51
|
Varghese BA, Fields BKK, Hwang DH, Duddalwar VA, Matcuk GR, Cen SY. Spatial assessments in texture analysis: what the radiologist needs to know. FRONTIERS IN RADIOLOGY 2023; 3:1240544. [PMID: 37693924 PMCID: PMC10484588 DOI: 10.3389/fradi.2023.1240544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023]
Abstract
To date, studies investigating radiomics-based predictive models have tended to err on the side of data-driven or exploratory analysis of many thousands of extracted features. In particular, spatial assessments of texture have proven to be especially adept at assessing for features of intratumoral heterogeneity in oncologic imaging, which likewise may correspond with tumor biology and behavior. These spatial assessments can be generally classified as spatial filters, which detect areas of rapid change within the grayscale in order to enhance edges and/or textures within an image, or neighborhood-based methods, which quantify gray-level differences of neighboring pixels/voxels within a set distance. Given the high dimensionality of radiomics datasets, data dimensionality reduction methods have been proposed in an attempt to optimize model performance in machine learning studies; however, it should be noted that these approaches should only be applied to training data in order to avoid information leakage and model overfitting. While area under the curve of the receiver operating characteristic is perhaps the most commonly reported assessment of model performance, it is prone to overestimation when output classifications are unbalanced. In such cases, confusion matrices may be additionally reported, whereby diagnostic cut points for model predicted probability may hold more clinical significance to clinical colleagues with respect to related forms of diagnostic testing.
Collapse
Affiliation(s)
- Bino A. Varghese
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Brandon K. K. Fields
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Darryl H. Hwang
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Vinay A. Duddalwar
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - George R. Matcuk
- Department of Radiology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Steven Y. Cen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
52
|
Cao Y, Parekh VS, Lee E, Chen X, Redmond KJ, Pillai JJ, Peng L, Jacobs MA, Kleinberg LR. A Multidimensional Connectomics- and Radiomics-Based Advanced Machine-Learning Framework to Distinguish Radiation Necrosis from True Progression in Brain Metastases. Cancers (Basel) 2023; 15:4113. [PMID: 37627141 PMCID: PMC10452423 DOI: 10.3390/cancers15164113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
We introduce tumor connectomics, a novel MRI-based complex graph theory framework that describes the intricate network of relationships within the tumor and surrounding tissue, and combine this with multiparametric radiomics (mpRad) in a machine-learning approach to distinguish radiation necrosis (RN) from true progression (TP). Pathologically confirmed cases of RN vs. TP in brain metastases treated with SRS were included from a single institution. The region of interest was manually segmented as the single largest diameter of the T1 post-contrast (T1C) lesion plus the corresponding area of T2 FLAIR hyperintensity. There were 40 mpRad features and 6 connectomics features extracted, as well as 5 clinical and treatment factors. We developed an Integrated Radiomics Informatics System (IRIS) based on an Isomap support vector machine (IsoSVM) model to distinguish TP from RN using leave-one-out cross-validation. Class imbalance was resolved with differential misclassification weighting during model training using the IRIS. In total, 135 lesions in 110 patients were analyzed, including 43 cases (31.9%) of pathologically proven RN and 92 cases (68.1%) of TP. The top-performing connectomics features were three centrality measures of degree, betweenness, and eigenvector centralities. Combining these with the 10 top-performing mpRad features, an optimized IsoSVM model was able to produce a sensitivity of 0.87, specificity of 0.84, AUC-ROC of 0.89 (95% CI: 0.82-0.94), and AUC-PR of 0.94 (95% CI: 0.87-0.97).
Collapse
Affiliation(s)
- Yilin Cao
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Radiation Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, MA 02115, USA
| | - Vishwa S. Parekh
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- University of Maryland Medical Intelligent Imaging (UM2ii) Center, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| | - Emerson Lee
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Xuguang Chen
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Kristin J. Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jay J. Pillai
- Division of Neuroradiology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Luke Peng
- Department of Radiation Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, MA 02115, USA
| | - Michael A. Jacobs
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Diagnostics and Interventional Imaging, McGovern Medical School, Houston, TX 77030, USA
| | - Lawrence R. Kleinberg
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
53
|
Mäkitie AA, Alabi RO, Ng SP, Takes RP, Robbins KT, Ronen O, Shaha AR, Bradley PJ, Saba NF, Nuyts S, Triantafyllou A, Piazza C, Rinaldo A, Ferlito A. Artificial Intelligence in Head and Neck Cancer: A Systematic Review of Systematic Reviews. Adv Ther 2023; 40:3360-3380. [PMID: 37291378 PMCID: PMC10329964 DOI: 10.1007/s12325-023-02527-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/20/2023] [Indexed: 06/10/2023]
Abstract
INTRODUCTION Several studies have emphasized the potential of artificial intelligence (AI) and its subfields, such as machine learning (ML), as emerging and feasible approaches to optimize patient care in oncology. As a result, clinicians and decision-makers are faced with a plethora of reviews regarding the state of the art of applications of AI for head and neck cancer (HNC) management. This article provides an analysis of systematic reviews on the current status, and of the limitations of the application of AI/ML as adjunctive decision-making tools in HNC management. METHODS Electronic databases (PubMed, Medline via Ovid, Scopus, and Web of Science) were searched from inception until November 30, 2022. The study selection, searching and screening processes, inclusion, and exclusion criteria followed the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines. A risk of bias assessment was conducted using a tailored and modified version of the Assessment of Systematic Review (AMSTAR-2) tool and quality assessment using the Risk of Bias in Systematic Reviews (ROBIS) guidelines. RESULTS Of the 137 search hits retrieved, 17 fulfilled the inclusion criteria. This analysis of systematic reviews revealed that the application of AI/ML as a decision aid in HNC management can be thematized as follows: (1) detection of precancerous and cancerous lesions within histopathologic slides; (2) prediction of the histopathologic nature of a given lesion from various sources of medical imaging; (3) prognostication; (4) extraction of pathological findings from imaging; and (5) different applications in radiation oncology. In addition, the challenges in implementation of AI/ML models for clinical evaluations include the lack of standardized methodological guidelines for the collection of clinical images, development of these models, reporting of their performance, external validation procedures, and regulatory frameworks. CONCLUSION At present, there is a paucity of evidence to suggest the adoption of these models in clinical practice due to the aforementioned limitations. Therefore, this manuscript highlights the need for development of standardized guidelines to facilitate the adoption and implementation of these models in the daily clinical practice. In addition, adequately powered, prospective, randomized controlled trials are urgently needed to further assess the potential of AI/ML models in real-world clinical settings for the management of HNC.
Collapse
Affiliation(s)
- Antti A Mäkitie
- Department of Otorhinolaryngology-Head and Neck Surgery, Helsinki University Hospital, University of Helsinki, P.O. Box 263, 00029, HUS, Helsinki, Finland.
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden.
| | - Rasheed Omobolaji Alabi
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Industrial Digitalization, School of Technology and Innovations, University of Vaasa, Vaasa, Finland
| | - Sweet Ping Ng
- Department of Radiation Oncology, Olivia Newton-John Cancer Wellness and Research Centre, Austin Health, Melbourne, Australia
- Department of Surgery, The University of Melbourne, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
- School of Imaging and Radiation Sciences, Monash University, Melbourne, Australia
| | - Robert P Takes
- Department of Otolaryngology and Head and Neck Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - K Thomas Robbins
- Department of Otolaryngology Head Neck Surgery, SIU School of Medicine, Southern Illinois University, Springfield, IL, USA
| | - Ohad Ronen
- Department of Otolaryngology-Head and Neck Surgery, Galilee Medical Center Affiliated with Azrieil Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Ashok R Shaha
- Head and Neck Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Patrick J Bradley
- The University of Nottingham, Department of ORLHNS, Queens Medical Centre Campus, Nottingham University Hospital, Derby Road, Nottingham, NG7 2UH, UK
| | - Nabil F Saba
- Department of Hematology and Medical Oncology, The Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Sandra Nuyts
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, 3000, Leuven, Belgium
- Department of Radiation Oncology, Leuven Cancer Institute, University Hospitals Leuven, 3000, Leuven, Belgium
| | - Asterios Triantafyllou
- Department of Pathology, Liverpool Clinical Laboratories, School of Dentistry, University of Liverpool, Liverpool, UK
| | - Cesare Piazza
- Unit of Otorhinolaryngology-Head and Neck Surgery, ASST Spedali Civili of Brescia, Brescia, Italy
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, School of Medicine, University of Brescia, Brescia, Italy
| | | | - Alfio Ferlito
- Coordinator of the International Head and Neck Scientific Group, Padua, Italy
| |
Collapse
|
54
|
Yin L, Kong Y, Guo M, Zhang X, Yan W, Zhang H. A preliminary attempt to use radiomic features in the diagnosis of extra-articular long head biceps tendinitis. MAGMA (NEW YORK, N.Y.) 2023; 36:651-658. [PMID: 36449124 DOI: 10.1007/s10334-022-01050-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND This study aims to present a radiomic application in diagnosing the long head of biceps (LHB) tendinitis. Moreover, we evaluated whether machine learning-derived radiomic features recognize LHB tendinitis. PATIENTS AND METHODS A total of 170 patients were reviewed. All LHB tendinitis patients were diagnosed under arthroscopy. Radiomic features were extracted from preoperative magnetic resonance imaging (MRI), and the input dataset was divided into a training set and a test set. For feature selection, the t test and least absolute shrinkage and selection operator (LASSO) methods were used, and random forest (RF) and support vector machine (SVM) were used as machine learning classifiers. The sensitivity, specificity, accuracy, and area under the curve (AUC) of each model's receiver operating characteristic (ROC) curves were calculated to evaluate model performance. RESULTS In total, 851 radiomic features were extracted, with 109 radiomic features extracted using a t test and 20 radiomic features extracted using the LASSO method. The random forest classifier shows the highest sensitivity, specificity, accuracy, and AUC (0.52, 0.92, 0.73, and 0.72). CONCLUSION The classifier contract by 20 radiomic features demonstrated a good ability to predict extra-articular LHB tendinitis.However because of poor segmentation reliability, the value of Radiomic in LHB tendinitis still needs to be further explored.
Collapse
Affiliation(s)
- Lifeng Yin
- The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Yanggang Kong
- The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Mingkang Guo
- The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Xingyu Zhang
- The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Wenlong Yan
- The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Hua Zhang
- The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China.
| |
Collapse
|
55
|
Barrett JS, Goyal RK, Gobburu J, Baran S, Varshney J. An AI Approach to Generating MIDD Assets Across the Drug Development Continuum. AAPS J 2023; 25:70. [PMID: 37430126 DOI: 10.1208/s12248-023-00838-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/22/2023] [Indexed: 07/12/2023] Open
Abstract
Model-informed drug development involves developing and applying exposure-based, biological, and statistical models derived from preclinical and clinical data sources to inform drug development and decision-making. Discrete models are generated from individual experiments resulting in a single model expression that is utilized to inform a single stage-gate decision. Other model types provide a more holistic view of disease biology and potentially disease progression depending on the appropriateness of the underlying data sources for that purpose. Despite this awareness, most data integration and model development approaches are still reliant on internal (within company) data stores and traditional structural model types. An AI/ML-based MIDD approach relies on more diverse data and is informed by past successes and failures including data outside a host company (external data sources) that may enhance predictive value and enhance data generated by the sponsor to reflect more informed and timely experimentation. The AI/ML methodology also provides a complementary approach to more traditional modeling efforts that support MIDD and thus yields greater fidelity in decision-making. Early pilot studies support this assessment but will require broader adoption and regulatory support for more evidence and refinement of this paradigm. An AI/ML-based approach to MIDD has the potential to transform regulatory science and the current drug development paradigm, optimize information value, and increase candidate and eventually product confidence with respect to safety and efficacy. We highlight early experiences with this approach using the AI compute platforms as representative examples of how MIDD can be facilitated with an AI/ML approach.
Collapse
Affiliation(s)
- Jeffrey S Barrett
- Aridhia Bioinformatics, 163 Bath Street, Glasgow, Scotland, G2 4SQ, UK.
| | - Rahul K Goyal
- Center for Translational Medicine, University of Maryland Baltimore, Baltimore, Maryland, USA
| | - Jogarao Gobburu
- Center for Translational Medicine, University of Maryland Baltimore, Baltimore, Maryland, USA
- Pumas-AI, Baltimore, Maryland, USA
| | | | | |
Collapse
|
56
|
Bagher-Ebadian H, Brown SL, Ghassemi MM, Nagaraja TN, Movsas B, Ewing JR, Chetty IJ. Radiomics characterization of tissues in an animal brain tumor model imaged using dynamic contrast enhanced (DCE) MRI. Sci Rep 2023; 13:10693. [PMID: 37394559 DOI: 10.1038/s41598-023-37723-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/27/2023] [Indexed: 07/04/2023] Open
Abstract
Here, we investigate radiomics-based characterization of tumor vascular and microenvironmental properties in an orthotopic rat brain tumor model measured using dynamic-contrast-enhanced (DCE) MRI. Thirty-two immune compromised-RNU rats implanted with human U-251N cancer cells were imaged using DCE-MRI (7Tesla, Dual-Gradient-Echo). The aim was to perform pharmacokinetic analysis using a nested model (NM) selection technique to classify brain regions according to vasculature properties considered as the source of truth. A two-dimensional convolutional-based radiomics analysis was performed on the raw-DCE-MRI of the rat brains to generate dynamic radiomics maps. The raw-DCE-MRI and respective radiomics maps were used to build 28 unsupervised Kohonen self-organizing-maps (K-SOMs). A Silhouette-Coefficient (SC), k-fold Nested-Cross-Validation (k-fold-NCV), and feature engineering analyses were performed on the K-SOMs' feature spaces to quantify the distinction power of radiomics features compared to raw-DCE-MRI for classification of different Nested Models. Results showed that eight radiomics features outperformed respective raw-DCE-MRI in prediction of the three nested models. The average percent difference in SCs between radiomics features and raw-DCE-MRI was: 29.875% ± 12.922%, p < 0.001. This work establishes an important first step toward spatiotemporal characterization of brain regions using radiomics signatures, which is fundamental toward staging of tumors and evaluation of tumor response to different treatments.
Collapse
Affiliation(s)
- Hassan Bagher-Ebadian
- Department of Radiation Oncology, Henry Ford Health, Detroit, MI, 48202, USA.
- Department of Radiology, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Physics, Oakland University, Rochester, MI, 48309, USA.
| | - Stephen L Brown
- Department of Radiation Oncology, Henry Ford Health, Detroit, MI, 48202, USA
- Department of Radiology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Radiation Oncology, Wayne State University, Detroit, MI, 48202, USA
| | - Mohammad M Ghassemi
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Tavarekere N Nagaraja
- Department of Radiology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Neurosurgery, Henry Ford Health, Detroit, MI, 48202, USA
| | - Benjamin Movsas
- Department of Radiation Oncology, Henry Ford Health, Detroit, MI, 48202, USA
- Department of Radiology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Radiation Oncology, Wayne State University, Detroit, MI, 48202, USA
| | - James R Ewing
- Department of Radiology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Physics, Oakland University, Rochester, MI, 48309, USA
- Department of Neurosurgery, Henry Ford Health, Detroit, MI, 48202, USA
- Department of Neurology, Henry Ford Health, Detroit, MI, 48202, USA
- Department of Neurology, Wayne State University, Detroit, MI, 48202, USA
| | - Indrin J Chetty
- Department of Radiation Oncology, Henry Ford Health, Detroit, MI, 48202, USA
- Department of Physics, Oakland University, Rochester, MI, 48309, USA
- Department of Radiation Oncology, Wayne State University, Detroit, MI, 48202, USA
| |
Collapse
|
57
|
Madani MH, Riess JW, Brown LM, Cooke DT, Guo HH. Imaging of lung cancer. Curr Probl Cancer 2023:100966. [PMID: 37316337 DOI: 10.1016/j.currproblcancer.2023.100966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/29/2023] [Accepted: 05/23/2023] [Indexed: 06/16/2023]
Abstract
Lung cancer is the leading cause of cancer-related mortality globally. Imaging is essential in the screening, diagnosis, staging, response assessment, and surveillance of patients with lung cancer. Subtypes of lung cancer can have distinguishing imaging appearances. The most frequently used imaging modalities include chest radiography, computed tomography, magnetic resonance imaging, and positron emission tomography. Artificial intelligence algorithms and radiomics are emerging technologies with potential applications in lung cancer imaging.
Collapse
Affiliation(s)
- Mohammad H Madani
- Department of Radiology, University of California, Davis, Sacramento, CA.
| | - Jonathan W Riess
- Division of Hematology/Oncology, Department of Internal Medicine, UC Davis Medical Center, UC Davis Comprehensive Cancer Center, Sacramento, CA
| | - Lisa M Brown
- Division of General Thoracic Surgery, Department of Surgery, UC Davis Health, Sacramento, CA
| | - David T Cooke
- Division of General Thoracic Surgery, Department of Surgery, UC Davis Health, Sacramento, CA
| | - H Henry Guo
- Department of Radiology, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
58
|
Rao D, Koteshwara P, Singh R, Jagannatha V. Exploring Radiomics for Classification of Supraglottic Tumors: A Pilot Study in a Tertiary Care Center. Indian J Otolaryngol Head Neck Surg 2023; 75:433-439. [PMID: 37275092 PMCID: PMC10235219 DOI: 10.1007/s12070-022-03239-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/11/2022] [Indexed: 11/27/2022] Open
Abstract
Accurate classification of laryngeal cancer is a critical step for diagnosis and appropriate treatment. Radiomics is a rapidly advancing field in medical image processing that uses various algorithms to extract many quantitative features from radiological images. The high dimensional features extracted tend to cause overfitting and increase the complexity of the classification model. Thereby, feature selection plays an integral part in selecting relevant features for the classification problem. In this study, we explore the predictive capabilities of radiomics on Computed Tomography (CT) images with the incidence of laryngeal cancer to predict the histopathological grade and T stage of the tumour. Working with a pilot dataset of 20 images, an experienced radiologist carefully annotated the supraglottic lesions in the three-dimensional plane. Over 280 radiomic features that quantify the shape, intensity and texture were extracted from each image. Machine learning classifiers were built and tested to predict the stage and grade of the malignant tumour based on the calculated radiomic features. To investigate if radiomic features extracted from CT images can be used for the classification of laryngeal tumours. Out of 280 features extracted from every image in the dataset, it was found that 24 features are potential classifiers of laryngeal tumour stage and 12 radiomic features are good classifiers of histopathological grade of the laryngeal tumor. The novelty of this paper lies in the ability to create these classifiers before the surgical biopsy procedure, giving the clinician valuable, timely information.
Collapse
Affiliation(s)
- Divya Rao
- Department of Information and Communication Technology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104 India
- Department of Otorhinolaryngology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104 India
| | - Prakashini Koteshwara
- Department of Radiodiagnosis and Imaging, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104 India
| | - Rohit Singh
- Department of Otorhinolaryngology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104 India
| | | |
Collapse
|
59
|
Findlay MC, Yost S, Bauer SZ, Cole KL, Henson JC, Lucke-Wold B, Mehkri Y, Abou-Al-Shaar H, Plute T, Friedman L, Richards T, Wiggins R, Karsy M. Application of Radiomics to the Differential Diagnosis of Temporal Bone Skull Base Lesions: A Pilot Study. World Neurosurg 2023; 172:e540-e554. [PMID: 36702242 DOI: 10.1016/j.wneu.2023.01.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023]
Abstract
BACKGROUND Temporal bone skull base pathologies represent a complex differential because they can be radiographically obscure and difficult to diagnose without biopsy. Radiomics involves the use of mathematical quantification of imaging data beyond simple intensity, size, and location to inform diagnosis and prognosis. We examined the feasibility of using radiomic parameters to help predict temporal bone tumor type. METHODS A total of 117 radiomic parameters were analyzed from 5 magnetic resonance imaging sequences (T1 without contrast, T1 with contrast, T2, fluid-attenuated inversion recovery, apparent diffusion coefficient [ADC]) for each tumor. Statistical analysis was used to delineate known primary, metastatic/secondary, and lymphoma lesions using radiomics. RESULTS The mean tumor volumes for the 14 primary, 12 secondary, and 8 lymphoma lesions were 2.98 ± 2.11, 3.28 ± 2.31, and 12.16 ± 7.1 cm3, respectively (P = 0.2). No significant differences in mean intensity values for any sequence helped distinguish tumors (P > 0.05), but 6 radiomic parameters were significantly correlated with diagnostic accuracy. Discriminant analysis using a stepwise algorithm generated a model where radiomic parameters for T1 cluster prominence, ADC dependence nonuniformity, T1 with contrast zone percentage, and ADC informational measure of correlation 2 achieved the best predictive model (P = 0.0001). These significant characteristics were often indirect measures of tumor heterogeneity on different magnetic resonance imaging sequences. CONCLUSIONS These data suggest that quantitative measures of tumor heterogeneity can be discriminatory of pathology and might be integrated into clinical workflow. Although this pilot study requires further validation, these data support the exploration of radiomics in temporal bone radiographic diagnostics.
Collapse
Affiliation(s)
| | - Samantha Yost
- School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Sawyer Z Bauer
- Reno School of Medicine, University of Nevada, Reno, Nevada, USA
| | - Kyril L Cole
- School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - J Curran Henson
- Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Yusuf Mehkri
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Hussam Abou-Al-Shaar
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Tritan Plute
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Lindley Friedman
- Division of the Natural Sciences and Mathematics, Bates College, Lewiston, Maine, USA
| | - Tyler Richards
- Department of Neuroradiology, Clinical Neurosciences Center, University of Utah, Salt Lake City, Utah, USA
| | - Richard Wiggins
- Department of Neuroradiology, Clinical Neurosciences Center, University of Utah, Salt Lake City, Utah, USA
| | - Michael Karsy
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
60
|
Jacobs MA. Data Partitioning and Statistical Considerations for Association of Radiomic Features to Biological Underpinnings: What Is Needed. Radiology 2023; 307:e223007. [PMID: 36537899 PMCID: PMC10068882 DOI: 10.1148/radiol.223007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Michael A. Jacobs
- From the Department of Diagnostic and Interventional Imaging,
McGovern Medical School at The University of Texas Health Science Center at
Houston (UTHealth Houston), 6431 Fannin St, Room R172, Houston, TX 77030; and
The Russell H. Morgan Department of Radiology and Radiological Science and
Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University,
Baltimore, Md
| |
Collapse
|
61
|
Moon J, Lee JH, Roh J, Lee DH, Ha EJ. Contrast-enhanced CT-based Radiomics for the Differentiation of Anaplastic or Poorly Differentiated Thyroid Carcinoma from Differentiated Thyroid Carcinoma: A Pilot Study. Sci Rep 2023; 13:4562. [PMID: 36941287 PMCID: PMC10027684 DOI: 10.1038/s41598-023-31212-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/08/2023] [Indexed: 03/23/2023] Open
Abstract
Differential diagnosis of anaplastic thyroid carcinoma/poorly differentiated thyroid carcinoma (ATC/PDTC) from differentiated thyroid carcinoma (DTC) is crucial in patients with large thyroid malignancies. This study creates a predictive model using radiomics feature analysis to differentiate ATC/PDTC from DTC. We compared the clinicoradiological characteristics and radiomics features extracted from a volume of interest on contrast-enhanced computed tomography (CT) between the groups. Estimations of variable importance were performed via modeling using the random forest quantile classifier. The diagnostic performance of the model with radiomics features alone had the area under the receiver operating characteristic (AUROC) curve value of 0.883. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy were 81.7%, 93.3%, 97.7%, 64.5%, and 84.6%, respectively, for the differential diagnosis of ATC/PDTC and DTC. The model with both radiomics and clinicoradiological information showed the AUROC of 0.908, with sensitivity, specificity, PPV, NPV, and accuracy of 82.9%, 97.6%, 99.2%, 67.1%, and 86.5% respectively. Distant metastasis, moment, shape, age, and gray-level size zone matrix features were the most useful factors for differential diagnosis. Therefore, we concluded that a radiomics approach based on contrast-enhanced CT features can potentially differentiate ATC/PDTC from DTC in patients with large thyroid malignancies.
Collapse
Affiliation(s)
- Jayoung Moon
- Department of Radiology, Ajou University School of Medicine, Wonchon-dong, Yeongtong-gu, Suwon, 16499, Korea
| | - Jeong Hoon Lee
- Department of Radiology, Ajou University School of Medicine, Wonchon-dong, Yeongtong-gu, Suwon, 16499, Korea
| | - Jin Roh
- Department of Pathology, Ajou University School of Medicine, Wonchon-dong, Yeongtong-gu, Suwon, 16499, Korea
| | - Da Hyun Lee
- Department of Radiology, Ajou University School of Medicine, Wonchon-dong, Yeongtong-gu, Suwon, 16499, Korea
| | - Eun Ju Ha
- Department of Radiology, Ajou University School of Medicine, Wonchon-dong, Yeongtong-gu, Suwon, 16499, Korea.
| |
Collapse
|
62
|
Tagliafico AS, Calabrese M, Brunetti N, Garlaschi A, Tosto S, Rescinito G, Zoppoli G, Piana M, Campi C. Freehand 1.5T MR-Guided Vacuum-Assisted Breast Biopsy (MR-VABB): Contribution of Radiomics to the Differentiation of Benign and Malignant Lesions. Diagnostics (Basel) 2023; 13:1007. [PMID: 36980315 PMCID: PMC10047866 DOI: 10.3390/diagnostics13061007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/28/2023] [Accepted: 03/05/2023] [Indexed: 03/09/2023] Open
Abstract
Radiomics and artificial intelligence have been increasingly applied in breast MRI. However, the advantages of using radiomics to evaluate lesions amenable to MR-guided vacuum-assisted breast biopsy (MR-VABB) are unclear. This study includes patients scheduled for MR-VABB, corresponding to subjects with MRI-only visible lesions, i.e., with a negative second-look ultrasound. The first acquisition of the multiphase dynamic contrast-enhanced MRI (DCE-MRI) sequence was selected for image segmentation and radiomics analysis. A total of 80 patients with a mean age of 55.8 years ± 11.8 (SD) were included. The dataset was then split into a training set (50 patients) and a validation set (30 patients). Twenty out of the 30 patients with a positive histology for cancer were in the training set, while the remaining 10 patients with a positive histology were included in the test set. Logistic regression on the training set provided seven features with significant p values (<0.05): (1) 'AverageIntensity', (2) 'Autocorrelation', (3) 'Contrast', (4) 'Compactness', (5) 'StandardDeviation', (6) 'MeanAbsoluteDeviation' and (7) 'InterquartileRange'. AUC values of 0.86 (95% C.I. 0.73-0.94) for the training set and 0.73 (95% C.I. 0.54-0.87) for the test set were obtained for the radiomics model. Radiological evaluation of the same lesions scheduled for MR-VABB had AUC values of 0.42 (95% C.I. 0.28-0.57) for the training set and 0.4 (0.23-0.59) for the test set. In this study, a radiomics logistic regression model applied to DCE-MRI images increased the diagnostic accuracy of standard radiological evaluation of MRI suspicious findings in women scheduled for MR-VABB. Confirming this performance in large multicentric trials would imply that using radiomics in the assessment of patients scheduled for MR-VABB has the potential to reduce the number of biopsies, in suspicious breast lesions where MR-VABB is required, with clear advantages for patients and healthcare resources.
Collapse
Affiliation(s)
- Alberto Stefano Tagliafico
- Dipartimento di Radiodiagnostica, IRCCS—Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genvoa, Italy
- Dipartimento di Scienze della Salute (DISSAL), Università di Genova, Via L.B. Alberti 2, 16132 Genova, Italy
| | - Massimo Calabrese
- Dipartimento di Radiodiagnostica, IRCCS—Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genvoa, Italy
| | - Nicole Brunetti
- Dipartimento di Radiodiagnostica, IRCCS—Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genvoa, Italy
- Dipartimento di Medicina Sperimentale (DIMES), Università di Genova, Via L.B. Alberti 2, 16132 Genova, Italy
| | - Alessandro Garlaschi
- Dipartimento di Radiodiagnostica, IRCCS—Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genvoa, Italy
| | - Simona Tosto
- Dipartimento di Radiodiagnostica, IRCCS—Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genvoa, Italy
| | - Giuseppe Rescinito
- Dipartimento di Radiodiagnostica, IRCCS—Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genvoa, Italy
| | - Gabriele Zoppoli
- Dipartimento di Radiodiagnostica, IRCCS—Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genvoa, Italy
- Dipartimento di Medicina Interna (DIMI), Università di Genova, v.le Benedetto XV 6, 16132 Genova, Italy
| | - Michele Piana
- Dipartimento di Matematica (DIMA), Università di Genova, Via Dodecaneso 35, 16146 Genova, Italy
- Life Science Computational Laboratory (LISCOMP), IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Cristina Campi
- Dipartimento di Matematica (DIMA), Università di Genova, Via Dodecaneso 35, 16146 Genova, Italy
- Life Science Computational Laboratory (LISCOMP), IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| |
Collapse
|
63
|
Dong J, Gong Y, Liu Q, Wu Y, Fu F, Han H, Li X, Dong C, Wang M. Radiomics-based machine learning approach in differentiating fibro-adipose vascular anomaly from venous malformation. Pediatr Radiol 2023; 53:404-414. [PMID: 36271054 DOI: 10.1007/s00247-022-05520-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 08/05/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND As a complex vascular malformation, fibro-adipose vascular anomaly was first proposed in 2014. Its overlap with other vascular malformations regarding imaging and clinical features often leads to misdiagnosis and improper management. OBJECTIVE To construct a radiomics-based machine learning model to help radiologists differentiate fibro-adipose vascular anomaly from common venous malformations. MATERIALS AND METHODS We retrospectively analyzed 178 children, adolescents and young adults with vascular malformations (41 fibro-adipose vascular anomaly and 137 common vascular malformation cases) who underwent MRI before surgery between May 2012 to January 2021. We extracted radiomics features from T1-weighted images and fat-saturated (FS) T2-weighted images and further selected features through least absolute shrinkage and selection operator (LASSO) and Boruta methods. We established eight weighted logistic regression classification models based on various combinations of feature-selection strategies (LASSO or Boruta) and sequence types (single- or multi-sequence). Finally, we evaluated the performance of each model by the mean area under the receiver operating characteristics curve (ROC-AUC), sensitivity and specificity in 10 runs of repeated k-fold (k = 10) cross-validation. RESULTS Two multi-sequence models based on axial FS T2-W, coronal FS T2-W and axial T1-W images showed promising performance. The LASSO-based multi-sequence model achieved an AUC of 97%±3.8, a sensitivity of 94%±12.4 and a specificity of 89%±9.0. The Boruta-based multi-sequence model achieved an AUC of 97%±3.7, a sensitivity of 95%±10.5 and a specificity of 87%±9.0. CONCLUSION The radiomics-based machine learning model can provide a promising tool to help distinguish fibro-adipose vascular anomaly from common venous malformations.
Collapse
Affiliation(s)
- Jian Dong
- Department of Medical Imaging, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University, 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Yubin Gong
- Department of Hemangiomas and Vascular Malformations, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qiuyu Liu
- Department of Pathology, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yaping Wu
- Department of Medical Imaging, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University, 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Fangfang Fu
- Department of Medical Imaging, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University, 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Hui Han
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xiaochen Li
- Department of Medical Imaging, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University, 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Changxian Dong
- Department of Hemangiomas and Vascular Malformations, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Meiyun Wang
- Department of Medical Imaging, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University, 7 Weiwu Road, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
64
|
Han Y, Holste G, Ding Y, Tewfik A, Peng Y, Wang Z. Radiomics-Guided Global-Local Transformer for Weakly Supervised Pathology Localization in Chest X-Rays. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:750-761. [PMID: 36288235 PMCID: PMC10081959 DOI: 10.1109/tmi.2022.3217218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Before the recent success of deep learning methods for automated medical image analysis, practitioners used handcrafted radiomic features to quantitatively describe local patches of medical images. However, extracting discriminative radiomic features relies on accurate pathology localization, which is difficult to acquire in real-world settings. Despite advances in disease classification and localization from chest X-rays, many approaches fail to incorporate clinically-informed domainspecific radiomic features. For these reasons, we propose a Radiomics-Guided Transformer (RGT) that fuses global image information with local radiomics-guided auxiliary information to provide accurate cardiopulmonary pathology localization and classification without any bounding box annotations. RGT consists of an image Transformer branch, a radiomics Transformer branch, and fusion layers that aggregate image and radiomics information. Using the learned self-attention of its image branch, RGT extracts a bounding box for which to compute radiomic features, which are further processed by the radiomics branch; learned image and radiomic features are then fused and mutually interact via cross-attention layers. Thus, RGT utilizes a novel end-to-end feedback loop that can bootstrap accurate pathology localization only using image-level disease labels. Experiments on the NIH ChestXRay dataset demonstrate that RGT outperforms prior works in weakly supervised disease localization (by an average margin of 3.6% over various intersection-over-union thresholds) and classification (by 1.1% in average area under the receiver operating characteristic curve). We publicly release our codes and pre-trained models at https://github.com/VITAGroup/chext.
Collapse
|
65
|
Stogiannos N, Bougias H, Georgiadou E, Leandrou S, Papavasileiou P. Analysis of radiomic features derived from post-contrast T1-weighted images and apparent diffusion coefficient (ADC) maps for breast lesion evaluation: A retrospective study. Radiography (Lond) 2023; 29:355-361. [PMID: 36758380 DOI: 10.1016/j.radi.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 02/10/2023]
Abstract
INTRODUCTION Breast cancer is the most common malignancy among women, and its diagnosis relies on medical imaging and the invasive, uncomforted biopsy. Recent advances in quantitative imaging and specifically the application of radiomics has proved to be a very promising technique, facilitating both diagnosis and therapy. The purpose of this study is to assess radiomic features derived from post-contrast T1w Magnetic Resonance Imaging (MRI) sequences and Apparent Diffusion Coefficient (ADC) maps for the evaluation of breast pathologies. METHODS MRI data from 52 women were retrospectively reviewed, involving 54 breast lesions, both malignant and benign. Diffusion Weighted Imaging (DWI) was applied as a standard MRΙ protocol, including dynamic contrast-enhanced (DCE) MRΙ in all cases. All patients were examined on a 1.5T MRI scanner, and 216 features were initially extracted from DCE-MRI images. Histological analysis of the breast lesions was performed, and a comparative analysis of the results was carried out to assess the accuracy of the method. RESULTS Following surgery and histological analysis, 30 lesions were found to be malignant and 24 benign. Implementation of a Machine Learning (ML) classification algorithm with 5-fold cross-validation resulted in a sensitivity of 70%, specificity of 66%, Negative Predictive Value of 82% and overall accuracy of 67% in differentiating malignancy from benevolence. CONCLUSION Texture analysis and ML methodology based on the first post-contrast dynamic sequences and ADC maps may be employed to differentiate between malignant and benign breast lesions, offering a promising new tool for diagnostic analysis. IMPLICATIONS FOR PRACTICE The results of this study will enhance knowledge around application and performance of radiomics in breast MRI, thus helping MRI radiographers who use AI-enabled technologies to better delineate the pros and cons of these procedures.
Collapse
Affiliation(s)
- N Stogiannos
- Discipline of Medical Imaging & Radiation Therapy, University College Cork, Ireland; Division of Midwifery & Radiography, City, University of London, UK; Medical Imaging Department, Corfu General Hospital, Greece, Felix Lames 6A, 1st Parodos, Corfu, Greece.
| | - H Bougias
- Department of Clinical Radiology, Ioannina University Hospital, Ioannina, Greece.
| | | | - S Leandrou
- School of Science, European University Cyprus, Nicosia, Cyprus; School of Mathematical Sciences, Computer Science and Engineering, City, University of London, UK.
| | - P Papavasileiou
- Section of Radiography and Radiotherapy, Dept of Biomedical Sciences, School of Health Sciences, University of West Attica, Athens, Greece.
| |
Collapse
|
66
|
MRI Radiomics and Predictive Models in Assessing Ischemic Stroke Outcome-A Systematic Review. Diagnostics (Basel) 2023; 13:diagnostics13050857. [PMID: 36900001 PMCID: PMC10000411 DOI: 10.3390/diagnostics13050857] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Stroke is a leading cause of disability and mortality, resulting in substantial socio-economic burden for healthcare systems. With advances in artificial intelligence, visual image information can be processed into numerous quantitative features in an objective, repeatable and high-throughput fashion, in a process known as radiomics analysis (RA). Recently, investigators have attempted to apply RA to stroke neuroimaging in the hope of promoting personalized precision medicine. This review aimed to evaluate the role of RA as an adjuvant tool in the prognosis of disability after stroke. We conducted a systematic review following the PRISMA guidelines, searching PubMed and Embase using the keywords: 'magnetic resonance imaging (MRI)', 'radiomics', and 'stroke'. The PROBAST tool was used to assess the risk of bias. Radiomics quality score (RQS) was also applied to evaluate the methodological quality of radiomics studies. Of the 150 abstracts returned by electronic literature research, 6 studies fulfilled the inclusion criteria. Five studies evaluated predictive value for different predictive models (PMs). In all studies, the combined PMs consisting of clinical and radiomics features have achieved the best predictive performance compared to PMs based only on clinical or radiomics features, the results varying from an area under the ROC curve (AUC) of 0.80 (95% CI, 0.75-0.86) to an AUC of 0.92 (95% CI, 0.87-0.97). The median RQS of the included studies was 15, reflecting a moderate methodological quality. Assessing the risk of bias using PROBAST, potential high risk of bias in participants selection was identified. Our findings suggest that combined models integrating both clinical and advanced imaging variables seem to better predict the patients' disability outcome group (favorable outcome: modified Rankin scale (mRS) ≤ 2 and unfavorable outcome: mRS > 2) at three and six months after stroke. Although radiomics studies' findings are significant in research field, these results should be validated in multiple clinical settings in order to help clinicians to provide individual patients with optimal tailor-made treatment.
Collapse
|
67
|
Alsyed E, Smith R, Bartley L, Marshall C, Spezi E. A heterogeneous phantom study for investigating the stability of PET images radiomic features with varying reconstruction settings. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 3:1078536. [PMID: 39380957 PMCID: PMC11459985 DOI: 10.3389/fnume.2023.1078536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/18/2023] [Indexed: 10/10/2024]
Abstract
The purpose of this work was to assess the capability of radiomic features in distinguishing PET image regions with different uptake patterns. Furthermore, we assessed the stability of PET radiomic features with varying image reconstruction settings. An in-house phantom was designed and constructed, consisting of homogenous and heterogenous artificial phantom inserts. Four artificially constructed inserts were placed into a water filled phantom and filled with varying levels of radioactivity to simulate homogeneous and heterogeneous uptake patterns. The phantom was imaged for 80 min. PET images were reconstructed whilst varying reconstruction parameters. The parameters adjusted included, number of ordered subsets, number of iterations, use of time-of-flight and filter cut off. Regions of interest (ROI) were established by segmentation of the phantom inserts from the reconstructed images. In total seventy eight 3D radiomic features for each ROI with unique reconstructed parameters were extracted. The Friedman test was used to determine the statistical power of each radiomic feature in differentiating phantom inserts with different hetero/homogeneous configurations. The Coefficient of Variation (COV) of each feature, with respect to the reconstruction setting was used to determine feature stability. Forty three out of seventy eight radiomic features were found to be stable (COV ≤ 5%) against all reconstruction settings. To provide any utility, stable features are required to differentiate between regions with different hetro/homogeneity. Of the forty three stable features, fifteen (35%) features showed a statistically significant difference between the artificially constructed inserts. Such features included GLCM (Difference average, Difference entropy, Dissimilarity and Inverse difference), GLRL (Long run emphasis, Grey level non uniformity and Run percentage) and NGTDM (Complexity and Strength). The finding of this work suggests that radiomic features are capable of distinguishing between radioactive distribution patterns that demonstrate different levels of heterogeneity. Therefore, radiomic features could serve as an adjuvant diagnostic tool along with traditional imaging. However, the choice of the radiomic features needs to account for variability introduced when different reconstruction settings are used. Standardization of PET image reconstruction settings across sites performing radiomic analysis in multi-centre trials should be considered.
Collapse
Affiliation(s)
- Emad Alsyed
- School of Engineering, Cardiff University, Cardiff, United Kingdom
- Department of Nuclear Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rhodri Smith
- Wales Research and Diagnostic Positron Emission Tomography Imaging Centre (PETIC), Cardiff University, Cardiff, United Kingdom
| | - Lee Bartley
- Wales Research and Diagnostic Positron Emission Tomography Imaging Centre (PETIC), Cardiff University, Cardiff, United Kingdom
| | - Christopher Marshall
- Wales Research and Diagnostic Positron Emission Tomography Imaging Centre (PETIC), Cardiff University, Cardiff, United Kingdom
| | - Emiliano Spezi
- School of Engineering, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
68
|
Binas DA, Tzanakakis P, Economopoulos TL, Konidari M, Bourgioti C, Moulopoulos LA, Matsopoulos GK. A Novel Approach for Estimating Ovarian Cancer Tissue Heterogeneity through the Application of Image Processing Techniques and Artificial Intelligence. Cancers (Basel) 2023; 15:1058. [PMID: 36831401 PMCID: PMC9954367 DOI: 10.3390/cancers15041058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
PURPOSE Tumor heterogeneity may be responsible for poor response to treatment and adverse prognosis in women with HGOEC. The purpose of this study is to propose an automated classification system that allows medical experts to automatically identify intratumoral areas of different cellularity indicative of tumor heterogeneity. METHODS Twenty-two patients underwent dedicated pelvic MRI, and a database of 11,095 images was created. After image processing techniques were applied to align and assess the cancerous regions, two specific imaging series were used to extract quantitative features (radiomics). These features were employed to create, through artificial intelligence, an estimator of the highly cellular intratumoral area as defined by arbitrarily selected apparent diffusion coefficient (ADC) cut-off values (ADC < 0.85 × 10-3 mm2/s). RESULTS The average recorded accuracy of the proposed automated classification system was equal to 0.86. CONCLUSION The proposed classification system for assessing highly cellular intratumoral areas, based on radiomics, may be used as a tool for assessing tumor heterogeneity.
Collapse
Affiliation(s)
- Dimitrios A. Binas
- School of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece
| | - Petros Tzanakakis
- School of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece
| | - Theodore L. Economopoulos
- School of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece
| | - Marianna Konidari
- Department of Radiology, School of Medicine National and Kapodistrian University of Athens, Aretaieion Hospital, 11528 Athens, Greece
| | - Charis Bourgioti
- Department of Radiology, School of Medicine National and Kapodistrian University of Athens, Aretaieion Hospital, 11528 Athens, Greece
| | - Lia Angela Moulopoulos
- Department of Radiology, School of Medicine National and Kapodistrian University of Athens, Aretaieion Hospital, 11528 Athens, Greece
| | - George K. Matsopoulos
- School of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece
| |
Collapse
|
69
|
Tikhonova VS, Karmazanovsky GG, Kondratyev EV, Gruzdev IS, Mikhaylyuk KA, Sinelnikov MY, Revishvili AS. Radiomics model-based algorithm for preoperative prediction of pancreatic ductal adenocarcinoma grade. Eur Radiol 2023; 33:1152-1161. [PMID: 35986774 DOI: 10.1007/s00330-022-09046-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/24/2022] [Accepted: 07/13/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To develop diagnostic radiomic model-based algorithm for pancreatic ductal adenocarcinoma (PDAC) grade prediction. METHODS Ninety-one patients with histologically confirmed PDAC and preoperative CT were divided into subgroups based on tumor grade. Two histology-blinded radiologists independently segmented lesions for quantitative texture analysis in all contrast enhancement phases. The ratio of densities of PDAC and unchanged pancreatic tissue, and relative tumor enhancement (RTE) in arterial, portal venous, and delayed phases of the examination were calculated. Principal component analysis was used for multivariate predictor analysis. The selection of predictors in the binary logistic model was carried out in 2 stages: (1) using one-factor logistic models (selection criterion was p < 0.1); (2) using regularization (LASSO regression after standardization of variables). Predictors were included in proportional odds models without interactions. RESULTS There were significant differences in 4, 16, and 8 texture features out of 62 for the arterial, portal venous, and delayed phases of the study, respectively (p < 0.1). After selection, the final diagnostic model included such radiomics features as DISCRETIZED HU standard, DISCRETIZED HUQ3, GLCM Correlation, GLZLM LZLGE for the portal venous phase of the contrast enhancement, and CONVENTIONAL_HUQ3 for the delayed phase of CT study. On its basis, a diagnostic model was built, showing AUC for grade ≥ 2 of 0.75 and AUC for grade 3 of 0.66. CONCLUSION Radiomics features vary in PDAC of different grades and increase the accuracy of CT in preoperative diagnosis. We have developed a diagnostic model, including texture features, which can be used to predict the grade of PDAC. KEY POINTS • A diagnostic algorithm based on CT texture features for preoperative PDAC grade prediction was developed. • The assumption that the scanning protocol can influence the results of texture analysis was confirmed and assessed. • Our results show that tumor differentiation grade can be assessed with sufficient diagnostic accuracy using CT texture analysis presented in this study.
Collapse
Affiliation(s)
| | - Grigory G Karmazanovsky
- A.V. Vishnevsky National Medical Research Centre of Surgery, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - Ivan S Gruzdev
- A.V. Vishnevsky National Medical Research Centre of Surgery, Moscow, Russia
| | | | - Mikhail Y Sinelnikov
- Research Institute of Human Morphology, Moscow, Russia.
- Sechenov University, Moscow, Russia.
| | | |
Collapse
|
70
|
A Series-Based Deep Learning Approach to Lung Nodule Image Classification. Cancers (Basel) 2023; 15:cancers15030843. [PMID: 36765801 PMCID: PMC9913559 DOI: 10.3390/cancers15030843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023] Open
Abstract
Although many studies have shown that deep learning approaches yield better results than traditional methods based on manual features, CADs methods still have several limitations. These are due to the diversity in imaging modalities and clinical pathologies. This diversity creates difficulties because of variation and similarities between classes. In this context, the new approach from our study is a hybrid method that performs classifications using both medical image analysis and radial scanning series features. Hence, the areas of interest obtained from images are subjected to a radial scan, with their centers as poles, in order to obtain series. A U-shape convolutional neural network model is then used for the 4D data classification problem. We therefore present a novel approach to the classification of 4D data obtained from lung nodule images. With radial scanning, the eigenvalue of nodule images is captured, and a powerful classification is performed. According to our results, an accuracy of 92.84% was obtained and much more efficient classification scores resulted as compared to recent classifiers.
Collapse
|
71
|
Predicting Soft Tissue Sarcoma Response to Neoadjuvant Chemotherapy Using an MRI-Based Delta-Radiomics Approach. Mol Imaging Biol 2023:10.1007/s11307-023-01803-y. [PMID: 36695966 DOI: 10.1007/s11307-023-01803-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023]
Abstract
OBJECTIVES To evaluate the performance of machine learning-augmented MRI-based radiomics models for predicting response to neoadjuvant chemotherapy (NAC) in soft tissue sarcomas. METHODS Forty-four subjects were identified retrospectively from patients who received NAC at our institution for pathologically proven soft tissue sarcomas. Only subjects who had both a baseline MRI prior to initiating chemotherapy and a post-treatment scan at least 2 months after initiating chemotherapy and prior to surgical resection were included. 3D ROIs were used to delineate whole-tumor volumes on pre- and post-treatment scans, from which 1708 radiomics features were extracted. Delta-radiomics features were calculated by subtraction of baseline from post-treatment values and used to distinguish treatment response through univariate analyses as well as machine learning-augmented radiomics analyses. RESULTS Though only 4.74% of variables overall reached significance at p ≤ 0.05 in univariate analyses, Laws Texture Energy (LTE)-derived metrics represented 46.04% of all such features reaching statistical significance. ROC analyses similarly failed to predict NAC response, with AUCs of 0.40 (95% CI 0.22-0.58) and 0.44 (95% CI 0.26-0.62) for RF and AdaBoost, respectively. CONCLUSION Overall, while our result was not able to separate NAC responders from non-responders, our analyses did identify a subset of LTE-derived metrics that show promise for further investigations. Future studies will likely benefit from larger sample size constructions so as to avoid the need for data filtering and feature selection techniques, which have the potential to significantly bias the machine learning procedures.
Collapse
|
72
|
Radiomics in Cardiac Computed Tomography. Diagnostics (Basel) 2023; 13:diagnostics13020307. [PMID: 36673115 PMCID: PMC9857691 DOI: 10.3390/diagnostics13020307] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
In recent years, there has been an increasing recognition of coronary computed tomographic angiography (CCTA) and gated non-contrast cardiac CT in the workup of coronary artery disease in patients with low and intermediate pretest probability, through the readjustment guidelines by medical societies. However, in routine clinical practice, these CT data sets are usually evaluated dominantly regarding relevant coronary artery stenosis and calcification. The implementation of radiomics analysis, which provides visually elusive quantitative information from digital images, has the potential to open a new era for cardiac CT that goes far beyond mere stenosis or calcification grade estimation. This review offers an overview of the results obtained from radiomics analyses in cardiac CT, including the evaluation of coronary plaques, pericoronary adipose tissue, and the myocardium itself. It also highlights the advantages and disadvantages of use in routine clinical practice.
Collapse
|
73
|
Robustness of Radiomic Features: Two-Dimensional versus Three-Dimensional MRI-Based Feature Reproducibility in Lipomatous Soft-Tissue Tumors. Diagnostics (Basel) 2023; 13:diagnostics13020258. [PMID: 36673068 PMCID: PMC9858448 DOI: 10.3390/diagnostics13020258] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/10/2022] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
This retrospective study aimed to compare the intra- and inter-observer manual-segmentation variability in the feature reproducibility between two-dimensional (2D) and three-dimensional (3D) magnetic-resonance imaging (MRI)-based radiomic features. The study included patients with lipomatous soft-tissue tumors that were diagnosed with histopathology and underwent MRI scans. Tumor segmentation based on the 2D and 3D MRI images was performed by two observers to assess the intra- and inter-observer variability. In both the 2D and the 3D segmentations, the radiomic features were extracted from the normalized images. Regarding the stability of the features, the intraclass correlation coefficient (ICC) was used to evaluate the intra- and inter-observer segmentation variability. Features with ICC > 0.75 were considered reproducible. The degree of feature robustness was classified as low, moderate, or high. Additionally, we compared the efficacy of 2D and 3D contour-focused segmentation in terms of the effects of the stable feature rate, sensitivity, specificity, and diagnostic accuracy of machine learning on the reproducible features. In total, 93 and 107 features were extracted from the 2D and 3D images, respectively. Only 35 features from the 2D images and 63 features from the 3D images were reproducible. The stable feature rate for the 3D segmentation was more significant than for the 2D segmentation (58.9% vs. 37.6%, p = 0.002). The majority of the features for the 3D segmentation had moderate-to-high robustness, while 40.9% of the features for the 2D segmentation had low robustness. The diagnostic accuracy of the machine-learning model for the 2D segmentation was close to that for the 3D segmentation (88% vs. 90%). In both the 2D and the 3D segmentation, the specificity values were equal to 100%. However, the sensitivity for the 2D segmentation was lower than for the 3D segmentation (75% vs. 83%). For the 2D + 3D radiomic features, the model achieved a diagnostic accuracy of 87% (sensitivity, 100%, and specificity, 80%). Both 2D and 3D MRI-based radiomic features of lipomatous soft-tissue tumors are reproducible. With a higher stable feature rate, 3D contour-focused segmentation should be selected for the feature-extraction process.
Collapse
|
74
|
Park HJ, Kim KW, Lee SS. Artificial intelligence in radiology and its application in liver disease. ARTIFICIAL INTELLIGENCE, MACHINE LEARNING, AND DEEP LEARNING IN PRECISION MEDICINE IN LIVER DISEASES 2023:53-79. [DOI: 10.1016/b978-0-323-99136-0.00002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
75
|
Ouyang G, Chen Z, Dou M, Luo X, Wen H, Deng X, Meng W, Yu Y, Wu B, Jiang D, Wang Z, Yao Y, Wang X. Predicting Rectal Cancer Response to Total Neoadjuvant Treatment Using an Artificial Intelligence Model Based on Magnetic Resonance Imaging and Clinical Data. Technol Cancer Res Treat 2023; 22:15330338231186467. [PMID: 37431270 PMCID: PMC10338728 DOI: 10.1177/15330338231186467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 07/12/2023] Open
Abstract
PURPOSE To develop a model for predicting response to total neoadjuvant treatment (TNT) for patients with locally advanced rectal cancer (LARC) based on baseline magnetic resonance imaging (MRI) and clinical data using artificial intelligence methods. METHODS Baseline MRI and clinical data were curated from patients with LARC and analyzed using logistic regression (LR) and deep learning (DL) methods to predict TNT response retrospectively. We defined two groups of response to TNT as pathological complete response (pCR) versus non-pCR (Group 1), and high sensitivity [tumor regression grade (TRG) 0 and TRG 1] versus moderate sensitivity (TRG 2 or patients with TRG 3 and a reduction in tumor volume of at least 20% compared to baseline) versus low sensitivity (TRG 3 and a reduction in tumor volume <20% compared to baseline) (Group 2). We extracted and selected clinical and radiomic features on baseline T2WI. Then we built LR models and DL models. Receiver operating characteristic (ROC) curves analysis was performed to assess predictive performance of models. RESULTS Eighty-nine patients were assigned to the training cohort, and 29 patients were assigned to the testing cohort. The area under receiver operating characteristics curve (AUC) of LR models, which were predictive of high sensitivity and pCR, were 0.853 and 0.866, respectively. Whereas the AUCs of DL models were 0.829 and 0.838, respectively. After 10 rounds of cross validation, the accuracy of the models in Group 1 is higher than in Group 2. CONCLUSION There was no significant difference between LR model and DL model. Artificial Intelligence-based radiomics biomarkers may have potential clinical implications for adaptive and personalized therapy.
Collapse
Affiliation(s)
- Ganlu Ouyang
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhebin Chen
- Chengdu Institute of Computer Application, Chinese Academy of Sciences, Chengdu, Sichuan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meng Dou
- Chengdu Institute of Computer Application, Chinese Academy of Sciences, Chengdu, Sichuan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xu Luo
- Chengdu Institute of Computer Application, Chinese Academy of Sciences, Chengdu, Sichuan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Han Wen
- Chengdu Institute of Computer Application, Chinese Academy of Sciences, Chengdu, Sichuan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiangbing Deng
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Wenjian Meng
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yongyang Yu
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Bing Wu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Jiang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Ziqiang Wang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Yao
- Chengdu Institute of Computer Application, Chinese Academy of Sciences, Chengdu, Sichuan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Wang
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Abdominal Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
76
|
Screening of COVID-19 Based on GLCM Features from CT Images Using Machine Learning Classifiers. SN COMPUTER SCIENCE 2023; 4:133. [PMID: 36593973 PMCID: PMC9798374 DOI: 10.1007/s42979-022-01583-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/16/2022] [Indexed: 12/30/2022]
Abstract
In healthcare, the decision-making process is crucial, including COVID-19 prevention methods should include fast diagnostic methods. Computed tomography (CT) is used to diagnose COVID patients' conditions. There is inherent variation in the texture of a CT image of COVID, much like the texture of a CT image of pneumonia. The process of diagnosing COVID images manually is difficult and challenging. Using low-resolution images and a small COVID dataset, the extraction of discriminant characteristics and fine-tuning of hyperparameters in classifiers provide challenges for computer-assisted diagnosis. In radiomics, quantitative image analysis is frequently used to evaluate the prognosis and diagnose diseases. This research tests an ML model built on GLCM features collected from chest CT images to screen for COVID-19. In this study, Support Vector Machines, K-nearest neighbors, Random Forest, and XGBoost classifiers are used together with LBGM. Tuning tests were used to regulate the hyperparameters of the model. With cross-validation, tenfold results were obtained. Random Forest and SVM were the best classification methods for GLCM features with an overall accuracy of 99.94%. The network's performance was assessed in terms of sensitivity, accuracy, and specificity.
Collapse
|
77
|
Santos GNM, da Silva HEC, Ossege FEL, Figueiredo PTDS, Melo NDS, Stefani CM, Leite AF. Radiomics in bone pathology of the jaws. Dentomaxillofac Radiol 2023; 52:20220225. [PMID: 36416666 PMCID: PMC9793454 DOI: 10.1259/dmfr.20220225] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/02/2022] [Accepted: 10/02/2022] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE To define which are and how the radiomics features of jawbone pathologies are extracted for diagnosis, predicting prognosis and therapeutic response. METHODS A comprehensive literature search was conducted using eight databases and gray literature. Two independent observers rated these articles according to exclusion and inclusion criteria. 23 papers were included to assess the radiomics features related to jawbone pathologies. Included studies were evaluated by using JBI Critical Appraisal Checklist for Analytical Cross-Sectional Studies. RESULTS Agnostic features were mined from periapical, dental panoramic radiographs, cone beam CT, CT and MRI images of six different jawbone alterations. The most frequent features mined were texture-, shape- and intensity-based features. Only 13 studies described the machine learning step, and the best results were obtained with Support Vector Machine and random forest classifier. For osteoporosis diagnosis and classification, filtering, shape-based and Tamura texture features showed the best performance. For temporomandibular joint pathology, gray-level co-occurrence matrix (GLCM), gray level run length matrix (GLRLM), Gray Level Size Zone Matrix (GLSZM), first-order statistics analysis and shape-based analysis showed the best results. Considering odontogenic and non-odontogenic cysts and tumors, contourlet and SPHARM features, first-order statistical features, GLRLM, GLCM had better indexes. For odontogenic cysts and granulomas, first-order statistical analysis showed better classification results. CONCLUSIONS GLCM was the most frequent feature, followed by first-order statistics, and GLRLM features. No study reported predicting response, prognosis or therapeutic response, but instead diseases diagnosis or classification. Although the lack of standardization in the radiomics workflow of the included studies, texture analysis showed potential to contribute to radiologists' reports, decreasing the subjectivity and leading to personalized healthcare.
Collapse
Affiliation(s)
| | | | | | | | - Nilce de Santos Melo
- Dentistry Department, Faculty of Health Science, University of Brasília, Brasilia, Brazil
| | - Cristine Miron Stefani
- Dentistry Department, Faculty of Health Science, University of Brasília, Brasilia, Brazil
| | - André Ferreira Leite
- Dentistry Department, Faculty of Health Science, University of Brasília, Brasilia, Brazil
| |
Collapse
|
78
|
Dong Z, Chen X, Cheng Z, Luo Y, He M, Chen T, Zhang Z, Qian X, Chen W. Differential diagnosis of pancreatic cystic neoplasms through a radiomics-assisted system. Front Oncol 2022; 12:941744. [PMID: 36591475 PMCID: PMC9802410 DOI: 10.3389/fonc.2022.941744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
Pancreatic cystic neoplasms (PCNs) are a group of heterogeneous diseases with distinct prognosis. Existing differential diagnosis methods require invasive biopsy or prolonged monitoring. We sought to develop an inexpensive, non-invasive differential diagnosis system for PCNs based on radiomics features and clinical characteristics for a higher total PCN screening rate. We retrospectively analyzed computed tomography images and clinical data from 129 patients with PCN, including 47 patients with intraductal papillary mucinous neoplasms (IPMNs), 49 patients with serous cystadenomas (SCNs), and 33 patients with mucinous cystic neoplasms (MCNs). Six clinical characteristics and 944 radiomics features were tested, and nine features were finally selected for model construction using DXScore algorithm. A five-fold cross-validation algorithm and a test group were applied to verify the results. In the five-fold cross-validation section, the AUC value of our model was 0.8687, and the total accuracy rate was 74.23%, wherein the accuracy rates of IPMNs, SCNs, and MCNs were 74.26%, 78.37%, and 68.00%, respectively. In the test group, the AUC value was 0.8462 and the total accuracy rate was 73.61%. In conclusion, our research constructed an end-to-end powerful PCN differential diagnosis system based on radiomics method, which could assist decision-making in clinical practice.
Collapse
Affiliation(s)
- Zhenglin Dong
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Department of orthopedics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiahan Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaorui Cheng
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanbo Luo
- Department of Otorhinolaryngology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min He
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Chen
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zijie Zhang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Zijie Zhang, ; Xiaohua Qian, ; Wei Chen,
| | - Xiaohua Qian
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Zijie Zhang, ; Xiaohua Qian, ; Wei Chen,
| | - Wei Chen
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Zijie Zhang, ; Xiaohua Qian, ; Wei Chen,
| |
Collapse
|
79
|
Fahmy D, Alksas A, Elnakib A, Mahmoud A, Kandil H, Khalil A, Ghazal M, van Bogaert E, Contractor S, El-Baz A. The Role of Radiomics and AI Technologies in the Segmentation, Detection, and Management of Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14246123. [PMID: 36551606 PMCID: PMC9777232 DOI: 10.3390/cancers14246123] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary hepatic neoplasm. Thanks to recent advances in computed tomography (CT) and magnetic resonance imaging (MRI), there is potential to improve detection, segmentation, discrimination from HCC mimics, and monitoring of therapeutic response. Radiomics, artificial intelligence (AI), and derived tools have already been applied in other areas of diagnostic imaging with promising results. In this review, we briefly discuss the current clinical applications of radiomics and AI in the detection, segmentation, and management of HCC. Moreover, we investigate their potential to reach a more accurate diagnosis of HCC and to guide proper treatment planning.
Collapse
Affiliation(s)
- Dalia Fahmy
- Diagnostic Radiology Department, Mansoura University Hospital, Mansoura 35516, Egypt
| | - Ahmed Alksas
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
| | - Ahmed Elnakib
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
| | - Ali Mahmoud
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
| | - Heba Kandil
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
- Faculty of Computer Sciences and Information, Mansoura University, Mansoura 35516, Egypt
| | - Ashraf Khalil
- College of Technological Innovation, Zayed University, Abu Dhabi 4783, United Arab Emirates
| | - Mohammed Ghazal
- Electrical, Computer, and Biomedical Engineering Department, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates
| | - Eric van Bogaert
- Department of Radiology, University of Louisville, Louisville, KY 40202, USA
| | - Sohail Contractor
- Department of Radiology, University of Louisville, Louisville, KY 40202, USA
| | - Ayman El-Baz
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
- Correspondence:
| |
Collapse
|
80
|
MRI-Based Radiomics Nomogram for Predicting Prostate Cancer with Gray-Zone Prostate-Specific Antigen Levels to Reduce Unnecessary Biopsies. Diagnostics (Basel) 2022; 12:diagnostics12123005. [PMID: 36553012 PMCID: PMC9776817 DOI: 10.3390/diagnostics12123005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
OBJECTIVE The aim of this study was to establish a predictive nomogram for predicting prostate cancer (PCa) in patients with gray-zone prostate-specific antigen (PSA) levels (4-10.0 ng/mL) based on radiomics and other traditional clinical parameters. METHODS In all, 274 patients with gray-zone PSA levels were included in this retrospective study. They were randomly divided into training and validation sets (n = 191 and 83, respectively). Data on the clinical risk factors related to PCa with gray-zone PSA levels (such as Prostate Imaging Reporting and Data System, version 2.1 [PI-RADS V2.1] category, age, prostate volume, and serum PSA level) were collected for all patients. Lesion volumes of interest (VOI) from T2-weighted imaging (T2WI) and apparent diffusion coefficient (ADC) imaging were annotated by two radiologists. The radiomics model, clinical model, and combined prediction model, which was presented on a nomogram by incorporating the radiomics signature and clinical and radiological risk factors for PCa, were developed using logistic regression. The area under the receiver operator characteristic (AUC-ROC) and decision, calibration curve were used to compare the three models for the diagnosis of PCa with gray-zone PSA levels. RESULTS The predictive nomogram (AUC: 0.953) incorporating the radiomics score and PI-RADS V2.1 category, age, and the radiomics model (AUC: 0.941) afforded much higher diagnostic efficacy than the clinical model (AUC: 0.866). The addition of the rad score could improve the discriminatory performance of the clinical model. The decision curve analysis indicated that the radiomics or combined model could be more beneficial compared to the clinical model for the prediction of PCa. The nomogram showed good agreement for detecting PCa with gray-zone PSA levels between prediction and histopathologic confirmation. CONCLUSION The nomogram, which combined the radiomics score and PI-RADS V2.1 category and age, is an effective and non-invasive method for predicting PCa. Furthermore, as well as good calibration and is clinically useful, which could reduce unnecessary prostate biopsies in patients having PCa with gray-zone PSA levels.
Collapse
|
81
|
Shiraishi M, Igarashi T, Hiroaki F, Oe R, Ohki K, Ojiri H. Radiomics based on diffusion-weighted imaging for differentiation between focal-type autoimmune pancreatitis and pancreatic carcinoma. Br J Radiol 2022; 95:20210456. [PMID: 35946923 PMCID: PMC9733621 DOI: 10.1259/bjr.20210456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To evaluate the parameters of support vector machine (SVM) using imaging data generated from the apparent diffusion coefficient (ADC) to differentiate between focal-type autoimmune pancreatitis (f-AIP) and pancreatic ductal adenocarcinoma (PDAC) when using SVM based on diffusion-weighted imaging. METHODS The 2D-ADCmean and texture parameters (16 texture features × [non-filter+17 filters]) were retrospectively segmented by 2 readers in 28 patients with f-AIP and 77 patients with pathologically proven PDAC. The diagnostic accuracy of the SVM model was evaluated by receiver operating characteristic curve analysis and calculation of the area under the curve (AUC). Interreader reliability was assessed by intraclass correlation coefficient (ICC). RESULTS The 2D-ADCmean and 3D-ADCmean were significantly lower in cases of f-AIP (1.10-1.15 × 10-3 mm2/s and 1.21-1.23× 10-3 mm2/s, respectively) vs PDAC (1.29-1.33 × 10-3 mm2/s and 1.41-1.43 × 10-3 mm2/s, respectively), with excellent and good interreader reliability, respectively (ICC = 0.909 and 0.891, respectively). Among the texture parameters, energy with exponential filtering yielded the highest AUC (Reader 1: 74.7%, Reader 2: 81.5%), with fair interreader reliability (ICC = 0.707). The non-linear SVM, a combination of 2D-ADCmean, object volume and exponential-energy showed an AUC value of 96.2% in the testing cohorts. CONCLUSION Our results suggest that non-linear SVM using a combination of 2D-ADCmean, object volume, and exponential-energy may assist in differentiating f-AIP from PDAC. ADVANCES IN KNOWLEDGE The radiomics based on an apparent diffusion coefficient value may assist in differentiating f-AIP from PDAC.
Collapse
Affiliation(s)
- Megumi Shiraishi
- Department of Radiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Takao Igarashi
- Department of Radiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Fujioka Hiroaki
- Department of Radiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Rika Oe
- Department of Radiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazuyoshi Ohki
- Department of Radiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiroya Ojiri
- Department of Radiology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
82
|
Wang P, Zhang L, Ren J, Jiang R, Wu F, Du FZ, Sheng JP, Li JH. The accuracy of CT imaging in differential diagnosis of accidental thyroid nodules based on histopathology findings. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.100477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
83
|
Saman H, Raza A, Patil K, Uddin S, Crnogorac-Jurcevic T. Non-Invasive Biomarkers for Early Lung Cancer Detection. Cancers (Basel) 2022; 14:5782. [PMID: 36497263 PMCID: PMC9739091 DOI: 10.3390/cancers14235782] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/27/2022] Open
Abstract
Worldwide, lung cancer (LC) is the most common cause of cancer death, and any delay in the detection of new and relapsed disease serves as a major factor for a significant proportion of LC morbidity and mortality. Though invasive methods such as tissue biopsy are considered the gold standard for diagnosis and disease monitoring, they have several limitations. Therefore, there is an urgent need to identify and validate non-invasive biomarkers for the early diagnosis, prognosis, and treatment of lung cancer for improved patient management. Despite recent progress in the identification of non-invasive biomarkers, currently, there is a shortage of reliable and accessible biomarkers demonstrating high sensitivity and specificity for LC detection. In this review, we aim to cover the latest developments in the field, including the utility of biomarkers that are currently used in LC screening and diagnosis. We comment on their limitations and summarise the findings and developmental stages of potential molecular contenders such as microRNAs, circulating tumour DNA, and methylation markers. Furthermore, we summarise research challenges in the development of biomarkers used for screening purposes and the potential clinical applications of newly discovered biomarkers.
Collapse
Affiliation(s)
- Harman Saman
- Hamad Medical Corporation, Doha 3050, Qatar
- Barts Cancer Institute, Queen Mary University of London, London EC1M 5PZ, UK
| | - Afsheen Raza
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha 3050, Qatar
| | - Kalyani Patil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
- Laboratory of Animal Research Centre, Qatar University, Doha 2731, Qatar
| | | |
Collapse
|
84
|
Javed S, Qureshi TA, Gaddam S, Wang L, Azab L, Wachsman AM, Chen W, Asadpour V, Jeon CY, Wu B, Xie Y, Pandol SJ, Li D. Risk prediction of pancreatic cancer using AI analysis of pancreatic subregions in computed tomography images. Front Oncol 2022; 12:1007990. [PMID: 36439445 PMCID: PMC9682250 DOI: 10.3389/fonc.2022.1007990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/24/2022] [Indexed: 10/14/2023] Open
Abstract
Early detection of Pancreatic Ductal Adenocarcinoma (PDAC) is complicated as PDAC remains asymptomatic until cancer advances to late stages when treatment is mostly ineffective. Stratifying the risk of developing PDAC can improve early detection as subsequent screening of high-risk individuals through specialized surveillance systems reduces the chance of misdiagnosis at the initial stage of cancer. Risk stratification is however challenging as PDAC lacks specific predictive biomarkers. Studies reported that the pancreas undergoes local morphological changes in response to underlying biological evolution associated with PDAC development. Accurate identification of these changes can help stratify the risk of PDAC. In this retrospective study, an extensive radiomic analysis of the precancerous pancreatic subregions was performed using abdominal Computed Tomography (CT) scans. The analysis was performed using 324 pancreatic subregions identified in 108 contrast-enhanced abdominal CT scans with equal proportion from healthy control, pre-diagnostic, and diagnostic groups. In a pairwise feature analysis, several textural features were found potentially predictive of PDAC. A machine learning classifier was then trained to perform risk prediction of PDAC by automatically classifying the CT scans into healthy control (low-risk) and pre-diagnostic (high-risk) classes and specifying the subregion(s) likely to develop a tumor. The proposed model was trained on CT scans from multiple phases. Whereas using 42 CT scans from the venous phase, model validation was performed which resulted in ~89.3% classification accuracy on average, with sensitivity and specificity reaching 86% and 93%, respectively, for predicting the development of PDAC (i.e., high-risk). To our knowledge, this is the first model that unveiled microlevel precancerous changes across pancreatic subregions and quantified the risk of developing PDAC. The model demonstrated improved prediction by 3.3% in comparison to the state-of-the-art method that considers the global (whole pancreas) features for PDAC prediction.
Collapse
Affiliation(s)
- Sehrish Javed
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Touseef Ahmad Qureshi
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Srinivas Gaddam
- Gastroenterology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Lixia Wang
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Linda Azab
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Ashley Max Wachsman
- Department of Radiology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Wansu Chen
- Department of Research and Evaluation, Southern California Kaiser Permanente Medical Center, Los Angeles, CA, United States
| | - Vahid Asadpour
- Department of Research and Evaluation, Southern California Kaiser Permanente Medical Center, Los Angeles, CA, United States
| | - Christie Younghae Jeon
- Division of Hematology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Division of Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Beichien Wu
- Department of Research and Evaluation, Southern California Kaiser Permanente Medical Center, Los Angeles, CA, United States
| | - Yibin Xie
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | | | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
85
|
Ge G, Zhang J. Uniqueness of radiomic features in non-small cell lung cancer. J Appl Clin Med Phys 2022; 23:e13787. [PMID: 36173022 PMCID: PMC9797180 DOI: 10.1002/acm2.13787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/26/2022] [Accepted: 08/24/2022] [Indexed: 01/01/2023] Open
Abstract
PURPOSE The uniqueness of radiomic features, combined with their reproducibility, determines the reliability of radiomic studies. This study is to test the hypothesis that radiomic features extracted from a defined region of interest (ROI) are unique to the underlying structure (e.g., tumor). APPROACH Two cohorts of non-small cell lung cancer (NSCLC) patients were retrospectively retrieved from a GE and a Siemens CT scanner. The lung nodules (ROI) were delineated manually and radiomic features were extracted using IBEX. The same ROI was then translocated randomly to four other tissue regions of the same set of images: adipose, heart, lung beyond nodule, and muscle for radiomic feature extraction. Coefficient of variation (CV) within different ROIs and concordance correlation coefficient (CCC) between lung nodule and a given tissue region were calculated to test to determine feature uniqueness. The radiomic features were considered nonunique when (1) the CV < 10% and CCC > 0.85 for over 50% of patients; and (2) the CCC > 0.85 appeared in ≥2 tissue regions beyond the defined region. RESULTS In total, 14 patients from GE and 18 patients from Siemens are analyzed. The results show that 12 features fall below the 10% CV threshold for over 50% of patients in the GE cohort and 29 features in the Siemens cohort. According to CCC, 18 radiomic features in GE and 16 features in Siemens are identified as nonunique, with 11 overlapping features. Combining CV and CCC, 9 of 123 calculated features (7.3%) are identified as nonunique to a defined ROI. CONCLUSIONS Radiomic feature uniqueness should be considered to improve the reliability of radiomics study.
Collapse
Affiliation(s)
- Gary Ge
- Department of RadiologyUniversity of KentuckyLexingtonKentucky40536USA
| | - Jie Zhang
- Department of RadiologyUniversity of KentuckyLexingtonKentucky40536USA
| |
Collapse
|
86
|
Pirrone G, Matrone F, Chiovati P, Manente S, Drigo A, Donofrio A, Cappelletto C, Borsatti E, Dassie A, Bortolus R, Avanzo M. Predicting Local Failure after Partial Prostate Re-Irradiation Using a Dosiomic-Based Machine Learning Model. J Pers Med 2022; 12:1491. [PMID: 36143276 PMCID: PMC9505150 DOI: 10.3390/jpm12091491] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 12/22/2022] Open
Abstract
The aim of this study is to predict local failure after partial prostate re-irradiation for the treatment of isolated locally recurrent prostate cancer by using a machine learning classifier based on radiomic features from pre-treatment computed tomography (CT), positron-emission tomography (PET) and biological effective dose distribution (BED) of the radiotherapy plan. The analysis was conducted on a monocentric dataset of 43 patients with evidence of isolated intraprostatic recurrence of prostate cancer after primary external beam radiotherapy. All patients received partial prostate re-irradiation delivered by volumetric modulated arc therapy. The gross tumor volume (GTV) of each patient was manually contoured from planning CT, choline-PET and dose maps. An ensemble machine learning pipeline including unbalanced data correction and feature selection was trained using the radiomic and dosiomic features as input for predicting occurrence of local failure. The model performance was assessed using sensitivity, specificity, accuracy and area under receiver operating characteristic curves of the score function in 10-fold cross validation repeated 100 times. Local failure was observed in 13 patients (30%), with a median time to recurrence of 36.7 months (range = 6.1-102.4 months). A four variables ensemble machine learning model resulted in accuracy of 0.62 and AUC 0.65. According to our results, a dosiomic machine learning classifier can predict local failure after partial prostate re-irradiation.
Collapse
Affiliation(s)
- Giovanni Pirrone
- Medical Physics Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Fabio Matrone
- Radiation Oncology Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Paola Chiovati
- Medical Physics Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Stefania Manente
- Nuclear Medicine Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Annalisa Drigo
- Medical Physics Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Alessandra Donofrio
- Radiation Oncology Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Cristina Cappelletto
- Medical Physics Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Eugenio Borsatti
- Nuclear Medicine Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Andrea Dassie
- Medical Physics Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Roberto Bortolus
- Radiation Oncology Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Michele Avanzo
- Medical Physics Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| |
Collapse
|
87
|
Lu T, Jorns JM, Ye DH, Patton M, Fisher R, Emmrich A, Schmidt TG, Yen T, Yu B. Automated assessment of breast margins in deep ultraviolet fluorescence images using texture analysis. BIOMEDICAL OPTICS EXPRESS 2022; 13:5015-5034. [PMID: 36187258 PMCID: PMC9484420 DOI: 10.1364/boe.464547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 06/10/2023]
Abstract
Microscopy with ultraviolet surface excitation (MUSE) is increasingly studied for intraoperative assessment of tumor margins during breast-conserving surgery to reduce the re-excision rate. Here we report a two-step classification approach using texture analysis of MUSE images to automate the margin detection. A study dataset consisting of MUSE images from 66 human breast tissues was constructed for model training and validation. Features extracted using six texture analysis methods were investigated for tissue characterization, and a support vector machine was trained for binary classification of image patches within a full image based on selected feature subsets. A weighted majority voting strategy classified a sample as tumor or normal. Using the eight most predictive features ranked by the maximum relevance minimum redundancy and Laplacian scores methods has achieved a sample classification accuracy of 92.4% and 93.0%, respectively. Local binary pattern alone has achieved an accuracy of 90.3%.
Collapse
Affiliation(s)
- Tongtong Lu
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI,
USA
| | - Julie M. Jorns
- Department of Pathology,
Medical College of Wisconsin, Milwaukee,
WI, USA
| | - Dong Hye Ye
- Department of Electrical and Computer
Engineering, Marquette University,
Milwaukee, WI, USA
| | - Mollie Patton
- Department of Pathology,
Medical College of Wisconsin, Milwaukee,
WI, USA
| | - Renee Fisher
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI,
USA
- Currently with Ashfield, part of
UDG Healthcare, Dublin, Ireland
| | - Amanda Emmrich
- Department of Surgery, Medical
College of Wisconsin, Milwaukee, WI, USA
- Currently with DaVita Clinical
Research, Minneapolis, MN 55404, USA
| | - Taly Gilat Schmidt
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI,
USA
| | - Tina Yen
- Department of Surgery, Medical
College of Wisconsin, Milwaukee, WI, USA
| | - Bing Yu
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI,
USA
| |
Collapse
|
88
|
Azadikhah A, Varghese BA, Lei X, Martin-King C, Cen SY, Duddalwar VA. Radiomics quality score in renal masses: a systematic assessment on current literature. Br J Radiol 2022; 95:20211211. [PMID: 35671097 PMCID: PMC10996962 DOI: 10.1259/bjr.20211211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To perform a systematic assessment and analyze the quality of radiomics methodology in current literature in the evaluation of renal masses using the Radiomics Quality Score (RQS) approach. METHODS We systematically reviewed recent radiomics literature in renal masses published in PubMed, EMBASE, Elsevier, and Web of Science. Two reviewers blinded by each other's scores evaluated the quality of radiomics methodology in studies published from 2015 to August 2021 using the RQS approach. Owing to the diversity in the imaging modalities and radiomics applications, a meta-analysis could not be performed. RESULTS Based on our inclusion/exclusion criteria, a total of 87 published studies were included in our study. The highest RQS was noted in three categories: reporting of clinical utility, gold standard, and feature reduction. The average RQS of the two reviewers ranged from 5 ≤ RQS≤19, with the maximum attainable RQS being 36. Very few (7/87 i.e., 8%) studies received an average RQS that ranged from 17 < RQS≤19, which represents studies with the highest RQS in our study. Many (39/87 i.e., 45%) studies received an average RQS that ranged from 13 < RQS≤15. No significant interreviewer scoring differences were observed. CONCLUSIONS We report that the overall scientific quality and reporting of radiomics studies in renal masses is suboptimal, and subsequent studies should bolster current deficiencies to improve reporting of radiomics methodologies. ADVANCES IN KNOWLEDGE The RQS approach is a meaningful quantitative scoring system to assess radiomics methodology quality and supports a comprehensive evaluation of the radiomics approach before its incorporation into clinical practice.
Collapse
Affiliation(s)
- Afshin Azadikhah
- USC Radiomics Laboratory, Department of Radiology, Keck School
of Medicine, University of Southern California,
Los Angeles, United States
| | - Bino Abel Varghese
- USC Radiomics Laboratory, Department of Radiology, Keck School
of Medicine, University of Southern California,
Los Angeles, United States
| | - Xiaomeng Lei
- USC Radiomics Laboratory, Department of Radiology, Keck School
of Medicine, University of Southern California,
Los Angeles, United States
| | - Chloe Martin-King
- USC Radiomics Laboratory, Department of Radiology, Keck School
of Medicine, University of Southern California,
Los Angeles, United States
| | - Steven Yong Cen
- USC Radiomics Laboratory, Department of Radiology, Keck School
of Medicine, University of Southern California,
Los Angeles, United States
| | - Vinay Anant Duddalwar
- USC Radiomics Laboratory, Department of Radiology, Keck School
of Medicine, University of Southern California,
Los Angeles, United States
| |
Collapse
|
89
|
Lafata KJ, Wang Y, Konkel B, Yin FF, Bashir MR. Radiomics: a primer on high-throughput image phenotyping. Abdom Radiol (NY) 2022; 47:2986-3002. [PMID: 34435228 DOI: 10.1007/s00261-021-03254-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 01/18/2023]
Abstract
Radiomics is a high-throughput approach to image phenotyping. It uses computer algorithms to extract and analyze a large number of quantitative features from radiological images. These radiomic features collectively describe unique patterns that can serve as digital fingerprints of disease. They may also capture imaging characteristics that are difficult or impossible to characterize by the human eye. The rapid development of this field is motivated by systems biology, facilitated by data analytics, and powered by artificial intelligence. Here, as part of Abdominal Radiology's special issue on Quantitative Imaging, we provide an introduction to the field of radiomics. The technique is formally introduced as an advanced application of data analytics, with illustrating examples in abdominal radiology. Artificial intelligence is then presented as the main driving force of radiomics, and common techniques are defined and briefly compared. The complete step-by-step process of radiomic phenotyping is then broken down into five key phases. Potential pitfalls of each phase are highlighted, and recommendations are provided to reduce sources of variation, non-reproducibility, and error associated with radiomics.
Collapse
Affiliation(s)
- Kyle J Lafata
- Department of Radiology, Duke University School of Medicine, Durham, NC, USA. .,Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, USA. .,Department of Electrical & Computer Engineering, Duke University Pratt School of Engineering, Durham, NC, USA.
| | - Yuqi Wang
- Department of Electrical & Computer Engineering, Duke University Pratt School of Engineering, Durham, NC, USA
| | - Brandon Konkel
- Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Fang-Fang Yin
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, USA
| | - Mustafa R Bashir
- Department of Radiology, Duke University School of Medicine, Durham, NC, USA.,Department of Medicine, Gastroenterology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
90
|
18F-Fluoroethylcholine PET/CT Radiomic Analysis for Newly Diagnosed Prostate Cancer Patients: A Monocentric Study. Int J Mol Sci 2022; 23:ijms23169120. [PMID: 36012384 PMCID: PMC9409104 DOI: 10.3390/ijms23169120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 12/28/2022] Open
Abstract
Aim: The aim of this study is to assess whether there are some correlations between radiomics and baseline clinical-biological data of prostate cancer (PC) patients using Fluorine-18 Fluoroethylcholine (18F-FECh) PET/CT. Methods: Digital rectal examination results (DRE), Prostate-Specific Antigen (PSA) serum levels, and bioptical-Gleason Score (GS) were retrospectively collected in newly diagnosed PC patients and considered as outcomes of PC. Thereafter, Volumes of interest (VOI) encompassing the prostate of each patient were drawn to extract conventional and radiomic PET features. Radiomic bivariate models were set up using the most statistically relevant features and then trained/tested with a cross-fold validation test. The best bivariate models were expressed by mean and standard deviation to the normal area under the receiver operating characteristic curves (mAUC, sdAUC). Results: Semiquantitative and radiomic analyses were performed on 67 consecutive patients. tSUVmean and tSkewness were significant DRE predictors at univariate analysis (OR 1.52 [1.01; 2.29], p = 0.047; OR 0.21 [0.07; 0.65], p = 0.007, respectively); moreover, tKurtosis was an independent DRE predictor at multivariate analysis (OR 0.64 [0.42; 0.96], p = 0.03) Among the most relevant bivariate models, szm_2.5D.z.entr + cm.clust.tend was a predictor of PSA levels (mAUC 0.83 ± 0.19); stat.kurt + stat.entropy predicted DRE (mAUC 0.79 ± 0.10); cm.info.corr.1 + szm_2.5D.szhge predicted GS (mAUC 0.78 ± 0.16). Conclusions: tSUVmean, tSkewness, and tKurtosis were predictors of DRE results only, while none of the PET parameters predicted PSA or GS significantly; 18F-FECh PET/CT radiomic models should be tested in larger cohort studies of newly diagnosed PC patients.
Collapse
|
91
|
Qin Y, Zhu LH, Zhao W, Wang JJ, Wang H. Review of Radiomics- and Dosiomics-based Predicting Models for Rectal Cancer. Front Oncol 2022; 12:913683. [PMID: 36016617 PMCID: PMC9395725 DOI: 10.3389/fonc.2022.913683] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/23/2022] [Indexed: 12/20/2022] Open
Abstract
By breaking the traditional medical image analysis framework, precision medicine-radiomics has attracted much attention in the past decade. The use of various mathematical algorithms offers radiomics the ability to extract vast amounts of detailed features from medical images for quantitative analysis and analyzes the confidential information related to the tumor in the image, which can establish valuable disease diagnosis and prognosis models to support personalized clinical decisions. This article summarizes the application of radiomics and dosiomics in radiation oncology. We focus on the application of radiomics in locally advanced rectal cancer and also summarize the latest research progress of dosiomics in radiation tumors to provide ideas for the treatment of future related diseases, especially 125I CT-guided radioactive seed implant brachytherapy.
Collapse
Affiliation(s)
- Yun Qin
- School of Physics, Beihang University, Beijing, China
| | - Li-Hua Zhu
- School of Physics, Beihang University, Beijing, China
| | - Wei Zhao
- School of Physics, Beihang University, Beijing, China
| | - Jun-Jie Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Hao Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| |
Collapse
|
92
|
Cui Y, Yin FF. Impact of image quality on radiomics applications. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac7fd7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/08/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Radiomics features extracted from medical images have been widely reported to be useful in the patient specific outcome modeling for variety of assessment and prediction purposes. Successful application of radiomics features as imaging biomarkers, however, is dependent on the robustness of the approach to the variation in each step of the modeling workflow. Variation in the input image quality is one of the main sources that impacts the reproducibility of radiomics analysis when a model is applied to broader range of medical imaging data. The quality of medical image is generally affected by both the scanner related factors such as image acquisition/reconstruction settings and the patient related factors such as patient motion. This article aimed to review the published literatures in this field that reported the impact of various imaging factors on the radiomics features through the change in image quality. The literatures were categorized by different imaging modalities and also tabulated based on the imaging parameters and the class of radiomics features included in the study. Strategies for image quality standardization were discussed based on the relevant literatures and recommendations for reducing the impact of image quality variation on the radiomics in multi-institutional clinical trial were summarized at the end of this article.
Collapse
|
93
|
Siviengphanom S, Gandomkar Z, Lewis SJ, Brennan PC. Mammography-based Radiomics in Breast Cancer: A Scoping Review of Current Knowledge and Future Needs. Acad Radiol 2022; 29:1228-1247. [PMID: 34799256 DOI: 10.1016/j.acra.2021.09.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/14/2021] [Accepted: 09/26/2021] [Indexed: 12/19/2022]
Abstract
RATIONALE AND OBJECTIVES Breast cancer is a highly complex heterogeneous disease. Current validated prognostic factors (e.g., histological grade, lymph node involvement, receptor status, and proliferation index), as well as multigene tests (e.g., Oncotype DX and PAM50) are helpful to describe breast cancer characteristics and predict the chance of recurrence risk and survival. Nevertheless, they are invasive and cannot capture a complete heterogeneity of the entire breast tumor resulting in up to 30% of patients being either over- or under-treated for breast cancer. Furthermore, multigene testings are time consuming and expensive. Radiomics is emerging as a reliable, accurate, non-invasive, and cost-effective approach of using quantitative image features to classify breast cancer characteristics and predict patient outcomes. Several recent radiomics reviews have been conducted in breast cancer, however, specific mammography-based radiomics studies have not been well discussed. This scoping review aims to assess and summarize the current evidence on the potential usefulness of mammography-based (i.e., digital mammography, digital breast tomosynthesis, and contrast-enhanced mammography) radiomics in predicting factors that describe breast cancer characteristics, recurrence, and survival. MATERIALS AND METHODS PubMed database and eligible text reference were searched using relevant keywords to identify studies published between 2015 and December 19, 2020. Studies collected were screened and assessed based on the inclusion and exclusion criteria. RESULTS Eighteen eligible studies were included and organized into three main sections: radiomics predicting breast cancer characteristics, radiomics predicting breast cancer recurrence and survival, and radiomics integrating with clinical data. Majority of publications reported retrospective studies while three studies examined prospective cohorts. Encouraging results were reported, suggesting the potential clinical value of mammography-based radiomics. Further efforts are required to standardize radiomics approaches and catalogue reproducible and relevant mammographic radiomic features. The role of integrating radiomics with other information is discussed. CONCLUSION The potential role of mammography-based radiomics appears promising but more efforts are required to further evaluate its reliability as a routine clinical tool.
Collapse
Affiliation(s)
- Somphone Siviengphanom
- Discipline of Medical Imaging Sciences, Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Level 7, Susan Wakil Health Building D18, Sydney, NSW 2006, Australia..
| | - Ziba Gandomkar
- Discipline of Medical Imaging Sciences, Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Level 7, Susan Wakil Health Building D18, Sydney, NSW 2006, Australia
| | - Sarah J Lewis
- Discipline of Medical Imaging Sciences, Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Level 7, Susan Wakil Health Building D18, Sydney, NSW 2006, Australia
| | - Patrick C Brennan
- Discipline of Medical Imaging Sciences, Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Level 7, Susan Wakil Health Building D18, Sydney, NSW 2006, Australia
| |
Collapse
|
94
|
Bao J, Feng X, Ma Y, Wang Y, Qi J, Qin C, Tan X, Tian Y. The latest application progress of radiomics in prediction and diagnosis of liver diseases. Expert Rev Gastroenterol Hepatol 2022; 16:707-719. [PMID: 35880549 DOI: 10.1080/17474124.2022.2104711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Early detection and individualized treatment of patients with liver disease is the key to survival. Radiomics can extract high-throughput quantitative features by multimode imaging, which has good application prospects for the diagnosis, staging and prognosis of benign and malignant liver diseases. Therefore, this paper summarizes the current research status in the field of liver disease, in order to help these patients achieve personalized and precision medical care. AREAS COVERED This paper uses several keywords on the PubMed database to search the references, and reviews the workflow of traditional radiomics, as well as the characteristics and influencing factors of different imaging modes. At the same time, the references on the application of imaging in different benign and malignant liver diseases were also summarized. EXPERT OPINION For patients with liver disease, the traditional imaging evaluation can only provide limited information. Radiomics exploits the characteristics of high-throughput and high-dimensional extraction, enabling liver imaging capabilities far beyond the scope of traditional visual image analysis. Recent studies have demonstrated the prospect of this technology in personalized diagnosis and treatment decision in various fields of the liver. However, further clinical validation is needed in its application and practice.
Collapse
Affiliation(s)
- Jiaying Bao
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, P.R. China
| | - Xiao Feng
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, P.R. China
| | - Yan Ma
- Department of Ultrasound, Zibo Central Hospital, Zibo, P.R. China
| | - Yanyan Wang
- Departments of Emergency Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Jianni Qi
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Chengyong Qin
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, P.R. China
| | - Xu Tan
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Yongmei Tian
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| |
Collapse
|
95
|
Moskowitz CS, Welch ML, Jacobs MA, Kurland BF, Simpson AL. Radiomic Analysis: Study Design, Statistical Analysis, and Other Bias Mitigation Strategies. Radiology 2022; 304:265-273. [PMID: 35579522 PMCID: PMC9340236 DOI: 10.1148/radiol.211597] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 01/30/2022] [Accepted: 02/02/2022] [Indexed: 12/13/2022]
Abstract
Rapid advances in automated methods for extracting large numbers of quantitative features from medical images have led to tremendous growth of publications reporting on radiomic analyses. Translation of these research studies into clinical practice can be hindered by biases introduced during the design, analysis, or reporting of the studies. Herein, the authors review biases, sources of variability, and pitfalls that frequently arise in radiomic research, with an emphasis on study design and statistical analysis considerations. Drawing on existing work in the statistical, radiologic, and machine learning literature, approaches for avoiding these pitfalls are described.
Collapse
Affiliation(s)
| | | | - Michael A. Jacobs
- From the Department of Epidemiology and Biostatistics, Memorial Sloan
Kettering Cancer Center, 485 Lexington Ave, 2nd Floor, New York, NY, NY 10017
(C.S.M.); Cancer Digital Intelligence Program, University Health Network,
Toronto, ON, Canada (M.L.W.); The Russell H. Morgan Department of Radiology and
Radiological Science and Sidney Kimmel Comprehensive Cancer Center, The Johns
Hopkins School of Medicine, Baltimore, Md (M.A.J.); ERT, Pittsburgh, Pa
(B.F.K.); and School of Computing, Department of Biomedical and Molecular
Sciences, Queen’s University, Kingston, ON, Canada (A.L.S.)
| | - Brenda F. Kurland
- From the Department of Epidemiology and Biostatistics, Memorial Sloan
Kettering Cancer Center, 485 Lexington Ave, 2nd Floor, New York, NY, NY 10017
(C.S.M.); Cancer Digital Intelligence Program, University Health Network,
Toronto, ON, Canada (M.L.W.); The Russell H. Morgan Department of Radiology and
Radiological Science and Sidney Kimmel Comprehensive Cancer Center, The Johns
Hopkins School of Medicine, Baltimore, Md (M.A.J.); ERT, Pittsburgh, Pa
(B.F.K.); and School of Computing, Department of Biomedical and Molecular
Sciences, Queen’s University, Kingston, ON, Canada (A.L.S.)
| | - Amber L. Simpson
- From the Department of Epidemiology and Biostatistics, Memorial Sloan
Kettering Cancer Center, 485 Lexington Ave, 2nd Floor, New York, NY, NY 10017
(C.S.M.); Cancer Digital Intelligence Program, University Health Network,
Toronto, ON, Canada (M.L.W.); The Russell H. Morgan Department of Radiology and
Radiological Science and Sidney Kimmel Comprehensive Cancer Center, The Johns
Hopkins School of Medicine, Baltimore, Md (M.A.J.); ERT, Pittsburgh, Pa
(B.F.K.); and School of Computing, Department of Biomedical and Molecular
Sciences, Queen’s University, Kingston, ON, Canada (A.L.S.)
| |
Collapse
|
96
|
COŞKUN N, YÜKSEL AÖ, CANYİĞİT M, ÖZDEMİR E. Radiomics analysis of pre-treatment F-18 FDG PET/CT for predicting response to transarterial radioembolization in liver tumors. JOURNAL OF HEALTH SCIENCES AND MEDICINE 2022. [DOI: 10.32322/jhsm.1118649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Aim: To investigate the relationship between the textural features extracted from pre-treatment fluorine-18 fluorodeoxyglucose positron emission with computed tomography (F-18 FDG PET/CT) and the response to treatment in patients undergoing transarterial radioembolization (TARE) due to primary or metastatic liver tumors.
Material and Method: A total of 25 liver lesions from the pre-treatment F-18 PET/CT images of 14 patients were segmented manually. Standard uptake value (SUV) metrics and radiomics features were extracted for each lesion. Metabolic treatment response was determined according to PERCIST criteria in 18F-FDG PET/CT imaging performed 2 months after the treatment. Feature selection was done with recursive feature elimination (RFE). The association between selected features and treatment response was evaluated with logistic regression analysis.
Results: Eventually, 13 lesions responded to TARE, while 12 lesions remain stable or progressed. All standard uptake values and 27 out of 30 textural heterogeneity indicators were significantly higher in lesions that responded to treatment. SUVmax, kurtosis and dissimilarity features were selected by the RFE algorithm for the prediction of response to TARE. Logistic regression analysis revealed that all three parameters were significantly associated with treatment outcome.
Conclusion: Textural features extracted from pre-treatment F-18 FDG PET/CT in patients undergoing TARE due to liver tumors are promising biomarkers that can be potentially used to predict metabolic treatment response.
Collapse
Affiliation(s)
- Nazım COŞKUN
- SAĞLIK BİLİMLERİ ÜNİVERSİTESİ, ANKARA ŞEHİR SAĞLIK UYGULAMA VE ARAŞTIRMA MERKEZİ, DAHİLİ TIP BİLİMLERİ BÖLÜMÜ
| | - Alptuğ Özer YÜKSEL
- SAĞLIK BİLİMLERİ ÜNİVERSİTESİ, ANKARA ŞEHİR SAĞLIK UYGULAMA VE ARAŞTIRMA MERKEZİ, DAHİLİ TIP BİLİMLERİ BÖLÜMÜ, NÜKLEER TIP ANABİLİM DALI
| | - Murat CANYİĞİT
- YILDIRIM BEYAZIT ÜNİVERSİTESİ, TIP FAKÜLTESİ, DAHİLİ TIP BİLİMLERİ BÖLÜMÜ, RADYOLOJİ ANABİLİM DALI
| | - Elif ÖZDEMİR
- YILDIRIM BEYAZIT ÜNİVERSİTESİ, TIP FAKÜLTESİ, DAHİLİ TIP BİLİMLERİ BÖLÜMÜ, NÜKLEER TIP ANABİLİM DALI
| |
Collapse
|
97
|
Yamazawa E, Takahashi S, Shin M, Tanaka S, Takahashi W, Nakamoto T, Suzuki Y, Takami H, Saito N. MRI-Based Radiomics Differentiates Skull Base Chordoma and Chondrosarcoma: A Preliminary Study. Cancers (Basel) 2022; 14:cancers14133264. [PMID: 35805036 PMCID: PMC9265125 DOI: 10.3390/cancers14133264] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary In this study, we created a novel MRI-based machine learning model to differentiate skull base chordoma and chondrosarcoma with multiparametric signatures. While these tumors share common radiographic characteristics, clinical behavior is distinct. Therefore, distinguishing these tumors before initial surgical intervention would be useful, potentially impacting the surgical strategy. Although there are some limitations, such as the risk of overfitting and the lack of an extramural cohort for truly independent final validation, our machine learning model distinguishing chordoma from chondrosarcoma yielded superior diagnostic accuracy to that achieved by 20 board-certified neurosurgeons. Abstract Chordoma and chondrosarcoma share common radiographic characteristics yet are distinct clinically. A radiomic machine learning model differentiating these tumors preoperatively would help plan surgery. MR images were acquired from 57 consecutive patients with chordoma (N = 32) or chondrosarcoma (N = 25) treated at the University of Tokyo Hospital between September 2012 and February 2020. Preoperative T1-weighted images with gadolinium enhancement (GdT1) and T2-weighted images were analyzed. Datasets from the first 47 cases were used for model creation, and those from the subsequent 10 cases were used for validation. Feature extraction was performed semi-automatically, and 2438 features were obtained per image sequence. Machine learning models with logistic regression and a support vector machine were created. The model with the highest accuracy incorporated seven features extracted from GdT1 in the logistic regression. The average area under the curve was 0.93 ± 0.06, and accuracy was 0.90 (9/10) in the validation dataset. The same validation dataset was assessed by 20 board-certified neurosurgeons. Diagnostic accuracy ranged from 0.50 to 0.80 (median 0.60, 95% confidence interval 0.60 ± 0.06%), which was inferior to that of the machine learning model (p = 0.03), although there are some limitations, such as the risk of overfitting and the lack of an extramural cohort for truly independent final validation. In summary, we created a novel MRI-based machine learning model to differentiate skull base chordoma and chondrosarcoma from multiparametric signatures.
Collapse
Affiliation(s)
- Erika Yamazawa
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (E.Y.); (H.T.); (N.S.)
| | - Satoshi Takahashi
- RIKEN Center for Advanced Intelligence Project, 2-1 Hirosawa, Wako 351-0198, Japan;
- Division of Medical AI Research and Development, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Masahiro Shin
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (E.Y.); (H.T.); (N.S.)
- Department of Neurosurgery, University of Teikyo Hospital, 2-11-1 Kaga, Itabashi-Ku, Tokyo 173-8606, Japan
- Correspondence: (M.S.); (S.T.); Tel.: +81-3-3964-1211 (M.S.); +81-3-3815-5411 (S.T.)
| | - Shota Tanaka
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (E.Y.); (H.T.); (N.S.)
- Correspondence: (M.S.); (S.T.); Tel.: +81-3-3964-1211 (M.S.); +81-3-3815-5411 (S.T.)
| | - Wataru Takahashi
- Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (W.T.); (T.N.); (Y.S.)
| | - Takahiro Nakamoto
- Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (W.T.); (T.N.); (Y.S.)
- Department of Biological Science and Engineering, Faculty of Health Sciences, Hokkaido University Kita 12, Nishi 5, Kita-ku, Sapporo-shi 060-0808, Japan
| | - Yuichi Suzuki
- Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (W.T.); (T.N.); (Y.S.)
| | - Hirokazu Takami
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (E.Y.); (H.T.); (N.S.)
| | - Nobuhito Saito
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (E.Y.); (H.T.); (N.S.)
| |
Collapse
|
98
|
Al-Areqi F, Konyar MZ. Effectiveness evaluation of different feature extraction methods for classification of covid-19 from computed tomography images: A high accuracy classification study. Biomed Signal Process Control 2022; 76:103662. [PMID: 35350595 PMCID: PMC8947946 DOI: 10.1016/j.bspc.2022.103662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/18/2022] [Accepted: 03/19/2022] [Indexed: 01/16/2023]
Abstract
Rapid diagnosis of the Covid-19 disease is the best way to prevent infection. In this paper, it is proposed to use machine learning methods to aid diagnoses quickly Covid-19 and focused on effect of several features on classification accuracy. In the proposed method 746 axial computed tomography (CT) images of the lung; 349 Covid-19 (positives) and 397 non-Covid-19 (negative) are used. Gray-level texture, shape and first order statistical features were extracted from the images. The feature vector for model training is constructed with one feature group or combination of more than one group. We then classified with Support Vector Machine, Random Forest, k-nearest neighbor and XGBoost classifier models. The hyperparameter of the models were controlled by the tuning test. Experimental results obtained with 10-fold cross-validation. The results of cross-validation verified with the additionally independent test. The best overall accuracy was 98.65% with first order statistics features classified with XGBoost. In the gray level features, the best individual results given by GLSZM as 81.25%, and the best combination result is with GLDM, GLRLM and GLSZM features as 85.52%. An important finding of this paper is that, for Covid-19 classification, the shape and first order statistics features are more valuable than gray level features. The proposed results compared with the literature studies under some Covid-19 dataset for accuracy, precision, sensitivity and F1-score metrics. Also, the literature studies which used the different Covid-19 dataset were compared with the proposed study. Our results have the significant superiority when compared with the literature studies.
Collapse
Affiliation(s)
- Farid Al-Areqi
- Department of Biomedical Engineering, Kocaeli University, 41001 Kocaeli, Turkey
| | - Mehmet Zeki Konyar
- Department of Software Engineering, Kocaeli University, 41001 Kocaeli, Turkey
| |
Collapse
|
99
|
Evaluation of Radiomics Models Based on Computed Tomography for Distinguishing Between Benign and Malignant Thyroid Nodules. J Comput Assist Tomogr 2022; 46:978-985. [PMID: 35759774 DOI: 10.1097/rct.0000000000001352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIM The aim of the study was to investigate the diagnostic value of radiomics models based on computed tomography (CT) in distinguishing between benign and malignant thyroid nodules. MATERIALS AND METHODS We conducted a retrospective analysis of the clinical and imaging data of 172 patients with pathology-confirmed thyroid nodules (83 benign nodules and 89 malignant nodules). All patients underwent a plain CT scan + arterial and venous contrast enhancement before the operation. Using the stratified random sampling method, patients were divided into a training group (121 cases) and a test group (51 cases) at a ratio of 7:3. A.K. software was used to extract radiomics features from the preoperative CT images, and minimum redundancy maximum relevance and least absolute shrinkage and selection operator regression analyses were then used for feature screening and model construction. Receiver operating characteristic (ROC) curves were constructed for the training and test groups to verify model performance and evaluate the efficacy of the radiomics features in identifying benign and malignant thyroid nodules. We then used the most efficient models to construct a nomogram. For the training group, 1-way analysis of variance and multivariate logistic regression analysis were used to screen statistically significant clinical features, and the radiomics scores were combined to construct a radiomics nomogram. We used ROC curve analysis to evaluate the predictive performance of the model. RESULTS Screening yielded 21 radiomics features that were used to construct a model for differentiating between benign and malignant thyroid nodules. For the training group, the area under the ROC curve of the prediction models for the noncontrast, arterial phase, and venous phase scans were 0.86 (95% confidence interval [CI], 0.79-0.92), 0.89 (95% CI, 0.83-0.95), and 0.88 (95% CI, 0.82-0.94), respectively, and the corresponding diagnostic accuracy was 0.78, 0.84, and 0.83. For the test group, the corresponding 3-phase under the ROC curves for the test group were 0.76 (95% CI, 0.63-0.90), 0.78 (95% CI, 0.65-0.91), and 0.76 (95% CI, 0.62-0.90), and the corresponding accuracy was 0.63, 0.77, and 0.75. Thus, the arterial phase model exhibited the best diagnostic performance. The multivariate logistic regression results showed that morphology regularity and the cystic degeneration ratio were independent clinical risk factors for predicting benign and malignant thyroid nodules. The arterial phase radiomics score and clinically independent factors were then used to construct a nomogram. The nomogram had good discriminability for the training group (0.93; 95% CI, 0.88-0.98) and the test group (0.84; 95% CI, 0.73-0.95), achieving significantly higher accuracies than the radiomics score and clinical characteristics alone. CONCLUSIONS The radiomics nomogram constructed by combining radiomics characteristics and clinical risk factors was efficacious for distinguishing benign and malignant thyroid nodules.
Collapse
|
100
|
Fan Y, Dong Y, Wang H, Wang H, Sun X, Wang X, Zhao P, Luo Y, Jiang X. Development and externally validate MRI-based nomogram to assess EGFR and T790M mutations in patients with metastatic lung adenocarcinoma. Eur Radiol 2022; 32:6739-6751. [PMID: 35729427 DOI: 10.1007/s00330-022-08955-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/20/2022] [Accepted: 06/08/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVES This study aims to explore values of multi-parametric MRI-based radiomics for detecting the epidermal growth factor receptor (EGFR) mutation and resistance (T790M) mutation in lung adenocarcinoma (LA) patients with spinal metastasis. METHODS This study enrolled a group of 160 LA patients from our hospital (between Jan. 2017 and Feb. 2021) to build a primary cohort. An external cohort was developed with 32 patients from another hospital (between Jan. 2017 and Jan. 2021). All patients underwent spinal MRI (including T1-weighted (T1W) and T2-weighted fat-suppressed (T2FS)) scans. Radiomics features were extracted from the metastasis for each patient and selected to develop radiomics signatures (RSs) for detecting the EGFR and T790M mutations. The clinical-radiomics nomogram models were constructed with RSs and important clinical parameters. The receiver operating characteristics (ROC) curve was used to evaluate the predication capabilities of each model. Calibration and decision curve analyses (DCA) were constructed to verify the performance of the models. RESULTS For detecting the EGFR and T790M mutation, the developed RSs comprised 9 and 4 most important features, respectively. The constructed nomogram models incorporating RSs and smoking status showed favorite prediction efficacy, with AUCs of 0.849 (Sen = 0.685, Spe = 0.885), 0.828 (Sen = 0.964, Spe = 0.692), and 0.778 (Sen = 0.611, Spe = 0.929) in the training, internal validation, and external validation sets for detecting the EGFR mutation, respectively, and with AUCs of 0.0.842 (Sen = 0.750, Spe = 0.867), 0.823 (Sen = 0.667, Spe = 0.938), and 0.800 (Sen = 0.875, Spe = 0.800) in the training, internal validation, and external validation sets for detecting the T790M mutation, respectively. CONCLUSIONS Radiomics features from the spinal metastasis were predictive on both EGFR and T790M mutations. The constructed nomogram models can be potentially considered as new markers to guild treatment management in LA patients with spinal metastasis. KEY POINTS • To our knowledge, this study was the first approach to detect the EGFR T790M mutation based on spinal metastasis in patients with lung adenocarcinoma. • We identified 13 MRI features that were strongly associated with the EGFR T790M mutation. • The proposed nomogram models can be considered as potential new markers for detecting EGFR and T790M mutations based on spinal metastasis.
Collapse
Affiliation(s)
- Ying Fan
- School of Intelligent Medicine, China Medical University, Liaoning, 110122, People's Republic of China
| | - Yue Dong
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning, 110042, People's Republic of China
| | - Huan Wang
- Radiation Oncology Department of Thoracic Cancer, Liaoning Cancer Hospital and Institute, Liaoning, 110042, People's Republic of China
| | - Hongbo Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Xinyan Sun
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning, 110042, People's Republic of China
| | - Xiaoyu Wang
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning, 110042, People's Republic of China
| | - Peng Zhao
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning, 110042, People's Republic of China
| | - Yahong Luo
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning, 110042, People's Republic of China
| | - Xiran Jiang
- School of Intelligent Medicine, China Medical University, Liaoning, 110122, People's Republic of China.
| |
Collapse
|