51
|
Watkins KP, Rojas M, Friso G, van Wijk KJ, Meurer J, Barkan A. APO1 promotes the splicing of chloroplast group II introns and harbors a plant-specific zinc-dependent RNA binding domain. THE PLANT CELL 2011; 23:1082-92. [PMID: 21421812 PMCID: PMC3082255 DOI: 10.1105/tpc.111.084335] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 02/14/2011] [Accepted: 03/05/2011] [Indexed: 05/18/2023]
Abstract
Arabidopsis thaliana APO1 is required for the accumulation of the chloroplast photosystem I and NADH dehydrogenase complexes and had been proposed to facilitate the incorporation of [4Fe-4S] clusters into these complexes. The identification of maize (Zea mays) APO1 in coimmunoprecipitates with a protein involved in chloroplast RNA splicing prompted us to investigate a role for APO1 in splicing. We show here that APO1 promotes the splicing of several chloroplast group II introns: in Arabidopsis apo1 mutants, ycf3-intron 2 remains completely unspliced, petD intron splicing is strongly reduced, and the splicing of several other introns is compromised. These splicing defects can account for the loss of photosynthetic complexes in apo1 mutants. Recombinant APO1 from both maize and Arabidopsis binds RNA with high affinity in vitro, demonstrating that DUF794, the domain of unknown function that makes up almost the entirety of APO1, is an RNA binding domain. We provide evidence that DUF794 harbors two motifs that resemble zinc fingers, that these bind zinc, and that they are essential for APO1 function. DUF794 is found in a plant-specific protein family whose members are all predicted to localize to mitochondria or chloroplasts. Thus, DUF794 adds a new example to the repertoire of plant-specific RNA binding domains that emerged as a product of nuclear-organellar coevolution.
Collapse
Affiliation(s)
- Kenneth P. Watkins
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Margarita Rojas
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Giulia Friso
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Klaas J. van Wijk
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Jörg Meurer
- Department Biology I, Ludwig-Maximilians University, D-82152 Munich, Germany
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
- Address correspondence to
| |
Collapse
|
52
|
Albus CA, Ruf S, Schöttler MA, Lein W, Kehr J, Bock R. Y3IP1, a nucleus-encoded thylakoid protein, cooperates with the plastid-encoded Ycf3 protein in photosystem I assembly of tobacco and Arabidopsis. THE PLANT CELL 2010; 22:2838-55. [PMID: 20807881 PMCID: PMC2947186 DOI: 10.1105/tpc.110.073908] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 07/19/2010] [Accepted: 08/10/2010] [Indexed: 05/18/2023]
Abstract
The intricate assembly of photosystem I (PSI), a large multiprotein complex in the thylakoid membrane, depends on auxiliary protein factors. One of the essential assembly factors for PSI is encoded by ycf3 (hypothetical chloroplast reading frame number 3) in the chloroplast genome of algae and higher plants. To identify novel factors involved in PSI assembly, we constructed an epitope-tagged version of ycf3 from tobacco (Nicotiana tabacum) and introduced it into the tobacco chloroplast genome by genetic transformation. Immunoaffinity purification of Ycf3 complexes from the transplastomic plants identified a novel nucleus-encoded thylakoid protein, Y3IP1 (for Ycf3-interacting protein 1), that specifically interacts with the Ycf3 protein. Subsequent reverse genetics analysis of Y3IP1 function in tobacco and Arabidopsis thaliana revealed that knockdown of Y3IP1 leads to a specific deficiency in PSI but does not result in loss of Ycf3. Our data indicate that Y3IP1 represents a novel factor for PSI biogenesis that cooperates with the plastid genome-encoded Ycf3 in the assembly of stable PSI units in the thylakoid membrane.
Collapse
Affiliation(s)
| | | | | | | | | | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| |
Collapse
|
53
|
Verhounig A, Karcher D, Bock R. Inducible gene expression from the plastid genome by a synthetic riboswitch. Proc Natl Acad Sci U S A 2010; 107:6204-9. [PMID: 20308585 PMCID: PMC2852001 DOI: 10.1073/pnas.0914423107] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Riboswitches are natural RNA sensors that regulate gene expression in response to ligand binding. Riboswitches have been identified in prokaryotes and eukaryotes but are unknown in organelles (mitochondria and plastids). Here we have tested the possibility to engineer riboswitches for plastids (chloroplasts), a genetic system that largely relies on translational control of gene expression. To this end, we have used bacterial riboswitches and modified them in silico to meet the requirements of translational regulation in plastids. These engineered switches were then tested for functionality in vivo by stable transformation of the tobacco chloroplast genome. We report the identification of a synthetic riboswitch that functions as an efficient translational regulator of gene expression in plastids in response to its exogenously applied ligand theophylline. This riboswitch provides a novel tool for plastid genome engineering that facilitates the tightly regulated inducible expression of chloroplast genes and transgenes and thus has wide applications in functional genomics and biotechnology.
Collapse
Affiliation(s)
- Andreas Verhounig
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Daniel Karcher
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
54
|
Landau AM, Lokstein H, Scheller HV, Lainez V, Maldonado S, Prina AR. A cytoplasmically inherited barley mutant is defective in photosystem I assembly due to a temperature-sensitive defect in ycf3 splicing. PLANT PHYSIOLOGY 2009; 151:1802-11. [PMID: 19812182 PMCID: PMC2785965 DOI: 10.1104/pp.109.147843] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 10/05/2009] [Indexed: 05/20/2023]
Abstract
A cytoplasmically inherited chlorophyll-deficient mutant of barley (Hordeum vulgare) termed cytoplasmic line 3 (CL3), displaying a viridis (homogeneously light-green colored) phenotype, has been previously shown to be affected by elevated temperatures. In this article, biochemical, biophysical, and molecular approaches were used to study the CL3 mutant under different temperature and light conditions. The results lead to the conclusion that an impaired assembly of photosystem I (PSI) under higher temperatures and certain light conditions is the primary cause of the CL3 phenotype. Compromised splicing of ycf3 transcripts, particularly at elevated temperature, resulting from a mutation in a noncoding region (intron 1) in the mutant ycf3 gene results in a defective synthesis of Ycf3, which is a chaperone involved in PSI assembly. The defective PSI assembly causes severe photoinhibition and degradation of PSII.
Collapse
Affiliation(s)
- Alejandra Mabel Landau
- Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, B1712WAA Castelar, Province of Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
55
|
Schottkowski M, Ratke J, Oster U, Nowaczyk M, Nickelsen J. Pitt, a novel tetratricopeptide repeat protein involved in light-dependent chlorophyll biosynthesis and thylakoid membrane biogenesis in Synechocystis sp. PCC 6803. MOLECULAR PLANT 2009; 2:1289-97. [PMID: 19843617 DOI: 10.1093/mp/ssp075] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Biogenesis of photosynthetic pigment/protein complexes is a highly regulated process that requires various assisting factors. Here, we report on the molecular analysis of the Pitt gene (slr1644) from the cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis 6803) that encodes a membrane-bound tetratricopeptide repeat (TPR) protein of formerly unknown function. Targeted inactivation of Pitt affected photosynthetic performance and light-dependent chlorophyll synthesis. Yeast two-hybrid analyses and native PAGE strongly suggest a complex formation between Pitt and the light-dependent protochlorophyllide oxidoreductase (POR). Consistently, POR levels are approximately threefold reduced in the pitt insertion mutant. The membrane sublocalization of Pitt was found to be dependent on the presence of the periplasmic photosystem II (PSII) biogenesis factor PratA, supporting the idea that Pitt is involved in the early steps of photosynthetic pigment/protein complex formation.
Collapse
Affiliation(s)
- Marco Schottkowski
- Molekulare Pflanzenwissenschaften, Biozentrum LMU München, Grobetahaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | | | | | | | | |
Collapse
|
56
|
Onishi T, Takahashi Y. Effects of site-directed mutations in the chloroplast-encoded Ycf4 gene on PSI complex assembly in the green alga Chlamydomonas reinhardtii. PLANT & CELL PHYSIOLOGY 2009; 50:1750-1760. [PMID: 19667102 DOI: 10.1093/pcp/pcp117] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The chloroplast-encoded Ycf4 plays an essential role in PSI complex assembly in the green alga Chlamydomonas reinhardtii. To gain insight into how Ycf4 functions, we generated several mutants in which residues R120, E179 and/or E181, which are conserved among oxygenic photosynthetic organisms, were changed to A or Q. Although the single mutants R120A and R120Q accumulated 80% less Ycf4 than the wild type, they assembled a functional PSI complex and grew photosynthetically like the wild type. Thus we inferred that under laboratory growth conditions, wild-type cells accumulate a superfluous amount of Ycf4. Single mutants E179A, E179Q and E181Q assembled a functional PSI complex like the wild type, whereas the single mutant E181A and double mutant E179/181A accumulated a functional PSI complex to significantly reduced levels. Double mutant E179/181Q, in contrast, accumulated Ycf4 at the wild-type level but did not assemble any mature PSI complex, suggesting that the two glutamic acid residues play crucial roles in the functionality of Ycf4. Interestingly, sucrose density gradient centrifugation of the thylakoid extracts separated a small amount of PSI subcomplex. The apparent size of the subcomplex (150-170 kDa), its composition and pulse-chase protein labeling indicate that it was an unstable subcomplex consisting of a PsaA-PsaB heterodimer. We inferred that the subcomplex was a PSI complex assembly intermediate that was detected because subsequent assembly steps were blocked by the E179/181Q mutation. We concluded that Ycf4 is involved in early processes of PSI complex assembly.
Collapse
Affiliation(s)
- Takahito Onishi
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
| | | |
Collapse
|
57
|
Ozawa SI, Nield J, Terao A, Stauber EJ, Hippler M, Koike H, Rochaix JD, Takahashi Y. Biochemical and structural studies of the large Ycf4-photosystem I assembly complex of the green alga Chlamydomonas reinhardtii. THE PLANT CELL 2009; 21:2424-42. [PMID: 19700633 PMCID: PMC2751955 DOI: 10.1105/tpc.108.063313] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 07/20/2009] [Accepted: 08/07/2009] [Indexed: 05/19/2023]
Abstract
Ycf4 is a thylakoid protein essential for the accumulation of photosystem I (PSI) in Chlamydomonas reinhardtii. Here, a tandem affinity purification tagged Ycf4 was used to purify a stable Ycf4-containing complex of >1500 kD. This complex also contained the opsin-related COP2 and the PSI subunits PsaA, PsaB, PsaC, PsaD, PsaE, and PsaF, as identified by mass spectrometry (liquid chromatography-tandem mass spectrometry) and immunoblotting. Almost all Ycf4 and COP2 in wild-type cells copurified by sucrose gradient ultracentrifugation and subsequent ion exchange column chromatography, indicating the intimate and exclusive association of Ycf4 and COP2. Electron microscopy revealed that the largest structures in the purified preparation measure 285 x 185 A; these particles may represent several large oligomeric states. Pulse-chase protein labeling revealed that the PSI polypeptides associated with the Ycf4-containing complex are newly synthesized and partially assembled as a pigment-containing subcomplex. These results indicate that the Ycf4 complex may act as a scaffold for PSI assembly. A decrease in COP2 to 10% of wild-type levels by RNA interference increased the salt sensitivity of the Ycf4 complex stability but did not affect the accumulation of PSI, suggesting that COP2 is not essential for PSI assembly.
Collapse
Affiliation(s)
- Shin-Ichiro Ozawa
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Kohl S, Bock R. Transposition of a bacterial insertion sequence in chloroplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:423-36. [PMID: 19144000 DOI: 10.1111/j.1365-313x.2009.03787.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Bacterial transposable elements (IS elements, transposons) represent an important determinant of genome structure and dynamics, and are a major force driving genome evolution. Here, we have tested whether bacterial insertion sequences (IS elements) can transpose in a prokaryotic compartment of the plant cell, the plastid (chloroplast). Using plastid transformation, we have integrated different versions of the Escherichia coli IS element IS150 into the plastid genome of tobacco (Nicotiana tabacum) plants. We show that IS150 is faithfully mobilized inside the chloroplast, and that enormous quantities of transposition intermediates accumulate. As synthesis of the IS150 transposase is dependent upon programmed ribosomal frame shifting, our data indicate that this process also occurs in chloroplasts. Interestingly, all insertion events detected affect a single site in the plastid genome, suggesting that the integration of IS150 is highly sequence dependent. In contrast, the initiation of the transposition process was found to be independent of the sequence context. Finally, our data also demonstrate that plastids lack the capacity to repair double-strand breaks in their genomes by non-homologous end joining, a finding that has important implications for genome stability, and which may explain the peculiar immunity of the plastid to invading promiscuous DNA sequences of nuclear and mitochondrial origin.
Collapse
Affiliation(s)
- Stefan Kohl
- Max-Planck-Institut für Molekulare Pflanzenphysiologie (MPI-MP), Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | | |
Collapse
|
59
|
Hein P, Stöckel J, Bennewitz S, Oelmüller R. A protein related to prokaryotic UMP kinases is involved in psaA/B transcript accumulation in Arabidopsis. PLANT MOLECULAR BIOLOGY 2009; 69:517-28. [PMID: 19037728 DOI: 10.1007/s11103-008-9433-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 11/10/2008] [Indexed: 05/06/2023]
Abstract
Dpt1 (defect in p saA/B transcript accumulation 1) is a novel photosystem (PS) I mutant in Arabidopsis. dpt1 mutants fail to grow photoautotrophically, and are impaired in the accumulation of psaA/B transcripts while the transcript levels for the remaining PSI subunits, for subunits of the PSII, the cyt-b ( 6 )/f-complex, and the ribulose-1,5-bisphosphate carboxylase are comparable to the wild type. In-organello run-on transcription assays demonstrate that the lower psaA/B transcript abundance in dpt1-1 is not caused by the inability to transcribe the psaA/psaB/rps14 operon. psaA/B transcripts in the mutant are associated with polyribosomes and translated. Thus, the mutation affects post-transcriptional processes specific for psaA/B. The dpt1 gene was isolated by map-based cloning. The protein is localized in the stroma of the chloroplast and exhibits striking similarities to UMP kinases of prokaryotic origin. Our results show that the nuclear encoded protein Dpt1 is essential for retaining photosynthetic activity in higher plant chloroplasts and involved in post-transcriptional steps of psaA/B transcript accumulation. We discuss that Dpt1 may be a bifunctional protein that couples the pyrimidine metabolism to the photosynthetic electron transport.
Collapse
Affiliation(s)
- Paul Hein
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-Universität Jena, Dornburgerstr. 159, 07743, Jena, Germany
| | | | | | | |
Collapse
|
60
|
de Longevialle AF, Hendrickson L, Taylor NL, Delannoy E, Lurin C, Badger M, Millar AH, Small I. The pentatricopeptide repeat gene OTP51 with two LAGLIDADG motifs is required for the cis-splicing of plastid ycf3 intron 2 in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:157-68. [PMID: 18557832 DOI: 10.1111/j.1365-313x.2008.03581.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Summary The Arabidopsis thaliana chloroplast contains 20 group-II introns in its genome, and seven known splicing factors are required for the splicing of overlapping subsets of 19 of them. We describe an additional protein (OTP51) that specifically promotes the splicing of the only group-II intron for which no splicing factor has been described previously. This protein is a pentatricopeptide repeat (PPR) protein containing two LAGLIDADG motifs found in group-I intron maturases in other organisms. Amino acids thought to be important for the homing endonuclease activity of other LAGLIDADG proteins are missing in this protein, but the amino acids described to be important for maturase activity are conserved. OTP51 is absolutely required for the splicing of ycf3 intron 2, and also influences the splicing of several other group-IIa introns. Loss of OTP51 has far-reaching consequences for photosystem-I and photosystem-II assembly, and for the photosynthetic fluorescence characteristics of mutant plants.
Collapse
Affiliation(s)
- Andéol Falcon de Longevialle
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009 WA, Australia
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Ehlert B, Schöttler MA, Tischendorf G, Ludwig-Müller J, Bock R. The paramutated SULFUREA locus of tomato is involved in auxin biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:3635-47. [PMID: 18757490 PMCID: PMC2561159 DOI: 10.1093/jxb/ern213] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 07/23/2008] [Accepted: 07/24/2008] [Indexed: 05/23/2023]
Abstract
The tomato (Solanum lycopersicum) sulfurea mutation displays trans-inactivation of wild-type alleles in heterozygous plants, a phenomenon referred to as paramutation. Homozygous mutant plants and paramutated leaf tissue of heterozygous plants show a pigment-deficient phenotype. The molecular basis of this phenotype and the function of the SULFUREA gene (SULF) are unknown. Here, a comprehensive physiological analysis of the sulfurea mutant is reported which suggests a molecular function for the SULFUREA locus. It is found that the sulf mutant is auxin-deficient and that the pigment-deficient phenotype is likely to represent only a secondary consequence of the auxin deficiency. This is most strongly supported by the isolation of a suppressor mutant which shows an auxin overaccumulation phenotype and contains elevated levels of indole-3-acetic acid (IAA). Several lines of evidence point to a role of the SULF gene in tryptophan-independent auxin biosynthesis, a pathway whose biochemistry and enzymology is still completely unknown. Thus, the sulfurea mutant may provide a promising entry point into elucidating the tryptophan-independent pathway of IAA synthesis.
Collapse
Affiliation(s)
- Britta Ehlert
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Mark Aurel Schöttler
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Gilbert Tischendorf
- Freie Universität Berlin, Institut für Biologie, Pflanzenphysiologie, D-14195 Berlin, Germany
| | - Jutta Ludwig-Müller
- Institut für Botanik, Technische Universität Dresden, Zellescher Weg 20b, D-01062, Dresden, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
62
|
Rogalski M, Schöttler MA, Thiele W, Schulze WX, Bock R. Rpl33, a nonessential plastid-encoded ribosomal protein in tobacco, is required under cold stress conditions. THE PLANT CELL 2008; 20:2221-37. [PMID: 18757552 PMCID: PMC2553612 DOI: 10.1105/tpc.108.060392] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 07/22/2008] [Accepted: 08/04/2008] [Indexed: 05/18/2023]
Abstract
Plastid genomes contain a conserved set of genes encoding components of the translational apparatus. While knockout of plastid translation is lethal in tobacco (Nicotiana tabacum), it is not known whether each individual component of the plastid ribosome is essential. Here, we used reverse genetics to test whether several plastid genome-encoded ribosomal proteins are essential. We found that, while ribosomal proteins Rps2, Rps4, and Rpl20 are essential for cell survival, knockout of the gene encoding ribosomal protein Rpl33 did not affect plant viability and growth under standard conditions. However, when plants were exposed to low temperature stress, recovery of Rpl33 knockout plants was severely compromised, indicating that Rpl33 is required for sustaining sufficient plastid translation capacity in the cold. These findings uncover an important role for plastid translation in plant tolerance to chilling stress.
Collapse
Affiliation(s)
- Marcelo Rogalski
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | | | | | | | | |
Collapse
|
63
|
Majeran W, Zybailov B, Ytterberg AJ, Dunsmore J, Sun Q, van Wijk KJ. Consequences of C4 differentiation for chloroplast membrane proteomes in maize mesophyll and bundle sheath cells. Mol Cell Proteomics 2008; 7:1609-38. [PMID: 18453340 DOI: 10.1074/mcp.m800016-mcp200] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chloroplasts of maize leaves differentiate into specific bundle sheath (BS) and mesophyll (M) types to accommodate C(4) photosynthesis. Chloroplasts contain thylakoid and envelope membranes that contain the photosynthetic machineries and transporters but also proteins involved in e.g. protein homeostasis. These chloroplast membranes must be specialized within each cell type to accommodate C(4) photosynthesis and regulate metabolic fluxes and activities. This quantitative study determined the differentiated state of BS and M chloroplast thylakoid and envelope membrane proteomes and their oligomeric states using innovative gel-based and mass spectrometry-based protein quantifications. This included native gels, iTRAQ, and label-free quantification using an LTQ-Orbitrap. Subunits of Photosystems I and II, the cytochrome b(6)f, and ATP synthase complexes showed average BS/M accumulation ratios of 1.6, 0.45, 1.0, and 1.33, respectively, whereas ratios for the light-harvesting complex I and II families were 1.72 and 0.68, respectively. A 1000-kDa BS-specific NAD(P)H dehydrogenase complex with associated proteins of unknown function containing more than 15 proteins was observed; we speculate that this novel complex possibly functions in inorganic carbon concentration when carboxylation rates by ribulose-bisphosphate carboxylase/oxygenase are lower than decarboxylation rates by malic enzyme. Differential accumulation of thylakoid proteases (Egy and DegP), state transition kinases (STN7,8), and Photosystem I and II assembly factors was observed, suggesting that cell-specific photosynthetic electron transport depends on post-translational regulatory mechanisms. BS/M ratios for inner envelope transporters phosphoenolpyruvate/P(i) translocator, Dit1, Dit2, and Mex1 were determined and reflect metabolic fluxes in carbon metabolism. A wide variety of hundreds of other proteins showed differential BS/M accumulation. Mass spectral information and functional annotations are available through the Plant Proteome Database. These data are integrated with previous data, resulting in a model for C(4) photosynthesis, thereby providing new rationales for metabolic engineering of C(4) pathways and targeted analysis of genetic networks that coordinate C(4) differentiation.
Collapse
Affiliation(s)
- Wojciech Majeran
- Department of Plant Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
64
|
Rogalski M, Karcher D, Bock R. Superwobbling facilitates translation with reduced tRNA sets. Nat Struct Mol Biol 2008; 15:192-8. [PMID: 18193063 DOI: 10.1038/nsmb.1370] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 11/12/2007] [Indexed: 11/08/2022]
Abstract
Some bacterial and most organelle genomes do not encode the full set of 32 tRNA species required to read all codons according to Crick's wobble rules. 'Superwobble', in which a tRNA species with an unmodified U in the wobble position reads all four nucleotides in the third codon position, represents one possible mechanism for how a reduced tRNA set could still suffice. We have tested the superwobble hypothesis by producing knockout mutants for the pair of plastid glycine tRNA genes. Here we show that, whereas the tRNA gene with U in the wobble position is essential, the gene with G in this position is nonessential, demonstrating that the U-containing anticodon can indeed read all four glycine triplets. We also show that the price for superwobbling is a reduced translational efficiency, which explains why most organisms prefer pairs of isoaccepting tRNAs over the superwobbling mechanism.
Collapse
Affiliation(s)
- Marcelo Rogalski
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | | | | |
Collapse
|
65
|
Schöttler MA, Bock R. Extranuclear Inheritance: Plastid—Nuclear Cooperation in Photosystem I Assembly in Photosynthetic Eukaryotes. PROGRESS IN BOTANY 2008. [DOI: 10.1007/978-3-540-72954-9_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
66
|
Asakura Y, Barkan A. A CRM domain protein functions dually in group I and group II intron splicing in land plant chloroplasts. THE PLANT CELL 2007; 19:3864-75. [PMID: 18065687 PMCID: PMC2217638 DOI: 10.1105/tpc.107.055160] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 10/23/2007] [Accepted: 11/15/2007] [Indexed: 05/18/2023]
Abstract
The CRM domain is a recently recognized RNA binding domain found in three group II intron splicing factors in chloroplasts, in a bacterial protein that associates with ribosome precursors, and in a family of uncharacterized proteins in plants. To elucidate the functional repertoire of proteins with CRM domains, we studied CFM2 (for CRM Family Member 2), which harbors four CRM domains. RNA coimmunoprecipitation assays showed that CFM2 in maize (Zea mays) chloroplasts is associated with the group I intron in pre-trnL-UAA and group II introns in the ndhA and ycf3 pre-mRNAs. T-DNA insertions in the Arabidopsis thaliana ortholog condition a defective-seed phenotype (strong allele) or chlorophyll-deficient seedlings with impaired splicing of the trnL group I intron and the ndhA, ycf3-int1, and clpP-int2 group II introns (weak alleles). CFM2 and two previously described CRM proteins are bound simultaneously to the ndhA and ycf3-int1 introns and act in a nonredundant fashion to promote their splicing. With these findings, CRM domain proteins are implicated in the activities of three classes of catalytic RNA: group I introns, group II introns, and 23S rRNA.
Collapse
Affiliation(s)
- Yukari Asakura
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| | | |
Collapse
|
67
|
Bishop CL, Ulas S, Baena-Gonzalez E, Aro EM, Purton S, Nugent JHA, Mäenpää P. The PsbZ subunit of Photosystem II in Synechocystis sp. PCC 6803 modulates electron flow through the photosynthetic electron transfer chain. PHOTOSYNTHESIS RESEARCH 2007; 93:139-47. [PMID: 17516144 DOI: 10.1007/s11120-007-9182-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Accepted: 04/19/2007] [Indexed: 05/15/2023]
Abstract
The psbZ gene of Synechocystis sp. PCC 6803 encodes the approximately 6.6 kDa photosystem II (PSII) subunit. We here report biophysical, biochemical and in vivo characterization of Synechocystis sp. PCC 6803 mutants lacking psbZ. We show that these mutants are able to perform wild-type levels of light-harvesting, energy transfer, PSII oxygen evolution, state transitions and non-photochemical quenching (NPQ) under standard growth conditions. The mutants grow photoautotrophically; however, their growth rate is clearly retarded under low-light conditions and they are not capable of photomixotrophic growth. Further differences exist in the electron transfer properties between the mutants and wild type. In the absence of PsbZ, electron flow potentially increased through photosystem I (PSI) without a change in the maximum electron transfer capacity of PSII. Further, rereduction of P700(+) is much faster, suggesting faster cyclic electron flow around PSI. This implies a role for PsbZ in the regulation of electron transfer, with implication for photoprotection.
Collapse
Affiliation(s)
- Cleo L Bishop
- Photosynthesis Research Group, Department of Biology, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | | | | | | | | | | | | |
Collapse
|
68
|
Abstract
Biolistic delivery of DNA initiated plastid transformation research and still is the most widelyused approach to generate transplastomic lines in both algae and higher plants. The principal designof transformation vectors is similar in both phylogenetic groups. Although important additions tothe list of species transformed in their plastomes have been made in algae and in higher plants, thekey organisms in the area are still the two species, in which stable plastid transformation was initiallysuccessful, i.e., Chlamydomonas reinhardtii and tobacco. Basicresearch into organelle biology has substantially benefited from the homologous recombination-basedcapability to precisely insert at predetermined loci, delete, disrupt, or exchange plastid genomesequences. Successful expression of recombinant proteins, including pharmaceutical proteins, hasbeen demonstrated in Chlamydomonas as well as in higher plants,where some interesting agronomic traits were also engineered through plastid transformation.
Collapse
|
69
|
Schöttler MA, Flügel C, Thiele W, Stegemann S, Bock R. The plastome-encoded PsaJ subunit is required for efficient Photosystem I excitation, but not for plastocyanin oxidation in tobacco. Biochem J 2007; 403:251-60. [PMID: 17209805 PMCID: PMC1874242 DOI: 10.1042/bj20061573] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 12/19/2006] [Accepted: 01/09/2007] [Indexed: 11/17/2022]
Abstract
The functions of several small subunits of the large photosynthetic multiprotein complex PSI (Photosystem I) are not yet understood. To elucidate the function of the small plastome-encoded PsaJ subunit, we have produced knockout mutants by chloroplast transformation in tobacco (Nicotiana tabacum). PsaJ binds two chlorophyll-a molecules and is localized at the periphery of PSI, close to both the Lhca2- and Lhca3-docking sites and the plastocyanin-binding site. Tobacco psaJ-knockout lines do not display a visible phenotype. Despite a 25% reduction in the content of redox-active PSI, neither growth rate nor assimilation capacity are altered in the mutants. In vivo, redox equilibration of plastocyanin and PSI is as efficient as in the wild-type, indicating that PsaJ is not required for fast plastocyanin oxidation. However, PsaJ is involved in PSI excitation: altered 77 K chlorophyll-a fluorescence emission spectra and reduced accumulation of Lhca3 indicate that antenna binding and exciton transfer to the PSI reaction centre are impaired in DeltapsaJ mutants. Under limiting light intensities, growth of DeltapsaJ plants is retarded and the electron-transport chain is far more reduced than in the wild-type, indicating that PSI excitation might limit electron flux at sub-saturating light intensities. In addition to defining in vivo functions of PsaJ, our data may also have implications for the interpretation of the crystal structure of PSI.
Collapse
Key Words
- lhca
- photosynthesis
- photosystem i
- psaj
- plastocyanin
- chl, chlorophyll
- cyt, cytochrome
- cyt-bf, cytochrome-b6f complex
- ddm, β-dodecylmaltoside
- ep, electron pair
- hp, high-potential form
- lhc, light-harvesting complex
- lp, low-potential form
- p700, chl-a dimer of the photosystem i reaction centre
- pc, plastocyanin
- pq, plastoquinone
- ps, photosystem
- rflp, restriction fragment length polymorphism
- rmop, regeneration medium of plants
- rnai, rna interference
- tmpd, tetramethyl-1,4-phenylenediamine
- wt, wild-type
Collapse
Affiliation(s)
- Mark A Schöttler
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany.
| | | | | | | | | |
Collapse
|
70
|
Rochaix JD. The Role of Nucleus- and Chloroplast-Encoded Factors in the Synthesis of the Photosynthetic Apparatus. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/978-1-4020-4061-0_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
71
|
Bock R. Structure, function, and inheritance of plastid genomes. CELL AND MOLECULAR BIOLOGY OF PLASTIDS 2007. [DOI: 10.1007/4735_2007_0223] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
72
|
|
73
|
Kahlau S, Aspinall S, Gray JC, Bock R. Sequence of the tomato chloroplast DNA and evolutionary comparison of solanaceous plastid genomes. J Mol Evol 2006. [PMID: 16830097 DOI: 10.1007/s00239‐005‐0254‐5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tomato, Solanum lycopersicum (formerly Lycopersicon esculentum), has long been one of the classical model species of plant genetics. More recently, solanaceous species have become a model of evolutionary genomics, with several EST projects and a tomato genome project having been initiated. As a first contribution toward deciphering the genetic information of tomato, we present here the complete sequence of the tomato chloroplast genome (plastome). The size of this circular genome is 155,461 base pairs (bp), with an average AT content of 62.14%. It contains 114 genes and conserved open reading frames (ycfs). Comparison with the previously sequenced plastid DNAs of Nicotiana tabacum and Atropa belladonna reveals patterns of plastid genome evolution in the Solanaceae family and identifies varying degrees of conservation of individual plastid genes. In addition, we discovered several new sites of RNA editing by cytidine-to-uridine conversion. A detailed comparison of editing patterns in the three solanaceous species highlights the dynamics of RNA editing site evolution in chloroplasts. To assess the level of intraspecific plastome variation in tomato, the plastome of a second tomato cultivar was sequenced. Comparison of the two genotypes (IPA-6, bred in South America, and Ailsa Craig, bred in Europe) revealed no nucleotide differences, suggesting that the plastomes of modern tomato cultivars display very little, if any, sequence variation.
Collapse
Affiliation(s)
- Sabine Kahlau
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, D-14476, Germany
| | | | | | | |
Collapse
|
74
|
Kahlau S, Aspinall S, Gray JC, Bock R. Sequence of the Tomato Chloroplast DNA and Evolutionary Comparison of Solanaceous Plastid Genomes. J Mol Evol 2006; 63:194-207. [PMID: 16830097 DOI: 10.1007/s00239-005-0254-5] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Accepted: 03/14/2006] [Indexed: 10/24/2022]
Abstract
Tomato, Solanum lycopersicum (formerly Lycopersicon esculentum), has long been one of the classical model species of plant genetics. More recently, solanaceous species have become a model of evolutionary genomics, with several EST projects and a tomato genome project having been initiated. As a first contribution toward deciphering the genetic information of tomato, we present here the complete sequence of the tomato chloroplast genome (plastome). The size of this circular genome is 155,461 base pairs (bp), with an average AT content of 62.14%. It contains 114 genes and conserved open reading frames (ycfs). Comparison with the previously sequenced plastid DNAs of Nicotiana tabacum and Atropa belladonna reveals patterns of plastid genome evolution in the Solanaceae family and identifies varying degrees of conservation of individual plastid genes. In addition, we discovered several new sites of RNA editing by cytidine-to-uridine conversion. A detailed comparison of editing patterns in the three solanaceous species highlights the dynamics of RNA editing site evolution in chloroplasts. To assess the level of intraspecific plastome variation in tomato, the plastome of a second tomato cultivar was sequenced. Comparison of the two genotypes (IPA-6, bred in South America, and Ailsa Craig, bred in Europe) revealed no nucleotide differences, suggesting that the plastomes of modern tomato cultivars display very little, if any, sequence variation.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Chromosome Mapping
- DNA, Chloroplast/chemistry
- DNA, Chloroplast/genetics
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Evolution, Molecular
- Genes, Plant/genetics
- Genome, Plant/genetics
- Solanum lycopersicum/genetics
- Molecular Sequence Data
- Phylogeny
- Plastids/genetics
- RNA Editing/genetics
- RNA, Plant/chemistry
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- Ribosomal Proteins/genetics
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Solanaceae/genetics
Collapse
Affiliation(s)
- Sabine Kahlau
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, D-14476, Germany
| | | | | | | |
Collapse
|
75
|
Stöckel J, Bennewitz S, Hein P, Oelmüller R. The evolutionarily conserved tetratrico peptide repeat protein pale yellow green7 is required for photosystem I accumulation in Arabidopsis and copurifies with the complex. PLANT PHYSIOLOGY 2006; 141:870-8. [PMID: 16679416 PMCID: PMC1489899 DOI: 10.1104/pp.106.078147] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Pale yellow green7-1 (pyg7-1) is a photosystem I (PSI)-deficient Arabidopsis (Arabidopsis thaliana) mutant. PSI subunits are synthesized in the mutant, but do not assemble into a stable complex. In contrast, light-harvesting antenna proteins of both photosystems accumulate in the mutant. Deletion of Pyg7 results in severely reduced growth rates, alterations in leaf coloration, and plastid ultrastructure. Pyg7 was isolated by map-based cloning and encodes a tetratrico peptide repeat protein with homology to Ycf37 from Synechocystis. The protein is localized in the chloroplast associated with thylakoid membranes and copurifies with PSI. An independent pyg7 T-DNA insertion line, pyg7-2, exhibits the same phenotype. pyg7 gene expression is light regulated. Comparison of the roles of Ycf37 in cyanobacteria and Pyg7 in higher plants suggests that the ancient protein has altered its function during evolution. Whereas the cyanobacterial protein mediates more efficient PSI accumulation, the higher plant protein is absolutely required for complex assembly or maintenance.
Collapse
Affiliation(s)
- Jana Stöckel
- Institut für Allgemeine Botanik und Pflanzenphysiologie, Friedrich Schiller University, 07747 Jena, Germany
| | | | | | | |
Collapse
|
76
|
Göhre V, Ossenbühl F, Crèvecoeur M, Eichacker LA, Rochaix JD. One of two alb3 proteins is essential for the assembly of the photosystems and for cell survival in Chlamydomonas. THE PLANT CELL 2006; 18:1454-66. [PMID: 16679460 PMCID: PMC1475496 DOI: 10.1105/tpc.105.038695] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Revised: 03/30/2006] [Accepted: 04/13/2006] [Indexed: 05/09/2023]
Abstract
Proteins of the YidC/Oxa1p/ALB3 family play an important role in inserting proteins into membranes of mitochondria, bacteria, and chloroplasts. In Chlamydomonas reinhardtii, one member of this family, Albino3.1 (Alb3.1), was previously shown to be mainly involved in the assembly of the light-harvesting complex. Here, we show that a second member, Alb3.2, is located in the thylakoid membrane, where it is associated with large molecular weight complexes. Coimmunoprecipitation experiments indicate that Alb3.2 interacts with Alb3.1 and the reaction center polypeptides of photosystem I and II as well as with VIPP1, which is involved in thylakoid formation. Moreover, depletion of Alb3.2 by RNA interference to 25 to 40% of wild-type levels leads to a reduction in photosystems I and II, indicating that the level of Alb3.2 is limiting for the assembly and/or maintenance of these complexes in the thylakoid membrane. Although the levels of several photosynthetic proteins are reduced under these conditions, other proteins are overproduced, such as VIPP1 and the chloroplast chaperone pair Hsp70/Cdj2. These changes are accompanied by a large increase in vacuolar size and, after a prolonged period, by cell death. We conclude that Alb3.2 is required directly or indirectly, through its impact on thylakoid protein biogenesis, for cell survival.
Collapse
Affiliation(s)
- Vera Göhre
- Department of Molecular Biology, University of Geneva, CH-1211 Geneva 4, Switzerland
| | | | | | | | | |
Collapse
|
77
|
Kim JS, Jung JD, Lee JA, Park HW, Oh KH, Jeong WJ, Choi DW, Liu JR, Cho KY. Complete sequence and organization of the cucumber (Cucumis sativus L. cv. Baekmibaekdadagi) chloroplast genome. PLANT CELL REPORTS 2006; 25:334-40. [PMID: 16362300 DOI: 10.1007/s00299-005-0097-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Revised: 11/13/2005] [Accepted: 11/19/2005] [Indexed: 05/05/2023]
Abstract
The nucleotide sequence of the cucumber (Cucumis sativus L. cv. Baekmibaekdadagi) chloroplast genome was completed. The circular double-stranded DNA, consisting of 155,527 bp, contained a pair of inverted repeat regions (IRa and IRb) of 25,187 bp each, which were separated by small and large single copy regions of 86,879 and 18,274 bp, respectively. The presence and relative positions of 113 genes (76 peptide-encoding genes, 30 tRNA genes, four rRNA genes, and three conserved open reading frames) were identified. The major portion (55.76%) of the C. sativus chloroplast genome consisted of gene-coding regions (49.13% protein coding and 6.63% RNA regions; 27.81% LSC, 9.46% SSC and 18.49% IR regions), while intergenic spacers (including 20 introns) made up 44.24%. The overall G-C content of C. sativus chloroplast genome was 36.95%. Sixteen genes contained one intron, while two genes had two introns. The expansion/contraction manner of IR at IRb/LSC and IR/SSC border in Cucumis was similar to that of Lotus and Arabidopsis, and the manner at IRa/LSC was similar to Lotus and Nicotiana. In total, 56 simple sequence repeats (more than 10 bases) were identified in the C. sativus chloroplast genome.
Collapse
Affiliation(s)
- Jin-Seog Kim
- Biological Function Research Team, Korea Research Institute of Chemical Technology, P.O Box 107, Yuseong, Daejeon 305-600, Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Dühring U, Irrgang KD, Lünser K, Kehr J, Wilde A. Analysis of photosynthetic complexes from a cyanobacterial ycf37 mutant. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1757:3-11. [PMID: 16364235 DOI: 10.1016/j.bbabio.2005.11.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 11/08/2005] [Accepted: 11/09/2005] [Indexed: 01/02/2023]
Abstract
The Ycf37 protein has been suggested to be involved in the biogenesis and/or stability of the cyanobacterial photosystem I (PSI). With Ycf37 specific antibodies, we analyzed the localization of Ycf37 within the thylakoid membranes of the cyanobacterium Synechocystis sp. PCC 6803. Inspection of a sucrose gradient profile indicated that small amounts of Ycf37 co-fractionated with monomeric photosynthetic complexes, but not with trimeric PSI. Isolating 3xFLAG epitope-tagged Ycf37 by affinity-tag purification rendered several PSI subunits that specifically co-precipitated with this protein. Blue-native PAGE newly revealed two monomeric PSI complexes (PSI and PSI*) in wild-type thylakoids. The lower amount of PsaK present in PSI* may explain its higher electrophoretic mobility. PSI* was more prominent in high-light grown cells and interestingly proved absent in the Deltaycf37 mutant. PSI* appeared again when the mutant was complemented in trans with the wild-type ycf37 gene. In the Deltaycf37 mutant the amount of trimeric PSI complexes was reduced to about 70% of the wild-type level with no significant changes in photochemical activity and subunit composition of the remaining photosystems. Our results indicate that Ycf37 plays a specific role in the preservation of PSI* and the biogenesis of PSI trimers.
Collapse
Affiliation(s)
- Ulf Dühring
- Institute of Biology, Humboldt University Berlin, Chausseestr. 117, 10115 Berlin, Germany
| | | | | | | | | |
Collapse
|
79
|
Rochaix JD, Perron K, Dauvillée D, Laroche F, Takahashi Y, Goldschmidt-Clermont M. Post-transcriptional steps involved in the assembly of photosystem I in Chlamydomonas. Biochem Soc Trans 2005; 32:567-70. [PMID: 15270677 DOI: 10.1042/bst0320567] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Assembly of the PSI (photosystem I) complex in eukaryotic photosynthetic organisms depends on the concerted interactions of the nuclear and chloroplast genetic systems. We have identified several nucleus-encoded factors of Chlamydomonas reinhardtii that are specifically required for the synthesis of the two large chloroplast-encoded reaction-centre polypeptides, PsaA and PsaB, of photosystem I and that function at plastid post-transcriptional steps. Raa1, Raa2 and Raa3 are required for the splicing of the three discontinuous psaA precursor transcripts; they are part of large RNA-protein complexes that are reminiscent of spliceosomal particles. Tab1 and Tab2 are involved in the initiation of translation of the psaB mRNA and are localized in the membrane and stromal phases of the chloroplast, where they are associated with high-molecular-mass complexes. Moreover, two chloroplast-encoded proteins, Ycf3 and Ycf4, are required for the primary steps of assembling the photosystem I subunits into a functional complex.
Collapse
Affiliation(s)
- J-D Rochaix
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland.
| | | | | | | | | | | |
Collapse
|
80
|
Maliga P. New vectors and marker excision systems mark progress in engineering the plastid genome of higher plants. Photochem Photobiol Sci 2005; 4:971-6. [PMID: 16307109 DOI: 10.1039/b514699m] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The transformation of the plastid genome, until recently restricted to tobacco, is now being extended to a rapidly growing list of crops. This perspective provides an overview of emerging trends of technology development in the field with a focus on vector design and marker excision systems. The new tools will facilitate engineering of the photosynthetic machinery and enable novel agricultural and industrial applications.
Collapse
Affiliation(s)
- Pal Maliga
- Waksman Institute, Rutgers University, 190 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA.
| |
Collapse
|
81
|
Ohtsuka M, Oyabu J, Kashino Y, Satoh K, Koike H. Inactivation of ycf33 Results in an Altered Cyclic Electron Transport Pathway Around Photosystem I in Synechocystis sp. PCC6803. ACTA ACUST UNITED AC 2004; 45:1243-51. [PMID: 15509847 DOI: 10.1093/pcp/pch147] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
ycf33 encodes a small protein with a molecular mass of 7.5 kDa and is found from cyanobacteria to higher plants. A ycf33 deletion mutant was constructed in Synechocystis sp. PCC6803 and characterized. The mutant showed a higher phycobilisome/chlorophyll ratio than the wild type and a higher photosystem II/photosystem I fluorescence ratio measured at 77 K. Under photoautotrophic conditions, the growth rates were not much different from those of the wild type. Cyclic electron transport activities around photosystem I were not much different between the wild type and the mutant. However, the effects of diphenyleneiodonium, an inhibitor of flavoprotein, on cyclic electron transport in the mutant were different from those in the wild type; it was severely inhibited in the wild type but not much in the mutant. Together with the effects of nitrite, which accepts electrons from ferredoxin via nitrite reductase and those of HgCl2, it was suggested that the pathway of cyclic electron transport is altered in the mutant.
Collapse
Affiliation(s)
- Masako Ohtsuka
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Harima Science Garden City, Hyogo, 678-1297 Japan
| | | | | | | | | |
Collapse
|
82
|
Klinkert B, Ossenbühl F, Sikorski M, Berry S, Eichacker L, Nickelsen J. PratA, a periplasmic tetratricopeptide repeat protein involved in biogenesis of photosystem II in Synechocystis sp. PCC 6803. J Biol Chem 2004; 279:44639-44. [PMID: 15328351 DOI: 10.1074/jbc.m405393200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The light reactions of oxygenic photosynthesis are mediated by multisubunit pigment-protein complexes situated within the specialized thylakoid membrane system. The biogenesis of these complexes is regulated by transacting factors that affect the expression of the respective subunit genes and/or the assembly of their products. Here we report on the analysis of the PratA gene from the cyanobacterium Synechocystis sp. PCC 6803 that encodes a periplasmic tetratricopeptide repeat protein of formerly unknown function. Targeted inactivation of PratA resulted in drastically reduced photosystem II (PSII) content. Protein pulse labeling experiments of PSII subunits indicated that the C-terminal processing of the precursor of the reaction center protein D1 is compromised in the pratA mutant. Moreover, a direct interaction of PratA and precursor D1 was demonstrated by applying yeast two-hybrid analyses. This suggests that PratA represents a factor facilitating D1 maturation via the endoprotease CtpA. The periplasmic localization of PratA supports a model that predicts the initial steps of PSII biogenesis to occur at the plasma membrane of cyanobacterial cells.
Collapse
Affiliation(s)
- Birgit Klinkert
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Germany
| | | | | | | | | | | |
Collapse
|
83
|
Halter CP, Peeters NM, Hanson MR. RNA editing in ribosome-less plastids of iojap maize. Curr Genet 2004; 45:331-7. [PMID: 14986064 DOI: 10.1007/s00294-003-0482-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Revised: 12/09/2003] [Accepted: 12/15/2003] [Indexed: 10/26/2022]
Abstract
In maize chloroplasts, 28 C-to-U editing events have been identified in the transcripts of 14 different genes. The iojap mutant of maize, which lacks chloroplast ribosomes, affords the opportunity to examine whether any chloroplast translation products are required for the editing of any of the 28 sites. Furthermore, the mode of action of the IOJAP protein itself is unknown, so we explored the possibility that homozygous ij1/ ij1 plants are defective in RNA editing. Current knowledge of RNA editing in chloroplasts indicates the existence of site-specific factors responsible for recognizing C targets of editing, but the factors have not yet been identified and their encoding genes are unknown. Our results indicate that all 28 editing sites can be recognized and processed in ribosome-less plastids. Transcripts of rpoB are more abundant and more highly edited in iojap mutants. The editing site in rpl2, which creates the mRNA start codon, is the most severely affected in homozygous ij/ ij plants, but nevertheless exhibits at least 10% editing in all mutant lines. Reduced editing of rpl2 may be an indirect effect of reduced splicing, rather than a defect caused by the iojap mutation. We conclude that neither the IOJAP protein nor chloroplast translation products are required for editing any of the 28 C targets of editing in maize chloroplast RNAs.
Collapse
Affiliation(s)
- Christine P Halter
- Department of Molecular Biology and Genetics, Cornell University, Biotechnology Building, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
84
|
Dauvillée D, Stampacchia O, Girard-Bascou J, Rochaix JD. Tab2 is a novel conserved RNA binding protein required for translation of the chloroplast psaB mRNA. EMBO J 2004; 22:6378-88. [PMID: 14633996 PMCID: PMC291835 DOI: 10.1093/emboj/cdg591] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The chloroplast psaB mRNA encodes one of the reaction centre polypeptides of photosystem I. Protein pulse-labelling profiles indicate that the mutant strain of Chlamydomonas reinhardtii, F14, affected at the nuclear locus TAB2, is deficient in the translation of psaB mRNA and thus deficient in photosystem I activity. Genetic studies reveal that the target site for Tab2 is situated within the psaB 5'UTR. We have used genomic complementation to isolate the nuclear Tab2 gene. The deduced amino acid sequence of Tab2 (358 residues) displays 31-46% sequence identity with several orthologues found only in eukaryotic and prokaryotic organisms performing oxygenic photosynthesis. Directed mutagenesis indicates the importance of a highly conserved C-terminal tripeptide in Tab2 for normal psaB translation. The Tab2 protein is localized in the chloroplast stroma where it is associated with a high molecular mass protein complex containing the psaB mRNA. Gel mobility shift assays reveal a direct and specific interaction between Tab2 and the psaB 5'UTR. We propose that Tab2 plays a key role in the initial steps of PsaB translation and photosystem I assembly.
Collapse
Affiliation(s)
- David Dauvillée
- Department of Molecular Biology, University of Geneva, 30 Quai Ernest Ansermet 1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|
85
|
Zandueta-Criado A, Bock R. Surprising features of plastid ndhD transcripts: addition of non-encoded nucleotides and polysome association of mRNAs with an unedited start codon. Nucleic Acids Res 2004; 32:542-50. [PMID: 14744979 PMCID: PMC373341 DOI: 10.1093/nar/gkh217] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2003] [Revised: 12/04/2003] [Accepted: 12/17/2003] [Indexed: 11/13/2022] Open
Abstract
RNA editing in higher plant plastids is a post- transcriptional RNA maturation process changing single cytidine nucleotides into uridine. In the ndhD transcript of tobacco and several other plant species, editing of an ACG codon to a standard AUG initiator codon is believed to be a prerequisite for translation. In order to test this assumption experimentally, we have analyzed the editing status of ndhD mRNA species in the process of translation. We show that unedited ndhD transcripts are also associated with polysomes in vivo, suggesting that they are translated. This surprising finding challenges the view that ACG to AUG editing is strictly required to make the ndhD message translatable and raises the possibility that ACG can be utilized as an initiator codon in chloroplasts. In addition, we have mapped the termini of the ndhD transcript and discovered a novel form of RNA processing. Unexpectedly, we find that highly specific sequences are added to the 3' end of the ndhD mRNA at high frequency. We propose a model in which these sequences are added by the successive action of a CCA-adding enzyme (tRNA nucleotidyltransferase) and an RNA-dependent RNA polymerase (RdRp) activity. The presence of an RdRp activity may have general implications also for other steps in plastid gene expression.
Collapse
Affiliation(s)
- Aitor Zandueta-Criado
- Westfälische Wilhelms-Universität Münster, Institut für Biochemie und Biotechnologie der Pflanzen, Hindenburgplatz 55, D-48143 Münster, Germany
| | | |
Collapse
|
86
|
Abstract
Plastids of higher plants are semi-autonomous organelles with a small, highly polyploid genome and their own transcription-translation machinery. This review provides an overview of the technology for the genetic modification of the plastid genome including: vectors, marker genes and gene design, the use of gene knockouts and over-expression to probe plastid function and the application of site-specific recombinases for excision of target DNA. Examples for applications in basic science include the study of plastid gene transcription, mRNA editing, photosynthesis and evolution. Examples for biotechnological applications are incorporation of transgenes in the plastid genome for containment and high-level expression of recombinant proteins for pharmaceutical and industrial applications. Plastid transformation is routine only in tobacco. Progress in implementing the technology in other crops is discussed.
Collapse
Affiliation(s)
- Pal Maliga
- Waksman Institute, Rutgers University, Piscataway, New Jersey 08854-8020, USA.
| |
Collapse
|
87
|
Ahlert D, Ruf S, Bock R. Plastid protein synthesis is required for plant development in tobacco. Proc Natl Acad Sci U S A 2003; 100:15730-5. [PMID: 14660796 PMCID: PMC307636 DOI: 10.1073/pnas.2533668100] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2003] [Indexed: 11/18/2022] Open
Abstract
Chloroplasts fulfill important functions in cellular metabolism. The majority of plastid genome-encoded genes is involved in either photosynthesis or chloroplast gene expression. Whether or not plastid genes also can determine extraplastidic functions has remained controversial. We demonstrate here an essential role of plastid protein synthesis in tobacco leaf development. By using chloroplast transformation, we have developed an experimental system that produces recombination-based knockouts of chloroplast translation in a cell-line-specific manner. The resulting plants are chimeric and, in the presence of translational inhibitors, exhibit severe developmental abnormalities. In the absence of active plastid protein synthesis, leaf blade development is abolished because of an apparent arrest of cell division. This effect appears to be cell-autonomous in that adjacent sectors of cells with translating plastids are phenotypically normal but cannot complement for the absence of plastid translation in mutant sectors. Developmental abnormalities also are seen in flower morphology, indicating that the defects are not caused by inhibited expression of plastid photosynthesis genes. Taken together, our data point to an unexpected essential role of plastid genes and gene expression in plant development and cell division.
Collapse
Affiliation(s)
- Daniela Ahlert
- Institut für Biochemie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Hindenburgplatz 55, D-48143 Münster, Germany
| | | | | |
Collapse
|
88
|
Abstract
Hcf101-1 is a high-chlorophyll-fluorescence (hcf) Arabidopsis mutant that lacks photosystem I (1). Photosystem I subunits are synthesized in the mutant but do not assemble into a stable complex. hcf101 was isolated by map-based cloning and encodes an MRP-like protein with a nucleotide-binding domain. The protein is localized in the chloroplast stroma. In green tissue, the Hcf101 level is stimulated by light, and the protein is not detectable in roots. Two independent knock-out lines, hcf101-2 and hcf101-3, are also impaired in Hcf101 accumulation, although to different extents. Like hcf101-1, hcf101-2 and hcf01-3 are hcf mutants with impaired photosystem I. Our results indicate that Hcf101 is a novel component required for photosystem I biosynthesis.
Collapse
Affiliation(s)
- Jana Stöckel
- Institut für Allgemeine Botanik und Pflanzenphysiologie, Friedrich-Schiller-Universität Jena, Germany
| | | |
Collapse
|
89
|
Heyers O, Walduck AK, Brindley PJ, Bleiss W, Lucius R, Dorbic T, Wittig B, Kalinna BH. Schistosoma mansoni miracidia transformed by particle bombardment infect Biomphalaria glabrata snails and develop into transgenic sporocysts. Exp Parasitol 2003; 105:174-8. [PMID: 14969695 DOI: 10.1016/j.exppara.2003.11.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2003] [Revised: 09/08/2003] [Accepted: 11/04/2003] [Indexed: 11/29/2022]
Abstract
Miracidia (and adults) of Schistosoma mansoni which had been subjected to particle bombardment with a plasmid DNA encoding enhanced green fluorescent protein (EGFP) under control of the S. mansoni heat shock protein 70 (HSP70) promoter and termination elements were shown to express the reporter gene. Bombarded miracidia were able to penetrate and establish in Biomphalaria glabrata the intermediate host snail. Gold particles could be detected in the germ balls of parasites in paraffin-sections of snail tissue. The bombarded miracidia were able to develop normally and to transform into mother sporocysts. Reporter gene activity could be determined at 10 days post-infection by RT-PCR in snail tissues, but not by microscopy or Western blot which probably reflected sub-optimal expression levels of constructs. Our findings indicated that it is feasible to return transgenic miracidia to the life cycle, a crucial step for the establishment of a transgenesis system for schistosomes.
Collapse
Affiliation(s)
- Oliver Heyers
- Department of Molecular Parasitology, Institute for Biology, Humboldt University Berlin, 10115 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Klaus SMJ, Huang FC, Eibl C, Koop HU, Golds TJ. Rapid and proven production of transplastomic tobacco plants by restoration of pigmentation and photosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 35:811-21. [PMID: 12969433 DOI: 10.1046/j.1365-313x.2003.01838.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Tobacco chloroplast transformation is typically achieved using dominant, selectable antibiotic resistance genes such as aadA, nptII and aphA-6. An improvement would be the combination of such a marker with a visual screening system for the early and conclusive detection of plastid transformants. As such, we investigated the use of three photosynthesis-deficient plastid mutants, DeltapetA, Deltaycf3 and DeltarpoA, for the development of a phenotypic selection system. Mutant plants were used as an alternative to the wild-type as source tissue for transformation, re-introducing deleted plastid sequences and using the aphA-6 gene as a selection marker. The reconstitution of the deleted genes in transformed regenerants resulted in shoots with a visually distinct phenotype comparable to the wild-type. This transformation/selection system overcomes the common problems associated with plastid transformation, e.g. the recovery of spontaneous mutants or nuclear insertions. In addition to the benefits offered by phenotypic selection, phenotype reconstitution leads to restoration of photosynthesis, which we assume drives reconstituted plants rapidly towards homoplasmy. As such, repeated cycles of regeneration in the presence of an antibiotic selection agent are no longer required.
Collapse
Affiliation(s)
- Sebastian M J Klaus
- ICON Genetics AG, Research Centre Freising, Lise-Meitner-Str. 30, 85354 Freising, Germany
| | | | | | | | | |
Collapse
|
91
|
Functional Analysis of Plastid Genes through Chloroplast Reverse Genetics in Chlamydomonas. ACTA ACUST UNITED AC 2003. [DOI: 10.1007/978-94-007-1038-2_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
92
|
Walter M, Kilian J, Kudla J. PNPase activity determines the efficiency of mRNA 3'-end processing, the degradation of tRNA and the extent of polyadenylation in chloroplasts. EMBO J 2002; 21:6905-14. [PMID: 12486011 PMCID: PMC139106 DOI: 10.1093/emboj/cdf686] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The exoribonuclease polynucleotide phosphorylase (PNPase) has been implicated in mRNA processing and degradation in bacteria as well as in chloroplasts of higher plants. Here, we report the first comprehensive in vivo study of chloroplast PNPase function. Modulation of PNPase activity in Arabidopsis chloroplasts by a reverse genetic approach revealed that, although this enzyme is essential for efficient 3'-end processing of mRNAs, it is insufficient to mediate transcript degradation. Surprisingly, we identified PNPase as also being indispensable for 3'-end maturation of 23S rRNA transcripts. Analysis of tRNA amounts in transgenic Arabidopsis plants suggests a direct correlation of PNPase activity and tRNA levels, indicating an additional function of this exoribo nuclease in tRNA decay. Moreover, the extent of polyadenylated mRNAs in chloroplasts is negatively correlated with PNPase activity. Together, our results attribute novel functions to PNPase in the metabolism of all major classes of plastid RNAs and suggest an unexpectedly complex role for PNPase in RNA processing and decay.
Collapse
MESH Headings
- Arabidopsis/enzymology
- Arabidopsis/genetics
- Blotting, Northern
- Chloroplasts/metabolism
- Cloning, Molecular
- DNA, Complementary/metabolism
- Operon
- Plants, Genetically Modified
- Plasmids/metabolism
- Plastids/metabolism
- Polyadenylation
- Polyribonucleotide Nucleotidyltransferase/metabolism
- Polyribosomes/metabolism
- Protein Biosynthesis
- Protein Structure, Tertiary
- RNA/metabolism
- RNA, Messenger/metabolism
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 23S/metabolism
- RNA, Transfer/metabolism
- Thylakoids/metabolism
Collapse
Affiliation(s)
| | | | - Jörg Kudla
- Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, D-89069 Ulm, Germany
Corresponding author e-mail:
| |
Collapse
|
93
|
Rochaix JD. Chlamydomonas, a model system for studying the assembly and dynamics of photosynthetic complexes. FEBS Lett 2002; 529:34-8. [PMID: 12354609 DOI: 10.1016/s0014-5793(02)03181-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The green unicellular alga Chlamydomonas reinhardtii has emerged as a powerful model system for studying the biosynthesis of the photosynthetic apparatus and the acclimation of this system to changes in light conditions. The assembly of the photosynthetic complexes involves the coordinate interaction between the nuclear and chloroplast genetic systems. Many factors involved in specific chloroplast post-transcriptional steps have been identified and characterized. Chlamydomonas is able to adapt to changes in light quality and in cellular ATP content by performing state transition, a process that leads to a redistribution of light excitation energy between photosystem II and photosystem I and that involves the redox state of the plastoquinone pool, the cytochrome b(6)f complex and one or several kinases specific for the light-harvesting system. Genetic approaches have provided new insights into this process.
Collapse
Affiliation(s)
- Jean-David Rochaix
- Department of Molecular Biology, University of Geneva, 30 Quai Ernest Ansermet, 1211 4, Geneva, Switzerland.
| |
Collapse
|
94
|
Bellafiore S, Ferris P, Naver H, Göhre V, Rochaix JD. Loss of Albino3 leads to the specific depletion of the light-harvesting system. THE PLANT CELL 2002; 14:2303-14. [PMID: 12215522 PMCID: PMC150772 DOI: 10.1105/tpc.003442] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2002] [Accepted: 05/23/2002] [Indexed: 05/18/2023]
Abstract
The chloroplast Albino3 (Alb3) protein is a chloroplast homolog of the mitochondrial Oxa1p and YidC proteins of Escherichia coli, which are essential components for integrating membrane proteins. In vitro studies in vascular plants have revealed that Alb3 is required for the integration of the light-harvesting complex protein into the thylakoid membrane. Here, we show that the gene affected in the ac29 mutant of Chlamydomonas reinhardtii is Alb3.1. The availability of the ac29 mutant has allowed us to examine the function of Alb3.1 in vivo. The loss of Alb3.1 has two major effects. First, the amount of light-harvesting complex from photosystem II (LHCII) and photosystem I (LHCI) is reduced >10-fold, and total chlorophyll represents only 30% of wild-type levels. Second, the amount of photosystem II is diminished 2-fold in light-grown cells and nearly 10-fold in dark-grown cells. The accumulation of photosystem I, the cytochrome b(6)f complex, and ATP synthase is not affected in the ac29 mutant. Mild solubilization of thylakoid membranes reveals that Alb3 forms two distinct complexes, a lower molecular mass complex of a size similar to LHC and a high molecular mass complex. A homolog of Alb3.1, Alb3.2, is present in Chlamydomonas, with 37% sequence identity and 57% sequence similarity. Based on the phenotype of ac29, these two genes appear to have mostly nonredundant functions.
Collapse
Affiliation(s)
- Stéphane Bellafiore
- Department of Molecular Biology, University of Geneva, Quai Ernest Ansermet 1211, Geneva 4, Switzerland
| | | | | | | | | |
Collapse
|
95
|
Legen J, Kemp S, Krause K, Profanter B, Herrmann RG, Maier RM. Comparative analysis of plastid transcription profiles of entire plastid chromosomes from tobacco attributed to wild-type and PEP-deficient transcription machineries. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 31:171-88. [PMID: 12121447 DOI: 10.1046/j.1365-313x.2002.01349.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Transcription of plastid chromosomes in vascular plants is accomplished by at least two RNA polymerases of different phylogenetic origin: the ancestral (endosymbiotic) cyanobacterial-type RNA polymerase (PEP), of which the core is encoded in the organelle chromosome, and an additional phage-type RNA polymerase (NEP) of nuclear origin. Disruption of PEP genes in tobacco leads to off-white phenotypes. A macroarray-based approach of transcription rates and of transcript patterns of the entire plastid chromosome from leaves of wild-type as well as from transplastomic tobacco lacking PEP shows that the plastid chromosome is completely transcribed in both wild-type and PEP-deficient plastids, though into polymerase-specific profiles. Different probe types, run-on transcripts, 5' or 3' labelled RNAs, as well as cDNAs, have been used to evaluate the array approach. The findings combined with Northern and Western analyses of a selected number of loci demonstrate further that frequently no correlation exists between transcription rates, transcript levels, transcript patterns, and amounts of corresponding polypeptides. Run-on transcription as well as stationary RNA concentrations may increase, decrease or remain similar between the two experimental materials, independent of the nature of the encoded gene product or of the multisubunit assembly (thylakoid membrane or ribosome). Our findings show (i) that the absence of photosynthesis-related, plastome-encoded polypeptides in PEP-deficient plants is not directly caused by a lack of transcription by PEP, and demonstrate (ii) that the functional integration of PEP and NEP into the genetic system of the plant cell during evolution is substantially more complex than presently supposed.
Collapse
Affiliation(s)
- Julia Legen
- Department für Biologie I der Ludwig-Maximilians-Universität München, Botanik, Menzingerstrasse 67, D-80638 München, Germany
| | | | | | | | | | | |
Collapse
|
96
|
Hager M, Hermann M, Biehler K, Krieger-Liszkay A, Bock R. Lack of the small plastid-encoded PsbJ polypeptide results in a defective water-splitting apparatus of photosystem II, reduced photosystem I levels, and hypersensitivity to light. J Biol Chem 2002; 277:14031-9. [PMID: 11827973 DOI: 10.1074/jbc.m112053200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Photosystem II is a large pigment-protein complex catalyzing water oxidation and initiating electron transfer processes across the thylakoid membrane. In addition to large protein subunits, many of which bind redox cofactors, photosystem II particles contain a number of low molecular weight polypeptides whose function is only poorly defined. Here we have investigated the function of one of the smallest polypeptides in photosystem II, PsbJ. Using a reverse genetics approach, we have inactivated the psbJ gene in the tobacco chloroplast genome. We show that, although the PsbJ polypeptide is not principally required for functional photosynthetic electron transport, plants lacking PsbJ are unable to grow photoautotrophically. We provide evidence that this is due to the accumulation of incompletely assembled water-splitting complexes, which in turn causes drastically reduced photosynthetic performance and extreme hypersensitivity to light. Our results suggest a role of PsbJ for the stable assembly of the water-splitting complex of photosystem II and, in addition, support a control of photosystem I accumulation through photosystem II activity.
Collapse
Affiliation(s)
- Martin Hager
- Institut für Biologie III, Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
97
|
Peeters NM, Hanson MR. Transcript abundance supercedes editing efficiency as a factor in developmental variation of chloroplast gene expression. RNA (NEW YORK, N.Y.) 2002; 8:497-511. [PMID: 11991643 PMCID: PMC1370271 DOI: 10.1017/s1355838202029424] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In maize plastids, transcripts are known to be modified at 27 C-to-U RNA editing sites, affecting the expression-of 15 different genes. The relative contribution of editing efficiency versus transcript abundance in regulation of chloroplast gene expression has previously been analyzed for only a few genes. We undertook a comprehensive analysis of the editing efficiency of each of the 27 maize editing sites in 10 different maize tissues, which contain a range of plastid types including chloroplasts, etioplasts, and amyloplasts. Using a reproducible poisoned primer extension assay, we detected variation between RNA editing extent of different sites in the same transcript in the same tissue, and between the same site in different tissues. The most striking editing deficiency is in an editing site in ndhB that is edited at only 8% and 1% in roots and callus plastids respectively, whereas green leaf chloroplasts edit this site at 100%. Editing efficiencies of some sites are not affected by the developmental stages we examined and are always edited close to 80-100%. The relative amounts of transcripts of each of the 10 genes that exhibited variable editing extents were determined by real-time PCR. Seven genes exhibited over 100 times lower transcript abundance in either roots or tissue-cultured cells relative to green leaf tissue. The quantitative analysis indicates that a particular editing site can be efficiently edited over a large range of transcript abundance, resulting in no general correlation of transcript abundance and editing extent. The independent variation of editing efficiency of different sites within the same transcript fits with a model that postulates individual trans-acting factors specific to each editing site. Because tissues where editing efficiency at certain sites is low invariably also exhibited greatly decreased abundance of the transcripts carrying those sites, decrease in the amounts of particular RNAs rather than a lack of editing is predicted to have the most significant impact on gene expression under steady-state conditions. Our data is consistent with the hypothesis that the role of editing in angiosperm plastids is to correct otherwise detrimental mutations rather than to generate significant protein diversity.
Collapse
Affiliation(s)
- Nemo M Peeters
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703, USA
| | | |
Collapse
|
98
|
Karcher D, Bock R. The amino acid sequence of a plastid protein is developmentally regulated by RNA editing. J Biol Chem 2002; 277:5570-4. [PMID: 11734554 DOI: 10.1074/jbc.m107074200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNA editing in plant organelles post-transcriptionally alters single nucleotides by C-to-U or U-to-C conversions at highly specific sites. Plant editing is generally viewed as a repair mechanism acting at the transcript level by restoring conserved amino acid residues. Here we report that an editing reaction within the ndhB transcript (encoding a plastid NAD(P)H dehydrogenase subunit) is strictly dependent on active photosynthesis. Employing non-photosynthetic mutants, we show that in the absence of photosynthesis, the site remains unedited, whereas it is fully edited when the photosynthetic apparatus is intact. Moreover, the site also remains unedited during the etiolated stage of seedling development, suggesting that two different NdhB proteins are synthesized under photosynthetic versus non-photosynthetic conditions. This is the first case where RNA editing in plants appears to regulate gene expression qualitatively, resulting in the production of two different proteins from one and the same gene in a developmental stage-dependent manner.
Collapse
Affiliation(s)
- Daniel Karcher
- Institut für Biologie III, Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | | |
Collapse
|
99
|
|
100
|
|