51
|
Shav-Tal Y, Lammerding J. Design (and) principles of nuclear dynamics in Stockholm. Nucleus 2015; 6:425-9. [PMID: 26730816 PMCID: PMC4915483 DOI: 10.1080/19491034.2015.1128609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 11/26/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022] Open
Abstract
The structural organization of the nucleus and its content has drawn increasing interest in recent years, as it is has become evident that the spatial and temporal arrangement of the genome and associated structures plays a crucial role in transcriptional regulation and numerous other functions. Shining light on the dynamic nature of this organization, along with the processes controlling it, were the topics of the Wenner-Gren Foundations international symposium "Nuclear Dynamics: Design (and) Principles." The meeting, organized by Piorgiogio Percipalle, Maria Vartiainen, Neus Visa, and Ann-Kristin Östlund-Farrants, brought over 60 participants, including 20 international speakers, to Stockholm, Sweden from August 19-22, 2015 to share the latest developments in the field. Given the unpublished nature of many of the talks, we have focused on covering the discussed topics and highlighting the latest trends in this exciting and rapidly evolving field.
Collapse
Affiliation(s)
- Yaron Shav-Tal
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology; Bar-Ilan University; Ramat Gan, Israel
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology; Meinig School of Biomedical Engineering; Cornell University; Ithaca, NY USA
| |
Collapse
|
52
|
Burgess RC, Burman B, Kruhlak MJ, Misteli T. Activation of DNA damage response signaling by condensed chromatin. Cell Rep 2014; 9:1703-1717. [PMID: 25464843 DOI: 10.1016/j.celrep.2014.10.060] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 09/11/2014] [Accepted: 10/25/2014] [Indexed: 12/20/2022] Open
Abstract
The DNA damage response (DDR) occurs in the context of chromatin, and architectural features of chromatin have been implicated in DNA damage signaling and repair. Whereas a role of chromatin decondensation in the DDR is well established, we show here that chromatin condensation is integral to DDR signaling. We find that, in response to DNA damage chromatin regions transiently expand before undergoing extensive compaction. Using a protein-chromatin-tethering system to create defined chromatin domains, we show that interference with chromatin condensation results in failure to fully activate DDR. Conversely, forced induction of local chromatin condensation promotes ataxia telangiectasia mutated (ATM)- and ATR-dependent activation of upstream DDR signaling in a break-independent manner. Whereas persistent chromatin compaction enhanced upstream DDR signaling from irradiation-induced breaks, it reduced recovery and survival after damage. Our results demonstrate that chromatin condensation is sufficient for activation of DDR signaling and is an integral part of physiological DDR signaling.
Collapse
Affiliation(s)
- Rebecca C Burgess
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bharat Burman
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Program in Cell, Molecular and Developmental Biology, Sackler School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Michael J Kruhlak
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tom Misteli
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
53
|
Ziani S, Nagy Z, Alekseev S, Soutoglou E, Egly JM, Coin F. Sequential and ordered assembly of a large DNA repair complex on undamaged chromatin. ACTA ACUST UNITED AC 2014; 206:589-98. [PMID: 25154395 PMCID: PMC4151144 DOI: 10.1083/jcb.201403096] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In nucleotide excision repair (NER), damage recognition by XPC-hHR23b is described as a critical step in the formation of the preincision complex (PInC) further composed of TFIIH, XPA, RPA, XPG, and ERCC1-XPF. To obtain new molecular insights into the assembly of the PInC, we analyzed its formation independently of DNA damage by using the lactose operator/repressor reporter system. We observed a sequential and ordered self-assembly of the PInC operating upon immobilization of individual NER factors on undamaged chromatin and mimicking that functioning on a bona fide NER substrate. We also revealed that the recruitment of the TFIIH subunit TTDA, involved in trichothiodystrophy group A disorder (TTD-A), was key in the completion of the PInC. TTDA recruits XPA through its first 15 amino acids, depleted in some TTD-A patients. More generally, these results show that proteins forming large nuclear complexes can be recruited sequentially on chromatin in the absence of their natural DNA target and with no reciprocity in their recruitment.
Collapse
Affiliation(s)
- Salim Ziani
- Department of Functional Genomics and Cancer, Equipe Labellisée Ligue 2014; and Department of Development Biology and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/University of Strasbourg, 67404 Illkirch Cedex, Communauté urbaine de Strasbourg, France
| | - Zita Nagy
- Department of Functional Genomics and Cancer, Equipe Labellisée Ligue 2014; and Department of Development Biology and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/University of Strasbourg, 67404 Illkirch Cedex, Communauté urbaine de Strasbourg, France
| | - Sergey Alekseev
- Department of Functional Genomics and Cancer, Equipe Labellisée Ligue 2014; and Department of Development Biology and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/University of Strasbourg, 67404 Illkirch Cedex, Communauté urbaine de Strasbourg, France
| | - Evi Soutoglou
- Department of Functional Genomics and Cancer, Equipe Labellisée Ligue 2014; and Department of Development Biology and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/University of Strasbourg, 67404 Illkirch Cedex, Communauté urbaine de Strasbourg, France
| | - Jean-Marc Egly
- Department of Functional Genomics and Cancer, Equipe Labellisée Ligue 2014; and Department of Development Biology and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/University of Strasbourg, 67404 Illkirch Cedex, Communauté urbaine de Strasbourg, France
| | - Frédéric Coin
- Department of Functional Genomics and Cancer, Equipe Labellisée Ligue 2014; and Department of Development Biology and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/University of Strasbourg, 67404 Illkirch Cedex, Communauté urbaine de Strasbourg, France
| |
Collapse
|
54
|
DNA compaction induced by a cationic polymer or surfactant impact gene expression and DNA degradation. PLoS One 2014; 9:e92692. [PMID: 24671109 PMCID: PMC3966812 DOI: 10.1371/journal.pone.0092692] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/24/2014] [Indexed: 01/08/2023] Open
Abstract
There is an increasing interest in achieving gene regulation in biotechnological and biomedical applications by using synthetic DNA-binding agents. Most studies have so far focused on synthetic sequence-specific DNA-binding agents. Such approaches are relatively complicated and cost intensive and their level of sophistication is not always required, in particular for biotechnological application. Our study is inspired by in vivo data that suggest that DNA compaction might contribute to gene regulation. This study exploits the potential of using synthetic DNA compacting agents that are not sequence-specific to achieve gene regulation for in vitro systems. The semi-synthetic in vitro system we use include common cationic DNA-compacting agents, poly(amido amine) (PAMAM) dendrimers and the surfactant hexadecyltrimethylammonium bromide (CTAB), which we apply to linearized plasmid DNA encoding for the luciferase reporter gene. We show that complexing the DNA with either of the cationic agents leads to gene expression inhibition in a manner that depends on the extent of compaction. This is demonstrated by using a coupled in vitro transcription-translation system. We show that compaction can also protect DNA against degradation in a dose-dependent manner. Furthermore, our study shows that these effects are reversible and DNA can be released from the complexes. Release of DNA leads to restoration of gene expression and makes the DNA susceptible to degradation by Dnase. A highly charged polyelectrolyte, heparin, is needed to release DNA from dendrimers, while DNA complexed with CTAB dissociates with the non-ionic surfactant C12E5. Our results demonstrate the relation between DNA compaction by non-specific DNA-binding agents and gene expression and gene regulation can be achieved in vitro systems in a reliable dose-dependent and reversible manner.
Collapse
|
55
|
Ahanger SH, Günther K, Weth O, Bartkuhn M, Bhonde RR, Shouche YS, Renkawitz R. Ectopically tethered CP190 induces large-scale chromatin decondensation. Sci Rep 2014; 4:3917. [PMID: 24472778 PMCID: PMC3905270 DOI: 10.1038/srep03917] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 01/10/2014] [Indexed: 01/04/2023] Open
Abstract
Insulator mediated alteration in higher-order chromatin and/or nucleosome organization is an important aspect of epigenetic gene regulation. Recent studies have suggested a key role for CP190 in such processes. In this study, we analysed the effects of ectopically tethered insulator factors on chromatin structure and found that CP190 induces large-scale decondensation when targeted to a condensed lacO array in mammalian and Drosophila cells. In contrast, dCTCF alone, is unable to cause such a decondensation, however, when CP190 is present, dCTCF recruits it to the lacO array and mediates chromatin unfolding. The CP190 induced opening of chromatin may not be correlated with transcriptional activation, as binding of CP190 does not enhance luciferase activity in reporter assays. We propose that CP190 may mediate histone modification and chromatin remodelling activity to induce an open chromatin state by its direct recruitment or targeting by a DNA binding factor such as dCTCF.
Collapse
Affiliation(s)
- Sajad H Ahanger
- 1] National Centre for Cell Science, Pune 411007, India [2] Institute for Genetics, Justus-Liebig University, Giessen D-35392, Germany
| | - Katharina Günther
- Institute for Genetics, Justus-Liebig University, Giessen D-35392, Germany
| | - Oliver Weth
- Institute for Genetics, Justus-Liebig University, Giessen D-35392, Germany
| | - Marek Bartkuhn
- Institute for Genetics, Justus-Liebig University, Giessen D-35392, Germany
| | | | | | - Rainer Renkawitz
- Institute for Genetics, Justus-Liebig University, Giessen D-35392, Germany
| |
Collapse
|
56
|
Bian Q, Khanna N, Alvikas J, Belmont AS. β-Globin cis-elements determine differential nuclear targeting through epigenetic modifications. ACTA ACUST UNITED AC 2013; 203:767-83. [PMID: 24297746 PMCID: PMC3857487 DOI: 10.1083/jcb.201305027] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multiple cis-elements surrounding the β-globin gene locus combine to target this locus to the nuclear periphery through at least two different epigenetic marks. Increasing evidence points to nuclear compartmentalization as a contributing mechanism for gene regulation, yet mechanisms for compartmentalization remain unclear. In this paper, we use autonomous targeting of bacterial artificial chromosome (BAC) transgenes to reveal cis requirements for peripheral targeting. Three peripheral targeting regions (PTRs) within an HBB BAC bias a competition between pericentric versus peripheral heterochromatin targeting toward the nuclear periphery, which correlates with increased H3K9me3 across the β-globin gene cluster and locus control region. Targeting to both heterochromatin compartments is dependent on Suv39H-mediated H3K9me3 methylation. In different chromosomal contexts, PTRs confer no targeting, targeting to pericentric heterochromatin, or targeting to the periphery. A combination of fluorescent in situ hybridization, BAC transgenesis, and knockdown experiments reveals that peripheral tethering of the endogenous HBB locus depends both on Suv39H-mediated H3K9me3 methylation over hundreds of kilobases surrounding HBB and on G9a-mediated H3K9me2 methylation over flanking sequences in an adjacent lamin-associated domain. Our results demonstrate that multiple cis-elements regulate the overall balance of specific epigenetic marks and peripheral gene targeting.
Collapse
Affiliation(s)
- Qian Bian
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | | | | | | |
Collapse
|
57
|
Belmont AS. Large-scale chromatin organization: the good, the surprising, and the still perplexing. Curr Opin Cell Biol 2013; 26:69-78. [PMID: 24529248 DOI: 10.1016/j.ceb.2013.10.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/07/2013] [Accepted: 10/15/2013] [Indexed: 11/19/2022]
Abstract
Traditionally large-scale chromatin structure has been studied by microscopic approaches, providing direct spatial information but limited sequence context. In contrast, newer 3C (chromosome capture conformation) methods provide rich sequence context but uncertain spatial context. Recent demonstration of large, topologically linked DNA domains, hundreds to thousands of kb in size, may now link 3C data to actual chromosome physical structures, as visualized directly by microscopic methods. Yet, new data suggesting that 3C may measure cytological rather than molecular proximity prompts a renewed focus on understanding the origin of 3C interactions and dissecting the biological significance of long-range genomic interactions.
Collapse
Affiliation(s)
- Andrew S Belmont
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, B107 CLSL, 601 South Goodwin Avenue, Urbana, IL 61801, United States.
| |
Collapse
|
58
|
Conn KL, Hendzel MJ, Schang LM. The differential mobilization of histones H3.1 and H3.3 by herpes simplex virus 1 relates histone dynamics to the assembly of viral chromatin. PLoS Pathog 2013; 9:e1003695. [PMID: 24130491 PMCID: PMC3795045 DOI: 10.1371/journal.ppat.1003695] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 08/26/2013] [Indexed: 12/12/2022] Open
Abstract
During lytic infections, HSV-1 genomes are assembled into unstable nucleosomes. The histones required for HSV-1 chromatin assembly, however, are in the cellular chromatin. We have shown that linker (H1) and core (H2B and H4) histones are mobilized during HSV-1 infection, and proposed that the mobilized histones are available for assembly into viral chromatin. However, the actual relevance of histone mobilization remained unknown. We now show that canonical H3.1 and variant H3.3 are also mobilized during HSV-1 infection. Mobilization required no HSV-1 protein expression, although immediate early or early proteins enhanced it. We used the previously known differential association of H3.3 and H3.1 with HSV-1 DNA to test the relevance of histone mobilization. H3.3 binds to HSV-1 genomes first, whereas H3.1 only binds after HSV-1 DNA replication initiates. Consistently, H3.3 and H3.1 were differentially mobilized. H3.1 mobilization decreased with HSV-1 DNA replication, whereas H3.3 mobilization was largely unaffected by it. These results support a model in which previously mobilized H3.1 is immobilized by assembly into viral chromatin during HSV-1 DNA replication, whereas H3.3 is mobilized and assembled into HSV-1 chromatin throughout infection. The differential mobilizations of H3.3 and H3.1 are consistent with their differential assembly into viral chromatin. These data therefore relate nuclear histone dynamics to the composition of viral chromatin and provide the first evidence that histone mobilization relates to viral chromatin assembly. H3.1 is typically assembled into chromatin during DNA replication-dependent chromatin assembly. However, histones undergo exchange with those not bound in chromatin. During such exchanges, DNA replication-independent chromatin assembly incorporates histone variants, such as H3.3. The HSV-1 genomes are chromatinized, albeit in unstable nucleosomes. The viral genomes initially associate with H3.3, then associate with H3.1 only after HSV-1 DNA replication initiates. These differential interactions are consistent with the DNA replication-independent or -dependent assembly of H3.3 or H3.1, respectively, in cellular chromatin. We have shown that linker (H1) and core (H2B and H4) histones are mobilized during HSV-1 infection, but the significance of this mobilization remained unknown. We now find that H3.3 and H3.1 are also mobilized during infection. H3.3 is mobilized to a similar extent before or after HSV-1 DNA replication, which is consistent with its DNA replication-independent assembly into HSV-1 chromatin. In contrast, H3.1 mobilization decreases during HSV-1 DNA replication, which is consistent with the assembly of previously mobilized H3.1 into HSV-1 chromatin concomitant with HSV-1 DNA replication. The mobilizations of H3.1 and H3.3 are consistent with their kinetics of association with HSV-1 genomes, providing the first indication that histone mobilization relates to the assembly of viral chromatin.
Collapse
Affiliation(s)
- Kristen L Conn
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
59
|
Raghuram N, Strickfaden H, McDonald D, Williams K, Fang H, Mizzen C, Hayes JJ, Th'ng J, Hendzel MJ. Pin1 promotes histone H1 dephosphorylation and stabilizes its binding to chromatin. ACTA ACUST UNITED AC 2013; 203:57-71. [PMID: 24100296 PMCID: PMC3798258 DOI: 10.1083/jcb.201305159] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The prolyl isomerase Pin1 stimulates the dephosphorylation of histone H1, stabilizing its binding to chromatin at transcriptionally active chromatin. Histone H1 plays a crucial role in stabilizing higher order chromatin structure. Transcriptional activation, DNA replication, and chromosome condensation all require changes in chromatin structure and are correlated with the phosphorylation of histone H1. In this study, we describe a novel interaction between Pin1, a phosphorylation-specific prolyl isomerase, and phosphorylated histone H1. A sub-stoichiometric amount of Pin1 stimulated the dephosphorylation of H1 in vitro and modulated the structure of the C-terminal domain of H1 in a phosphorylation-dependent manner. Depletion of Pin1 destabilized H1 binding to chromatin only when Pin1 binding sites on H1 were present. Pin1 recruitment and localized histone H1 phosphorylation were associated with transcriptional activation independent of RNA polymerase II. We thus identify a novel form of histone H1 regulation through phosphorylation-dependent proline isomerization, which has consequences on overall H1 phosphorylation levels and the stability of H1 binding to chromatin.
Collapse
Affiliation(s)
- Nikhil Raghuram
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Li J, Blue R, Zeitler B, Strange TL, Pearl JR, Huizinga DH, Evans S, Gregory PD, Urnov FD, Petolino JF. Activation domains for controlling plant gene expression using designed transcription factors. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:671-80. [PMID: 23521778 DOI: 10.1111/pbi.12057] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/03/2013] [Accepted: 01/27/2013] [Indexed: 06/01/2023]
Abstract
Targeted gene regulation via designed transcription factors has great potential for precise phenotypic modification and acceleration of novel crop trait development. To this end, designed transcriptional activators have been constructed by fusing transcriptional activation domains to DNA-binding proteins. In this study, a transcriptional activator from the herpes simplex virus, VP16, was used to identify plant regulatory proteins. Transcriptional activation domains were identified from each protein and fused with zinc finger DNA-binding proteins (ZFPs) to generate designed transcriptional activators. In addition, specific sequences within each transcriptional activation domain were modified to mimic the VP16 contact motif that interacts directly with RNA polymerase II core transcription factors. To evaluate these designed transcriptional activators, test systems were built in yeast and tobacco comprising reporter genes driven by promoters containing ZFP-binding sites upstream of the transcriptional start site. In yeast, transcriptional domains from the plant proteins ERF2 and PTI4 activated MEL1 reporter gene expression to levels similar to VP16 and the modified sequences displayed even greater levels of activation. Following stable transformation of the tobacco reporter system with transcriptional activators derived from ERF2, GUS reporter gene transcript accumulation was equal to or greater than those derived from VP16. Moreover, a modified ERF2 domain displayed significantly enhanced transcriptional activation compared with VP16 and with the unmodified ERF2 sequence. These results demonstrate that plant sequences capable of facilitating transcriptional activation can be found and, when fused to DNA-binding proteins, can enhance gene expression.
Collapse
|
61
|
A role for MeCP2 in switching gene activity via chromatin unfolding and HP1γ displacement. PLoS One 2013; 8:e69347. [PMID: 23935992 PMCID: PMC3720725 DOI: 10.1371/journal.pone.0069347] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 06/07/2013] [Indexed: 11/19/2022] Open
Abstract
Methyl-CpG-binding protein 2 (MeCP2) is generally considered to act as a transcriptional repressor, whereas recent studies suggest that MeCP2 is also involved in transcription activation. To gain insight into this dual function of MeCP2, we assessed the impact of MeCP2 on higher-order chromatin structure in living cells using mammalian cell systems harbouring a lactose operator and reporter gene-containing chromosomal domain to assess the effect of lactose repressor-tagged MeCP2 (and separate MeCP2 domains) binding in living cells. Our data reveal that targeted binding of MeCP2 elicits extensive chromatin unfolding. MeCP2-induced chromatin unfolding is triggered independently of the methyl-cytosine-binding domain. Interestingly, MeCP2 binding triggers the loss of HP1γ at the chromosomal domain and an increased HP1γ mobility, which is not observed for HP1α and HP1β. Surprisingly, MeCP2-induced chromatin unfolding is not associated with transcriptional activation. Our study suggests a novel role for MeCP2 in reorganizing chromatin to facilitate a switch in gene activity.
Collapse
|
62
|
Nucleosome maps of the human cytomegalovirus genome reveal a temporal switch in chromatin organization linked to a major IE protein. Proc Natl Acad Sci U S A 2013; 110:13126-31. [PMID: 23878222 DOI: 10.1073/pnas.1305548110] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Human CMV (hCMV) establishes lifelong infections in most of us, causing developmental defects in human embryos and life-threatening disease in immunocompromised individuals. During productive infection, the viral >230,000-bp dsDNA genome is expressed widely and in a temporal cascade. The hCMV genome does not carry histones when encapsidated but has been proposed to form nucleosomes after release into the host cell nucleus. Here, we present hCMV genome-wide nucleosome occupancy and nascent transcript maps during infection of permissive human primary cells. We show that nucleosomes occupy nuclear viral DNA in a nonrandom and highly predictable fashion. At early times of infection, nucleosomes associate with the hCMV genome largely according to their intrinsic DNA sequence preferences, indicating that initial nucleosome formation is genetically encoded in the virus. However, as infection proceeds to the late phase, nucleosomes redistribute extensively to establish patterns mostly determined by nongenetic factors. We propose that these factors include key regulators of viral gene expression encoded at the hCMV major immediate-early (IE) locus. Indeed, mutant virus genomes deficient for IE1 expression exhibit globally increased nucleosome loads and reduced nucleosome dynamics compared with WT genomes. The temporal nucleosome occupancy differences between IE1-deficient and WT viruses correlate inversely with changes in the pattern of viral nascent and total transcript accumulation. These results provide a framework of spatial and temporal nucleosome organization across the genome of a major human pathogen and suggest that an hCMV major IE protein governs overall viral chromatin structure and function.
Collapse
|
63
|
Chromatin dynamics during lytic infection with herpes simplex virus 1. Viruses 2013; 5:1758-86. [PMID: 23863878 PMCID: PMC3738960 DOI: 10.3390/v5071758] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/06/2013] [Accepted: 07/08/2013] [Indexed: 12/26/2022] Open
Abstract
Latent HSV-1 genomes are chromatinized with silencing marks. Since 2004, however, there has been an apparent inconsistency in the studies of the chromatinization of the HSV-1 genomes in lytically infected cells. Nuclease protection and chromatin immunoprecipitation assays suggested that the genomes were not regularly chromatinized, having only low histone occupancy. However, the chromatin modifications associated with transcribed and non-transcribed HSV-1 genes were those associated with active or repressed transcription, respectively. Moreover, the three critical HSV-1 transcriptional activators all had the capability to induce chromatin remodelling, and interacted with critical chromatin modifying enzymes. Depletion or overexpression of some, but not all, chromatin modifying proteins affected HSV-1 transcription, but often in unexpected manners. Since 2010, it has become clear that both cellular and HSV-1 chromatins are highly dynamic in infected cells. These dynamics reconcile the weak interactions between HSV-1 genomes and chromatin proteins, detected by nuclease protection and chromatin immunoprecipitation, with the proposed regulation of HSV-1 gene expression by chromatin, supported by the marks in the chromatin in the viral genomes and the abilities of the HSV-1 transcription activators to modulate chromatin. It also explains the sometimes unexpected results of interventions to modulate chromatin remodelling activities in infected cells.
Collapse
|
64
|
Yunger S, Kalo A, Kafri P, Sheinberger J, Lavi E, Neufeld N, Shav-Tal Y. Zooming in on single active genes in living mammalian cells. Histochem Cell Biol 2013; 140:71-9. [PMID: 23748242 DOI: 10.1007/s00418-013-1100-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2013] [Indexed: 11/25/2022]
Abstract
The kinetic aspects of RNA polymerase II as it transcribes mRNA have been revealed over the past decade by use of live-cell imaging and kinetic analyses. It is now possible to visualize polymerase molecules in action, and most importantly to detect and follow the mRNA product as it is generated in real time on active genes. Questions such as the speed at which mRNAs are transcribed or the number of polymerases running along a particular gene can be addressed at high temporal resolution. These kinetic studies highlight the tight regulation that genes encounter when moving between active and inactive states, and ultimately will shed light on the kinetic aspects of transcription of genes under perturbed states. The scientific pathway along which these findings were unearthed begins with the imaging of the action of hundreds of genes working in concert in fixed cells. The state of the art has reached the capability of analyzing the transcription of single alleles in living mammalian cells.
Collapse
Affiliation(s)
- Sharon Yunger
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | | | | | | | | | | | | |
Collapse
|
65
|
Interaction of gamma-herpesvirus genome maintenance proteins with cellular chromatin. PLoS One 2013; 8:e62783. [PMID: 23667520 PMCID: PMC3646995 DOI: 10.1371/journal.pone.0062783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/24/2013] [Indexed: 11/19/2022] Open
Abstract
The capacity of gamma-herpesviruses to establish lifelong infections is dependent on the expression of genome maintenance proteins (GMPs) that tether the viral episomes to cellular chromatin and allow their persistence in latently infected proliferating cells. Here we have characterized the chromatin interaction of GMPs encoded by viruses belonging to the genera Lymphocryptovirus (LCV) and Rhadinovirus (RHV). We found that, in addition to a similar diffuse nuclear localization and comparable detergent resistant interaction with chromatin in transfected cells, all GMPs shared the capacity to promote the decondensation of heterochromatin in the A03-1 reporter cell line. They differed, however, in their mobility measured by fluorescence recovery after photobleaching (FRAP), and in the capacity to recruit accessory molecules required for the chromatin remodeling function. While the AT-hook containing GMPs of LCVs were highly mobile, a great variability was observed among GMPs encoded by RHV, ranging from virtually immobile to significantly reduced mobility compared to LCV GMPs. Only the RHV GMPs recruited the bromo- and extra terminal domain (BET) proteins BRD2 and BRD4 to the site of chromatin remodeling. These findings suggest that differences in the mode of interaction with cellular chromatin may underlie different strategies adopted by these viruses for reprogramming of the host cells during latency.
Collapse
|
66
|
Rohner S, Kalck V, Wang X, Ikegami K, Lieb JD, Gasser SM, Meister P. Promoter- and RNA polymerase II-dependent hsp-16 gene association with nuclear pores in Caenorhabditis elegans. ACTA ACUST UNITED AC 2013; 200:589-604. [PMID: 23460676 PMCID: PMC3587839 DOI: 10.1083/jcb.201207024] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The hsp-16.2 promoter is sufficient for recruitment of hsp-16.2 to nuclear pore complexes in a manner dependent on RNA pol II and ENY-2, but not on full-length mRNA production. Some inducible yeast genes relocate to nuclear pores upon activation, but the general relevance of this phenomenon has remained largely unexplored. Here we show that the bidirectional hsp-16.2/41 promoter interacts with the nuclear pore complex upon activation by heat shock in the nematode Caenorhabditis elegans. Direct pore association was confirmed by both super-resolution microscopy and chromatin immunoprecipitation. The hsp-16.2 promoter was sufficient to mediate perinuclear positioning under basal level conditions of expression, both in integrated transgenes carrying from 1 to 74 copies of the promoter and in a single-copy genomic insertion. Perinuclear localization of the uninduced gene depended on promoter elements essential for induction and required the heat-shock transcription factor HSF-1, RNA polymerase II, and ENY-2, a factor that binds both SAGA and the THO/TREX mRNA export complex. After induction, colocalization with nuclear pores increased significantly at the promoter and along the coding sequence, dependent on the same promoter-associated factors, including active RNA polymerase II, and correlated with nascent transcripts.
Collapse
Affiliation(s)
- Sabine Rohner
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
67
|
Gagniuc P, Ionescu-Tirgoviste C. Gene promoters show chromosome-specificity and reveal chromosome territories in humans. BMC Genomics 2013; 14:278. [PMID: 23617842 PMCID: PMC3668249 DOI: 10.1186/1471-2164-14-278] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 02/26/2013] [Indexed: 11/10/2022] Open
Abstract
Background Gene promoters have guided evolution processes for millions of years. It seems that they were the main engine responsible for the integration of different mutations favorable for the environmental conditions. In cooperation with different transcription factors and other biochemical components, these regulatory regions dictate the synthesis frequency of RNA molecules. Predominantly in the last decade, it has become clear that nuclear organization impacts upon gene regulation. To fully understand the connections between Homo sapiens chromosomes and their gene promoters, we analyzed 1200 promoter sequences using our Kappa Index of Coincidence method. Results In order to measure the structural similarity of gene promoters, we used two-dimensional image-based patterns obtained through Kappa Index of Coincidence (Kappa IC) and (C+G)% values. The center of weight of each promoter pattern indicated a structure similarity between promoters of each chromosome. Furthermore, the proximity of chromosomes seems to be in accordance to the structural similarity of their gene promoters. The arrangement of chromosomes according to Kappa IC values of promoters, shows a striking symmetry between the chromosome length and the structure of promoters located on them. High Kappa IC and (C+G)% values of gene promoters were also directly associated with the most frequent genetic diseases. Taking into consideration these observations, a general hypothesis for the evolutionary dynamics of the genome has been proposed. In this hypothesis, heterochromatin and euchromatin domains exchange DNA sequences according to a difference in the rate of Slipped Strand Mispairing and point mutations. Conclusions In this paper we showed that gene promoters appear to be specific to each chromosome. Furthermore, the proximity between chromosomes seems to be in accordance to the structural similarity of their gene promoters. Our findings are based on comprehensive data from Transcriptional Regulatory Element Database and a new computer model whose core is using Kappa index of coincidence.
Collapse
Affiliation(s)
- Paul Gagniuc
- Institute of Genetics, University of Bucharest, Bucharest, Romania.
| | | |
Collapse
|
68
|
Kind J, Pagie L, Ortabozkoyun H, Boyle S, de Vries SS, Janssen H, Amendola M, Nolen LD, Bickmore WA, van Steensel B. Single-cell dynamics of genome-nuclear lamina interactions. Cell 2013; 153:178-92. [PMID: 23523135 DOI: 10.1016/j.cell.2013.02.028] [Citation(s) in RCA: 502] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/17/2012] [Accepted: 02/05/2013] [Indexed: 12/15/2022]
Abstract
The nuclear lamina (NL) interacts with hundreds of large genomic regions termed lamina associated domains (LADs). The dynamics of these interactions and the relation to epigenetic modifications are poorly understood. We visualized the fate of LADs in single cells using a "molecular contact memory" approach. In each nucleus, only ~30% of LADs are positioned at the periphery; these LADs are in intermittent molecular contact with the NL but remain constrained to the periphery. Upon mitosis, LAD positioning is not detectably inherited but instead is stochastically reshuffled. Contact of individual LADs with the NL is linked to transcriptional repression and H3K9 dimethylation in single cells. Furthermore, we identify the H3K9 methyltransferase G9a as a regulator of NL contacts. Collectively, these results highlight principles of the dynamic spatial architecture of chromosomes in relation to gene regulation.
Collapse
Affiliation(s)
- Jop Kind
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Wan M, Kaundal R, Huang H, Zhao J, Yang X, Chaiyachati BH, Li S, Chi T. A general approach for controlling transcription and probing epigenetic mechanisms: application to the CD4 locus. THE JOURNAL OF IMMUNOLOGY 2013; 190:737-47. [PMID: 23293358 DOI: 10.4049/jimmunol.1201278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Synthetic regulatory proteins such as tetracycline (tet)-controlled transcription factors are potentially useful for repression as well as ectopic activation of endogenous genes and also for probing their regulatory mechanisms, which would offer a versatile genetic tool advantageous over conventional gene targeting methods. In this study, we provide evidence supporting this concept using Cd4 as a model. CD4 is expressed in double-positive and CD4 cells but irreversibly silenced in CD8 cells. The silencing is mediated by heterochromatin established during CD8 lineage development via transient action of the Cd4 silencer; once established, the heterochromatin becomes self-perpetuating independently of the Cd4 silencer. Using a tet-sensitive Cd4 allele harboring a removable Cd4 silencer, we found that a tet-controlled repressor recapitulated the phenotype of Cd4-deficient mice, inhibited Cd4 expression in a reversible and dose-dependent manner, and could surprisingly replace the Cd4 silencer to induce irreversible Cd4 silencing in CD8 cells, thus suggesting the Cd4 silencer is not the (only) determinant of heterochromatin formation. In contrast, a tet-controlled activator reversibly disrupted Cd4 silencing in CD8 cells. The Cd4 silencer impeded this disruption but was not essential for its reversal, which revealed a continuous role of the silencer in mature CD8 cells while exposing a remarkable intrinsic self-regenerative ability of heterochromatin after forced disruption. These data demonstrate an effective approach for gene manipulation and provide insights into the epigenetic Cd4 regulatory mechanisms that are otherwise difficult to obtain.
Collapse
Affiliation(s)
- Mimi Wan
- Department of Immunobiology, Yale University Medical School, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Abstract
The genome is dynamically organized in the nuclear space in a manner that reflects and influences nuclear functions. Developmental processes that govern the formation and maintenance of epigenetic memories are also tightly linked to adaptive changes in the physical and functional landscape of the nuclear architecture. Biological and biophysical principles governing the three-dimensional folding of chromatin are therefore central to our understanding of epigenetic regulation during adaptive responses and in complex diseases, such as cancer. Accumulating evidence points to the direction that global alterations in nuclear architecture and chromatin folding conspire with unstable epigenetic states of the primary chromatin fiber to drive the phenotypic plasticity of cancer cells.
Collapse
Affiliation(s)
- Anita Göndör
- Microbiology, Tumor and Cell Biology, Karolinska Institutet, Nobels väg 16, KI Solna Campus, Box 280, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
71
|
Coppotelli G, Mughal N, Callegari S, Sompallae R, Caja L, Luijsterburg MS, Dantuma NP, Moustakas A, Masucci MG. The Epstein-Barr virus nuclear antigen-1 reprograms transcription by mimicry of high mobility group A proteins. Nucleic Acids Res 2013; 41:2950-62. [PMID: 23358825 PMCID: PMC3597695 DOI: 10.1093/nar/gkt032] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Viral proteins reprogram their host cells by hijacking regulatory components of protein networks. Here we describe a novel property of the Epstein-Barr virus (EBV) nuclear antigen-1 (EBNA1) that may underlie the capacity of the virus to promote a global remodeling of chromatin architecture and cellular transcription. We found that the expression of EBNA1 in transfected human and mouse cells is associated with decreased prevalence of heterochromatin foci, enhanced accessibility of cellular DNA to micrococcal nuclease digestion and decreased average length of nucleosome repeats, suggesting de-protection of the nucleosome linker regions. This is a direct effect of EBNA1 because targeting the viral protein to heterochromatin promotes large-scale chromatin decondensation with slow kinetics and independent of the recruitment of adenosine triphosphate-dependent chromatin remodelers. The remodeling function is mediated by a bipartite Gly-Arg rich domain of EBNA1 that resembles the AT-hook of High Mobility Group A (HMGA) architectural transcription factors. Similar to HMGAs, EBNA1 is highly mobile in interphase nuclei and promotes the mobility of linker histone H1, which counteracts chromatin condensation and alters the transcription of numerous cellular genes. Thus, by regulating chromatin compaction, EBNA1 may reset cellular transcription during infection and prime the infected cells for malignant transformation.
Collapse
Affiliation(s)
- Giuseppe Coppotelli
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Cochella L, Hobert O. Embryonic priming of a miRNA locus predetermines postmitotic neuronal left/right asymmetry in C. elegans. Cell 2012. [PMID: 23201143 DOI: 10.1016/j.cell.2012.10.049] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The mechanisms by which functional left/right asymmetry arises in morphologically symmetric nervous systems are poorly understood. Here, we provide a mechanistic framework for how functional asymmetry in a postmitotic neuron pair is specified in C. elegans. A key feature of this mechanism is a temporally separated, two-step activation of the lsy-6 miRNA locus. The lsy-6 locus is first "primed" by chromatin decompaction in the precursor for the left neuron, but not the right neuron, several divisions before the neurons are born. lsy-6 expression is then "boosted" to functionally relevant levels several divisions later in the mother of the left neuron, through the activity of a bilaterally expressed transcription factor that can only activate lsy-6 in the primed neuron. This study shows how cells can become committed during early developmental stages to execute a specific fate much later in development and provides a conceptual framework for understanding the generation of neuronal diversity.
Collapse
Affiliation(s)
- Luisa Cochella
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University Medical Center, New York, NY 10032, USA.
| | | |
Collapse
|
73
|
Pliss A, Malyavantham KS, Bhattacharya S, Berezney R. Chromatin dynamics in living cells: Identification of oscillatory motion. J Cell Physiol 2012; 228:609-16. [DOI: 10.1002/jcp.24169] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 07/31/2012] [Indexed: 01/13/2023]
|
74
|
Meluzzi D, Arya G. Recovering ensembles of chromatin conformations from contact probabilities. Nucleic Acids Res 2012; 41:63-75. [PMID: 23143266 PMCID: PMC3592477 DOI: 10.1093/nar/gks1029] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The 3D higher order organization of chromatin within the nucleus of eukaryotic cells has so far remained elusive. A wealth of relevant information, however, is increasingly becoming available from chromosome conformation capture (3C) and related experimental techniques, which measure the probabilities of contact between large numbers of genomic sites in fixed cells. Such contact probabilities (CPs) can in principle be used to deduce the 3D spatial organization of chromatin. Here, we propose a computational method to recover an ensemble of chromatin conformations consistent with a set of given CPs. Compared with existing alternatives, this method does not require conversion of CPs to mean spatial distances. Instead, we estimate CPs by simulating a physically realistic, bead-chain polymer model of the 30-nm chromatin fiber. We then use an approach from adaptive filter theory to iteratively adjust the parameters of this polymer model until the estimated CPs match the given CPs. We have validated this method against reference data sets obtained from simulations of test systems with up to 45 beads and 4 loops. With additional testing against experiments and with further algorithmic refinements, our approach could become a valuable tool for researchers examining the higher order organization of chromatin.
Collapse
Affiliation(s)
- Dario Meluzzi
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | |
Collapse
|
75
|
Takebayashi SI, Ryba T, Gilbert DM. Developmental control of replication timing defines a new breed of chromosomal domains with a novel mechanism of chromatin unfolding. Nucleus 2012; 3:500-7. [PMID: 23023599 PMCID: PMC3515532 DOI: 10.4161/nucl.22318] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We recently identified a set of chromosome domains that are early replicating uniquely in pluripotent cells. Their switch from early to late replication occurs just prior to germ layer commitment, associated with a stable form of gene silencing that is difficult to reverse. Here, we discuss results demonstrating that these domains are among the least sensitive regions in the genome to global digestion by either MNase or restriction enzymes. This inaccessible chromatin state persists whether these regions are in their physically distended early replicating or compact late replicating configuration, despite dramatic changes in 3D chromatin folding and long-range chromatin interactions, and despite large changes in transcriptional activity. This contrasts with the strong correlation between early replication, accessibility, transcriptional activity and open chromatin configuration that is observed genome-wide. We put these results in context with findings from other studies indicating that many structural (DNA sequence) and functional (density and activity of replication origins) properties of developmentally regulated replication timing ("switching") domains resemble properties of constitutively late replicating domains. This suggests that switching domains are a type of late replicating domain within which both replication timing and transcription are subject to unique or additional layers of control not experienced by the bulk of the genome. We predict that understanding the unusual structure of these domains will reveal a novel principle of chromosome folding.
Collapse
Affiliation(s)
| | - Tyrone Ryba
- Department of Biological Science; Florida State University; Tallahassee, FL USA
| | - David M. Gilbert
- Department of Biological Science; Florida State University; Tallahassee, FL USA
| |
Collapse
|
76
|
Holwerda S, de Laat W. Chromatin loops, gene positioning, and gene expression. Front Genet 2012; 3:217. [PMID: 23087710 PMCID: PMC3473233 DOI: 10.3389/fgene.2012.00217] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/01/2012] [Indexed: 01/09/2023] Open
Abstract
Technological developments and intense research over the last years have led to a better understanding of the 3D structure of the genome and its influence on genome function inside the cell nucleus. We will summarize topological studies performed on four model gene loci: the α- and β-globin gene loci, the antigen receptor loci, the imprinted H19-Igf2 locus and the Hox gene clusters. Collectively, these studies show that regulatory DNA sequences physically contact genes to control their transcription. Proteins set up the 3D configuration of the genome and we will discuss the roles of the key structural organizers CTCF and cohesin, the nuclear lamina and the transcription machinery. Finally, genes adopt non-random positions in the nuclear interior. We will review studies on gene positioning and propose that cell-specific genome conformations can juxtapose a regulatory sequence on one chromosome to a responsive gene on another chromosome to cause altered gene expression in subpopulations of cells.
Collapse
Affiliation(s)
- Sjoerd Holwerda
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, University Medical Center Utrecht Utrecht, Netherlands
| | | |
Collapse
|
77
|
|
78
|
Induced transcription results in local changes in chromatin structure, replication timing, and DNA polytenization in a site of intercalary heterochromatin. Chromosoma 2012; 121:573-83. [PMID: 23015267 DOI: 10.1007/s00412-012-0382-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 08/12/2012] [Accepted: 08/27/2012] [Indexed: 10/27/2022]
Abstract
In salivary gland polytene chromosomes of Drosophila melanogaster, the regions of intercalary heterochromatin are characterized by late replication, under-replication, and genetic silencing. Using Gal4/UAS system, we induced transcription of sequences adjacent to transgene insertions in the band 11A6-9. This activation resulted in a loss of "silent" and appearance of "active" epigenetic marks, recruitment of RNA polymerase II, and formation of a puff. The activated region is now early replicating and shows increased level of DNA polytenization. Notably, all these changes are restricted to the area around the inserts, whereas the rest of the band remains inactive and late replicating. Although only a short area near the insertion site is transcribed, it results in an "open" chromatin conformation in a much broader region. We conclude that regions of intercalary heterochromatin do not form stand-alone units of late replication and under-replication. Every part of such regions can be activated and polytenized independently of other parts.
Collapse
|
79
|
Herpes simplex virus 1 DNA is in unstable nucleosomes throughout the lytic infection cycle, and the instability of the nucleosomes is independent of DNA replication. J Virol 2012; 86:11287-300. [PMID: 22875975 DOI: 10.1128/jvi.01468-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) DNA is chromatinized during latency and consequently regularly digested by micrococcal nuclease (MCN) to nucleosome-size fragments. In contrast, MCN digests HSV-1 DNA in lytically infected cells to mostly heterogeneous sizes. Yet HSV-1 DNA coimmunoprecipitates with histones during lytic infections. We have shown that at 5 h postinfection, most nuclear HSV-1 DNA is in particularly unstable nucleoprotein complexes and consequently is more accessible to MCN than DNA in cellular chromatin. HSV-1 DNA was quantitatively recovered at this time in complexes with the biophysical properties of mono- to polynucleosomes following a modified MCN digestion developed to detect potential unstable intermediates. We proposed that most HSV-1 DNA is in unstable nucleosome-like complexes during lytic infections. Physiologically, nucleosome assembly typically associates with DNA replication, although DNA replication transiently disrupts nucleosomes. It therefore remained unclear whether the instability of the HSV-1 nucleoprotein complexes was related to the ongoing viral DNA replication. Here we tested whether HSV-1 DNA is in unstable nucleosome-like complexes before, during, or after the peak of viral DNA replication or when HSV-1 DNA replication is inhibited. HSV-1 DNA was quantitatively recovered in complexes fractionating as mono- to polynucleosomes from nuclei harvested at 2, 5, 7, or 9 h after infection, even if viral DNA replication was inhibited. Therefore, most HSV-1 DNA is in unstable nucleosome-like complexes throughout the lytic replication cycle, and the instability of these complexes is surprisingly independent of HSV-1 DNA replication. The specific accessibility of nuclear HSV-1 DNA, however, varied at different times after infection.
Collapse
|
80
|
Rigby L, Muscat A, Ashley D, Algar E. Methods for the analysis of histone H3 and H4 acetylation in blood. Epigenetics 2012; 7:875-82. [PMID: 22772164 DOI: 10.4161/epi.20983] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
LBH589 is one of the many histone deacetylase inhibitors (HDACi) that are currently in clinical trial. Despite their wide-spread use, there is little literature available describing the typical levels of histone acetylation in untreated peripheral blood, the treatment and storage of samples to retain optimal measurement of histone acetylation nor methods by which histone acetylation analysis may be monitored and measured during the course of a patient's treatment. In this study, we have used cord or peripheral blood as a source of human leukocytes, performed a comparative analysis of sample processing methods and developed a flow cytometric method suitable for monitoring histone acetylation in isolated lymphocytes and liquid tumors. Western blotting and immunohistochemistry techniques have also been addressed. We have tested these methods on blood samples collected from four patients treated with LBH589 as part of an Australian Children's Cancer Clinical Trial (CLBH589AAU03T) and show comparable results when comparing in vitro and in vivo data. This paper does not seek to correlate histone acetylation levels in peripheral blood with clinical outcome but describes methods of analysis that will be of interest to clinicians and scientists monitoring the effects of HDACi on histone acetylation in blood samples in clinical trials or in related research studies.
Collapse
Affiliation(s)
- Lin Rigby
- Molecular Oncology Laboratory, Murdoch Children's Research Institute, Parkville, Australia
| | | | | | | |
Collapse
|
81
|
Belmont AS. Estrogen fueled, nuclear kiss: did it move for you? Nucleus 2012; 1:440-3. [PMID: 21326827 DOI: 10.4161/nucl.1.5.13051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 07/16/2010] [Indexed: 11/19/2022] Open
Abstract
A paper appearing in late 2008,1 attracted considerable attention with its description of a dramatic juxtaposition of two estrogen responsive genes on different chromosomes within 15-60 minutes of adding estradiol. These results challenged a growing consensus of limited chromosome mobility within interphase nuclei, while raising questions of whether a hitherto unknown molecular mechanism might exist to move chromosomes long distances within the nucleus. These results also raised the fascinating question of how two genes on widely separated chromosomes might find each other over such a short time span. Now, a more recent paper reports no such long-range interaction or chromosome movements in the same cell types under what appear to be well replicated conditions, forcing a reexamination of the prior results.
Collapse
Affiliation(s)
- Andrew S Belmont
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
82
|
A new non-catalytic role for ubiquitin ligase RNF8 in unfolding higher-order chromatin structure. EMBO J 2012; 31:2511-27. [PMID: 22531782 DOI: 10.1038/emboj.2012.104] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Accepted: 03/23/2012] [Indexed: 11/08/2022] Open
Abstract
The ubiquitin ligases RNF8 and RNF168 orchestrate DNA damage signalling through the ubiquitylation of histone H2A and the recruitment of downstream repair factors. Here, we demonstrate that RNF8, but not RNF168 or the canonical H2A ubiquitin ligase RNF2, mediates extensive chromatin decondensation. Our data show that CHD4, the catalytic subunit of the NuRD complex, interacts with RNF8 and is essential for RNF8-mediated chromatin unfolding. The chromatin remodelling activity of CHD4 promotes efficient ubiquitin conjugation and assembly of RNF168 and BRCA1 at DNA double-strand breaks. Interestingly, RNF8-mediated recruitment of CHD4 and subsequent chromatin remodelling were independent of the ubiquitin-ligase activity of RNF8, but involved a non-canonical interaction with the forkhead-associated (FHA) domain. Our study reveals a new mechanism of chromatin remodelling-assisted ubiquitylation, which involves the cooperation between CHD4 and RNF8 to create a local chromatin environment that is permissive to the assembly of checkpoint and repair machineries at DNA lesions.
Collapse
|
83
|
Luijsterburg MS, Lindh M, Acs K, Vrouwe MG, Pines A, van Attikum H, Mullenders LH, Dantuma NP. DDB2 promotes chromatin decondensation at UV-induced DNA damage. ACTA ACUST UNITED AC 2012; 197:267-81. [PMID: 22492724 PMCID: PMC3328393 DOI: 10.1083/jcb.201106074] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In addition to its role in DNA lesion recognition, the damaged DNA-binding protein DDB2 elicits unfolding of large-scale chromatin structure independently of the CRL4 ubiquitin ligase complex. Nucleotide excision repair (NER) is the principal pathway that removes helix-distorting deoxyribonucleic acid (DNA) damage from the mammalian genome. Recognition of DNA lesions by xeroderma pigmentosum group C (XPC) protein in chromatin is stimulated by the damaged DNA-binding protein 2 (DDB2), which is part of a CUL4A–RING ubiquitin ligase (CRL4) complex. In this paper, we report a new function of DDB2 in modulating chromatin structure at DNA lesions. We show that DDB2 elicits unfolding of large-scale chromatin structure independently of the CRL4 ubiquitin ligase complex. Our data reveal a marked adenosine triphosphate (ATP)–dependent reduction in the density of core histones in chromatin containing UV-induced DNA lesions, which strictly required functional DDB2 and involved the activity of poly(adenosine diphosphate [ADP]–ribose) polymerase 1. Finally, we show that lesion recognition by XPC, but not DDB2, was strongly reduced in ATP-depleted cells and was regulated by the steady-state levels of poly(ADP-ribose) chains.
Collapse
Affiliation(s)
- Martijn S Luijsterburg
- Department of Cell and Molecular Biology, Karolinska Institutet, S-17177 Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Stably integrated and expressed retroviral sequences can influence nuclear location and chromatin condensation of the integration locus. Chromosoma 2012; 121:353-67. [PMID: 22415776 PMCID: PMC3401306 DOI: 10.1007/s00412-012-0366-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 02/27/2012] [Accepted: 02/27/2012] [Indexed: 12/24/2022]
Abstract
The large-scale chromatin organization of retrovirus and retroviral gene vector integration loci has attracted little attention so far. We compared the nuclear organization of transcribed integration loci with the corresponding loci on the homologous chromosomes. Loci containing gamma-retroviral gene transfer vectors in mouse hematopoietic precursor cells showed small but significant repositioning of the integration loci towards the nuclear interior. HIV integration loci in human cells showed a significant repositioning towards the nuclear interior in two out of five cases. Notably, repositioned HIV integration loci also showed chromatin decondensation. Transcriptional activation of HIV by sodium butyrate treatment did not lead to a further enhancement of the differences between integration and homologous loci. The positioning relative to splicing speckles was indistinguishable for integration and homologous control loci. Our data show that stable retroviral integration can lead to alterations of the nuclear chromatin organization, and has the potential to modulate chromatin structure of the host cell. We thus present an example where a few kb of exogenous DNA are sufficient to significantly alter the large-scale chromatin organization of an endogenous locus.
Collapse
|
85
|
Nicoll MP, Proença JT, Efstathiou S. The molecular basis of herpes simplex virus latency. FEMS Microbiol Rev 2012; 36:684-705. [PMID: 22150699 PMCID: PMC3492847 DOI: 10.1111/j.1574-6976.2011.00320.x] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/24/2011] [Accepted: 11/28/2011] [Indexed: 12/11/2022] Open
Abstract
Herpes simplex virus type 1 is a neurotropic herpesvirus that establishes latency within sensory neurones. Following primary infection, the virus replicates productively within mucosal epithelial cells and enters sensory neurones via nerve termini. The virus is then transported to neuronal cell bodies where latency can be established. Periodically, the virus can reactivate to resume its normal lytic cycle gene expression programme and result in the generation of new virus progeny that are transported axonally back to the periphery. The ability to establish lifelong latency within the host and to periodically reactivate to facilitate dissemination is central to the survival strategy of this virus. Although incompletely understood, this review will focus on the mechanisms involved in the regulation of latency that centre on the functions of the virus-encoded latency-associated transcripts (LATs), epigenetic regulation of the latent virus genome and the molecular events that precipitate reactivation. This review considers current knowledge and hypotheses relating to the mechanisms involved in the establishment, maintenance and reactivation herpes simplex virus latency.
Collapse
Affiliation(s)
- Michael P Nicoll
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
86
|
Zolghadr K, Rothbauer U, Leonhardt H. The fluorescent two-hybrid (F2H) assay for direct analysis of protein-protein interactions in living cells. Methods Mol Biol 2012; 812:275-282. [PMID: 22218866 DOI: 10.1007/978-1-61779-455-1_16] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Information about protein interactions is crucial for the understanding of cellular processes. Current methods for the investigation of protein-protein interactions (PPIs) require either removal of the proteins from their normal cellular environment, perturbation of the cells or costly instrumentation and advanced technical expertise (Fields and Song, Nature 340:245-246, 1989; Deane et al., Mol Cell Proteomics 1:349-356, 2002; Kerppola, Nat Rev Mol Cell Biol 7:449-456, 2006; Blanchard et al., Mol Cell Proteomics 5:2175-2184, 2006; Miller et al., Mol Cell Proteomics 6:1027-1038, 2007; Miyawaki, Dev Cell 4:295-305, 2003; Parrish et al., Curr Opin Biotechnol 17:387-393, 2006; Sekar and Periasamy, J Cell Biol 160:629-633, 2003). Here, we describe a simple assay to directly visualize and analyze PPIs in single living cells. By adapting a lac operator/repressor system, we generated a stable nuclear interaction platform. A fluorescent bait protein is tethered to the interaction platform and assayed for co-localization of fluorescent prey fusion proteins. This fluorescent two-hybrid (F2H) assay allows the investigation of cell cycle dependent PPIs. With this cell based assay protein interactions even from different subcellular compartments can be visualized in real time (Zolghadr et al., Mol Cell Proteomics 7:2279-2287, 2008). The simple optical readout enables automated imaging systems to segment and analyze the acquired data for high-throughput screening of PPIs in living cells in response to external stimuli and chemical compounds.
Collapse
Affiliation(s)
- Kourosh Zolghadr
- Center for Integrated Protein Science and Department of Biology, Ludwig Maximilians University Munich, Planegg-Martinsried, Munich, Germany
| | | | | |
Collapse
|
87
|
Schlick T, Hayes J, Grigoryev S. Toward convergence of experimental studies and theoretical modeling of the chromatin fiber. J Biol Chem 2011; 287:5183-91. [PMID: 22157002 DOI: 10.1074/jbc.r111.305763] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Understanding the structural organization of eukaryotic chromatin and its control of gene expression represents one of the most fundamental and open challenges in modern biology. Recent experimental advances have revealed important characteristics of chromatin in response to changes in external conditions and histone composition, such as the conformational complexity of linker DNA and histone tail domains upon compact folding of the fiber. In addition, modeling studies based on high-resolution nucleosome models have helped explain the conformational features of chromatin structural elements and their interactions in terms of chromatin fiber models. This minireview discusses recent progress and evidence supporting structural heterogeneity in chromatin fibers, reconciling apparently contradictory fiber models.
Collapse
Affiliation(s)
- Tamar Schlick
- Department of Chemistry, New York University, New York, New York 10003, USA.
| | | | | |
Collapse
|
88
|
Chung I, Leonhardt H, Rippe K. De novo assembly of a PML nuclear subcompartment occurs through multiple pathways and induces telomere elongation. J Cell Sci 2011; 124:3603-18. [PMID: 22045732 DOI: 10.1242/jcs.084681] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Telomerase-negative tumor cells use an alternative lengthening of telomeres (ALT) pathway that involves DNA recombination and repair to maintain their proliferative potential. The cytological hallmark of this process is the accumulation of promyelocytic leukemia (PML) nuclear protein at telomeric DNA to form ALT-associated PML bodies (APBs). Here, the de novo formation of a telomeric PML nuclear subcompartment was investigated by recruiting APB protein components. We show that functionally distinct proteins were able to initiate the formation of bona fide APBs with high efficiency in a self-organizing and self-propagating manner. These included: (1) PML and Sp100 as the constituting components of PML nuclear bodies, (2) telomere repeat binding factors 1 and 2 (TRF1 and TRF2, respectively), (3) the DNA repair protein NBS1 and (4) the SUMO E3 ligase MMS21, as well as the isolated SUMO1 domain, through an interacting domain of another protein factor. By contrast, the repair factors Rad9, Rad17 and Rad51 were less efficient in APB nucleation but were recruited to preassembled APBs. The artificially created APBs induced telomeric extension through a DNA repair mechanism, as inferred from their colocalization with sites of non-replicative DNA synthesis and histone H2A.X phosphorylation, and an increase of the telomere repeat length. These activities were absent after recruitment of the APB factors to a pericentric locus and establish APBs as functional intermediates of the ALT pathway.
Collapse
Affiliation(s)
- Inn Chung
- German Cancer Research Center & BioQuant, Research Group Genome Organization & Function, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
89
|
Zhao R, Nakamura T, Fu Y, Lazar Z, Spector DL. Gene bookmarking accelerates the kinetics of post-mitotic transcriptional re-activation. Nat Cell Biol 2011; 13:1295-304. [PMID: 21983563 PMCID: PMC3210065 DOI: 10.1038/ncb2341] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 08/10/2011] [Indexed: 12/12/2022]
Abstract
Although transmission of the gene expression program from mother to daughter cells has been suggested to be mediated by gene bookmarking, the precise mechanism by which bookmarking mediates post-mitotic transcriptional re-activation has been unclear. Here, we used a real-time gene expression system to quantitatively demonstrate that transcriptional activation of the same genetic locus occurs with a significantly more rapid kinetics in post-mitotic cells versus interphase cells. RNA polymerase II large subunit (Pol II) and bromodomain protein 4 (BRD4) were recruited to the locus in a different sequential order on interphase initiation versus post-mitotic re-activation resulting from the recognition by BRD4 of increased levels of histone H4 Lys 5 acetylation (H4K5ac) on the previously activated locus. BRD4 accelerated the dynamics of messenger RNA synthesis by de-compacting chromatin and hence facilitating transcriptional re-activation. Using a real-time quantitative approach, we identified differences in the kinetics of transcriptional activation between interphase and post-mitotic cells that are mediated by a chromatin-based epigenetic mechanism.
Collapse
Affiliation(s)
- Rui Zhao
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | |
Collapse
|
90
|
Chien R, Zeng W, Ball AR, Yokomori K. Cohesin: a critical chromatin organizer in mammalian gene regulation. Biochem Cell Biol 2011; 89:445-58. [PMID: 21851156 PMCID: PMC4056987 DOI: 10.1139/o11-039] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cohesins are evolutionarily conserved essential multi-protein complexes that are important for higher-order chromatin organization. They play pivotal roles in the maintenance of genome integrity through mitotic chromosome regulation, DNA repair and replication, as well as gene regulation critical for proper development and cellular differentiation. In this review, we will discuss the multifaceted functions of mammalian cohesins and their apparent functional hierarchy in the cell, with particular focus on their actions in gene regulation and their relevance to human developmental disorders.
Collapse
Affiliation(s)
- Richard Chien
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California 92697-1700, USA
| | - Weihua Zeng
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California 92697-1700, USA
| | - Alexander R. Ball
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California 92697-1700, USA
| | - Kyoko Yokomori
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California 92697-1700, USA
| |
Collapse
|
91
|
Hirai H, Tani T, Kikyo N. Structure and functions of powerful transactivators: VP16, MyoD and FoxA. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2011; 54:1589-96. [PMID: 21404180 DOI: 10.1387/ijdb.103194hh] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Induced pluripotent stem cell (iPSC) technology is a promising approach for converting one type of a differentiated cell into another type of differentiated cell through a pluripotent state as an intermediate step. Recent studies, however, indicate the possibility of directly converting one cell type to another without going through a pluripotent state. This direct reprogramming approach is dependent on a combination of highly potent transcription factors for cell-type conversion, presumably skipping more physiological and multi-step differentiation processes. A trial-and-error strategy is commonly used to screen many candidate transcription factors to identify the correct combination of factors. We speculate, however, that a better understanding of the functional mechanisms of exemplary transcriptional activators will facilitate the identification of novel factor combinations capable of direct reprogramming. The purpose of this review is to critically examine the literature on three highly potent transcriptional activators: the herpes virus protein, VP16; the master regulator of skeletal muscle differentiation, MyoD and the "pioneer" factor for hepatogenesis, FoxA. We discuss the roles of their functional protein domains, interacting partners and chromatin remodeling mechanisms during gene activation to understand how these factors open the chromatin of inactive genes and reset the transcriptional pattern during cell type conversion.
Collapse
|
92
|
Establishment of a Technology Detecting The Large Scale Chromatin Relaxation Based on GFP Fluorescence Imaging*. PROG BIOCHEM BIOPHYS 2011. [DOI: 10.3724/sp.j.1206.2010.00642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
93
|
Splinter E, de Wit E, Nora EP, Klous P, van de Werken HJG, Zhu Y, Kaaij LJT, van Ijcken W, Gribnau J, Heard E, de Laat W. The inactive X chromosome adopts a unique three-dimensional conformation that is dependent on Xist RNA. Genes Dev 2011; 25:1371-83. [PMID: 21690198 DOI: 10.1101/gad.633311] [Citation(s) in RCA: 248] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Three-dimensional topology of DNA in the cell nucleus provides a level of transcription regulation beyond the sequence of the linear DNA. To study the relationship between the transcriptional activity and the spatial environment of a gene, we used allele-specific chromosome conformation capture-on-chip (4C) technology to produce high-resolution topology maps of the active and inactive X chromosomes in female cells. We found that loci on the active X form multiple long-range interactions, with spatial segregation of active and inactive chromatin. On the inactive X, silenced loci lack preferred interactions, suggesting a unique random organization inside the inactive territory. However, escapees, among which is Xist, are engaged in long-range contacts with each other, enabling identification of novel escapees. Deletion of Xist results in partial refolding of the inactive X into a conformation resembling the active X without affecting gene silencing or DNA methylation. Our data point to a role for Xist RNA in shaping the conformation of the inactive X chromosome at least partially independent of transcription.
Collapse
Affiliation(s)
- Erik Splinter
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht 3584 CT, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Insights into interphase large-scale chromatin structure from analysis of engineered chromosome regions. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2011; 75:453-60. [PMID: 21467143 DOI: 10.1101/sqb.2010.75.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
How chromatin folds into mitotic and interphase chromosomes has remained a difficult question for many years. We have used three generations of engineered chromosome regions as a means of visualizing specific chromosome regions in live cells and cells fixed under conditions that preserve large-scale chromatin structure. Our results confirm the existence of large-scale chromatin domains and fibers formed by the folding of 10-nm and 30-nm chromatin fibers into larger, spatially distinct domains. Transcription at levels within severalfold of the levels measured for endogenous loci occur within these large-scale chromatin structures on a condensed template linearly compacted several hundred fold to 1000-fold relative to B-form DNA. However, transcriptional induction is accompanied by a severalfold decondensation of this large-scale chromatin structure that propagates hundreds of kilobases beyond the induced gene. Examination of engineered chromosome regions in mouse embryonic stem cells (ESCs) and differentiated cells suggests a surprising degree of plasticity in this large-scale chromatin structure, allowing long-range DNA interactions within the context of large-scale chromatin fibers. Recapitulation of gene-specific differences in large-scale chromatin conformation and nuclear positioning using these engineered chromosome regions will facilitate identification of cis and trans determinants of interphase chromosome architecture.
Collapse
|
95
|
Beltran AS, Blancafort P. Reactivation of MASPIN in non-small cell lung carcinoma (NSCLC) cells by artificial transcription factors (ATFs). Epigenetics 2011; 6:224-35. [PMID: 20948306 DOI: 10.4161/epi.6.2.13700] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Tumor suppressor genes have antiproliferative and antimetastatic functions, and thus, they negatively affect tumor progression. Reactivating specific tumor suppressor genes would offer an important therapeutic strategy to block tumor progression. Mammary Serine Protease Inhibitor (MASPIN) is a tumor suppressor gene that is not mutated or rearranged in tumor cells, but is silenced during metastatic progression by transcriptional and epigenetic mechanisms. In this work, we have investigated the ability of Artificial Transcription Factors (ATFs) to reactivate MASPIN expression and to reduce tumor growth and metastatic dissemination in Non-Small Cell Lung Carcinoma (NSCLC) cell lines carrying a hypermethylated MASPIN promoter. We found that the ATFs linked to transactivator domains were able to demethylate the MASPIN promoter. Consistently, we observed that co-treatment of ATF-transduced cells with methyltransferase inhibitors enhanced MASPIN expression as well as induction of tumor cell apoptosis. In addition to tumor suppressive functions, restoration of endogenous MASPIN expression was accompanied by inhibition of metastatic dissemination in nude mice. ATF-mediated reactivation of MASPIN lead to changes in cell motility and to induction of E-CADHERIN. These data suggest that ATFs are able to reprogram aggressive lung tumor cells towards a more epithelial, differentiated phenotype, and thus, represent novel therapeutic agents for metastatic lung cancers.
Collapse
Affiliation(s)
- Adriana S Beltran
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
96
|
Brody Y, Neufeld N, Bieberstein N, Causse SZ, Böhnlein EM, Neugebauer KM, Darzacq X, Shav-Tal Y. The in vivo kinetics of RNA polymerase II elongation during co-transcriptional splicing. PLoS Biol 2011; 9:e1000573. [PMID: 21264352 PMCID: PMC3019111 DOI: 10.1371/journal.pbio.1000573] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 11/19/2010] [Indexed: 01/01/2023] Open
Abstract
Kinetic analysis shows that RNA polymerase elongation kinetics are not modulated by co-transcriptional splicing and that post-transcriptional splicing can proceed at the site of transcription without the presence of the polymerase. RNA processing events that take place on the transcribed pre-mRNA include capping, splicing, editing, 3′ processing, and polyadenylation. Most of these processes occur co-transcriptionally while the RNA polymerase II (Pol II) enzyme is engaged in transcriptional elongation. How Pol II elongation rates are influenced by splicing is not well understood. We generated a family of inducible gene constructs containing increasing numbers of introns and exons, which were stably integrated in human cells to serve as actively transcribing gene loci. By monitoring the association of the transcription and splicing machineries on these genes in vivo, we showed that only U1 snRNP localized to the intronless gene, consistent with a splicing-independent role for U1 snRNP in transcription. In contrast, all snRNPs accumulated on intron-containing genes, and increasing the number of introns increased the amount of spliceosome components recruited. This indicates that nascent RNA can assemble multiple spliceosomes simultaneously. Kinetic measurements of Pol II elongation in vivo, Pol II ChIP, as well as use of Spliceostatin and Meayamycin splicing inhibitors showed that polymerase elongation rates were uncoupled from ongoing splicing. This study shows that transcription elongation kinetics proceed independently of splicing at the model genes studied here. Surprisingly, retention of polyadenylated mRNA was detected at the transcription site after transcription termination. This suggests that the polymerase is released from chromatin prior to the completion of splicing, and the pre-mRNA is post-transcriptionally processed while still tethered to chromatin near the gene end. The pre-mRNA emerging from RNA polymerase II during eukaryotic transcription undergoes a series of processing events. These include 5′-capping, intron excision and exon ligation during splicing, 3′-end processing, and polyadenylation. Processing events occur co-transcriptionally, meaning that a variety of enzymes assemble on the pre-mRNA while the polymerase is still engaged in transcription. The concept of co-transcriptional mRNA processing raises questions about the possible coupling between the transcribing polymerase and the processing machineries. Here we examine how the co-transcriptional assembly of the splicing machinery (the spliceosome) might affect the elongation kinetics of the RNA polymerase. Using live-cell microscopy, we followed the kinetics of transcription of genes containing increasing numbers of introns and measured the recruitment of transcription and splicing factors. Surprisingly, a sub-set of splicing factors was recruited to an intronless gene, implying that there is a polymerase-coupled scanning mechanism for intronic sequences. There was no difference in polymerase elongation rates on genes with or without introns, suggesting that the spliceosome does not modulate elongation kinetics. Experiments including inhibition of splicing or transcription, together with stochastic computational simulation, demonstrated that pre-mRNAs can be retained on the gene when polymerase termination precedes completion of splicing. Altogether we show that polymerase elongation kinetics are not affected by splicing events on the emerging pre-mRNA, that increased splicing leads to more splicing factors being recruited to the mRNA, and that post-transcriptional splicing can proceed at the site of transcription in the absence of the polymerase.
Collapse
Affiliation(s)
- Yehuda Brody
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Noa Neufeld
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Nicole Bieberstein
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Sebastien Z. Causse
- Functional Imaging of Transcription, Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, CNRS, UMR8197, Paris, France
| | - Eva-Maria Böhnlein
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Karla M. Neugebauer
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Xavier Darzacq
- Functional Imaging of Transcription, Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, CNRS, UMR8197, Paris, France
| | - Yaron Shav-Tal
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
- * E-mail:
| |
Collapse
|
97
|
Sinclair P, Bian Q, Plutz M, Heard E, Belmont AS. Dynamic plasticity of large-scale chromatin structure revealed by self-assembly of engineered chromosome regions. ACTA ACUST UNITED AC 2010; 190:761-76. [PMID: 20819934 PMCID: PMC2935575 DOI: 10.1083/jcb.200912167] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Interphase chromatin compaction well above the 30-nm fiber is well documented, but the structural motifs underlying this level of chromatin folding remain unknown. Taking a reductionist approach, we analyzed in mouse embryonic stem (ES) cells and ES-derived fibroblasts and erythroblasts the folding of 10-160-megabase pair engineered chromosome regions consisting of tandem repeats of bacterial artificial chromosomes (BACs) containing approximately 200 kilobases of mammalian genomic DNA tagged with lac operator (LacO) arrays. Unexpectedly, linear mitotic and interphase chromatid regions formed from noncontiguously folded DNA topologies. Particularly, in ES cells, these model chromosome regions self-organized with distant sequences segregating into functionally distinct, compact domains. Transcriptionally active and histone H3K27me3-modified regions positioned toward the engineered chromosome subterritory exterior, with LacO repeats and the BAC vector backbone localizing within an H3K9me3, HP1-enriched core. Differential compaction of Dhfr and alpha- and beta-globin transgenes was superimposed on dramatic, lineage-specific reorganization of large-scale chromatin folding, demonstrating a surprising plasticity of large-scale chromatin organization.
Collapse
Affiliation(s)
- Paul Sinclair
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
98
|
Naughton C, Sproul D, Hamilton C, Gilbert N. Analysis of active and inactive X chromosome architecture reveals the independent organization of 30 nm and large-scale chromatin structures. Mol Cell 2010; 40:397-409. [PMID: 21070966 PMCID: PMC3038259 DOI: 10.1016/j.molcel.2010.10.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 05/24/2010] [Accepted: 08/26/2010] [Indexed: 11/28/2022]
Abstract
Using a genetic model, we present a high-resolution chromatin fiber analysis of transcriptionally active (Xa) and inactive (Xi) X chromosomes packaged into euchromatin and facultative heterochromatin. Our results show that gene promoters have an open chromatin structure that is enhanced upon transcriptional activation but the Xa and the Xi have similar overall 30 nm chromatin fiber structures. Therefore, the formation of facultative heterochromatin is dependent on factors that act at a level above the 30 nm fiber and transcription does not alter bulk chromatin fiber structures. However, large-scale chromatin structures on Xa are decondensed compared with the Xi and transcription inhibition is sufficient to promote large-scale chromatin compaction. We show a link between transcription and large-scale chromatin packaging independent of the bulk 30 nm chromatin fiber and propose that transcription, not the global compaction of 30 nm chromatin fibers, determines the cytological appearance of large-scale chromatin structures.
Collapse
Affiliation(s)
- Catherine Naughton
- Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh EH4 2XR, UK
| | | | | | | |
Collapse
|
99
|
Tessadori F, Zeng K, Manders E, Riool M, Jackson D, van Driel R. Stable S/MAR-based episomal vectors are regulated at the chromatin level. Chromosome Res 2010; 18:757-75. [PMID: 21080054 PMCID: PMC2996544 DOI: 10.1007/s10577-010-9165-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 10/23/2010] [Accepted: 10/25/2010] [Indexed: 02/02/2023]
Abstract
Episomal vectors assembled from defined genetic components are a promising alternative to traditional gene therapy vectors that integrate in the host genome and may cause insertional mutations. The vector pEPI-eGFP is stably retained in the episomal state in cultured mammalian cells at low copy number for many generations without integration into the host genome. Although pEPI-eGFP is a fully engineered vector, little is known about how it interacts with the host genome and about the molecular mechanisms that are responsible for its transcriptional activity. We have analyzed the expression of the episomal reporter gene eGFP under conditions that affect the chromatin state of the genome. We have also constructed pEPI derivatives carrying a tandem array of lac operator sequences, which allows in vivo visualization and manipulation of the chromatin state of the episome. We show that changes in chromatin state of both the host and pEPI-eGFP induces changes in episomal gene activity and influences the episome’s nuclear distributions. We conclude that episomal genes are subject to control systems of the host, similarly to their counterparts in the host genome.
Collapse
Affiliation(s)
- Federico Tessadori
- Swammerdam Institute for Life Sciences, University of Amsterdam, P.O. Box 94215, 1090GE, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
100
|
Wong PG, Glozak MA, Cao TV, Vaziri C, Seto E, Alexandrow M. Chromatin unfolding by Cdt1 regulates MCM loading via opposing functions of HBO1 and HDAC11-geminin. Cell Cycle 2010; 9:4351-63. [PMID: 20980834 DOI: 10.4161/cc.9.21.13596] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The efficiency of metazoan origins of DNA replication is known to be enhanced by histone acetylation near origins. Although this correlates with increased MCM recruitment, the mechanism by which such acetylation regulates MCM loading is unknown. We show here that Cdt1 induces large-scale chromatin decondensation that is required for MCM recruitment. This process occurs in G₁, is suppressed by Geminin, and requires HBO1 HAT activity and histone H4 modifications. HDAC11, which binds Cdt1 and replication origins during S-phase, potently inhibits Cdt1-induced chromatin unfolding and re-replication, suppresses MCM loading and binds Cdt1 more efficiently in the presence of Geminin. We also demonstrate that chromatin at endogenous origins is more accessible in G₁ relative to S-phase. These results provide evidence that histone acetylation promotes MCM loading via enhanced chromatin accessibility. This process is regulated positively by Cdt1 and HBO1 in G₁ and repressed by Geminin-HDAC11 association with Cdt1 in S-phase, and represents a novel form of replication licensing control.
Collapse
Affiliation(s)
- Philip G Wong
- Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | | | | | | | | |
Collapse
|