseburia, and Faecalibacterium prausnitzii. APRS induced significantly more short-chain fatty acid (SCFAs) production than APF and APS. APF, APS, and APRS treatments improved intestinal inflammation in aged mice and the order of ameliorative effect was APRS > APS > APF. APRS significantly decreased relative mRNA expression of pro-inflammatory cytokines (IL-6, IL-1β, and TNF-α) and increased anti-inflammatory cytokines (IL-10). In addition, APF, APS, and APRS significantly downregulated the relative mRNA expression of senescence-associated gene p53 and upregulated the expression of anti-aging gene Sirt1. These results provide potentially useful information about the beneficial effects of Arenga pinnata products on human health.
Collapse
|
63
|
Wen JJ, Li MZ, Hu JL, Tan HZ, Nie SP. Resistant starches and gut microbiota. Food Chem 2022; 387:132895. [DOI: 10.1016/j.foodchem.2022.132895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 02/08/2023]
|
64
|
Mathers JC, Elliott F, Macrae F, Mecklin JP, Möslein G, McRonald FE, Bertario L, Evans DG, Gerdes AM, Ho JW, Lindblom A, Morrison PJ, Rashbass J, Ramesar RS, Seppälä TT, Thomas HJ, Sheth HJ, Pylvänäinen K, Reed L, Borthwick GM, Bishop DT, Burn J. Cancer Prevention with Resistant Starch in Lynch Syndrome Patients in the CAPP2-Randomized Placebo Controlled Trial: Planned 10-Year Follow-up. Cancer Prev Res (Phila) 2022; 15:623-634. [PMID: 35878732 PMCID: PMC9433960 DOI: 10.1158/1940-6207.capr-22-0044] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/07/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022]
Abstract
ABSTRACT The CAPP2 trial investigated the long-term effects of aspirin and resistant starch on cancer incidence in patients with Lynch syndrome (LS). Participants with LS were randomized double-blind to 30 g resistant starch (RS) daily or placebo for up to 4 years. We present long-term cancer outcomes based on the planned 10-year follow-up from recruitment, supplemented by National Cancer Registry data to 20 years in England, Wales, and Finland. Overall, 463 participants received RS and 455 participants received placebo. After up to 20 years follow-up, there was no difference in colorectal cancer incidence (n = 52 diagnosed with colorectal cancer among those randomized to RS against n = 53 on placebo) but fewer participants had non-colorectal LS cancers in those randomized to RS (n = 27) compared with placebo (n = 48); intention-to-treat (ITT) analysis [HR, 0.54; 95% confidence interval (CI), 0.33-0.86; P = 0.010]. In ITT analysis, allowing for multiple primary cancer diagnoses among participants by calculating incidence rate ratios (IRR) confirmed the protective effect of RS against non-colorectal cancer LS cancers (IRR, 0.52; 95% CI, 0.32-0.84; P = 0.0075). These effects are particularly pronounced for cancers of the upper GI tract; 5 diagnoses in those on RS versus 21 diagnoses on placebo. The reduction in non-colorectal cancer LS cancers was detectable in the first 10 years and continued in the next decade. For colorectal cancer, ITT analysis showed no effect of RS on colorectal cancer risk (HR, 0.92; 95% CI, 0.62-1.34; P = 0.63). There was no interaction between aspirin and RS treatments. In conclusion, 30 g daily RS appears to have a substantial protective effect against non-colorectal cancer cancers for patients with LS. PREVENTION RELEVANCE Regular bowel screening and aspirin reduce colorectal cancer among patients with LS but extracolonic cancers are difficult to detect and manage. This study suggests that RS reduces morbidity associated with extracolonic cancers. See related Spotlight, p. 557.
Collapse
Affiliation(s)
- John C. Mathers
- Human Nutrition Research Centre, Population Heath Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Faye Elliott
- Division of Haematology and Immunology, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Finlay Macrae
- Division Colorectal Medicine and Genetics, Royal Melbourne Hospital, Melbourne, Australia
| | - Jukka-Pekka Mecklin
- Department of Education & Research, Jyväskylä Central Hospital, Jyväskylä, Finland
- Sport & Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Gabriela Möslein
- Center for Hereditary Tumors, Ev. BEHESDA Khs. zu Duisburg GmbH, Germany
| | - Fiona E. McRonald
- National Cancer Registration and Analysis Service, Public Health England
| | - Lucio Bertario
- Instituto Nazionale per lo Studio e, la Cura dei Tumori, Milan, Italy
| | - D. Gareth Evans
- Division of Evolution and Genomic Medicine, University of Manchester, St Mary's Hospital, Manchester Universities Foundation Trust, Manchester, United Kingdom
| | - Anne-Marie Gerdes
- Medical Genetics Clinic, ICMM; Clinical Genetics, Rigshospital, Copenhagen, Denmark
| | - Judy W.C. Ho
- Hereditary GI Cancer Registry, Department of Surgery, Queen Mary Hospital, Hong Kong, China
| | - Annika Lindblom
- Department of Molecular Medicine & Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Patrick J. Morrison
- The Department of Medical Genetics, Queens University Belfast, Belfast City Hospital HSC Trust, Belfast, United Kingdom
| | - Jem Rashbass
- National Cancer Registration and Analysis Service, Public Health England
| | - Raj S. Ramesar
- MRC Genomic and Precision Medicine Research Unit, Division of Human Genetics, Institute for Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, South Africa
| | - Toni T. Seppälä
- Department of Gastrointestinal Surgery, Helsinki University Hospital, Helsinki, Finland
| | - Huw J.W. Thomas
- St Mark's Hospital, London & Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Harsh J. Sheth
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom
| | - Kirsi Pylvänäinen
- Department of Education & Research, Jyväskylä Central Hospital, Jyväskylä, Finland
| | - Lynn Reed
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom
| | - Gillian M. Borthwick
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom
| | - D. Timothy Bishop
- Division of Haematology and Immunology, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - John Burn
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom
| | | |
Collapse
|
65
|
Bansal A, Montgomery R, Vilar E. Can a Banana a Day Keep the Cancer Away in Patients with Lynch Syndrome? Cancer Prev Res (Phila) 2022; 15:557-559. [DOI: 10.1158/1940-6207.capr-22-0312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022]
Abstract
Abstract
The CAPP2 investigators report on the long-term effects of resistant starch (RS) on the incidence of colorectal cancer and other Lynch syndrome–related tumors in the trial population of the CAPP-2 study. RS has no effect on colorectal cancer incidence, but it reduced the numbers of other Lynch syndrome–related tumors, mainly driven by upper gastrointestinal cancers. Although the study has limitations related to secondary analysis, it fills an important void in the field of cancer interception of non–colorectal Lynch syndrome–related tumors and should form the basis for future trials of RS in Lynch syndrome.
See related article, p. 623
Collapse
Affiliation(s)
- Ajay Bansal
- 1Division of Gastroenterology and Hepatology, The University of Kansas Medical Center, Kansas City, Kansas
- 2The University of Kansas Cancer Center, Kansas City, Kansas
| | - Robert Montgomery
- 3Department of Biostatistics and Data Science, The University of Kansas Medical Center, Kansas City, Kansas
| | - Eduardo Vilar
- 4Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
66
|
De Arcangelis E, Angelicola M, Trivisonno MC, Iacovino S, Falasca L, Lafiandra D, Sestili F, Messia MC, Marconi E. High amylose bread wheat and its effects on cooking quality and nutritional properties of pasta. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Elisa De Arcangelis
- Department of Science and Technology for Humans and the Environment, Università Campus Bio‐Medico di Roma Via Álvaro del Portillo 21 00128 Rome Italy
- Dipartimento Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise Via F. De Sanctis, 1 86100 Campobasso Italy
| | - Martina Angelicola
- Dipartimento Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise Via F. De Sanctis, 1 86100 Campobasso Italy
| | - Maria Carmela Trivisonno
- Dipartimento Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise Via F. De Sanctis, 1 86100 Campobasso Italy
| | - Silvio Iacovino
- Dipartimento Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise Via F. De Sanctis, 1 86100 Campobasso Italy
| | - Luisa Falasca
- Dipartimento Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise Via F. De Sanctis, 1 86100 Campobasso Italy
| | - Domenico Lafiandra
- Department of Agriculture and Forest Sciences University of Tuscia Via San Camillo de Lellis snc 01100 Viterbo Italy
| | - Francesco Sestili
- Department of Agriculture and Forest Sciences University of Tuscia Via San Camillo de Lellis snc 01100 Viterbo Italy
| | - Maria Cristina Messia
- Dipartimento Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise Via F. De Sanctis, 1 86100 Campobasso Italy
| | - Emanuele Marconi
- Department of Science and Technology for Humans and the Environment, Università Campus Bio‐Medico di Roma Via Álvaro del Portillo 21 00128 Rome Italy
- Dipartimento Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise Via F. De Sanctis, 1 86100 Campobasso Italy
- Centro Interateneo di Eccellenza per la Ricerca e l’Innovazione su Pasta e Cereali trasformati (CERERE) 86100 Campobasso Italy
| |
Collapse
|
67
|
Zhang W, Cheng B, Zeng X, Tang Q, Shu Z, Wang P. Physicochemical and Digestible Properties of Parboiled Black Rice With Different Amylose Contents. Front Nutr 2022; 9:934209. [PMID: 35873418 PMCID: PMC9302023 DOI: 10.3389/fnut.2022.934209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/30/2022] [Indexed: 11/22/2022] Open
Abstract
The varieties of black rice with different amylose contents (waxy; medium-amylose: 16.03%; high-amylose: 27.14%) were parboiled and then evaluated for physicochemical and digestible properties. The color, crystalline structure, and swelling property of parboiled rice were analyzed, and the water molecular mobility, texture, and starch digestibility of cooked parboiled rice were determined. The color of black rice was only slightly changed after the parboiling treatment. The crystalline structures of waxy and medium-amylose rice were severely damaged by the parboiling treatment, while the highly crystalline structure was retained in parboiled high-amylose rice. During heating in water, parboiled high-amylose rice had a lower water absorption ratio (WAR) and volume expansion ratio (VER) than the other two varieties. After cooking, parboiled high-amylose rice had higher water molecular mobility and harder texture compared with the other two varieties. Cooked parboiled high-amylose rice contained higher content of resistant starch than cooked parboiled waxy and medium-amylose rice.
Collapse
Affiliation(s)
- Wei Zhang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan, China
- *Correspondence: Wei Zhang
| | - Bei Cheng
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan, China
| | - Xuefeng Zeng
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Qiuling Tang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan, China
| | - Zaixi Shu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan, China
| | - Pingping Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan, China
| |
Collapse
|
68
|
|
69
|
Hitch TCA, Hall LJ, Walsh SK, Leventhal GE, Slack E, de Wouters T, Walter J, Clavel T. Microbiome-based interventions to modulate gut ecology and the immune system. Mucosal Immunol 2022; 15:1095-1113. [PMID: 36180583 PMCID: PMC9705255 DOI: 10.1038/s41385-022-00564-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 02/04/2023]
Abstract
The gut microbiome lies at the intersection between the environment and the host, with the ability to modify host responses to disease-relevant exposures and stimuli. This is evident in how enteric microbes interact with the immune system, e.g., supporting immune maturation in early life, affecting drug efficacy via modulation of immune responses, or influencing development of immune cell populations and their mediators. Many factors modulate gut ecosystem dynamics during daily life and we are just beginning to realise the therapeutic and prophylactic potential of microbiome-based interventions. These approaches vary in application, goal, and mechanisms of action. Some modify the entire community, such as nutritional approaches or faecal microbiota transplantation, while others, such as phage therapy, probiotics, and prebiotics, target specific taxa or strains. In this review, we assessed the experimental evidence for microbiome-based interventions, with a particular focus on their clinical relevance, ecological effects, and modulation of the immune system.
Collapse
Affiliation(s)
- Thomas C A Hitch
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Lindsay J Hall
- Gut Microbes & Health, Quadram Institute Biosciences, Norwich, UK
- Intestinal Microbiome, School of Life Sciences, ZIEL-Institute for Food & Health, Technical University of Munich, Freising, Germany
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Sarah Kate Walsh
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
- APC Microbiome Ireland, School of Microbiology and Department of Medicine, University College Cork, Cork, Ireland
| | | | - Emma Slack
- Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | | | - Jens Walter
- APC Microbiome Ireland, School of Microbiology and Department of Medicine, University College Cork, Cork, Ireland
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen, Germany.
| |
Collapse
|
70
|
Derrien M, Turroni F, Ventura M, van Sinderen D. Insights into endogenous Bifidobacterium species in the human gut microbiota during adulthood. Trends Microbiol 2022; 30:940-947. [DOI: 10.1016/j.tim.2022.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 01/25/2023]
|
71
|
Walsh SK, Lucey A, Walter J, Zannini E, Arendt EK. Resistant starch-An accessible fiber ingredient acceptable to the Western palate. Compr Rev Food Sci Food Saf 2022; 21:2930-2955. [PMID: 35478262 DOI: 10.1111/1541-4337.12955] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 12/14/2022]
Abstract
Dietary fiber intakes in Western societies are concerningly low and do not reflect global recommended dietary fiber intakes for chronic disease prevention. Resistant starch (RS) is a fermentable dietary fiber that has attracted research interest. As an isolated ingredient, its fine particle size, relatively bland flavor, and white appearance may offer an appealing fiber source to the Western palate, accustomed to highly refined, processed grains. This review aims to provide a comprehensive insight into the current knowledge (classification, production methods, and characterization methods), health benefits, applications, and acceptability of RS. It further discusses the present market for commercially available RS ingredients and products containing ingredients high in RS. The literature currently highlights beneficial effects for dietary RS supplementation with respect to glucose metabolism, satiety, blood lipid profiles, and colonic health. An exploration of the market for commercial RS ingredients indicates a diverse range of products (from isolated RS2, RS3, and RS4) with numerous potential applications as partial or whole substitutes for traditional flour sources. They may increase the nutritional profile of a food product (e.g., by increasing the fiber content and lowering energy values) without significantly compromising its sensory and functional properties. Incorporating RS ingredients into staple food products (such as bread, pasta, and sweet baked goods) may thus offer an array of nutritional benefits to the consumer and a highly accessible functional ingredient to be greater exploited by the food industry.
Collapse
Affiliation(s)
- Sarah Kate Walsh
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Alice Lucey
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Jens Walter
- APC Microbiome Institute, Cork, Ireland.,School of Microbiology and Department of Medicine, University College Cork, Cork, Ireland
| | - Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Elke K Arendt
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland.,APC Microbiome Institute, Cork, Ireland
| |
Collapse
|
72
|
Kadyan S, Sharma A, Arjmandi BH, Singh P, Nagpal R. Prebiotic Potential of Dietary Beans and Pulses and Their Resistant Starch for Aging-Associated Gut and Metabolic Health. Nutrients 2022; 14:nu14091726. [PMID: 35565693 PMCID: PMC9100130 DOI: 10.3390/nu14091726] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 01/27/2023] Open
Abstract
Dietary pulses, including dry beans, lentils, chickpeas, and dry peas, have the highest proportion of fiber among different legume cultivars and are inexpensive, easily accessible, and have a long shelf-life. The inclusion of pulses in regular dietary patterns is an easy and effective solution for achieving recommended fiber intake and maintaining a healthier gut and overall health. Dietary pulses-derived resistant starch (RS) is a relatively less explored prebiotic ingredient. Several in vitro and preclinical studies have elucidated the crucial role of RS in fostering and shaping the gut microbiota composition towards homeostasis thereby improving host metabolic health. However, in humans and aged animal models, the effect of only the cereals and tubers derived RS has been studied. In this context, this review collates literature pertaining to the beneficial effects of dietary pulses and their RS on gut microbiome-metabolome signatures in preclinical and clinical studies while contemplating their potential and prospects for better aging-associated gut health. In a nutshell, the incorporation of dietary pulses and their RS in diet fosters the growth of beneficial gut bacteria and significantly enhances the production of short-chain fatty acids in the colon.
Collapse
|
73
|
Sobh M, Montroy J, Daham Z, Sibbald S, Lalu M, Stintzi A, Mack D, Fergusson DA. Tolerability and SCFA production after resistant starch supplementation in humans: a systematic review of randomized controlled studies. Am J Clin Nutr 2022; 115:608-618. [PMID: 34871343 DOI: 10.1093/ajcn/nqab402] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/06/2021] [Accepted: 11/29/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Resistant starches (RSs) have been advocated as a dietary supplement to address microbiota dysbiosis. They are postulated to act through the production of SCFAs. Their clinical tolerability and effect on SCFA production has not been systematically evaluated. OBJECTIVES We conducted a systematic review of RS supplementation as an intervention in adults (healthy individuals and persons with medical conditions) participating in randomized controlled trials. The primary outcome was tolerability of RS supplementation, the secondary outcome was SCFA production. METHODS MEDLINE, Embase, and the Cochrane Central Register were searched. Articles were screened, and data extracted, independently and in duplicate. RESULTS A total of 39 trials met eligibility criteria, including a total of 2263 patients. Twenty-seven (69%) studies evaluated the impact of RS supplementation in healthy subjects whereas 12 (31%) studies included individuals with an underlying medical condition (e.g., obesity, prediabetes). Type 2 RS was most frequently investigated (29 studies). Of 12 studies performed in subjects with health conditions, 11 reported on tolerability. All studies showed that RS supplementation was tolerated; 9 of these studies used type 2 RS with doses of 20-40 g/d for >4 wk. Of 27 studies performed in healthy subjects, 20 reported on tolerability. In 14 studies, RS supplementation was tolerated, and the majority used type 2 RS with a dose between 20 and 40 g/d. Twenty-one (78%) studies reporting SCFAs used type 2 RS with a dose of 20-40 g/d for 1-4 wk. In 16 of 23 studies (70%), SCFA production was increased, in 7 studies there was no change in SCFA concentration before and after RS supplementation, and in 1 study SCFA concentration decreased. CONCLUSIONS Available evidence suggests that RS supplementation is tolerated in both healthy subjects and in those with an underlying medical condition. In addition, SCFA production was increased in most of the studies.
Collapse
Affiliation(s)
- Mohamad Sobh
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Joshua Montroy
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Zeinab Daham
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Departments of Medicine and Surgery, School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Stephanie Sibbald
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Manoj Lalu
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Anesthesiology and Pain Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Alain Stintzi
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - David Mack
- Inflammatory Bowel Disease Centre, Children's Hospital of Eastern Ontario, CHEO Research Institute, Ottawa, Ontario, Canada.,Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada
| | - Dean A Fergusson
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Departments of Medicine and Surgery, School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
74
|
Wang C, Yan D, Huang J, Li Y. Impacts of changes in intestinal flora on the metabolism of Sprague-Dawley rats. Bioengineered 2021; 12:10603-10611. [PMID: 34852718 PMCID: PMC8809924 DOI: 10.1080/21655979.2021.2000242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/10/2022] Open
Abstract
Changes in intestinal flora affect the health and cause metabolic diseases of the host. The extent to which the impact of different changes in intestinal flora would have on the metabolism of an individual has not been reported. This study aims to investigate the effect of different changes in intestinal flora on the metabolism of Sprague-Dawley (SD) normal rats' individuals. Forty-eight SD rats were randomly divided into 6 groups (8 rats per group), which were treated with normal saline, probiotics, nonpathogenic Escherichia coli, Salmonella enteritidis, gentamicin, and magnesium sulfate, respectively. After 7 days, the ileum of each group of rats was collected and real-time polymerase chain reaction was used to analyze the composition of intestinal flora. And gas chromatography/mass spectrometry (GC/MS) was used to analyze plasma metabolic profile. The results revealed that the decrease in alanine content in the probiotics group was statistically significant, while the alanine content in the nonpathogenic Escherichia group increased significantly. Alanine, leucine, isoleucine, and serine decreased significantly in the Salmonella group. Proline and butyric acid decreased significantly in the gentamicin group. The principal component analysis showed significant differences in the Salmonella group compared with other test groups. Overall, the most significant metabolic changes were observed in SD rats in the Salmonella group, while a great similarity was observed in the probiotics, Escherichia group, and gentamicin groups compared with the normal group. Changes in intestinal flora had a certain impact on the metabolism in SD rats, especially on amino acid levels.
Collapse
Affiliation(s)
- Chengfei Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, HangzhouZhejiang Province, China
| | - Dong Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, HangzhouZhejiang Province, China
| | - Jianrong Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, HangzhouZhejiang Province, China
| | - Yongtao Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, HangzhouZhejiang Province, China
| |
Collapse
|
75
|
Cione E, Fazio A, Curcio R, Tucci P, Lauria G, Cappello AR, Dolce V. Resistant Starches and Non-Communicable Disease: A Focus on Mediterranean Diet. Foods 2021; 10:foods10092062. [PMID: 34574171 PMCID: PMC8471366 DOI: 10.3390/foods10092062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 01/12/2023] Open
Abstract
Resistant starch (RS) is the starch fraction that eludes digestion in the small intestine. RS is classified into five subtypes (RS1-RS5), some of which occur naturally in plant-derived foods, whereas the others may be produced by several processing conditions. The different RS subtypes are widely found in processed foods, but their physiological effects depend on their structural characteristics. In the present study, foods, nutrition and biochemistry are summarized in order to assess the type and content of RS in foods belonging to the Mediterranean Diet (MeD). Then, the benefits of RS consumption on health are discussed, focusing on their capability to enhance glycemic control. RS enters the large bowel intestine, where it is fermented by the microbiome leading to the synthesis of short-chain fatty acids as major end products, which in turn have systemic health effects besides the in situ one. It is hoped that this review will help to understand the pros of RS consumption as an ingredient of MeD food. Consequently, new future research directions could be explored for developing advanced dietary strategies to prevent non-communicable diseases, including colon cancer.
Collapse
|