51
|
Jiang H, Zheng Y, Qian J, Mao C, Xu X, Li N, Xiao C, Wang H, Teng L, Zhou H, Wang S, Zhu D, Sun T, Yu Y, Guo W, Xu N. Efficacy and safety of sintilimab in combination with chemotherapy in previously untreated advanced or metastatic nonsquamous or squamous NSCLC: two cohorts of an open-label, phase 1b study. Cancer Immunol Immunother 2021; 70:857-868. [PMID: 33070260 PMCID: PMC7907015 DOI: 10.1007/s00262-020-02738-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022]
Abstract
Combining chemotherapy with immunotherapy improves the therapeutic outcome for first-line (1L) patients with advance nonsmall-cell lung cancer (NSCLC). Two cohorts of a phase 1b study (NCT02937116) aimed to evaluate the safety and efficacy of sintilimab, a PD-1 inhibitor, plus chemotherapy in 1L patients with nonsquamous and squamous NSCLC (nsqNSCLC/sqNSCLC); and to identify potential biomarkers for treatment response. Treatment-naïve patients with nsqNSCLC were enrolled and intravenously given sintilimab (200 mg), pemetrexed (500 mg/m2), and cisplatin (75 mg/m2), every 3 weeks (Q3W) for 4 cycles in cohort D. Treatment-naïve patients with sqNSCLC were enrolled and intravenously given sintilimab (200 mg), gemcitabine (1250 mg/m2), and cisplatin (75 mg/m2), Q3W, for 6 cycles in cohort E. The primary objective was to evaluate the safety and efficacy of the treatment. The additional objective was to explore biomarkers for the treatment efficacy. Twenty-one patients with nsqNSCLC, and 20 patients with sqNSCLC were enrolled in cohort D and cohort E, respectively. By the data cutoff (April 17, 2019), 8 (38.1%) patients in cohort D and 17 (85.0%) patients in cohort E experienced grade 3-4 adverse events. The median follow-up duration was 16.4 months (14.8-23.0) in cohort D and 15.9 months (11.7-17.7) in cohort E. The objective response rate was 68.4% (95% CI 43.4%, 87.4%) in cohort D and 64.7% (95% CI 38.3%, 85.8%) in cohort E. Neither PD-L1 expression nor tumor mutation burden value was significantly associated with an improved treatment response. Sintilimab plus chemotherapy exhibited manageable toxicity and an encouraging antitumor activity in patients with nsqNSCLC and sqNSCLC.
Collapse
Affiliation(s)
- Haiping Jiang
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, China
| | - Yulong Zheng
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, China
| | - Jiong Qian
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, China
| | - Chenyu Mao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, China
| | - Xin Xu
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, China
| | - Ning Li
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, China
| | - Cheng Xiao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, China
| | - Huan Wang
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, China
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hui Zhou
- Department of Medical Science and Strategy Oncology, Innovent Biologics, Inc, Suzhou, China
| | - Shuyan Wang
- Department of Medical Science and Strategy Oncology, Innovent Biologics, Inc, Suzhou, China
| | - Donglei Zhu
- Department of Medical Science and Strategy Oncology, Innovent Biologics, Inc, Suzhou, China
| | - Tao Sun
- Hangzhou ImmuQuad Biotechnologies, Hangzhou, China
- Zhejiang-California International NanoSystems Institute, Zhejiang University, Hangzhou, China
| | - Yingying Yu
- Hangzhou ImmuQuad Biotechnologies, Hangzhou, China
| | - Wenying Guo
- Hangzhou ImmuQuad Biotechnologies, Hangzhou, China
| | - Nong Xu
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, China.
| |
Collapse
|
52
|
Wauters E, Van Mol P, Garg AD, Jansen S, Van Herck Y, Vanderbeke L, Bassez A, Boeckx B, Malengier-Devlies B, Timmerman A, Van Brussel T, Van Buyten T, Schepers R, Heylen E, Dauwe D, Dooms C, Gunst J, Hermans G, Meersseman P, Testelmans D, Yserbyt J, Tejpar S, De Wever W, Matthys P, Neyts J, Wauters J, Qian J, Lambrechts D. Discriminating mild from critical COVID-19 by innate and adaptive immune single-cell profiling of bronchoalveolar lavages. Cell Res 2021; 31:272-290. [PMID: 33473155 PMCID: PMC8027624 DOI: 10.1038/s41422-020-00455-9] [Citation(s) in RCA: 218] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/20/2020] [Indexed: 02/08/2023] Open
Abstract
How the innate and adaptive host immune system miscommunicate to worsen COVID-19 immunopathology has not been fully elucidated. Here, we perform single-cell deep-immune profiling of bronchoalveolar lavage (BAL) samples from 5 patients with mild and 26 with critical COVID-19 in comparison to BALs from non-COVID-19 pneumonia and normal lung. We use pseudotime inference to build T-cell and monocyte-to-macrophage trajectories and model gene expression changes along them. In mild COVID-19, CD8+ resident-memory (TRM) and CD4+ T-helper-17 (TH17) cells undergo active (presumably antigen-driven) expansion towards the end of the trajectory, and are characterized by good effector functions, while in critical COVID-19 they remain more naïve. Vice versa, CD4+ T-cells with T-helper-1 characteristics (TH1-like) and CD8+ T-cells expressing exhaustion markers (TEX-like) are enriched halfway their trajectories in mild COVID-19, where they also exhibit good effector functions, while in critical COVID-19 they show evidence of inflammation-associated stress at the end of their trajectories. Monocyte-to-macrophage trajectories show that chronic hyperinflammatory monocytes are enriched in critical COVID-19, while alveolar macrophages, otherwise characterized by anti-inflammatory and antigen-presenting characteristics, are depleted. In critical COVID-19, monocytes contribute to an ATP-purinergic signaling-inflammasome footprint that could enable COVID-19 associated fibrosis and worsen disease-severity. Finally, viral RNA-tracking reveals infected lung epithelial cells, and a significant proportion of neutrophils and macrophages that are involved in viral clearance.
Collapse
Affiliation(s)
- Els Wauters
- grid.5596.f0000 0001 0668 7884Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium ,grid.410569.f0000 0004 0626 3338Department of Pneumology, University Hospitals Leuven, Leuven, Belgium
| | - Pierre Van Mol
- grid.410569.f0000 0004 0626 3338Department of Pneumology, University Hospitals Leuven, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium ,grid.511459.dVIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Abhishek Dinkarnath Garg
- grid.5596.f0000 0001 0668 7884Laboratory for Cell Stress & Immunity (CSI), Department of Cellular and Molecular Medicine (CMM), KU Leuven, Leuven, Belgium
| | - Sander Jansen
- grid.5596.f0000 0001 0668 7884Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Yannick Van Herck
- grid.5596.f0000 0001 0668 7884Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Lore Vanderbeke
- grid.5596.f0000 0001 0668 7884Laboratory of Clinical Bacteriology and Mycology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Ayse Bassez
- grid.5596.f0000 0001 0668 7884Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium ,grid.511459.dVIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Bram Boeckx
- grid.5596.f0000 0001 0668 7884Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium ,grid.511459.dVIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Bert Malengier-Devlies
- grid.5596.f0000 0001 0668 7884Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Anna Timmerman
- grid.5596.f0000 0001 0668 7884Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium ,grid.511459.dVIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Thomas Van Brussel
- grid.5596.f0000 0001 0668 7884Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium ,grid.511459.dVIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Tina Van Buyten
- grid.5596.f0000 0001 0668 7884Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Rogier Schepers
- grid.5596.f0000 0001 0668 7884Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium ,grid.511459.dVIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Elisabeth Heylen
- grid.5596.f0000 0001 0668 7884Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Dieter Dauwe
- grid.5596.f0000 0001 0668 7884Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Christophe Dooms
- grid.5596.f0000 0001 0668 7884Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium ,grid.410569.f0000 0004 0626 3338Department of Pneumology, University Hospitals Leuven, Leuven, Belgium
| | - Jan Gunst
- grid.5596.f0000 0001 0668 7884Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Greet Hermans
- grid.5596.f0000 0001 0668 7884Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Philippe Meersseman
- grid.5596.f0000 0001 0668 7884Laboratory for Clinical Infectious and Inflammatory Disorders, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Dries Testelmans
- grid.5596.f0000 0001 0668 7884Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium ,grid.410569.f0000 0004 0626 3338Department of Pneumology, University Hospitals Leuven, Leuven, Belgium
| | - Jonas Yserbyt
- grid.5596.f0000 0001 0668 7884Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium ,grid.410569.f0000 0004 0626 3338Department of Pneumology, University Hospitals Leuven, Leuven, Belgium
| | - Sabine Tejpar
- grid.5596.f0000 0001 0668 7884Molecular Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Walter De Wever
- grid.5596.f0000 0001 0668 7884Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| | - Patrick Matthys
- grid.5596.f0000 0001 0668 7884Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | | | - Johan Neyts
- grid.5596.f0000 0001 0668 7884Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Joost Wauters
- grid.5596.f0000 0001 0668 7884Laboratory for Clinical Infectious and Inflammatory Disorders, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Junbin Qian
- grid.13402.340000 0004 1759 700XDepartment of Gynecologic Oncology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006 China
| | - Diether Lambrechts
- grid.5596.f0000 0001 0668 7884Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium ,grid.511459.dVIB Center for Cancer Biology, VIB, Leuven, Belgium
| |
Collapse
|
53
|
Zhou CS, Feng MT, Chen X, Gao Y, Chen L, Li LD, Li DH, Cao YQ. Exonuclease 1 (EXO1) is a Potential Prognostic Biomarker and Correlates with Immune Infiltrates in Lung Adenocarcinoma. Onco Targets Ther 2021; 14:1033-1048. [PMID: 33623391 PMCID: PMC7894803 DOI: 10.2147/ott.s286274] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/16/2021] [Indexed: 12/16/2022] Open
Abstract
Background Exonuclease 1 (EXO1) has been identified to be highly expressed in different human malignancies, but its expression and prognostic role in lung adenocarcinoma (LUAD) remain unknown. Materials and Methods Two independent cohorts extracted from public databases and one cohort from our center were analyzed in this study. Expression levels of EXO1 in LUAD tissues and paired para-cancer tissues were detected. The prognostic value of EXO1 in LUAD patients was evaluated in the three cohorts. Enrichment analyses were performed to explore the possible underlying biological pathways. Moreover, we also explored the correlations between EXO1 and tumor-infiltrating immune cells and evaluated the impact of EXO1 knock-down on the migration of lung cancer cells. Results In this study, we found that EXO1 was highly expressed in LUAD tissues compared with para-cancerous tissues in public databases (p < 0.01), which was consistent with our data (p < 0.01). Survival analysis indicated that high expression of EXO1 was associated with poor prognosis in LUAD (p < 0.01). Enrichment analyses indicated that biological pathways like cell cycle regulation, DNA damage and repair, immune response, neuroactive ligand-receptor interaction, may be associated with EXO1 aberrant expression. Moreover, high expression of EXO1 was correlated with decreased infiltrating B cells (p < 0.01) and CD4+ T cells (p < 0.01) levels, and low infiltrating levels of B cells (p < 0.01) and dendritic cells (DCs) (p < 0.05) indicated poor overall survival (OS) in LUAD. Additionally, in vitro experiments suggested that knockdown of EXO1 may inhibit the migratory ability of lung cancer cells. Conclusion In conclusion, EXO1 is a potential prognostic biomarker in LUAD, and correlates with infiltrating levels of immune cells in the tumor microenvironment. Further prospective validation of EXO1 in lung cancer is warranted.
Collapse
Affiliation(s)
- Chang-Shuai Zhou
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Ming-Tao Feng
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Xin Chen
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yang Gao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Lei Chen
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Liang-Dong Li
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - De-Heng Li
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yi-Qun Cao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
54
|
de Jonge K, Tillé L, Lourenco J, Maby-El Hajjami H, Nassiri S, Racle J, Gfeller D, Delorenzi M, Verdeil G, Baumgaertner P, Speiser DE. Inflammatory B cells correlate with failure to checkpoint blockade in melanoma patients. Oncoimmunology 2021; 10:1873585. [PMID: 33643691 PMCID: PMC7872097 DOI: 10.1080/2162402x.2021.1873585] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The understanding of the role of B cells in patients with solid tumors remains insufficient. We found that circulating B cells produced TNFα and/or IL-6, associated with unresponsiveness and poor overall survival of melanoma patients treated with anti-CTLA4 antibody. Transcriptome analysis of B cells from melanoma metastases showed enriched expression of inflammatory response genes. Publicly available single B cell data from the tumor microenvironment revealed a negative correlation between TNFα expression and response to immune checkpoint blockade. These findings suggest that B cells contribute to tumor growth via the production of inflammatory cytokines. Possibly, these B cells are different from tertiary lymphoid structure-associated B cells, which have been described to correlate with favorable clinical outcome of cancer patients. Further studies are required to identify and characterize B cell subsets and their functions promoting or counteracting tumor growth, with the aim to identify biomarkers and novel treatment targets.
Collapse
Affiliation(s)
- Kaat de Jonge
- Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland
| | - Laure Tillé
- Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland
| | - Joao Lourenco
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Sina Nassiri
- Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland.,Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Julien Racle
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - David Gfeller
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Mauro Delorenzi
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Grégory Verdeil
- Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland
| | - Petra Baumgaertner
- Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland
| | - Daniel E Speiser
- Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland.,Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
55
|
Stavropoulou E, Kantartzi K, Tsigalou C, Konstantinidis T, Voidarou C, Konstantinidis T, Bezirtzoglou E. Unraveling the Interconnection Patterns Across Lung Microbiome, Respiratory Diseases, and COVID-19. Front Cell Infect Microbiol 2021; 10:619075. [PMID: 33585285 PMCID: PMC7876344 DOI: 10.3389/fcimb.2020.619075] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/11/2020] [Indexed: 01/07/2023] Open
Abstract
Albeit the lungs were thought to be sterile, recent scientific data reported a microbial microbiota in the lungs of healthy individuals. Apparently, new developments in technological approachesincluding genome sequencing methodologies contributed in the identification of the microbiota and shed light on the role of the gut and lung microbiomes in the development of respiratory diseases. Moreover, knowledge of the human microbiome in health may act as a tool for evaluating characteristic shifts in the case of disease. This review paper discusses the development of respiratory disease linked to the intestinal dysbiosis which influences the lung immunity and microbiome. The gastrointestinal-lung dialogue provides interesting aspects in the pathogenesis of the respiratory diseases. Lastly, we were further interested on the role of this interconnection in the progression and physiopathology of newly emergedCOVID-19.
Collapse
Affiliation(s)
- Elisavet Stavropoulou
- CHUV (Centre HospitalierUniversitaire Vaudois), Lausanne, Switzerland
- Department of Infectious Diseases, Central Institute, Valais Hospital, Sion, Switzerland
| | - Konstantia Kantartzi
- Nephrology Clinic, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christina Tsigalou
- Laboratory of Microbiology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Theocharis Konstantinidis
- Laboratory of Microbiology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Theodoros Konstantinidis
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
56
|
Pan-cancer analysis of genomic properties and clinical outcome associated with tumor tertiary lymphoid structure. Sci Rep 2020; 10:21530. [PMID: 33299035 PMCID: PMC7725838 DOI: 10.1038/s41598-020-78560-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
How the genomic landscape of a tumor shapes the formation of tertiary lymphoid structure (TLS) and how might TLS alter the clinical outcome or response to immunotherapy had not been systematically explored. Utilizing the genomic and transcriptome data of solid tumors on TCGA, we quantified TLS based on a previous identified 12-chemokine signature and evaluated its correlation with mutation/neoantigen burden, functional mutation of oncogenes and the presence of viral infection. Clinical data was integrated to decide the prognostic significance of TLS for different cancers after surgical treatment. Publicly available data (clinical and transcriptome data) of immunotherapy clinical trials involving melanoma and lung cancer were also collected to evaluate TLS’s association with therapeutic outcome. Mutation burden and predicted neoantigen counts were positively correlated with TLS scoring in multiple cancer types. Mutation in tumor suppressor genes (KEAP1, PBRM1) and genes involved in extrinsic apoptosis (CASP8), antigen-presentation (HLA-A, HLA-B), immune regulation (SMAD4) or DNA repair (BRCA1, BRCA2, TP53BP1) correlated with TLS alteration in multiple tumor types, indicating the interaction between mutation landscape and TLS formation. Epstein-Barr virus (EBV) infection in gastric cancer and human papillomavirus (HPV) infection in Head and Neck squamous cell carcinoma were associated with increased TLS scoring. High TLS scoring predicted favorable prognosis in certain cancer after surgical treatment and improved response to immunotherapy in lung cancer and melanoma. Our findings unraveled the genomic properties associated with TLS formation in different solid tumors and highlighted the prognostic and predictive significance of TLS in surgical treatment and immunotherapy.
Collapse
|
57
|
Xiong Y, Si Y, Feng Y, Zhuo S, Cui B, Zhang Z. Prognostic value of lipid metabolism-related genes in head and neck squamous cell carcinoma. IMMUNITY INFLAMMATION AND DISEASE 2020; 9:196-209. [PMID: 33277966 PMCID: PMC7860527 DOI: 10.1002/iid3.379] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Altered lipid metabolism is involved in the development of many tumors. However, the role of dissimilar lipid metabolism in head and neck squamous cell carcinoma (HNSCC) is not fully established. AIMS Here, we sought to determine the prognostic value of lipid metabolism-related genes in HNSCC. METHODS RNA-seq data and clinical features of 545 HNSCC cases were obtained from The Cancer Genome Atlas database. A regulatory network of transcription factors-lipid metabolism genes and a risk prognostic model of lipid metabolism-related genes was developed using bioinformatics and Cox regression modeling. We used tumor immune estimation resource to analyze immune cell infiltration in patients with HNSCC based on the prognostic index (PI) of lipid metabolism-related genes. RESULTS A total of 136 differentially expressed lipid metabolism genes were identified. Of these, 23 are related to prognosis. In addition to predicting HNSCC prognosis, 11 lipid metabolism-related genes (ARSI, CYP27B1, CYP2D6, DGKG, DHCR7, LPIN1, PHYH, PIP5K1B, PLA2G2D, RDH16, and TRIB3) also affect HNSCC clinical features (stage, gender, and pathological stage). The PI of lipid metabolism-related genes embodied the state of HNSCC tumor immune microenvironment.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Otolaryngology Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu Si
- Department of Otolaryngology Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yisi Feng
- Department of Otolaryngology Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shipei Zhuo
- Department of Otolaryngology Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bozhen Cui
- Department of Otolaryngology Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhigang Zhang
- Department of Otolaryngology Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
58
|
Lazdun Y, Si H, Creasy T, Ranade K, Higgs BW, Streicher K, Durham NM. A New Pipeline to Predict and Confirm Tumor Neoantigens Predict Better Response to Immune Checkpoint Blockade. Mol Cancer Res 2020; 19:498-506. [PMID: 33257508 DOI: 10.1158/1541-7786.mcr-19-1118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 06/04/2020] [Accepted: 11/20/2020] [Indexed: 11/16/2022]
Abstract
Mutations that drive oncogenesis in cancer can generate neoantigens that may be recognized by the immune system. Identification of these neoantigens remains challenging due to the complexity of the MHC antigen and T-cell receptor interaction. Here, we describe the development of a systematic approach to efficiently identify and validate immunogenic neoantigens. Whole-exome sequencing of tissue from a patient with melanoma was used to identify nonsynonymous mutations, followed by MHC binding prediction and identification of tumor clonal architecture. The top 18 putative class I neoantigens were selected for immunogenicity testing via a novel in vitro pipeline in HLA-A201 healthy donor blood. Naïve CD8 T cells from donors were stimulated with allogeneic dendritic cells pulsed with peptide pools and then with individual peptides. The presence of antigen-specific T cells was determined via functional assays. We identified one putative neoantigen that expanded T cells specific to the mutant form of the peptide and validated this pipeline in a subset of patients with bladder tumors treated with durvalumab (n = 5). Within this cohort, the top predicted neoantigens from all patients were immunogenic in vitro. Finally, we looked at overall survival in the whole durvalumab-treated bladder cohort (N = 37) by stratifying patients by tertile measure of tumor mutation burden (TMB) or neoantigen load. Patients with higher neoantigen and TMB load tended to show better overall survival. IMPLICATIONS: This pipeline can enable accurate and rapid identification of personalized neoantigens that may help to identify patients who will survive longer on durvalumab.
Collapse
Affiliation(s)
- Yelena Lazdun
- Translational Functional Genomics, AstraZeneca, Gaithersburg, Maryland
| | - Han Si
- Translational Bioinformatics, AstraZeneca, Gaithersburg, Maryland
| | - Todd Creasy
- Translational Bioinformatics, AstraZeneca, Gaithersburg, Maryland
| | - Koustubh Ranade
- Translational Medicine, Oncology R&D, AstraZeneca, Gaithersburg, Maryland
| | - Brandon W Higgs
- Translational Bioinformatics, AstraZeneca, Gaithersburg, Maryland
| | - Katie Streicher
- Translational Medicine, Oncology R&D, AstraZeneca, Gaithersburg, Maryland
| | - Nicholas M Durham
- Translational Functional Genomics, AstraZeneca, Gaithersburg, Maryland.
| |
Collapse
|
59
|
A new risk model comprising genes highly correlated with CD133 identifies different tumor-immune microenvironment subtypes impacting prognosis in hepatocellular carcinoma. Aging (Albany NY) 2020; 12:12234-12250. [PMID: 32564007 PMCID: PMC7343494 DOI: 10.18632/aging.103409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022]
Abstract
The existence of cancer stem cells (CSCs), marked by CD133, is the primary cause of death in hepatocellular carcinoma (HCC). Here, we generated a new risk model comprising the signatures of four genes highly correlated with CD133 (CD133(hi)) that help improve survival in HCC. Three datasets were used to identify the differential CD133(hi) genes by comparing sorted CD133+ liver CSCs and CD133- differentiated counterparts. Univariate analysis was used to screen significantly differential CD133(hi) genes associated with overall survival in the training dataset, which were used for risk model construction. High-risk patients were strongly associated with poor survival by Kaplan-Meier survival analysis in both the training and validation datasets. Clinical stratification analyses further demonstrated that the risk factors acted as independent factors and that high-risk patients were characterized by more aggressive cancer features. Functional enrichment analyses performed by gene set enrichment analysis (GSEA) and the Database for Annotation, Visualization and Integrated Discovery (DAVID) revealed that high-risk patients showed the disturbance of immune hepatic homeostasis involving aberrant immune cells, including macrophages and T and B cells, and an abnormal inflammatory response including the IL6/Jak/STAT3 pathway and TNF signaling pathway. In conclusion, our constructed CD133(hi) gene risk model provides a resource for understanding the role of CD133+ CSCs in the progression of HCC in terms of tumor-immune interactions.
Collapse
|
60
|
Munoz-Erazo L, Rhodes JL, Marion VC, Kemp RA. Tertiary lymphoid structures in cancer - considerations for patient prognosis. Cell Mol Immunol 2020; 17:570-575. [PMID: 32415259 DOI: 10.1038/s41423-020-0457-0] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
Tertiary lymphoid structures (TLS) are ectopic lymphoid formations that form within nonlymphoid tissue. They share structural and functional characteristics with secondary lymphoid structures such as lymph nodes and can contain B-cell follicles and germinal centers surrounded by a T-cell region. TLS have been described in several types of cancers and are usually associated with positive patient outcomes. However, TLS differ vastly in cellular composition and location within tissue types. In this review, we discuss factors confounding the interpretation of the evidence for a prognostic role for TLS in cancer and frame these factors in the context of translation to regular clinical use.
Collapse
Affiliation(s)
- Luis Munoz-Erazo
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Janet L Rhodes
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Valentine C Marion
- Ecole Normale Superieure de Lyon, Lyon, France and Universite Claude Bernard Lyon 1, Lyon, France
| | - Roslyn A Kemp
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
61
|
Aversa I, Malanga D, Fiume G, Palmieri C. Molecular T-Cell Repertoire Analysis as Source of Prognostic and Predictive Biomarkers for Checkpoint Blockade Immunotherapy. Int J Mol Sci 2020; 21:ijms21072378. [PMID: 32235561 PMCID: PMC7177412 DOI: 10.3390/ijms21072378] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/22/2020] [Accepted: 03/28/2020] [Indexed: 02/08/2023] Open
Abstract
The T cells are key players of the response to checkpoint blockade immunotherapy (CBI) and monitoring the strength and specificity of antitumor T-cell reactivity remains a crucial but elusive component of precision immunotherapy. The entire assembly of T-cell receptor (TCR) sequences accounts for antigen specificity and strength of the T-cell immune response. The TCR repertoire hence represents a “footprint” of the conditions faced by T cells that dynamically evolves according to the challenges that arise for the immune system, such as tumor neo-antigenic load. Hence, TCR repertoire analysis is becoming increasingly important to comprehensively understand the nature of a successful antitumor T-cell response, and to improve the success and safety of current CBI.
Collapse
Affiliation(s)
- Ilenia Aversa
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Donatella Malanga
- Interdepartmental Center of Services (CIS), Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Camillo Palmieri
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy;
- Correspondence:
| |
Collapse
|
62
|
Remon J, Passiglia F, Ahn MJ, Barlesi F, Forde PM, Garon EB, Gettinger S, Goldberg SB, Herbst RS, Horn L, Kubota K, Lu S, Mezquita L, Paz-Ares L, Popat S, Schalper KA, Skoulidis F, Reck M, Adjei AA, Scagliotti GV. Immune Checkpoint Inhibitors in Thoracic Malignancies: Review of the Existing Evidence by an IASLC Expert Panel and Recommendations. J Thorac Oncol 2020; 15:914-947. [PMID: 32179179 DOI: 10.1016/j.jtho.2020.03.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/29/2020] [Accepted: 03/06/2020] [Indexed: 02/07/2023]
Abstract
In the past 10 years, a deeper understanding of the immune landscape of cancers, including immune evasion processes, has allowed the development of a new class of agents. The reactivation of host antitumor immune response offers the potential for long-term survival benefit in a portion of patients with thoracic malignancies. The advent of programmed cell death protein 1/programmed death ligand-1 immune checkpoint inhibitors (ICIs), both as single agents and in combination with chemotherapy, and more recently, the combination of ICI, anti-programmed cell death protein 1, and anticytotoxic T-lymphocyte antigen 4 antibody, have led to breakthrough therapeutic advances for patients with advanced NSCLC, and to a lesser extent, patients with SCLC. Encouraging activity has recently emerged in pretreated patients with thymic carcinoma (TC). Conversely, in malignant pleural mesothelioma, pivotal positive signs of activity have not been fully confirmed in randomized trials. The additive effects of chemoradiation and immunotherapy suggested intriguing potential for therapeutic synergy with combination strategies. This has led to the introduction of ICI consolidation therapy in stage III NSCLC, creating a platform for future therapeutic developments in earlier-stage disease. Despite the definitive clinical benefit observed with ICI, primary and acquired resistance represent well-known biological phenomena, which may affect the therapeutic efficacy of these agents. The development of innovative strategies to overcome ICI resistance, standardization of new patterns of ICI progression, identification of predictive biomarkers of response, optimal treatment duration, and characterization of ICI efficacy in special populations, represent crucial issues to be adequately addressed, with the aim of improving the therapeutic benefit of ICI in patients with thoracic malignancies. In this article, an international panel of experts in the field of thoracic malignancies discussed these topics, evaluating currently available scientific evidence, with the final aim of providing clinical recommendations, which may guide oncologists in their current practice and elucidate future treatment strategies and research priorities.
Collapse
Affiliation(s)
- Jordi Remon
- Department of Medical Oncology, Centro Integral Oncológico Clara Campal (HM-CIOCC), Hospital HM Delfos, HM Hospitales, Barcelona, Spain
| | - Francesco Passiglia
- Department of Oncology, University of Torino, AOU S. Luigi Gonzaga, Orbassano, Italy
| | - Myung-Ju Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Fabrice Barlesi
- Multidisciplinary Oncology and Therapeutic Innovations Department, Aix Marseille University, CNRS, INSERM, CRCM, APHM, Marseille, France
| | - Patrick M Forde
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Edward B Garon
- David Geffen School of Medicine at University of California Los Angeles, Translational Research in Oncology US Network, Los Angeles, California
| | - Scott Gettinger
- Department of Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven, Connecticut
| | - Sarah B Goldberg
- Department of Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven, Connecticut
| | - Roy S Herbst
- Department of Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven, Connecticut
| | - Leora Horn
- Department of Hematology and Oncology, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee
| | - Kaoru Kubota
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Laura Mezquita
- Department of Cancer Medicine, Gustave Roussy Cancer Campus, Villejuif, France
| | - Luis Paz-Ares
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Sanjay Popat
- Medical Oncology Department, The Royal Marsden Hospital, London, United Kingdom; Medical Oncology Department, The Institute of Cancer Research, London, United Kingdom; National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Kurt A Schalper
- Departments of Pathology and Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven, Connecticut
| | - Ferdinandos Skoulidis
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Martin Reck
- Lung Clinic Grosshansdorf, Airway Research Center North, German Center of Lung Research, Grosshansdorf, Germany
| | - Alex A Adjei
- Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | - Giorgio V Scagliotti
- Department of Oncology, University of Torino, AOU S. Luigi Gonzaga, Orbassano, Italy.
| |
Collapse
|
63
|
Complement Signals Determine Opposite Effects of B Cells in Chemotherapy-Induced Immunity. Cell 2020; 180:1081-1097.e24. [PMID: 32142650 DOI: 10.1016/j.cell.2020.02.015] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/16/2019] [Accepted: 02/05/2020] [Indexed: 12/21/2022]
Abstract
Understanding molecular mechanisms that dictate B cell diversity is important for targeting B cells as anti-cancer treatment. Through the single-cell dissection of B cell heterogeneity in longitudinal samples of patients with breast cancer before and after neoadjuvant chemotherapy, we revealed that an ICOSL+ B cell subset emerges after chemotherapy. Using three immunocompetent mouse models, we recapitulated the subset switch of human tumor-infiltrating B cells during chemotherapy. By employing B-cell-specific deletion mice, we showed that ICOSL in B cells boosts anti-tumor immunity by enhancing the effector to regulatory T cell ratio. The signature of ICOSL+ B cells is imprinted by complement-CR2 signaling, which is triggered by immunogenic cell death. Moreover, we identified that CD55, a complement inhibitory protein, determines the opposite roles of B cells in chemotherapy. Collectively, we demonstrated a critical role of the B cell subset switch in chemotherapy response, which has implications in designing novel anti-cancer therapies. VIDEO ABSTRACT.
Collapse
|
64
|
Galon J, Bruni D. Tumor Immunology and Tumor Evolution: Intertwined Histories. Immunity 2020; 52:55-81. [PMID: 31940273 DOI: 10.1016/j.immuni.2019.12.018] [Citation(s) in RCA: 352] [Impact Index Per Article: 70.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/01/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022]
Abstract
Cancer is a complex disease whose outcome depends largely on the cross-talk between the tumor and its microenvironment. Here, we review the evolution of the field of tumor immunology and the advances, in lockstep, of our understanding of cancer as a disease. We discuss the involvement of different immune cells at distinct stages of tumor progression and how immune contexture determinants shaping tumor development are being exploited therapeutically. Current clinical stratification schemes focus on the tumor histopathology and the molecular characteristics of the tumor cell. We argue for the importance of revising these stratification systems to include immune parameters so as to address the immediate need for improved prognostic and/or predictive information to guide clinical decisions.
Collapse
Affiliation(s)
- Jérôme Galon
- INSERM, Laboratory of Integrative Cancer Immunology, Equipe Labellisée Ligue Contre le Cancer, Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Université de Paris; Centre de Recherche des Cordeliers, F-75006 Paris, France.
| | - Daniela Bruni
- INSERM, Laboratory of Integrative Cancer Immunology, Equipe Labellisée Ligue Contre le Cancer, Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Université de Paris; Centre de Recherche des Cordeliers, F-75006 Paris, France
| |
Collapse
|
65
|
Sharonov GV, Serebrovskaya EO, Yuzhakova DV, Britanova OV, Chudakov DM. B cells, plasma cells and antibody repertoires in the tumour microenvironment. Nat Rev Immunol 2020; 20:294-307. [DOI: 10.1038/s41577-019-0257-x] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2019] [Indexed: 02/07/2023]
|
66
|
Wang W, Ren S, Wang Z, Zhang C, Huang J. Increased expression of TTC21A in lung adenocarcinoma infers favorable prognosis and high immune infiltrating level. Int Immunopharmacol 2019; 78:106077. [PMID: 31812070 DOI: 10.1016/j.intimp.2019.106077] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/27/2019] [Accepted: 11/21/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is a crucial pathological type of lung cancer. Immune-infiltration of the tumor microenvironment positively associated with overall survival in LUAD. TTC21A is a gene has not reported in cancer, and the mechanism behind it is still unclear. Our study assesses TTC21A role in LUAD, via TCGA data. METHODS GEPIA was utilized to analyze the expression of TTC21A in LUAD. We evaluated the influence of TTC21A on survival of LUAD patients by survival module. Then, data sets of LUAD were downloaded from TCGA. The correlations between clinical information and TTC21A expression were analyzed using logistic regression. Clinicopathologic characteristics associated with overall survival in TCGA patients using Cox regression. In addition, we explored the correlation between TTC21A and cancer immune infiltrates using CIBERSORT and "Correlation" module of GEPIA. RESULTS The univariate analysis using logistic regression, wherein TTC21A expression served as a categorical dependent variable (with a median expression value of 2.5), indicated that increased TTC21A expression is significantly correlated with pathological stage, tumor status and lymph nodes. Moreover, multivariate analysis revealed that the up-regulated TTC21A expression, negative results of pathological stage and distant metastasis are independent prognostic factors for good prognosis. Specifically, a positive correlation between increased TTC21A expression and immune infiltrating level of B cells, Neutrophils, Mast cells and T cells was established using CIBERSORT analysis. Furthermore, we confirmed it in "correlation" module of GEPIA. CONCLUSION Together with all these findings, increased TTC21A expression correlates with favorable prognosis and increased proportion of immune cells, such as B cells, Neutrophils, Mast cells and T cells in LUAD. These conclusions indicate that TTC21A could serve as a potential biomarker to assess prognosis and immune infiltration level in LUAD.
Collapse
Affiliation(s)
- Wei Wang
- Department of Clinical Biobank, Nantong University Affiliated Hospital, Nantong, PR China; Department of Medicine, Nantong University Xinling College, Nantong, PR China
| | - Shiqi Ren
- Department of Clinical Biobank, Nantong University Affiliated Hospital, Nantong, PR China; Department of Medicine, Nantong University Xinling College, Nantong, PR China
| | - Ziheng Wang
- Department of Clinical Biobank, Nantong University Affiliated Hospital, Nantong, PR China; Department of Medicine, Nantong University Xinling College, Nantong, PR China
| | - Chenlin Zhang
- Department of Spine, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214000, PR China
| | - Jianfei Huang
- Department of Clinical Biobank, Nantong University Affiliated Hospital, Nantong, PR China; Institute of Oncology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
67
|
Isaeva OI, Sharonov GV, Serebrovskaya EO, Turchaninova MA, Zaretsky AR, Shugay M, Chudakov DM. Intratumoral immunoglobulin isotypes predict survival in lung adenocarcinoma subtypes. J Immunother Cancer 2019; 7:279. [PMID: 31665076 PMCID: PMC6819482 DOI: 10.1186/s40425-019-0747-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/20/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The role of tumor-infiltrating B-cells (TIBs) and intratumorally-produced antibodies in cancer-immunity interactions essentially remains terra incognita. In particular, it remains unexplored how driver mutations could be associated with distinct TIBs signatures and their role in tumor microenvironment. METHODS Here we analyzed associations of immunoglobulin isotypes and clonality with survival in TCGA RNA-Seq data for lung adenocarcinoma (LUAD), stratifying patients into 12 driver mutation and phenotypic tumor subgroups. RESULTS We revealed several unexpected associations between TIBs behavior and prognosis. Abundance and high proportion of IgG1 isotype, and low proportion of IgA among all intratumorally produced immunoglobulins were specifically associated with improved overall survival for KRASmut but not KRASwt LUAD, revealing the first link between a driver mutation and B-cell response. We found specific IgG1 signature associated with long survival, which suggests that particular specificities of IgG1+ TIBs could be beneficial in KRASmut LUAD. In contrast to our previous observations for melanoma, highly clonal IgG1 production by plasma cells had no meaningful effect on prognosis, suggesting that IgG1+ TIBs may exert a beneficial effect in KRASmut cases in an alternative way, such as efficient presentation of cognate antigens or direct B cell attack on tumor cells. Notably, a high proportion of the IgG1 isotype is positively correlated with the non-silent mutation burden both in the general LUAD cohort and in most patient subgroups, supporting a role for IgG1+ TIBs in antigen presentation. Complementing the recent finding that the presence of stromal IgG4-producing cells is associated with a favorable prognosis for patients with stage I squamous cell carcinoma, we show that the abundance of IgG4-producing TIBs likewise has a strong positive effect on overall survival in STK11mut and proximal proliferative subgroups of LUAD patients. We hypothesize that the positive role of IgG4 antibodies in some of the lung cancer subtypes could be associated with reported inability of IgG4 isotype to form immune complexes, thus preventing immunosuppression via activation of the myeloid-derived suppressor cell (MDSC) phenotype. CONCLUSIONS We discover prominent and distinct associations between TIBs antibody isotypes and survival in lung adenocarcinoma carrying specific driver mutations. These findings indicate that particular types of tumor-immunity relations could be beneficial in particular driver mutation context, which should be taken into account in developing strategies of cancer immunotherapy and combination therapies. Specificity of protective B cell populations in specific cancer subgroups could become a clue to efficient targeted immunotherapies for appropriate cohorts of patients.
Collapse
Affiliation(s)
- O I Isaeva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,BostonGene LLC, Lincoln, MA, USA
| | - G V Sharonov
- Laboratory of Genomics of Antitumor Adaptive Immunity, Privolzhsky Research Medical University, Nizhny Novgorod, Russia.,Genomics of Adaptive Immunity Department, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - E O Serebrovskaya
- Genomics of Adaptive Immunity Department, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.,Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - M A Turchaninova
- Laboratory of Genomics of Antitumor Adaptive Immunity, Privolzhsky Research Medical University, Nizhny Novgorod, Russia.,Genomics of Adaptive Immunity Department, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - A R Zaretsky
- Genomics of Adaptive Immunity Department, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.,Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia.,Evrogen JSC, Moscow, Russia
| | - M Shugay
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,Laboratory of Genomics of Antitumor Adaptive Immunity, Privolzhsky Research Medical University, Nizhny Novgorod, Russia.,Genomics of Adaptive Immunity Department, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.,Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - D M Chudakov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia. .,Laboratory of Genomics of Antitumor Adaptive Immunity, Privolzhsky Research Medical University, Nizhny Novgorod, Russia. .,Genomics of Adaptive Immunity Department, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia. .,Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia.
| |
Collapse
|
68
|
Wang X, Zhang B, Yang Y, Zhu J, Cheng S, Mao Y, Feng L, Xiao T. Characterization of Distinct T Cell Receptor Repertoires in Tumor and Distant Non-tumor Tissues from Lung Cancer Patients. GENOMICS PROTEOMICS & BIOINFORMATICS 2019; 17:287-296. [PMID: 31479759 PMCID: PMC6818398 DOI: 10.1016/j.gpb.2018.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/12/2018] [Accepted: 10/23/2018] [Indexed: 01/10/2023]
Abstract
T cells and T cell receptors (TCRs) play pivotal roles in adaptive immune responses against tumors. The development of next-generation sequencing technologies has enabled the analysis of the TCRβ repertoire usage. Given the scarce investigations on the TCR repertoire in lung cancer tissues, in this study, we analyzed TCRβ repertoires in lung cancer tissues and the matched distant non-tumor lung tissues (normal lung tissues) from 15 lung cancer patients. Based on our results, the general distribution of T cell clones was similar between cancer tissues and normal lung tissues; however, the proportion of highly expanded clones was significantly higher in normal lung tissues than in cancer tissues (0.021% ± 0.002% vs. 0.016% ± 0.001%, P = 0.0054, Wilcoxon signed rank test). In addition, a significantly higher TCR diversity was observed in cancer tissues than in normal lung tissues (431.37 ± 305.96 vs. 166.20 ± 101.58, P = 0.0075, Mann-Whitney U test). Moreover, younger patients had a significantly higher TCR diversity than older patients (640.7 ± 295.3 vs. 291.8 ± 233.6, P = 0.036, Mann-Whitney U test), and the higher TCR diversity in tumors was significantly associated with worse cancer outcomes. Thus, we provided a comprehensive comparison of the TCR repertoires between cancer tissues and matched normal lung tissues and demonstrated the presence of distinct T cell immune microenvironments in lung cancer patients.
Collapse
Affiliation(s)
- Xiang Wang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Botao Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yikun Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jiawei Zhu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shujun Cheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yousheng Mao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lin Feng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Ting Xiao
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
69
|
Sautès-Fridman C, Petitprez F, Calderaro J, Fridman WH. Tertiary lymphoid structures in the era of cancer immunotherapy. Nat Rev Cancer 2019; 19:307-325. [PMID: 31092904 DOI: 10.1038/s41568-019-0144-6] [Citation(s) in RCA: 1075] [Impact Index Per Article: 179.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tertiary lymphoid structures (TLSs) are ectopic lymphoid organs that develop in non-lymphoid tissues at sites of chronic inflammation including tumours. Key common characteristics between secondary lymphoid organogenesis and TLS neogenesis have been identified. TLSs exist under different maturation states in tumours, culminating in germinal centre formation. The mechanisms that underlie the role of TLSs in the adaptive antitumour immune response are being deciphered. The description of the correlation between TLS presence and clinical benefit in patients with cancer, suggesting that TLSs could be a prognostic and predictive factor, has drawn strong interest into investigating the role of TLSs in tumours. A current major challenge is to exploit TLSs to promote lymphocyte infiltration, activation by tumour antigens and differentiation to increase the antitumour immune response. Several approaches are being developed using chemokines, cytokines, antibodies, antigen-presenting cells or synthetic scaffolds to induce TLS formation. Strategies aiming to induce TLS neogenesis in immune-low tumours and in immune-high tumours, in this case, in combination with therapeutic agents dampening the inflammatory environment and/or with immune checkpoint inhibitors, represent promising avenues for cancer treatment.
Collapse
Affiliation(s)
- Catherine Sautès-Fridman
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université de Paris, Equipe Inflammation, complément et cancer, F-75006, Paris, France.
| | - Florent Petitprez
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université de Paris, Equipe Inflammation, complément et cancer, F-75006, Paris, France
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, Paris, France
| | - Julien Calderaro
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université de Paris, Equipe Inflammation, complément et cancer, F-75006, Paris, France
- Département de Pathologie, Assistance Publique Hôpitaux de Paris, Groupe Hospitalier Henri Mondor, Créteil, France; Université Paris-Est, Créteil, France
- INSERM U955, Equipe 18, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Wolf Herman Fridman
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université de Paris, Equipe Inflammation, complément et cancer, F-75006, Paris, France
| |
Collapse
|
70
|
Corsiero E, Delvecchio FR, Bombardieri M, Pitzalis C. B cells in the formation of tertiary lymphoid organs in autoimmunity, transplantation and tumorigenesis. Curr Opin Immunol 2019; 57:46-52. [PMID: 30798069 DOI: 10.1016/j.coi.2019.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 01/16/2019] [Indexed: 12/21/2022]
Abstract
Tertiary lymphoid organs named also tertiary lymphoid structures (TLS) often occur at sites of autoimmune inflammation, organ transplantation and cancer. Although the mechanisms for their formation/function are not entirely understood, it is known that TLS can display features of active germinal centres supporting the proliferation and differentiation of (auto)-reactive B cells. In this Review, we discuss current knowledge on TLS-associated B cells with particular reference on how within diseased tissues these structures are linked to either deleterious or protective outcomes in patients and the potential for therapeutic targeting of TLS through novel drugs.
Collapse
Affiliation(s)
- Elisa Corsiero
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, UK
| | - Francesca Romana Delvecchio
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, UK
| | - Michele Bombardieri
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, UK
| | - Costantino Pitzalis
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, UK.
| |
Collapse
|
71
|
Workel HH, Lubbers JM, Arnold R, Prins TM, van der Vlies P, de Lange K, Bosse T, van Gool IC, Eggink FA, Wouters MCA, Komdeur FL, van der Slikke EC, Creutzberg CL, Kol A, Plat A, Glaire M, Church DN, Nijman HW, de Bruyn M. A Transcriptionally Distinct CXCL13 +CD103 +CD8 + T-cell Population Is Associated with B-cell Recruitment and Neoantigen Load in Human Cancer. Cancer Immunol Res 2019; 7:784-796. [PMID: 30872264 DOI: 10.1158/2326-6066.cir-18-0517] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/03/2018] [Accepted: 03/06/2019] [Indexed: 11/16/2022]
Abstract
The chemokine CXCL13 mediates recruitment of B cells to tumors and is essential for the formation of tertiary lymphoid structures (TLSs). TLSs are thought to support antitumor immunity and are associated with improved prognosis. However, it remains unknown whether TLSs are formed in response to the general inflammatory character of the tumor microenvironment, or rather, are induced by (neo)antigen-specific adaptive immunity. We here report on the finding that the TGFβ-dependent CD103+CD8+ tumor-infiltrating T-cell (TIL) subpopulation expressed and produced CXCL13. Accordingly, CD8+ T cells from peripheral blood activated in the presence of TGFβ upregulated CD103 and secreted CXCL13. Conversely, inhibition of TGFβ receptor signaling abrogated CXCL13 production. CXCL13+CD103+CD8+ TILs correlated with B-cell recruitment, TLSs, and neoantigen burden in six cohorts of human tumors. Altogether, our findings indicated that TGFβ plays a noncanonical role in coordinating immune responses against human tumors and suggest a potential role for CXCL13+CD103+CD8+ TILs in mediating B-cell recruitment and TLS formation in human tumors.
Collapse
Affiliation(s)
- Hagma H Workel
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Joyce M Lubbers
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Roland Arnold
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Thalina M Prins
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Pieter van der Vlies
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Kim de Lange
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Tjalling Bosse
- Department of Pathology, Leiden University Medical Center, Leiden University, Leiden, the Netherlands
| | - Inge C van Gool
- Department of Pathology, Leiden University Medical Center, Leiden University, Leiden, the Netherlands
| | - Florine A Eggink
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Maartje C A Wouters
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
| | - Fenne L Komdeur
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Elisabeth C van der Slikke
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Carien L Creutzberg
- Department of Radiation Oncology, Leiden University Medical Center, Leiden University, Leiden, the Netherlands
| | - Arjan Kol
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Annechien Plat
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Mark Glaire
- Molecular and Population Genetics Laboratory, The Wellcome Trust Centre for Human Genetics and Oxford Cancer Centre, University of Oxford, Oxford, United Kingdom
| | - David N Church
- Molecular and Population Genetics Laboratory, The Wellcome Trust Centre for Human Genetics and Oxford Cancer Centre, University of Oxford, Oxford, United Kingdom.,NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust and John Radcliffe Hospital, Oxford, United Kingdom
| | - Hans W Nijman
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Marco de Bruyn
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
72
|
Tokunaga R, Naseem M, Lo JH, Battaglin F, Soni S, Puccini A, Berger MD, Zhang W, Baba H, Lenz HJ. B cell and B cell-related pathways for novel cancer treatments. Cancer Treat Rev 2018; 73:10-19. [PMID: 30551036 DOI: 10.1016/j.ctrv.2018.12.001] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 01/10/2023]
Abstract
B cells are recognized as the main effector cells of humoral immunity which suppress tumor progression by secreting immunoglobulins, promoting T cell response, and killing cancer cells directly. Given these properties, their anti-tumor immune response in the tumor micro-environment (TME) is of great interest. Although T cell-related immune responses have become a therapeutic target with the introduction of immune checkpoint inhibitors, not all patients benefit from these treatments. B cell and B cell-related pathways (CCL19, -21/CCR7 axis and CXCL13/CXCR5 axis) play key roles in activating immune response through humoral immunity and local immune activation via tertiary lymphoid structure (TLS) formation. However they have some protumorigenic works in the TME. Thus, a better understanding of B cell and B cell-related pathways is necessary to develop effective cancer control. In this review, we summarize recent evidences regarding the roles of B cell and B cell-related pathways in the TME and immune response and discuss their potential roles for novel cancer treatment strategies.
Collapse
Affiliation(s)
- Ryuma Tokunaga
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States.
| | - Madiha Naseem
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Jae Ho Lo
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Francesca Battaglin
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Shivani Soni
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Alberto Puccini
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Martin D Berger
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Wu Zhang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 8608556, Japan
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| |
Collapse
|
73
|
Zhang C, Huang H, Miao Y, Xiong H, Lu Z. Clonal distribution and intratumour heterogeneity of the B-cell repertoire in oesophageal squamous cell carcinoma. J Pathol 2018; 246:323-330. [PMID: 30027584 DOI: 10.1002/path.5142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/25/2018] [Accepted: 07/05/2018] [Indexed: 12/11/2022]
Abstract
Recent successes in tumour immunotherapies have highlighted the importance of tumour immunity. However, most previous studies to date have focused on T-cell immune response, although B cells are key players in the core immune network and are associated with T-cell immune response. Based on our previous study delineating T-cell receptor (TCR) repertoire in seven patients with oesophageal squamous cell carcinoma (ESCC), this study profiled the B-cell receptor (BCR) repertoire of multiple tumour regions, adjacent normal tissue, and blood from the same seven patients to reveal the characteristics of B-cell immunity and the relationship to TCR repertoire in ESCC patients. We found that intratumour BCR repertoire was significantly more oligoclonal than matched adjacent normal tissue or peripheral blood and, moreover, clonal amplification of B cells in multiple tumour regions was significantly heterogeneous, although clonal amplification of the TCR repertoire across different tissue compartments and regions of the same tumour was similar. However, both BCR and TCR repertoires in the tumour microenvironment were distinct from those in adjacent normal tissues and blood, and thus represented a group of B and T cells that were spatially confined to the tumour microenvironment and could react to tumour antigens. Additionally, B- and T-cell clones varying between different tumour regions showed intratumour heterogeneity of B- and T-cell immune response. Thus, multiple tumour biopsies could be essential to comprehensively delineate the adaptive immune response to an individual ESCC. These findings expand our understanding of adaptive anti-tumour immunity and shed more light on ESCC immunotherapy. This study provides insights into the intratumour heterogeneity of the BCR repertoire as well as the difference and relationship between the BCR and TCR repertoire in ESCC, expanding our understanding of adaptive anti-tumour immunity and ESCC immunotherapy. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Chaoting Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, PR China
| | - Hongying Huang
- Department of Pathology, New York University Langone Medical Center, New York, NY, USA
| | - Yu Miao
- MyGenostics Inc, Beijing, PR China
| | - Hongchao Xiong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery, Peking University Cancer Hospital & Institute, Beijing, PR China
| | - Zheming Lu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, PR China
| |
Collapse
|
74
|
Lanitis E, Dangaj D, Irving M, Coukos G. Mechanisms regulating T-cell infiltration and activity in solid tumors. Ann Oncol 2018; 28:xii18-xii32. [PMID: 29045511 DOI: 10.1093/annonc/mdx238] [Citation(s) in RCA: 268] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
T-lymphocytes play a critical role in cancer immunity as evidenced by their presence in resected tumor samples derived from long-surviving patients, and impressive clinical responses to various immunotherapies that reinvigorate them. Indeed, tumors can upregulate a wide array of defense mechanisms, both direct and indirect, to suppress the ability of Tcells to reach the tumor bed and mount curative responses upon infiltration. In addition, patient and tumor genetics, previous antigenic experience, and the microbiome, are all important factors in shaping the T-cell repertoire and sensitivity to immunotherapy. Here, we review the mechanisms that regulate T-cell homing, infiltration, and activity within the solid tumor bed. Finally, we summarize different immunotherapies and combinatorial treatment strategies that enable the immune system to overcome barriers for enhanced tumor control and improved patient outcome.
Collapse
Affiliation(s)
- E Lanitis
- The Ludwig Branch for Cancer Research of the University of Lausanne, Epalinges
| | - D Dangaj
- The Ludwig Branch for Cancer Research of the University of Lausanne, Epalinges
| | - M Irving
- The Ludwig Branch for Cancer Research of the University of Lausanne, Epalinges
| | - G Coukos
- The Ludwig Branch for Cancer Research of the University of Lausanne, Epalinges.,Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| |
Collapse
|
75
|
Lin KR, Deng FW, Jin YB, Chen XP, Pan YM, Cui JH, You ZX, Chen HW, Luo W. T cell receptor repertoire profiling predicts the prognosis of HBV-associated hepatocellular carcinoma. Cancer Med 2018; 7:3755-3762. [PMID: 29947152 PMCID: PMC6089190 DOI: 10.1002/cam4.1610] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 05/21/2018] [Indexed: 01/28/2023] Open
Abstract
Tumor‐infiltrating T cell repertoire has been demonstrated to be closely associated with anti‐tumor immune response. However, the relationship between T cell repertoire in tumor tissue and prognosis has never been reported in Hepatocellular carcinoma (HCC). We performed the high‐throughput T cell receptor (TCR) sequencing to systematically characterize the infiltrating T cell repertoires of tumor and matched adjacent normal tissues from 23 HBV‐associated HCC patients. Significant differences on usage frequencies of some Vβ, Jβ, and Vβ‐Jβ paired genes have been found between the 2 groups of tissue samples, but no significant difference of TCR repertoire diversity could be found. Interestingly, the similarity of TCR repertoires between paired samples or the TNM stage alone could not be helpful to evaluate the prognosis of patients very well, but their combination could serve as an efficient prognostic indicator that the patients with early stage and high similarity showed a better prognosis. This is the first attempt to assess the potential value of TCR repertoire in HCC prognosis, and our findings could serve as a complement for the characterization of TCR repertoire in HCC.
Collapse
Affiliation(s)
- Kai-Rong Lin
- Clinical Research Institute, Foshan Hospital, Sun Yat-sen University, Foshan, China
| | - Fei-Wen Deng
- Department of Hepatobiliary Surgery, Foshan Hospital, Sun Yat-sen University, Foshan, China
| | - Ya-Bin Jin
- Clinical Research Institute, Foshan Hospital, Sun Yat-sen University, Foshan, China
| | - Xiang-Ping Chen
- Clinical Research Institute, Foshan Hospital, Sun Yat-sen University, Foshan, China
| | - Ying-Ming Pan
- Clinical Research Institute, Foshan Hospital, Sun Yat-sen University, Foshan, China
| | - Jin-Huan Cui
- Clinical Research Institute, Foshan Hospital, Sun Yat-sen University, Foshan, China
| | | | - Huan-Wei Chen
- Department of Hepatobiliary Surgery, Foshan Hospital, Sun Yat-sen University, Foshan, China
| | - Wei Luo
- Clinical Research Institute, Foshan Hospital, Sun Yat-sen University, Foshan, China
| |
Collapse
|
76
|
Abstract
Therapeutic reinvigoration of tumor-specific T cells has greatly improved clinical outcome in cancer. Nevertheless, many patients still do not achieve durable benefit. Recent evidence from studies in murine and human cancer suggest that intratumoral T cells display a broad spectrum of (dys-)functional states, shaped by the multifaceted suppressive signals that occur within the tumor microenvironment. Here we discuss the current understanding of T cell dysfunction in cancer, the value of novel technologies to dissect such dysfunction at the single cell level, and how our emerging understanding of T cell dysfunction may be utilized to develop personalized strategies to restore antitumor immunity.
Collapse
Affiliation(s)
- Daniela S Thommen
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Ton N Schumacher
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
77
|
Wang SS, Liu W, Ly D, Xu H, Qu L, Zhang L. Tumor-infiltrating B cells: their role and application in anti-tumor immunity in lung cancer. Cell Mol Immunol 2018; 16:6-18. [PMID: 29628498 DOI: 10.1038/s41423-018-0027-x] [Citation(s) in RCA: 341] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 02/07/2023] Open
Abstract
Evidence indicates that lung cancer development is a complex process that involves interactions between tumor cells, stromal fibroblasts, and immune cells. Tumor-infiltrating immune cells play a significant role in the promotion or inhibition of tumor growth. As an integral component of the tumor microenvironment, tumor-infiltrating B lymphocytes (TIBs) exist in all stages of cancer and play important roles in shaping tumor development. Here, we review recent clinical and preclinical studies that outline the role of TIBs in lung cancer development, assess their prognostic significance, and explore the potential benefit of B cell-based immunotherapy for lung cancer treatment.
Collapse
Affiliation(s)
- Si-Si Wang
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, 130061, China
| | - Wei Liu
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, 130061, China. .,Department of Thoracic surgery, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Dalam Ly
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, M5G 1L7, Canada.,Departments of Laboratory Medicine and Pathobiology, Immunology, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Hao Xu
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, 130061, China
| | - Limei Qu
- Department of Pathology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Li Zhang
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, M5G 1L7, Canada. .,Departments of Laboratory Medicine and Pathobiology, Immunology, University of Toronto, Toronto, ON, M5G 1L7, Canada.
| |
Collapse
|
78
|
Schuler PJ, Brunner C, Hoffmann TK. [B cells in head and neck oncology]. HNO 2018; 66:296-300. [PMID: 29500500 DOI: 10.1007/s00106-018-0494-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
As immunotherapy is becoming increasingly important in the treatment of head and neck cancer, a fundamental understanding of the immunological relationships in the tumor microenvironment is required. The importance of tumor-infiltrating B cells (TIL-B) has been largely neglected so far. In the current literature, however, a significant influence of B cells on tumor growth is described, so that this cell population is now also perceived as a therapeutic target structure. Regulatory B cells (Breg) represent a subset of B cells with immunosuppressive properties. In addition to the secretion of IL-10, Breg can be defined by their ability to produce adenosine. Adenosine is known as an immunosuppressive messenger in the tumor microenvironment whose effect can be prevented by immunotherapeutic approaches. Understanding the tumor immunological relationships, including the different B‑cell functions, can help to effectively combine standard approaches including surgery or radiochemotherapy with immunotherapy. In the present article, recent findings on B cells and adenosine in head and neck cancer are described.
Collapse
Affiliation(s)
- P J Schuler
- Klinik für Hals‑, Nasen‑, Ohrenheilkunde, Kopf- und Halschirurgie, Universitätsklinikum Ulm, Frauensteige 12, 89075, Ulm, Deutschland.
| | - C Brunner
- Klinik für Hals‑, Nasen‑, Ohrenheilkunde, Kopf- und Halschirurgie, Universitätsklinikum Ulm, Frauensteige 12, 89075, Ulm, Deutschland
| | - T K Hoffmann
- Klinik für Hals‑, Nasen‑, Ohrenheilkunde, Kopf- und Halschirurgie, Universitätsklinikum Ulm, Frauensteige 12, 89075, Ulm, Deutschland
| |
Collapse
|
79
|
Siliņa K, Soltermann A, Attar FM, Casanova R, Uckeley ZM, Thut H, Wandres M, Isajevs S, Cheng P, Curioni-Fontecedro A, Foukas P, Levesque MP, Moch H, Linē A, van den Broek M. Germinal Centers Determine the Prognostic Relevance of Tertiary Lymphoid Structures and Are Impaired by Corticosteroids in Lung Squamous Cell Carcinoma. Cancer Res 2017; 78:1308-1320. [PMID: 29279354 DOI: 10.1158/0008-5472.can-17-1987] [Citation(s) in RCA: 283] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 11/01/2017] [Accepted: 12/19/2017] [Indexed: 11/16/2022]
Abstract
In solid tumors, the presence of lymph node-like structures called tertiary lymphoid structures (TLS) is associated with improved patient survival. However, little is known about how TLS develop in cancer, how their function affects survival, and whether they are affected by cancer therapy. In this study, we used multispectral microscopy, quantitative pathology, and gene expression profiling to analyze TLS formation in human lung squamous cell carcinoma (LSCC) and in an experimental model of lung TLS induction. We identified a niche of CXCL13+ perivascular and CXCL12+LTB+ and PD-L1+ epithelial cells supporting TLS formation. We also characterized sequential stages of TLS maturation in LSCC culminating in the formation of germinal centers (GC). In untreated patients, TLS density was the strongest independent prognostic marker. Furthermore, TLS density correlated with GC formation and expression of adaptive immune response-related genes. In patients treated with neoadjuvant chemotherapy, TLS density was similar, but GC formation was impaired and the prognostic value of TLS density was lost. Corticosteroids are coadministered with chemotherapy to manage side effects in LSCC patients, so we evaluated whether they impaired TLS development independently of chemotherapy. TLS density and GC formation were each reduced in chemotherapy-naïve LSCC patients treated with corticosteroids before surgery, compared with untreated patients, a finding that we confirmed in the experimental model of lung TLS induction. Overall, our results highlight the importance of GC formation in TLS during tumor development and treatment.Significance: Corticosteroid treatment during chemotherapy negatively affects the development of tertiary lymphoid structures and abrogates their prognostic value in patients with lung cancer. Cancer Res; 78(5); 1308-20. ©2018 AACR.
Collapse
Affiliation(s)
- Karīna Siliņa
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Alex Soltermann
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | | | - Ruben Casanova
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Zina M Uckeley
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Helen Thut
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Muriel Wandres
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sergejs Isajevs
- Pathology Center, Riga East Clinical University Hospital, Riga, Latvia.,Faculty of Medicine, University of Latvia, Riga, Latvia
| | - Phil Cheng
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | | | - Periklis Foukas
- Department of Oncology, CHUV-UNIL, Lausanne, Switzerland.,Department of Pathology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Holger Moch
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Aija Linē
- Latvian Biomedical Research and Study Center, Riga, Latvia
| | - Maries van den Broek
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
80
|
T cell receptor sequencing of early-stage breast cancer tumors identifies altered clonal structure of the T cell repertoire. Proc Natl Acad Sci U S A 2017; 114:E10409-E10417. [PMID: 29138313 PMCID: PMC5715779 DOI: 10.1073/pnas.1713863114] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Tumor-infiltrating T cells play an important role in many cancers, and can improve prognosis and yield therapeutic targets. We characterized T cells infiltrating both breast cancer tumors and the surrounding normal breast tissue to identify T cells specific to each, as well as their abundance in peripheral blood. Using immune profiling of the T cell beta-chain repertoire in 16 patients with early-stage breast cancer, we show that the clonal structure of the tumor is significantly different from adjacent breast tissue, with the tumor containing ∼2.5-fold greater density of T cells and higher clonality compared with normal breast. The clonal structure of T cells in blood and normal breast is more similar than between blood and tumor, and could be used to distinguish tumor from normal breast tissue in 14 of 16 patients. Many T cell sequences overlap between tissue and blood from the same patient, including ∼50% of T cells between tumor and normal breast. Both tumor and normal breast contain high-abundance "enriched" sequences that are absent or of low abundance in the other tissue. Many of these T cells are either not detected or detected with very low frequency in the blood, suggesting the existence of separate compartments of T cells in both tumor and normal breast. Enriched T cell sequences are typically unique to each patient, but a subset is shared between many different patients. We show that many of these are commonly generated sequences, and thus unlikely to play an important role in the tumor microenvironment.
Collapse
|
81
|
Teillaud JL, Dieu-Nosjean MC. Tertiary Lymphoid Structures: An Anti-tumor School for Adaptive Immune Cells and an Antibody Factory to Fight Cancer? Front Immunol 2017; 8:830. [PMID: 28785261 PMCID: PMC5519532 DOI: 10.3389/fimmu.2017.00830] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/30/2017] [Indexed: 12/13/2022] Open
Abstract
Tertiary lymphoid structures (TLS) present in human solid tumors are essential for the shaping of a favorable immune micro-environment to control tumor development in most cases. They represent a formidable school for T-cell priming, B cell activation, and differentiation into plasma cells and an exquisitely located factory for antibody production. The manipulation of TLS neogenesis and maintenance represents, therefore, an exciting task to set up efficient anti-cancer vaccine strategies leading to long-lasting anti-tumor adaptive responses. To achieve this goal, a number of important issues are still pending. How TLS-T and -B cells and antibodies locally produced are related to the improved survival of cancer patients with high density of TLS is still unclear. In addition, the mechanisms by which tumors escape the immune surveillance exerted by TLS are still poorly understood and the role of immune suppressive cytokines, regulatory T cells, and/or antibodies in this process remains to be explored. The identification of the key parameters that distinguish TLS with anti- or possible pro-tumor activity is also essential to make the therapeutic targeting of TLS a success. Finally, how TLS-based therapeutic approaches can be associated with targeted therapies or immunointerventions, such as the use of ICP blockers to improve anti-tumor responses, is an open question. We will discuss these different issues in the present review.
Collapse
Affiliation(s)
- Jean-Luc Teillaud
- INSERM, UMRS 1138, Cordeliers Research Center, Team "Cancer, Immune Control and Escape", Paris, France.,Paris Descartes University, Sorbonne Paris Cite, UMRS 1138, Cordeliers Research Center, Paris, France.,Pierre and Marie Curie University (UPMC), Paris 06, Sorbonne University, UMRS 1138, Cordeliers Research Center, Paris, France
| | - Marie-Caroline Dieu-Nosjean
- INSERM, UMRS 1138, Cordeliers Research Center, Team "Cancer, Immune Control and Escape", Paris, France.,Paris Descartes University, Sorbonne Paris Cite, UMRS 1138, Cordeliers Research Center, Paris, France.,Pierre and Marie Curie University (UPMC), Paris 06, Sorbonne University, UMRS 1138, Cordeliers Research Center, Paris, France
| |
Collapse
|
82
|
Gu-Trantien C, Migliori E, Buisseret L, de Wind A, Brohée S, Garaud S, Noël G, Dang Chi VL, Lodewyckx JN, Naveaux C, Duvillier H, Goriely S, Larsimont D, Willard-Gallo K. CXCL13-producing TFH cells link immune suppression and adaptive memory in human breast cancer. JCI Insight 2017; 2:91487. [PMID: 28570278 DOI: 10.1172/jci.insight.91487] [Citation(s) in RCA: 259] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 04/25/2017] [Indexed: 02/06/2023] Open
Abstract
T follicular helper cells (TFH cells) are important regulators of antigen-specific B cell responses. The B cell chemoattractant CXCL13 has recently been linked with TFH cell infiltration and improved survival in human cancer. Although human TFH cells can produce CXCL13, their immune functions are currently unknown. This study presents data from human breast cancer, advocating a role for tumor-infiltrating CXCL13-producing (CXCR5-) TFH cells, here named TFHX13 cells, in promoting local memory B cell differentiation. TFHX13 cells potentially trigger tertiary lymphoid structure formation and thereby generate germinal center B cell responses at the tumor site. Follicular DCs are not potent CXCL13 producers in breast tumor tissues. We used the TFH cell markers PD-1 and ICOS to identify distinct effector and regulatory CD4+ T cell subpopulations in breast tumors. TFHX13 cells are an important component of the PD-1hiICOSint effector subpopulation and coexpanded with PD-1intICOShiFOXP3hi Tregs. IL2 deprivation induces CXCL13 expression in vitro with a synergistic effect from TGFβ1, providing insight into TFHX13 cell differentiation in response to Treg accumulation, similar to conventional TFH cell responses. Our data suggest that human TFHX13 cell differentiation may be a key factor in converting Treg-mediated immune suppression to de novo activation of adaptive antitumor humoral responses in the chronic inflammatory breast cancer microenvironment.
Collapse
Affiliation(s)
| | | | - Laurence Buisseret
- Molecular Immunology Unit.,Breast Cancer Translational Research Laboratory
| | | | | | | | | | | | | | | | - Hugues Duvillier
- Flow Cytometry Core Facility, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Stanislas Goriely
- Welbio and Institute for Medical Immunology, Université Libre de Bruxelles, Brussels, Belgium
| | | | | |
Collapse
|
83
|
Lavin Y, Kobayashi S, Leader A, Amir EAD, Elefant N, Bigenwald C, Remark R, Sweeney R, Becker CD, Levine JH, Meinhof K, Chow A, Kim-Shulze S, Wolf A, Medaglia C, Li H, Rytlewski JA, Emerson RO, Solovyov A, Greenbaum BD, Sanders C, Vignali M, Beasley MB, Flores R, Gnjatic S, Pe'er D, Rahman A, Amit I, Merad M. Innate Immune Landscape in Early Lung Adenocarcinoma by Paired Single-Cell Analyses. Cell 2017; 169:750-765.e17. [PMID: 28475900 PMCID: PMC5737939 DOI: 10.1016/j.cell.2017.04.014] [Citation(s) in RCA: 895] [Impact Index Per Article: 111.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/26/2017] [Accepted: 04/11/2017] [Indexed: 12/15/2022]
Abstract
To guide the design of immunotherapy strategies for patients with early stage lung tumors, we developed a multiscale immune profiling strategy to map the immune landscape of early lung adenocarcinoma lesions to search for tumor-driven immune changes. Utilizing a barcoding method that allows a simultaneous single-cell analysis of the tumor, non-involved lung, and blood cells, we provide a detailed immune cell atlas of early lung tumors. We show that stage I lung adenocarcinoma lesions already harbor significantly altered T cell and NK cell compartments. Moreover, we identified changes in tumor-infiltrating myeloid cell (TIM) subsets that likely compromise anti-tumor T cell immunity. Paired single-cell analyses thus offer valuable knowledge of tumor-driven immune changes, providing a powerful tool for the rational design of immune therapies. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Yonit Lavin
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Soma Kobayashi
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew Leader
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - El-Ad David Amir
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Naama Elefant
- Department of Immunology, Weizmann Institute, Rehovot 76100, Israel
| | - Camille Bigenwald
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Romain Remark
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert Sweeney
- Department of Thoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christian D Becker
- Division of Pulmonology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jacob H Levine
- Computational and Systems Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Klaus Meinhof
- Division of Pulmonology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew Chow
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Seunghee Kim-Shulze
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrea Wolf
- Department of Thoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chiara Medaglia
- Department of Immunology, Weizmann Institute, Rehovot 76100, Israel
| | - Hanjie Li
- Department of Immunology, Weizmann Institute, Rehovot 76100, Israel
| | | | | | - Alexander Solovyov
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Benjamin D Greenbaum
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | | | - Mary Beth Beasley
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Raja Flores
- Department of Thoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sacha Gnjatic
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dana Pe'er
- Computational and Systems Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Adeeb Rahman
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ido Amit
- Department of Immunology, Weizmann Institute, Rehovot 76100, Israel
| | - Miriam Merad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
84
|
Dieu-Nosjean MC, Giraldo NA, Kaplon H, Germain C, Fridman WH, Sautès-Fridman C. Tertiary lymphoid structures, drivers of the anti-tumor responses in human cancers. Immunol Rev 2016; 271:260-75. [PMID: 27088920 DOI: 10.1111/imr.12405] [Citation(s) in RCA: 276] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The characterization of the microenvironment of human tumors led to the description of tertiary lymphoid structures (TLS) characterized by mature dendritic cells in a T-cell zone adjacent to B-cell follicle including a germinal center. TLS represent sites of lymphoid neogenesis that develop in most solid cancers. Analysis of the current literature shows that the TLS presence is associated with a favorable clinical outcome for cancer patients, regardless of the approach used to quantify TLS and the stage of the disease. Using several approaches that combine immunohistochemistry, gene expression assays, and flow cytometry on large series of lung tumors, our work demonstrated that TLS are important sites for the initiation and/or maintenance of the local and systemic T- and B-cell responses against tumors. Surrounded by high endothelial venules, they represent a privileged area for the recruitment of lymphocytes into tumors and generation of central-memory T and B cells that circulate and limit cancer progression. TLS can be considered as a novel biomarker to stratify the overall survival risk of untreated cancer patients and as a marker of efficient immunotherapies. The induction and manipulation of cancer-associated TLS using drug agonists and/or biotherapies should open new avenues to treat cancer patients.
Collapse
Affiliation(s)
- Marie-Caroline Dieu-Nosjean
- INSERM, UMR_S 1138, Cordeliers Research Center, Team 13 Cancer, Immune Control and Escape, Paris, France.,Sorbonne Paris Cité, UMR_S 1138, Cordeliers Research Center, University Paris Descartes, Paris, France.,Sorbonne Universités, UMR_S 1138, Cordeliers Research Center, UPMC University Paris 06, Paris, France
| | - Nicolas A Giraldo
- INSERM, UMR_S 1138, Cordeliers Research Center, Team 13 Cancer, Immune Control and Escape, Paris, France.,Sorbonne Paris Cité, UMR_S 1138, Cordeliers Research Center, University Paris Descartes, Paris, France.,Sorbonne Universités, UMR_S 1138, Cordeliers Research Center, UPMC University Paris 06, Paris, France
| | - Hélène Kaplon
- INSERM, UMR_S 1138, Cordeliers Research Center, Team 13 Cancer, Immune Control and Escape, Paris, France.,Sorbonne Paris Cité, UMR_S 1138, Cordeliers Research Center, University Paris Descartes, Paris, France.,Sorbonne Universités, UMR_S 1138, Cordeliers Research Center, UPMC University Paris 06, Paris, France
| | - Claire Germain
- INSERM, UMR_S 1138, Cordeliers Research Center, Team 13 Cancer, Immune Control and Escape, Paris, France.,Sorbonne Paris Cité, UMR_S 1138, Cordeliers Research Center, University Paris Descartes, Paris, France.,Sorbonne Universités, UMR_S 1138, Cordeliers Research Center, UPMC University Paris 06, Paris, France
| | - Wolf Herman Fridman
- INSERM, UMR_S 1138, Cordeliers Research Center, Team 13 Cancer, Immune Control and Escape, Paris, France.,Sorbonne Paris Cité, UMR_S 1138, Cordeliers Research Center, University Paris Descartes, Paris, France.,Sorbonne Universités, UMR_S 1138, Cordeliers Research Center, UPMC University Paris 06, Paris, France
| | - Catherine Sautès-Fridman
- INSERM, UMR_S 1138, Cordeliers Research Center, Team 13 Cancer, Immune Control and Escape, Paris, France.,Sorbonne Paris Cité, UMR_S 1138, Cordeliers Research Center, University Paris Descartes, Paris, France.,Sorbonne Universités, UMR_S 1138, Cordeliers Research Center, UPMC University Paris 06, Paris, France
| |
Collapse
|
85
|
Immune DNA signature of T-cell infiltration in breast tumor exomes. Sci Rep 2016; 6:30064. [PMID: 27452728 PMCID: PMC4958917 DOI: 10.1038/srep30064] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/27/2016] [Indexed: 12/11/2022] Open
Abstract
Tumor infiltrating lymphocytes (TILs) have been associated with favorable prognosis in multiple tumor types. The Cancer Genome Atlas (TCGA) represents the largest collection of cancer molecular data, but lacks detailed information about the immune environment. Here, we show that exome reads mapping to the complementarity-determining-region 3 (CDR3) of mature T-cell receptor beta (TCRB) can be used as an immune DNA (iDNA) signature. Specifically, we propose a method to identify CDR3 reads in a breast tumor exome and validate it using deep TCRB sequencing. In 1,078 TCGA breast cancer exomes, the fraction of CDR3 reads was associated with TILs fraction, tumor purity, adaptive immunity gene expression signatures and improved survival in Her2+ patients. Only 2/839 TCRB clonotypes were shared between patients and none associated with a specific HLA allele or somatic driver mutations. The iDNA biomarker enriches the comprehensive dataset collected through TCGA, revealing associations with other molecular features and clinical outcomes.
Collapse
|
86
|
Hiraoka N, Ino Y, Yamazaki-Itoh R. Tertiary Lymphoid Organs in Cancer Tissues. Front Immunol 2016; 7:244. [PMID: 27446075 PMCID: PMC4916185 DOI: 10.3389/fimmu.2016.00244] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 06/10/2016] [Indexed: 12/20/2022] Open
Abstract
Tertiary lymphoid organs (TLOs) are induced postnatally in non-lymphoid tissues such as those affected by chronic infections, autoimmune diseases, and chronic allograft rejection, and also in cancer tissues. TLOs are thought to provide important lymphocytic functional environments for both cellular and humoral immunity, similar to lymph nodes or Peyer’s patches. TLOs have a structure similar to that of lymph nodes or Peyer’s patches, including T cell zones, B cell follicles, and high endothelial venules (HEV) without encapsulation. Here, we review recent advances in our knowledge of TLOs in human solid cancers, including their location, structure, methods of evaluation, and clinicopathological impact. We also discuss the formation and/or maintenance of TLOs in cancer tissues in association with the tumor immune microenvironment, cancer invasion, and the tissue structure of the cancer stroma.
Collapse
Affiliation(s)
- Nobuyoshi Hiraoka
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan; Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan; Division of Analytical Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yoshinori Ino
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan; Division of Analytical Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Rie Yamazaki-Itoh
- Division of Molecular Pathology, National Cancer Center Research Institute , Tokyo , Japan
| |
Collapse
|