51
|
Abstract
This review summarizes current knowledge of synaptic proteins that are central to synaptic vesicle fusion in presynaptic active zones, including SNAREs (soluble N-ethylmaleimide sensitive factor attachment protein receptors), synaptotagmin, complexin, Munc18 (mammalian uncoordinated-18), and Munc13 (mammalian uncoordinated-13), and highlights recent insights in the cooperation of these proteins for neurotransmitter release. Structural and functional studies of the synaptic fusion machinery suggest new molecular models of synaptic vesicle priming and Ca2+-triggered fusion. These studies will be a stepping-stone toward answering the question of how the synaptic vesicle fusion machinery achieves such high speed and sensitivity.
Collapse
Affiliation(s)
- Axel T Brunger
- Department of Molecular and Cellular Physiology, Department of Neurology and Neurological Sciences, Department of Structural Biology, Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA;
| | - Ucheor B Choi
- Department of Molecular and Cellular Physiology, Department of Neurology and Neurological Sciences, Department of Structural Biology, Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA;
| | - Ying Lai
- Department of Molecular and Cellular Physiology, Department of Neurology and Neurological Sciences, Department of Structural Biology, Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA;
| | - Jeremy Leitz
- Department of Molecular and Cellular Physiology, Department of Neurology and Neurological Sciences, Department of Structural Biology, Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA;
| | - Qiangjun Zhou
- Department of Molecular and Cellular Physiology, Department of Neurology and Neurological Sciences, Department of Structural Biology, Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA;
| |
Collapse
|
52
|
Monday HR, Younts TJ, Castillo PE. Long-Term Plasticity of Neurotransmitter Release: Emerging Mechanisms and Contributions to Brain Function and Disease. Annu Rev Neurosci 2018; 41:299-322. [PMID: 29709205 DOI: 10.1146/annurev-neuro-080317-062155] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Long-lasting changes of brain function in response to experience rely on diverse forms of activity-dependent synaptic plasticity. Chief among them are long-term potentiation and long-term depression of neurotransmitter release, which are widely expressed by excitatory and inhibitory synapses throughout the central nervous system and can dynamically regulate information flow in neural circuits. This review article explores recent advances in presynaptic long-term plasticity mechanisms and contributions to circuit function. Growing evidence indicates that presynaptic plasticity may involve structural changes, presynaptic protein synthesis, and transsynaptic signaling. Presynaptic long-term plasticity can alter the short-term dynamics of neurotransmitter release, thereby contributing to circuit computations such as novelty detection, modifications of the excitatory/inhibitory balance, and sensory adaptation. In addition, presynaptic long-term plasticity underlies forms of learning and its dysregulation participates in several neuropsychiatric conditions, including schizophrenia, autism, intellectual disabilities, neurodegenerative diseases, and drug abuse.
Collapse
Affiliation(s)
- Hannah R Monday
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA;
| | - Thomas J Younts
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA;
| |
Collapse
|
53
|
Tao CL, Liu YT, Sun R, Zhang B, Qi L, Shivakoti S, Tian CL, Zhang P, Lau PM, Zhou ZH, Bi GQ. Differentiation and Characterization of Excitatory and Inhibitory Synapses by Cryo-electron Tomography and Correlative Microscopy. J Neurosci 2018; 38:1493-1510. [PMID: 29311144 PMCID: PMC5815350 DOI: 10.1523/jneurosci.1548-17.2017] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 12/17/2017] [Accepted: 12/24/2017] [Indexed: 11/21/2022] Open
Abstract
As key functional units in neural circuits, different types of neuronal synapses play distinct roles in brain information processing, learning, and memory. Synaptic abnormalities are believed to underlie various neurological and psychiatric disorders. Here, by combining cryo-electron tomography and cryo-correlative light and electron microscopy, we distinguished intact excitatory and inhibitory synapses of cultured hippocampal neurons, and visualized the in situ 3D organization of synaptic organelles and macromolecules in their native state. Quantitative analyses of >100 synaptic tomograms reveal that excitatory synapses contain a mesh-like postsynaptic density (PSD) with thickness ranging from 20 to 50 nm. In contrast, the PSD in inhibitory synapses assumes a thin sheet-like structure ∼12 nm from the postsynaptic membrane. On the presynaptic side, spherical synaptic vesicles (SVs) of 25-60 nm diameter and discus-shaped ellipsoidal SVs of various sizes coexist in both synaptic types, with more ellipsoidal ones in inhibitory synapses. High-resolution tomograms obtained using a Volta phase plate and electron filtering and counting reveal glutamate receptor-like and GABAA receptor-like structures that interact with putative scaffolding and adhesion molecules, reflecting details of receptor anchoring and PSD organization. These results provide an updated view of the ultrastructure of excitatory and inhibitory synapses, and demonstrate the potential of our approach to gain insight into the organizational principles of cellular architecture underlying distinct synaptic functions.SIGNIFICANCE STATEMENT To understand functional properties of neuronal synapses, it is desirable to analyze their structure at molecular resolution. We have developed an integrative approach combining cryo-electron tomography and correlative fluorescence microscopy to visualize 3D ultrastructural features of intact excitatory and inhibitory synapses in their native state. Our approach shows that inhibitory synapses contain uniform thin sheet-like postsynaptic densities (PSDs), while excitatory synapses contain previously known mesh-like PSDs. We discovered "discus-shaped" ellipsoidal synaptic vesicles, and their distributions along with regular spherical vesicles in synaptic types are characterized. High-resolution tomograms further allowed identification of putative neurotransmitter receptors and their heterogeneous interaction with synaptic scaffolding proteins. The specificity and resolution of our approach enables precise in situ analysis of ultrastructural organization underlying distinct synaptic functions.
Collapse
Affiliation(s)
- Chang-Lu Tao
- National Laboratory for Physical Sciences at the Microscale
- School of Life Sciences
| | - Yun-Tao Liu
- National Laboratory for Physical Sciences at the Microscale
- School of Life Sciences
| | - Rong Sun
- National Laboratory for Physical Sciences at the Microscale
| | - Bin Zhang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease
- School of Life Sciences
| | - Lei Qi
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease
- School of Life Sciences
| | - Sakar Shivakoti
- National Laboratory for Physical Sciences at the Microscale
- School of Life Sciences
| | - Chong-Li Tian
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease
- School of Life Sciences
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX37BN, United Kingdom
| | - Pak-Ming Lau
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease
- School of Life Sciences
| | - Z Hong Zhou
- National Laboratory for Physical Sciences at the Microscale,
- School of Life Sciences
- The California NanoSystems Institute, and
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California 90095
| | - Guo-Qiang Bi
- National Laboratory for Physical Sciences at the Microscale,
- School of Life Sciences
- Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Innovation Center for Cell Signaling Network, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
54
|
Martín R, Ferrero JJ, Collado-Alsina A, Aguado C, Luján R, Torres M, Sánchez-Prieto J. Bidirectional modulation of glutamatergic synaptic transmission by metabotropic glutamate type 7 receptors at Schaffer collateral-CA1 hippocampal synapses. J Physiol 2018; 596:921-940. [PMID: 29280494 DOI: 10.1113/jp275371] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 12/21/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Neurotransmitter release is inhibited by metabotropic glutamate type 7 (mGlu7 ) receptors that reduce Ca2+ influx, yet synapses lacking this receptor also produce weaker release, suggesting that mGlu7 receptors may also prime synaptic vesicles for release. Prolonged activation of mGlu7 receptors with the agonist l-AP4 first reduces and then enhances the amplitude of EPSCs through a presynaptic effect. The inhibitory response is blocked by pertussis toxin, while the potentiating response is prevented by a phospholipase C inhibitor (U73122) and an inhibitor of diacylglycerol (DAG) binding (calphostin C), suggesting that this receptor also couples to pathways that generate DAG. Release potentiation is associated with an increase in the number of synaptic vesicles close to the plasma membrane, which was dependent on the Munc13-2 and RIM1α proteins. The Glu7 receptors activated by the glutamate released following high frequency stimulation provoke a bidirectional modulation of synaptic transmission. ABSTRACT Neurotransmitter release is driven by Ca2+ influx at synaptic boutons that acts on synaptic vesicles ready to undergo exocytosis. Neurotransmitter release is inhibited when metabotropic glutamate type 7 (mGlu7 ) receptors provoke a reduction in Ca2+ influx, although the reduced release from synapses lacking this receptor suggests that they may also prime synaptic vesicles for release. These mGlu7 receptors activate phospholipase C (PLC) and generate inositol trisphosphate, which in turn releases Ca2+ from intracellular stores and produces diacylglycerol (DAG), an activator of proteins containing DAG-binding domains such as Munc13 and protein kinase C (PKC). However, the full effects of mGlu7 receptor signalling on synaptic transmission are unclear. We found that prolonged activation of mGlu7 receptors with the agonist l-AP4 first reduces and then enhances the amplitude of EPSCs, a presynaptic effect that changes the frequency but not the amplitude of the mEPSCs and the paired pulse ratio. Pertussis toxin blocks the inhibitory response, while the PLC inhibitor U73122, and the inhibitor of DAG binding calphostin C, prevent receptor mediated potentiation. Moreover, this DAG-dependent potentiation of the release machinery brings more synaptic vesicles closer to the active zone plasma membrane in a Munc13-2- and RIM1α-dependent manner. Electrically evoked release of glutamate that activates mGlu7 receptors also bidirectionally modulates synaptic transmission. In these conditions, potentiation now occurs rapidly and it overcomes any inhibition, such that potentiation prevails unless it is suppressed with the PLC inhibitor U73122.
Collapse
Affiliation(s)
- Ricardo Martín
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, 28040, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - José Javier Ferrero
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, 28040, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - Andrea Collado-Alsina
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, 28040, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - Carolina Aguado
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Albacete, Spain
| | - Rafael Luján
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Albacete, Spain
| | - Magdalena Torres
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, 28040, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - José Sánchez-Prieto
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, 28040, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040, Madrid, Spain
| |
Collapse
|
55
|
Jean P, Lopez de la Morena D, Michanski S, Jaime Tobón LM, Chakrabarti R, Picher MM, Neef J, Jung S, Gültas M, Maxeiner S, Neef A, Wichmann C, Strenzke N, Grabner C, Moser T. The synaptic ribbon is critical for sound encoding at high rates and with temporal precision. eLife 2018; 7:29275. [PMID: 29328020 PMCID: PMC5794258 DOI: 10.7554/elife.29275] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/19/2017] [Indexed: 11/30/2022] Open
Abstract
We studied the role of the synaptic ribbon for sound encoding at the synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) in mice lacking RIBEYE (RBEKO/KO). Electron and immunofluorescence microscopy revealed a lack of synaptic ribbons and an assembly of several small active zones (AZs) at each synaptic contact. Spontaneous and sound-evoked firing rates of SGNs and their compound action potential were reduced, indicating impaired transmission at ribbonless IHC-SGN synapses. The temporal precision of sound encoding was impaired and the recovery of SGN-firing from adaptation indicated slowed synaptic vesicle (SV) replenishment. Activation of Ca2+-channels was shifted to more depolarized potentials and exocytosis was reduced for weak depolarizations. Presynaptic Ca2+-signals showed a broader spread, compatible with the altered Ca2+-channel clustering observed by super-resolution immunofluorescence microscopy. We postulate that RIBEYE disruption is partially compensated by multi-AZ organization. The remaining synaptic deficit indicates ribbon function in SV-replenishment and Ca2+-channel regulation. Our sense of hearing relies on our ears quickly and tirelessly processing information in a precise manner. Sounds cause vibrations in a part of the inner ear called the cochlea. Inside the cochlea, the vibrations move hair-like structures on sensory cells that translate these movements into electrical signals. These hair cells are connected to specialized nerve cells that relay the signals to the brain, which then interprets them as sounds. Hair cells communicate with the specialized nerve cells via connections known as chemical synapses. This means that the electrical signals in the hair cell activate channel proteins that allow calcium ions to flow in. This in turn triggers membrane-bound packages called vesicles inside the hair cell to fuse with its surface membrane and release their contents to the outside. The contents, namely chemicals called neurotransmitters, then travels across the space between the cells, relaying the signal to the nerve cell. The junctions between the hair cells and the nerve cells are more specifically known as ribbon synapses. This is because they have a ribbon-like structure that appears to tether a halo of vesicles close to the active zone where neurotransmitters are released. However, the exact role of this synaptic ribbon has remained mysterious despite decades of study. The ribbon is mainly composed of a protein called Ribeye, and now Jean, Lopez de la Morena, Michanski, Jaime Tobón et al. show that mutant mice that lack this protein do not have any ribbons at their “ribbon synapses”. Hair cells without synaptic ribbons are less able to timely and reliably send signals to the nerve cells, most likely because they cannot replenish the vesicles at the synapse quickly enough. Further analysis showed that the synaptic ribbon also helps to regulate the calcium channels at the synapse, which is important for linking the electrical signals in the hair cell to the release of the neurotransmitters. Jean et al. also saw that hair cells without ribbons reorganize their synapses to form multiple active zones that could transfer neurotransmitter to the nerve cells. This could partially compensate for the loss of the ribbons, meaning the impact of their loss may have been underestimated. Future studies could explore this by eliminating the Ribeye protein only after the ribbon synapses are fully formed. These findings may help scientists to better understand deafness and other hearing disorders in humans. They will also be of interest to neuroscientists who research synapses, hearing and other sensory processes.
Collapse
Affiliation(s)
- Philippe Jean
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center, University of Göttingen, Göttingen, Germany.,Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, Göttingen, Germany.,InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany
| | - David Lopez de la Morena
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, Göttingen, Germany.,InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany
| | - Susann Michanski
- Collaborative Research Center, University of Göttingen, Göttingen, Germany.,InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany.,Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany.,Institute for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Lina María Jaime Tobón
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center, University of Göttingen, Göttingen, Germany.,Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, Göttingen, Germany.,InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Rituparna Chakrabarti
- Collaborative Research Center, University of Göttingen, Göttingen, Germany.,Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, Göttingen, Germany.,InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany.,Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany.,Institute for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Maria Magdalena Picher
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center, University of Göttingen, Göttingen, Germany.,InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany
| | - Jakob Neef
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center, University of Göttingen, Göttingen, Germany.,InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - SangYong Jung
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany.,Neuro Modulation and Neuro Circuitry Group, Singapore Bioimaging Consortium (SBIC), Biomedical Sciences Institutes, Singapore, Singapore
| | - Mehmet Gültas
- Department of Breeding Informatics, Georg-August-University Göttingen, Göttingen, Germany
| | - Stephan Maxeiner
- Institute for Anatomy and Cell Biology, University of the Saarland, Homburg, Germany
| | - Andreas Neef
- Bernstein Group Biophysics of Neural Computation, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Carolin Wichmann
- Collaborative Research Center, University of Göttingen, Göttingen, Germany.,InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany.,Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany.,Institute for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Nicola Strenzke
- Collaborative Research Center, University of Göttingen, Göttingen, Germany.,InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany.,Auditory Systems Physiology Group, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany
| | - Chad Grabner
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center, University of Göttingen, Göttingen, Germany.,InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
56
|
Abstract
Characterizing the detailed structure of the mammalian synapse is of crucial importance to understand its mechanisms of function. Here I describe a protocol to study synaptic architecture by cryo-electron tomography (cryo-ET), a powerful electron microscopy technique that enables 3D visualization of unstained, fully hydrated cellular structures at molecular resolution. The protocol focuses on purified synaptic terminals ("synaptosomes"), currently the most suitable preparation to analyze mammalian synaptic architecture by cryo-ET.
Collapse
|
57
|
Vargas KJ, Schrod N, Davis T, Fernandez-Busnadiego R, Taguchi YV, Laugks U, Lucic V, Chandra SS. Synucleins Have Multiple Effects on Presynaptic Architecture. Cell Rep 2017; 18:161-173. [PMID: 28052246 DOI: 10.1016/j.celrep.2016.12.023] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/21/2016] [Accepted: 12/07/2016] [Indexed: 02/01/2023] Open
Abstract
Synucleins (α, β, γ-synuclein) are a family of abundant presynaptic proteins. α-Synuclein is causally linked to the pathogenesis of Parkinson's disease (PD). In an effort to define their physiological and pathological function or functions, we investigated the effects of deleting synucleins and overexpressing α-synuclein PD mutations, in mice, on synapse architecture using electron microscopy (EM) and cryoelectron tomography (cryo-ET). We show that synucleins are regulators of presynapse size and synaptic vesicle (SV) pool organization. Using cryo-ET, we observed that deletion of synucleins increases SV tethering to the active zone but decreases the inter-linking of SVs by short connectors. These ultrastructural changes were correlated with discrete protein phosphorylation changes in αβγ-synuclein-/- neurons. We also determined that α-synuclein PD mutants (PARK1/hA30P and PARK4/hα-syn) primarily affected presynaptic cytomatrix proximal to the active zone, congruent with previous findings that these PD mutations decrease neurotransmission. Collectively, our results suggest that synucleins are important orchestrators of presynaptic terminal topography.
Collapse
Affiliation(s)
- Karina J Vargas
- Department of Neurology, Yale University, New Haven, CT 06536, USA; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University, New Haven, CT 06536, USA
| | - Nikolas Schrod
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Taylor Davis
- Department of Neurology, Yale University, New Haven, CT 06536, USA; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University, New Haven, CT 06536, USA
| | - Ruben Fernandez-Busnadiego
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University, New Haven, CT 06536, USA; Department of Cell Biology, School of Medicine, Yale University, New Haven, CT 06510, USA; Howard Hughes Medical Institute, School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Yumiko V Taguchi
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University, New Haven, CT 06536, USA; Department of Cell Biology, School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Ulrike Laugks
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Vladan Lucic
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Sreeganga S Chandra
- Department of Neurology, Yale University, New Haven, CT 06536, USA; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University, New Haven, CT 06536, USA; Department of Neuroscience, Yale University, New Haven, CT 06519, USA.
| |
Collapse
|
58
|
Satnav for cells: Destination membrane fusion. Cell Calcium 2017; 68:14-23. [PMID: 29129204 DOI: 10.1016/j.ceca.2017.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/20/2017] [Accepted: 10/07/2017] [Indexed: 11/23/2022]
|
59
|
Rothman JE, Krishnakumar SS, Grushin K, Pincet F. Hypothesis - buttressed rings assemble, clamp, and release SNAREpins for synaptic transmission. FEBS Lett 2017; 591:3459-3480. [PMID: 28983915 PMCID: PMC5698743 DOI: 10.1002/1873-3468.12874] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/02/2017] [Accepted: 10/02/2017] [Indexed: 11/21/2022]
Abstract
Neural networks are optimized to detect temporal coincidence on the millisecond timescale. Here, we offer a synthetic hypothesis based on recent structural insights into SNAREs and the C2 domain proteins to explain how synaptic transmission can keep this pace. We suggest that an outer ring of up to six curved Munc13 ‘MUN’ domains transiently anchored to the plasma membrane via its flanking domains surrounds a stable inner ring comprised of synaptotagmin C2 domains to serve as a work‐bench on which SNAREpins are templated. This ‘buttressed‐ring hypothesis’ affords straightforward answers to many principal and long‐standing questions concerning how SNAREpins can be assembled, clamped, and then released synchronously with an action potential.
Collapse
Affiliation(s)
- James E Rothman
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Shyam S Krishnakumar
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Kirill Grushin
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Frederic Pincet
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.,Laboratoire de Physique Statistique, Ecole Normale Supérieure, PSL Research University, Université Paris Diderot Sorbonne Paris Cité, Sorbonne Universités UPMC Univ, CNRS, Paris, France
| |
Collapse
|
60
|
Butola T, Wichmann C, Moser T. Piccolo Promotes Vesicle Replenishment at a Fast Central Auditory Synapse. Front Synaptic Neurosci 2017; 9:14. [PMID: 29118709 PMCID: PMC5660988 DOI: 10.3389/fnsyn.2017.00014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/09/2017] [Indexed: 12/20/2022] Open
Abstract
Piccolo and Bassoon are the two largest cytomatrix of the active zone (CAZ) proteins involved in scaffolding and regulating neurotransmitter release at presynaptic active zones (AZs), but have long been discussed as being functionally redundant. We employed genetic manipulation to bring forth and segregate the role of Piccolo from that of Bassoon at central auditory synapses of the cochlear nucleus—the endbulbs of Held. These synapses specialize in high frequency synaptic transmission, ideally poised to reveal even subtle deficits in the regulation of neurotransmitter release upon molecular perturbation. Combining semi-quantitative immunohistochemistry, electron microscopy, and in vitro and in vivo electrophysiology we first studied signal transmission in Piccolo-deficient mice. Our analysis was not confounded by a cochlear deficit, as a short isoform of Piccolo (“Piccolino”) present at the upstream ribbon synapses of cochlear inner hair cells (IHC), is unaffected by the mutation. Disruption of Piccolo increased the abundance of Bassoon at the AZs of endbulbs, while that of RIM1 was reduced and other CAZ proteins remained unaltered. Presynaptic fiber stimulation revealed smaller amplitude of the evoked excitatory postsynaptic currents (eEPSC), while eEPSC kinetics as well as miniature EPSCs (mEPSCs) remained unchanged. Cumulative analysis of eEPSC trains indicated that the reduced eEPSC amplitude of Piccolo-deficient endbulb synapses is primarily due to a reduced readily releasable pool (RRP) of synaptic vesicles (SV), as was corroborated by a reduction of vesicles at the AZ found on an ultrastructural level. Release probability seemed largely unaltered. Recovery from short-term depression was slowed. We then performed a physiological analysis of endbulb synapses from mice which, in addition to Piccolo deficiency, lacked one functional allele of the Bassoon gene. Analysis of the double-mutant endbulbs revealed an increase in release probability, while the synapses still exhibited the reduced RRP, and the impairment in SV replenishment was exacerbated. We propose additive roles of Piccolo and Bassoon in SV replenishment which in turn influences the organization and size of the RRP, and an additional role of Bassoon in regulation of release probability.
Collapse
Affiliation(s)
- Tanvi Butola
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences (GGNB), University of Göttingen, Göttingen, Germany.,International Max Planck Research School for Neurosciences (IMPRS), Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry (MPG), Göttingen, Germany
| | - Carolin Wichmann
- Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences (GGNB), University of Göttingen, Göttingen, Germany.,Collaborative Research Centers 889 and 1286, University of Göttingen, Göttingen, Germany.,Molecular Architecture of Synapses Group, Center for Biostructural Imaging of Neurodegeneration (BIN), University of Göttingen, Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences (GGNB), University of Göttingen, Göttingen, Germany.,International Max Planck Research School for Neurosciences (IMPRS), Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry (MPG), Göttingen, Germany.,Collaborative Research Centers 889 and 1286, University of Göttingen, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University of Göttingen, Göttingen, Germany
| |
Collapse
|
61
|
Spinal Fbxo3-Dependent Fbxl2 Ubiquitination of Active Zone Protein RIM1α Mediates Neuropathic Allodynia through CaV2.2 Activation. J Neurosci 2017; 36:9722-38. [PMID: 27629721 DOI: 10.1523/jneurosci.1732-16.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/28/2016] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Spinal plasticity, a key process mediating neuropathic pain development, requires ubiquitination-dependent protein turnover. Presynaptic active zone proteins have a crucial role in regulating vesicle exocytosis, which is essential for synaptic plasticity. Nevertheless, the mechanism for ubiquitination-regulated turnover of presynaptic active zone proteins in the progression of spinal plasticity-associated neuropathic pain remains unclear. Here, after research involving Sprague Dawley rats, we reported that spinal nerve ligation (SNL), in addition to causing allodynia, enhances the Rab3-interactive molecule-1α (RIM1α), a major active zone protein presumed to regulate neural plasticity, specifically in the synaptic plasma membranes (SPMs) of the ipsilateral dorsal horn. Spinal RIM1α-associated allodynia was mediated by Fbxo3, which abates Fbxl2-dependent RIM1α ubiquitination. Subsequently, following deubiquitination, enhanced RIM1α directly binds to CaV2.2, resulting in increased CaV2.2 expression in the SPMs of the dorsal horn. While exhibiting no effect on Fbxo3/Fbxl2 signaling, the focal knockdown of spinal RIM1α expression reversed the SNL-induced allodynia and increased spontaneous EPSC (sEPSC) frequency by suppressing RIM1α-facilitated CaV2.2 expression in the dorsal horn. Intrathecal applications of BC-1215 (a Fbxo3 activity inhibitor), Fbxl2 mRNA-targeting small-interfering RNA, and ω-conotoxin GVIA (a CaV2.2 blocker) attenuated RIM1α upregulation, enhanced RIM1α expression, and exhibited no effect on RIM1α expression, respectively. These results confirm the prediction that spinal presynaptic Fbxo3-dependent Fbxl2 ubiquitination promotes the subsequent RIM1α/CaV2.2 cascade in SNL-induced neuropathic pain. Our findings identify a role of the presynaptic active zone protein in pain-associated plasticity. That is, RIM1α-facilitated CaV2.2 expression plays a role in the downstream signaling of Fbxo3-dependent Fbxl2 ubiquitination/degradation to promote spinal plasticity underlying the progression of nociceptive hypersensitivity following neuropathic injury. SIGNIFICANCE STATEMENT Ubiquitination is a well known process required for protein degradation. Studies investigating pain pathology have demonstrated that ubiquitination contributes to chronic pain by regulating the turnover of synaptic proteins. Here, we found that the spinal presynaptic active zone protein Rab3-interactive molecule-1α (RIM1α) participates in neuropathic pain development by binding to and upregulating the expression of CaV2.2. In addition, Fbxo3 modifies this pathway by inhibiting Fbxl2-mediated RIM1α ubiquitination, suggesting that presynaptic protein ubiquitination makes a crucial contribution to the development of neuropathic pain. Research in this area, now in its infancy, could potentially provide a novel therapeutic strategy for pain relief.
Collapse
|
62
|
Analysis of RIM Expression and Function at Mouse Photoreceptor Ribbon Synapses. J Neurosci 2017; 37:7848-7863. [PMID: 28701482 DOI: 10.1523/jneurosci.2795-16.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 05/15/2017] [Accepted: 06/18/2017] [Indexed: 12/18/2022] Open
Abstract
RAB3A-interacting molecule (RIM) proteins are important regulators of transmitter release from active zones. At conventional chemical synapses, RIMs contribute substantially to vesicle priming and docking and their loss reduces the readily releasable pool of synaptic vesicles by up to 75%. The priming function of RIMs is mediated via the formation of a tripartite complex with Munc13 and RAB3A, which brings synaptic vesicles in close proximity to Ca2+ channels and the fusion site and activates Munc13. We reported previously that, at mouse photoreceptor ribbon synapses, vesicle priming is Munc13 independent. In this study, we examined RIM expression, distribution, and function at male and female mouse photoreceptor ribbon synapses. We provide evidence that RIM1α and RIM1β are highly likely absent from mouse photoreceptors and that RIM2α is the major large RIM isoform present at photoreceptor ribbon synapses. We show that mouse photoreceptors predominantly express RIM2 variants that lack the interaction domain for Munc13. Loss of full-length RIM2α in a RIM2α mutant mouse only marginally perturbs photoreceptor synaptic transmission. Our findings therefore strongly argue for a priming mechanism at the photoreceptor ribbon synapse that is independent of the formation of a RIM-Munc13-RAB3A complex and thus provide further evidence for a fundamental difference between photoreceptor ribbon synapses and conventional chemical synapses in synaptic vesicle exocytosis.SIGNIFICANCE STATEMENT RAB3A-interacting molecules 1 and 2 (RIM1/2) are essential regulators of exocytosis. At conventional chemical synapses, their function involves Ca2+ channel clustering and synaptic vesicle priming and docking through interactions with Munc13 and RAB3A, respectively. Examining wild-type and RIM2 mutant mice, we show here that the sensory photoreceptor ribbon synapses most likely lack RIM1 and predominantly express RIM2 variants that lack the interaction domain for Munc13. Our findings demonstrate that the photoreceptor-specific RIM variants are not essential for synaptic vesicle priming at photoreceptor ribbon synapses, which represents a fundamental difference between photoreceptor ribbon synapses and conventional chemical synapses with respect to synaptic vesicle priming mechanisms.
Collapse
|
63
|
Kawabe H, Mitkovski M, Kaeser PS, Hirrlinger J, Opazo F, Nestvogel D, Kalla S, Fejtova A, Verrier SE, Bungers SR, Cooper BH, Varoqueaux F, Wang Y, Nehring RB, Gundelfinger ED, Rosenmund C, Rizzoli SO, Südhof TC, Rhee JS, Brose N. ELKS1 localizes the synaptic vesicle priming protein bMunc13-2 to a specific subset of active zones. J Cell Biol 2017; 216:1143-1161. [PMID: 28264913 PMCID: PMC5379939 DOI: 10.1083/jcb.201606086] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 06/18/2016] [Accepted: 01/10/2017] [Indexed: 12/26/2022] Open
Abstract
Presynaptic active zones (AZs) are unique subcellular structures at neuronal synapses, which contain a network of specific proteins that control synaptic vesicle (SV) tethering, priming, and fusion. Munc13s are core AZ proteins with an essential function in SV priming. In hippocampal neurons, two different Munc13s-Munc13-1 and bMunc13-2-mediate opposite forms of presynaptic short-term plasticity and thus differentially affect neuronal network characteristics. We found that most presynapses of cortical and hippocampal neurons contain only Munc13-1, whereas ∼10% contain both Munc13-1 and bMunc13-2. Whereas the presynaptic recruitment and activation of Munc13-1 depends on Rab3-interacting proteins (RIMs), we demonstrate here that bMunc13-2 is recruited to synapses by the AZ protein ELKS1, but not ELKS2, and that this recruitment determines basal SV priming and short-term plasticity. Thus, synapse-specific interactions of different Munc13 isoforms with ELKS1 or RIMs are key determinants of the molecular and functional heterogeneity of presynaptic AZs.
Collapse
Affiliation(s)
- Hiroshi Kawabe
- Department of Molecular Neurobiology, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Miso Mitkovski
- Light Microscopy Facility, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Pascal S Kaeser
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Johannes Hirrlinger
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
- Carl Ludwig Institute for Physiology, University of Leipzig, 04109 Leipzig, Germany
| | - Felipe Opazo
- Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, 37073 Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University of Göttingen Medical Center, 37073 Göttingen, Germany
| | - Dennis Nestvogel
- Department of Molecular Neurobiology, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Stefan Kalla
- Department of Molecular Neurobiology, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Anna Fejtova
- Department of Neurochemistry and Molecular Biology, Leibniz Institute of Neurobiology, 39118 Magdeburg, Germany
- Research Group Presynaptic Plasticity, Leibniz Institute of Neurobiology and Center for Behavioral Brain Sciences, Otto von Guericke University, 39106 Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Sophie E Verrier
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Simon R Bungers
- Department of Molecular Neurobiology, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Benjamin H Cooper
- Department of Molecular Neurobiology, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Frederique Varoqueaux
- Department of Molecular Neurobiology, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Yun Wang
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Ralf B Nehring
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
| | - Eckart D Gundelfinger
- Department of Neurochemistry and Molecular Biology, Leibniz Institute of Neurobiology, 39118 Magdeburg, Germany
| | - Christian Rosenmund
- Neuroscience Research Centre and NeuroCure, Charité, University Medicine Berlin, 10117 Berlin, Germany
| | - Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, 37073 Göttingen, Germany
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Jeong-Seop Rhee
- Department of Molecular Neurobiology, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| |
Collapse
|
64
|
Chen RHC, Li Q, Snidal CA, Gardezi SR, Stanley EF. The Calcium Channel C-Terminal and Synaptic Vesicle Tethering: Analysis by Immuno-Nanogold Localization. Front Cell Neurosci 2017; 11:85. [PMID: 28424589 PMCID: PMC5371611 DOI: 10.3389/fncel.2017.00085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 03/13/2017] [Indexed: 12/27/2022] Open
Abstract
At chemical synapses the incoming action potential triggers the influx of Ca2+ through voltage-sensitive calcium channels (CaVs, typically CaV2.1 and 2.2) and the ions binds to sensors associated with docked, transmitter filled synaptic vesicles (SVs), triggering their fusion and discharge. The CaVs and docked SVs are located within the active zone (AZ) region of the synapse which faces a corresponding neurotransmitter receptor-rich region on the post-synaptic cell. Evidence that the fusion of a SV can be gated by Ca2+ influx through a single CaV suggests that the channel and docked vesicle are linked by one or more molecular tethers (Stanley, 1993). Short and long fibrous SV-AZ linkers have been identified in presynaptic terminals by electron microscopy and we recently imaged these in cytosol-vacated synaptosome ‘ghosts.’ Using CaV fusion proteins combined with blocking peptides we previously identified a SV binding site near the tip of the CaV2.2 C-terminal suggesting that this intracellular channel domain participates in SV tethering. In this study, we combined the synaptosome ghost imaging method with immunogold labeling to localize CaV intracellular domains. L45, raised against the C-terminal tip, tagged tethered SVs often as far as 100 nm from the AZ membrane whereas NmidC2, raised against a C-terminal mid-region peptide, and C2Nt, raised against a peptide nearer the C-terminal origin, resulted in gold particles that were proportionally closer to the AZ. Interestingly, the observation of gold-tagged SVs with NmidC2 suggests a novel SV binding site in the C-terminal mid region. Our results implicate the CaV C-terminal in SV tethering at the AZ with two possible functions: first, capturing SVs from the nearby cytoplasm and second, contributing to the localization of the SV close to the channel to permit single domain gating.
Collapse
Affiliation(s)
- Robert H C Chen
- Laboratory of Synaptic Transmission, Krembil Research Institute,Toronto, ON, Canada
| | - Qi Li
- Laboratory of Synaptic Transmission, Krembil Research Institute,Toronto, ON, Canada
| | - Christine A Snidal
- Laboratory of Synaptic Transmission, Krembil Research Institute,Toronto, ON, Canada
| | - Sabiha R Gardezi
- Laboratory of Synaptic Transmission, Krembil Research Institute,Toronto, ON, Canada
| | - Elise F Stanley
- Laboratory of Synaptic Transmission, Krembil Research Institute,Toronto, ON, Canada
| |
Collapse
|
65
|
Harris MC, Cislo D, Lenz JS, Umbach C, Lindau M. AFM/TIRF force clamp measurements of neurosecretory vesicle tethers reveal characteristic unfolding steps. PLoS One 2017; 12:e0173993. [PMID: 28323853 PMCID: PMC5360256 DOI: 10.1371/journal.pone.0173993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/01/2017] [Indexed: 12/31/2022] Open
Abstract
Although several proteins have been implicated in secretory vesicle tethering, the identity and mechanical properties of the components forming the physical vesicle-plasma membrane link remain unknown. Here we present the first experimental measurements of nanomechanical properties of secretory vesicle-plasma membrane tethers using combined AFM force clamp and TIRF microscopy on membrane sheets from PC12 cells expressing the vesicle marker ANF-eGFP. Application of pulling forces generated tether extensions composed of multiple steps with variable length. The frequency of short (<10 nm) tether extension events was markedly higher when a fluorescent vesicle was present at the cantilever tip and increased in the presence of GTPγS, indicating that these events reflect specifically the properties of vesicle-plasma membrane tethers. The magnitude of the short tether extension events is consistent with extension lengths expected from progressive unfolding of individual helices of the exocyst complex, supporting its direct role in forming the physical vesicle-plasma membrane link.
Collapse
Affiliation(s)
- Mark C. Harris
- School of Applied and Engineering Physics, Engineering, Cornell University, Ithaca, NY, United States of America
| | - Dillon Cislo
- School of Applied and Engineering Physics, Engineering, Cornell University, Ithaca, NY, United States of America
| | - Joan S. Lenz
- School of Applied and Engineering Physics, Engineering, Cornell University, Ithaca, NY, United States of America
| | - Christopher Umbach
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States of America
| | - Manfred Lindau
- School of Applied and Engineering Physics, Engineering, Cornell University, Ithaca, NY, United States of America
- Laboratory for Nanoscale Cell Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
- * E-mail:
| |
Collapse
|
66
|
A stochastic model of active zone material mediated synaptic vesicle docking and priming at resting active zones. Sci Rep 2017; 7:278. [PMID: 28325932 PMCID: PMC5428245 DOI: 10.1038/s41598-017-00360-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/21/2017] [Indexed: 11/09/2022] Open
Abstract
Synaptic vesicles (SVs) fuse with the presynaptic membrane (PM) at specialized regions called active zones for synaptic transmission. SVs are associated with dense aggregates of macromolecules called active zone material (AZM) that has been thought to be involved in SV release. However, its role has recently begun to be elucidated. Several morphological studies proposed distinctively different AZM mediated SV docking and priming models: sequential and concurrent SV docking/priming. To explore ways to reconcile the contradictory models we develop a stochastic AZM mediated SV docking and priming model. We assume that the position of each connection site of the AZM macromolecules on their SV, directly linking the SV with the PM, varies by random shortening and lengthening of the macromolecules at resting active zones. We also perform computer simulations of SVs near the PM at resting active zones, and the results show that the distribution of the AZM connection sites can significantly affect the SV's docking efficiency and distribution of its contact area with the PM, thus priming and that the area correlates with the shape of the SVs providing a way to account for seemingly irreconcilable observations reported about the spatial relationship of SVs with the PM at active zones.
Collapse
|
67
|
Deciphering the molecular architecture of membrane contact sites by cryo-electron tomography. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1507-1512. [PMID: 28330771 DOI: 10.1016/j.bbamcr.2017.03.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/13/2017] [Accepted: 03/17/2017] [Indexed: 01/16/2023]
Abstract
At membrane contact sites (MCS) two cellular membranes form tight appositions that play critical roles in fundamental phenomena such as lipid metabolism or Ca2+ homeostasis. The interest for these structures has surged in recent years, bringing about the characterization of a plethora of MCS-resident molecules. How those molecules are structurally organized at MCS remains enigmatic, limiting our understanding of MCS function. Whereas such molecular detail is obscured by conventional electron microscopy sample preparation, cryo-electron tomography (cryo-ET) allows high resolution imaging of cellular landscapes in close-to-native conditions. Here we briefly review the fundamentals of cryo-ET and how recent developments in this technique are beginning to unveil the molecular architecture of MCS. This article is part of a Special Issue entitled: Membrane Contact Sites edited by Christian Ungermann and Benoit Kornmann.
Collapse
|
68
|
Imig C, Cooper BH. 3D Analysis of Synaptic Ultrastructure in Organotypic Hippocampal Slice Culture by High-Pressure Freezing and Electron Tomography. Methods Mol Biol 2017; 1538:215-231. [PMID: 27943193 DOI: 10.1007/978-1-4939-6688-2_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Transmission electron microscopy serves as a valuable tool for synaptic structure-function analyses aimed at identifying morphological features or modifications associated with specific developmental stages or dysfunctional synaptic states. By utilizing cryo-preparation techniques to minimize the introduction of structural artifacts during sample preparation, and electron tomography to reconstruct the 3D ultrastructural architecture of a synapse, the spatial organization and morphological properties of synaptic organelles and subcompartments can be quantified with unparalleled precision. In this chapter, we present an experimental approach combining organotypic slice culture, high-pressure freezing, automated freeze-substitution, and electron tomography to investigate spatial relationships between synaptic vesicles and active zone release sites in synapses from lethal mouse mutants.
Collapse
Affiliation(s)
- Cordelia Imig
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075, Göttingen, Germany
| | - Benjamin H Cooper
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075, Göttingen, Germany.
| |
Collapse
|
69
|
Lučić V, Fernández-Busnadiego R, Laugks U, Baumeister W. Hierarchical detection and analysis of macromolecular complexes in cryo-electron tomograms using Pyto software. J Struct Biol 2016; 196:503-514. [PMID: 27742578 DOI: 10.1016/j.jsb.2016.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/15/2016] [Accepted: 10/06/2016] [Indexed: 11/29/2022]
Abstract
Molecular complexes, arguably the basic units carrying cellular function, can be visualized directly in their native environment by cryo-electron tomography. Here we describe a procedure for the detection of small, pleomorphic membrane-bound molecular complexes in cryo-tomograms by a hierarchical connectivity segmentation. Validation on phantom and real data showed above 90% true positive rates. This segmentation procedure is implemented in the Pyto software package, together with methods for quantitative characterization and classification of complexes detected by our segmentation procedure and for statistical analysis between experimental conditions. Therefore, the methods presented provide a means for the detection and quantitative interpretation of structures captured in cryo-electron tomograms, as well as for the elucidation of their cellular function.
Collapse
Affiliation(s)
- Vladan Lučić
- Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | | | - Ulrike Laugks
- Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Wolfgang Baumeister
- Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| |
Collapse
|
70
|
Kinetic barriers to SNAREpin assembly in the regulation of membrane docking/priming and fusion. Proc Natl Acad Sci U S A 2016; 113:10536-41. [PMID: 27601655 DOI: 10.1073/pnas.1604000113] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Neurotransmission is achieved by soluble NSF attachment protein receptor (SNARE)-driven fusion of readily releasable vesicles that are docked and primed at the presynaptic plasma membrane. After neurotransmission, the readily releasable pool of vesicles must be refilled in less than 100 ms for subsequent release. Here we show that the initial association of SNARE complexes, SNAREpins, is far too slow to support this rapid refilling owing to an inherently high activation energy barrier. Our data suggest that acceleration of this process, i.e., lowering of the barrier, is physiologically necessary and can be achieved by molecular factors. Furthermore, under zero force, a low second energy barrier transiently traps SNAREpins in a half-zippered state similar to the partial assembly that engages calcium-sensitive regulatory machinery. This result suggests that the barrier must be actively raised in vivo to generate a sufficient pause in the zippering process for the regulators to set in place. We show that the heights of the activation energy barriers can be selectively changed by molecular factors. Thus, it is possible to modify, both in vitro and in vivo, the lifespan of each metastable state. This controllability provides a simple model in which vesicle docking/priming, an intrinsically slow process, can be substantially accelerated. It also explains how the machinery that regulates vesicle fusion can be set in place while SNAREpins are trapped in a half-zippered state.
Collapse
|
71
|
Zhan H, Bruckner J, Zhang Z, O’Connor-Giles K. Three-dimensional imaging of Drosophila motor synapses reveals ultrastructural organizational patterns. J Neurogenet 2016; 30:237-246. [PMID: 27981875 PMCID: PMC5281062 DOI: 10.1080/01677063.2016.1253693] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/22/2016] [Accepted: 10/24/2016] [Indexed: 01/18/2023]
Abstract
We combined cryo-preservation of intact Drosophila larvae and electron tomography with comprehensive segmentation of key features to reconstruct the complete ultrastructure of a model glutamatergic synapse in a near-to-native state. Presynaptically, we detail a complex network of filaments that connects and organizes synaptic vesicles. We link the complexity of this synaptic vesicle network to proximity to the active zone cytomatrix, consistent with the model that these protein structures function together to regulate synaptic vesicle pools. We identify a net-shaped network of electron-dense filaments spanning the synaptic cleft that suggests conserved organization of trans-synaptic adhesion complexes at excitatory synapses. Postsynaptically, we characterize a regular pattern of macromolecules that yields structural insights into the scaffolding of neurotransmitter receptors. Together, these analyses reveal an unexpected level of conservation in the nanoscale organization of diverse glutamatergic synapses and provide a structural foundation for understanding the molecular machines that regulate synaptic communication at a powerful model synapse.
Collapse
Affiliation(s)
- Hong Zhan
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706
| | - Joseph Bruckner
- Cell and Molecular Biology Training Program, University of Wisconsin-Madison, Madison, WI 53706
| | - Ziheng Zhang
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706
| | - Kate O’Connor-Giles
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706
- Cell and Molecular Biology Training Program, University of Wisconsin-Madison, Madison, WI 53706
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
72
|
Rothman JS, Kocsis L, Herzog E, Nusser Z, Silver RA. Physical determinants of vesicle mobility and supply at a central synapse. eLife 2016; 5. [PMID: 27542193 PMCID: PMC5025287 DOI: 10.7554/elife.15133] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 08/14/2016] [Indexed: 12/22/2022] Open
Abstract
Encoding continuous sensory variables requires sustained synaptic signalling. At several sensory synapses, rapid vesicle supply is achieved via highly mobile vesicles and specialized ribbon structures, but how this is achieved at central synapses without ribbons is unclear. Here we examine vesicle mobility at excitatory cerebellar mossy fibre synapses which sustain transmission over a broad frequency bandwidth. Fluorescent recovery after photobleaching in slices from VGLUT1Venus knock-in mice reveal 75% of VGLUT1-containing vesicles have a high mobility, comparable to that at ribbon synapses. Experimentally constrained models establish hydrodynamic interactions and vesicle collisions are major determinants of vesicle mobility in crowded presynaptic terminals. Moreover, models incorporating 3D reconstructions of vesicle clouds near active zones (AZs) predict the measured releasable pool size and replenishment rate from the reserve pool. They also show that while vesicle reloading at AZs is not diffusion-limited at the onset of release, diffusion limits vesicle reloading during sustained high-frequency signalling. DOI:http://dx.doi.org/10.7554/eLife.15133.001
Collapse
Affiliation(s)
- Jason Seth Rothman
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Laszlo Kocsis
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Etienne Herzog
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Team Synapse in Cognition, Interdisciplinary Institute for Neuroscience, Université de Bordeaux, UMR 5297, F-33000, Bordeaux, France
| | - Zoltan Nusser
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Robin Angus Silver
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
73
|
|
74
|
Visualization and Sequencing of Membrane Remodeling Leading to Influenza Virus Fusion. J Virol 2016; 90:6948-6962. [PMID: 27226364 DOI: 10.1128/jvi.00240-16] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 05/14/2016] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Protein-mediated membrane fusion is an essential step in many fundamental biological events, including enveloped virus infection. The nature of protein and membrane intermediates and the sequence of membrane remodeling during these essential processes remain poorly understood. Here we used cryo-electron tomography (cryo-ET) to image the interplay between influenza virus and vesicles with a range of lipid compositions. By following the population kinetics of membrane fusion intermediates imaged by cryo-ET, we found that membrane remodeling commenced with the hemagglutinin fusion protein spikes grappling onto the target membrane, followed by localized target membrane dimpling as local clusters of hemagglutinin started to undergo conformational refolding. The local dimples then transitioned to extended, tightly apposed contact zones where the two proximal membrane leaflets were in most cases indistinguishable from each other, suggesting significant dehydration and possible intermingling of the lipid head groups. Increasing the content of fusion-enhancing cholesterol or bis-monoacylglycerophosphate in the target membrane led to an increase in extended contact zone formation. Interestingly, hemifused intermediates were found to be extremely rare in the influenza virus fusion system studied here, most likely reflecting the instability of this state and its rapid conversion to postfusion complexes, which increased in population over time. By tracking the populations of fusion complexes over time, the architecture and sequence of membrane reorganization leading to efficient enveloped virus fusion were thus resolved. IMPORTANCE Enveloped viruses employ specialized surface proteins to mediate fusion of cellular and viral membranes that results in the formation of pores through which the viral genetic material is delivered to the cell. For influenza virus, the trimeric hemagglutinin (HA) glycoprotein spike mediates host cell attachment and membrane fusion. While structures of a subset of conformations and parts of the fusion machinery have been characterized, the nature and sequence of membrane deformations during fusion have largely eluded characterization. Building upon studies that focused on early stages of HA-mediated membrane remodeling, here cryo-electron tomography (cryo-ET) was used to image the three-dimensional organization of intact influenza virions at different stages of fusion with liposomes, leading all the way to completion of the fusion reaction. By monitoring the evolution of fusion intermediate populations over the course of acid-induced fusion, we identified the progression of membrane reorganization that leads to efficient fusion by an enveloped virus.
Collapse
|
75
|
Takahashi C, Muto S, Yamamoto H. A microscopy method for scanning transmission electron microscopy imaging of the antibacterial activity of polymeric nanoparticles on a biofilm with an ionic liquid. J Biomed Mater Res B Appl Biomater 2016; 105:1432-1437. [DOI: 10.1002/jbm.b.33680] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 03/09/2016] [Accepted: 03/29/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Chisato Takahashi
- Pharmaceutical Engineering; School of Pharmacy; Aichi Gakuin University; Nagoya Aichi Japan
| | - Shunsuke Muto
- Institute of Materials and Systems for Sustainability; Nagoya University; Nagoya Aichi Japan
| | - Hiromitsu Yamamoto
- Pharmaceutical Engineering; School of Pharmacy; Aichi Gakuin University; Nagoya Aichi Japan
| |
Collapse
|
76
|
Körber C, Kuner T. Molecular Machines Regulating the Release Probability of Synaptic Vesicles at the Active Zone. Front Synaptic Neurosci 2016; 8:5. [PMID: 26973506 PMCID: PMC4773589 DOI: 10.3389/fnsyn.2016.00005] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/17/2016] [Indexed: 11/13/2022] Open
Abstract
The fusion of synaptic vesicles (SVs) with the plasma membrane of the active zone (AZ) upon arrival of an action potential (AP) at the presynaptic compartment is a tightly regulated probabilistic process crucial for information transfer. The probability of a SV to release its transmitter content in response to an AP, termed release probability (Pr), is highly diverse both at the level of entire synapses and individual SVs at a given synapse. Differences in Pr exist between different types of synapses, between synapses of the same type, synapses originating from the same axon and even between different SV subpopulations within the same presynaptic terminal. The Pr of SVs at the AZ is set by a complex interplay of different presynaptic properties including the availability of release-ready SVs, the location of the SVs relative to the voltage-gated calcium channels (VGCCs) at the AZ, the magnitude of calcium influx upon arrival of the AP, the buffering of calcium ions as well as the identity and sensitivity of the calcium sensor. These properties are not only interconnected, but can also be regulated dynamically to match the requirements of activity patterns mediated by the synapse. Here, we review recent advances in identifying molecules and molecular machines taking part in the determination of vesicular Pr at the AZ.
Collapse
Affiliation(s)
- Christoph Körber
- Department of Functional Neuroanatomy, Institute of Anatomy and Cell Biology, Heidelberg University Heidelberg, Germany
| | - Thomas Kuner
- Department of Functional Neuroanatomy, Institute of Anatomy and Cell Biology, Heidelberg University Heidelberg, Germany
| |
Collapse
|
77
|
Szule JA, Jung JH, McMahan UJ. The structure and function of 'active zone material' at synapses. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0189. [PMID: 26009768 DOI: 10.1098/rstb.2014.0189] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The docking of synaptic vesicles on the presynaptic membrane and their priming for fusion with it to mediate synaptic transmission of nerve impulses typically occur at structurally specialized regions on the membrane called active zones. Stable components of active zones include aggregates of macromolecules, 'active zone material' (AZM), attached to the presynaptic membrane, and aggregates of Ca(2+)-channels in the membrane, through which Ca(2+) enters the cytosol to trigger impulse-evoked vesicle fusion with the presynaptic membrane by interacting with Ca(2+)-sensors on the vesicles. This laboratory has used electron tomography to study, at macromolecular spatial resolution, the structure and function of AZM at the simply arranged active zones of axon terminals at frog neuromuscular junctions. The results support the conclusion that AZM directs the docking and priming of synaptic vesicles and essential positioning of Ca(2+)-channels relative to the vesicles' Ca(2+)-sensors. Here we review the findings and comment on their applicability to understanding mechanisms of docking, priming and Ca(2+)-triggering at other synapses, where the arrangement of active zone components differs.
Collapse
Affiliation(s)
- Joseph A Szule
- Department of Biology, Texas A&M University, College Station, TX 77845, USA
| | - Jae Hoon Jung
- Department of Biology, Texas A&M University, College Station, TX 77845, USA
| | - Uel J McMahan
- Department of Biology, Texas A&M University, College Station, TX 77845, USA
| |
Collapse
|
78
|
Abstract
The priming of a docked synaptic vesicle determines the probability of its membrane (VM) fusing with the presynaptic membrane (PM) when a nerve impulse arrives. To gain insight into the nature of priming, we searched by electron tomography for structural relationships correlated with fusion probability at active zones of axon terminals at frog neuromuscular junctions. For terminals fixed at rest, the contact area between the VM of docked vesicles and PM varied >10-fold with a normal distribution. There was no merging of the membranes. For terminals fixed during repetitive evoked synaptic transmission, the normal distribution of contact areas was shifted to the left, due in part to a decreased number of large contact areas, and there was a subpopulation of large contact areas where the membranes were hemifused, an intermediate preceding complete fusion. Thus, fusion probability of a docked vesicle is related to the extent of its VM-PM contact area. For terminals fixed 1 h after activity, the distribution of contact areas recovered to that at rest, indicating the extent of a VM-PM contact area is dynamic and in equilibrium. The extent of VM-PM contact areas in resting terminals correlated with eccentricity in vesicle shape caused by force toward the PM and with shortness of active zone material macromolecules linking vesicles to PM components, some thought to include Ca(2+) channels. We propose that priming is a variable continuum of events imposing variable fusion probability on each vesicle and is regulated by force-generating shortening of active zone material macromolecules in dynamic equilibrium.
Collapse
|
79
|
In Situ Cryo-Electron Tomography: A Post-Reductionist Approach to Structural Biology. J Mol Biol 2016; 428:332-343. [DOI: 10.1016/j.jmb.2015.09.030] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/28/2015] [Accepted: 09/30/2015] [Indexed: 11/24/2022]
|
80
|
Fernandez JJ, Laugks U, Schaffer M, Bäuerlein FJB, Khoshouei M, Baumeister W, Lucic V. Removing Contamination-Induced Reconstruction Artifacts from Cryo-electron Tomograms. Biophys J 2015; 110:850-9. [PMID: 26743046 DOI: 10.1016/j.bpj.2015.10.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/06/2015] [Accepted: 10/26/2015] [Indexed: 01/03/2023] Open
Abstract
Imaging of fully hydrated, vitrified biological samples by electron tomography yields structural information about cellular protein complexes in situ. Here we present a computational procedure that removes artifacts of three-dimensional reconstruction caused by contamination present in samples during imaging by electron microscopy. Applying the procedure to phantom data and electron tomograms of cellular samples significantly improved the resolution and the interpretability of tomograms. Artifacts caused by surface contamination associated with thinning by focused ion beam, as well as those arising from gold fiducial markers and from common, lower contrast contamination, could be removed. Our procedure is widely applicable and is especially suited for applications that strive to reach a higher resolution and involve the use of recently developed, state-of-the-art instrumentation.
Collapse
Affiliation(s)
- Jose-Jesus Fernandez
- Centro Nacional de Biotecnologia (Consejo Superior de Investigaciones Científicas), Madrid, Spain.
| | - Ulrike Laugks
- Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | | | | | | | | | - Vladan Lucic
- Max-Planck-Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
81
|
Three-Dimensional Structural Characterization of HIV-1 Tethered to Human Cells. J Virol 2015; 90:1507-21. [PMID: 26582000 DOI: 10.1128/jvi.01880-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/14/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Tetherin (BST2, CD317, or HM1.24) is a host cellular restriction factor that prevents the release of enveloped viruses by mechanically linking virions to the plasma membrane. The precise arrangement of tetherin molecules at the plasma membrane site of HIV-1 assembly, budding, and restriction is not well understood. To gain insight into the biophysical mechanism underlying tetherin-mediated restriction of HIV-1, we utilized cryo-electron tomography (cryo-ET) to directly visualize HIV-1 virus-like particles (VLPs) and virions tethered to human cells in three dimensions (3D). Rod-like densities that we refer to as tethers were seen connecting HIV-1 virions to each other and to the plasma membrane. Native immunogold labeling showed tetherin molecules located on HIV-1 VLPs and virions in positions similar to those of the densities observed by cryo-ET. The location of the tethers with respect to the ordered immature Gag lattice or mature conical core was random. However, tethers were not uniformly distributed on the viral membrane but rather formed clusters at sites of contact with the cell or other virions. Chains of tethered HIV-1 virions often were arranged in a linear fashion, primarily as single chains and, to a lesser degree, as branched chains. Distance measurements support the extended tetherin model, in which the coiled-coil ectodomains are oriented perpendicular with respect to the viral and plasma membranes. IMPORTANCE Tetherin is a cellular factor that restricts HIV-1 release by directly cross-linking the virus to the host cell plasma membrane. We used cryo-electron tomography to visualize HIV-1 tethered to human cells in 3D. We determined that tetherin-restricted HIV-1 virions were physically connected to each other or to the plasma membrane by filamentous tethers that resembled rods ∼15 nm in length, which is consistent with the extended tetherin model. In addition, we found the position of the tethers to be arbitrary relative to the ordered immature Gag lattice or the mature conical cores. However, when present as multiple copies, the tethers clustered at the interface between virions. Tethered HIV-1 virions were arranged in a linear fashion, with the majority as single chains. This study advances our understanding of tetherin-mediated HIV-1 restriction by defining the spatial arrangement and orientation of tetherin molecules at sites of HIV-1 restriction.
Collapse
|
82
|
Impact of Chromogranin A deficiency on catecholamine storage, catecholamine granule morphology and chromaffin cell energy metabolism in vivo. Cell Tissue Res 2015; 363:693-712. [PMID: 26572539 DOI: 10.1007/s00441-015-2316-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/16/2015] [Indexed: 01/01/2023]
Abstract
Chromogranin A (CgA) is a prohormone and granulogenic factor in neuroendocrine tissues with a regulated secretory pathway. The impact of CgA depletion on secretory granule formation has been previously demonstrated in cell culture. However, studies linking the structural effects of CgA deficiency with secretory performance and cell metabolism in the adrenomedullary chromaffin cells in vivo have not previously been reported. Adrenomedullary content of the secreted adrenal catecholamines norepinephrine (NE) and epinephrine (EPI) was decreased 30-40 % in Chga-KO mice. Quantification of NE and EPI-storing dense core (DC) vesicles (DCV) revealed decreased DCV numbers in chromaffin cells in Chga-KO mice. For both cell types, the DCV diameter in Chga-KO mice was less (100-200 nm) than in WT mice (200-350 nm). The volume density of the vesicle and vesicle number was also lower in Chga-KO mice. Chga-KO mice showed an ~47 % increase in DCV/DC ratio, implying vesicle swelling due to increased osmotically active free catecholamines. Upon challenge with 2 U/kg insulin, there was a diminution in adrenomedullary EPI, no change in NE and a very large increase in the EPI and NE precursor dopamine (DA), consistent with increased catecholamine biosynthesis during prolonged secretion. We found dilated mitochondrial cristae, endoplasmic reticulum and Golgi complex, as well as increased synaptic mitochondria, synaptic vesicles and glycogen granules in Chga-KO mice compared to WT mice, suggesting that decreased granulogenesis and catecholamine storage in CgA-deficient mouse adrenal medulla is compensated by increased VMAT-dependent catecholamine update into storage vesicles, at the expense of enhanced energy expenditure by the chromaffin cell.
Collapse
|
83
|
Bacaj T, Wu D, Burré J, Malenka RC, Liu X, Südhof TC. Synaptotagmin-1 and -7 Are Redundantly Essential for Maintaining the Capacity of the Readily-Releasable Pool of Synaptic Vesicles. PLoS Biol 2015; 13:e1002267. [PMID: 26437117 PMCID: PMC4593569 DOI: 10.1371/journal.pbio.1002267] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/27/2015] [Indexed: 12/29/2022] Open
Abstract
In forebrain neurons, Ca(2+) triggers exocytosis of readily releasable vesicles by binding to synaptotagmin-1 and -7, thereby inducing fast and slow vesicle exocytosis, respectively. Loss-of-function of synaptotagmin-1 or -7 selectively impairs the fast and slow phase of release, respectively, but does not change the size of the readily-releasable pool (RRP) of vesicles as measured by stimulation of release with hypertonic sucrose, or alter the rate of vesicle priming into the RRP. Here we show, however, that simultaneous loss-of-function of both synaptotagmin-1 and -7 dramatically decreased the capacity of the RRP, again without altering the rate of vesicle priming into the RRP. Either synaptotagmin-1 or -7 was sufficient to rescue the RRP size in neurons lacking both synaptotagmin-1 and -7. Although maintenance of RRP size was Ca(2+)-independent, mutations in Ca(2+)-binding sequences of synaptotagmin-1 or synaptotagmin-7--which are contained in flexible top-loop sequences of their C2 domains--blocked the ability of these synaptotagmins to maintain the RRP size. Both synaptotagmins bound to SNARE complexes; SNARE complex binding was reduced by the top-loop mutations that impaired RRP maintenance. Thus, synaptotagmin-1 and -7 perform redundant functions in maintaining the capacity of the RRP in addition to nonredundant functions in the Ca(2+) triggering of different phases of release.
Collapse
Affiliation(s)
- Taulant Bacaj
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University, Stanford, California, United States of America
| | - Dick Wu
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University, Stanford, California, United States of America
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University Medical School, Stanford, California, United States of America
| | - Jacqueline Burré
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University, Stanford, California, United States of America
| | - Robert C. Malenka
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University Medical School, Stanford, California, United States of America
| | - Xinran Liu
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Thomas C. Südhof
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
84
|
Mohrmann R, Dhara M, Bruns D. Complexins: small but capable. Cell Mol Life Sci 2015; 72:4221-35. [PMID: 26245303 PMCID: PMC4611016 DOI: 10.1007/s00018-015-1998-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/09/2015] [Accepted: 07/20/2015] [Indexed: 11/02/2022]
Abstract
Despite intensive research, it is still unclear how an immediate and profound acceleration of exocytosis is triggered by appropriate Ca(2+)-stimuli in presynaptic terminals. This is due to the fact that the molecular mechanisms of "docking" and "priming" reactions, which set up secretory vesicles to fuse at millisecond time scale, are extremely hard to study. Yet, driven by a fruitful combination of in vitro and in vivo analyses, our mechanistic understanding of Ca(2+)-triggered vesicle fusion has certainly advanced in the past few years. In this review, we aim to highlight recent progress and emerging views on the molecular mechanisms, by which constitutively forming SNAREpins are organized in functional, tightly regulated units for synchronized release. In particular, we will focus on the role of the small regulatory factor complexin whose function in Ca(2+)-dependent exocytosis has been controversially discussed for more than a decade. Special emphasis will also be laid on the functional relationship of complexin and synaptotagmin, as both proteins possibly act as allies and/or antagonists to govern SNARE-mediated exocytosis.
Collapse
Affiliation(s)
- Ralf Mohrmann
- Zentrum für Human- und Molekularbiologie, University of Saarland, CIPMM, 66421, Homburg/Saar, Germany. .,Medical Faculty, Department of Physiology, University of Saarland, CIPMM, 66421, Homburg/Saar, Germany.
| | - Madhurima Dhara
- Medical Faculty, Department of Physiology, University of Saarland, CIPMM, 66421, Homburg/Saar, Germany
| | - Dieter Bruns
- Medical Faculty, Department of Physiology, University of Saarland, CIPMM, 66421, Homburg/Saar, Germany.
| |
Collapse
|
85
|
Ackermann F, Waites CL, Garner CC. Presynaptic active zones in invertebrates and vertebrates. EMBO Rep 2015; 16:923-38. [PMID: 26160654 DOI: 10.15252/embr.201540434] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/19/2015] [Indexed: 11/09/2022] Open
Abstract
The regulated release of neurotransmitter occurs via the fusion of synaptic vesicles (SVs) at specialized regions of the presynaptic membrane called active zones (AZs). These regions are defined by a cytoskeletal matrix assembled at AZs (CAZ), which functions to direct SVs toward docking and fusion sites and supports their maturation into the readily releasable pool. In addition, CAZ proteins localize voltage-gated Ca(2+) channels at SV release sites, bringing the fusion machinery in close proximity to the calcium source. Proteins of the CAZ therefore ensure that vesicle fusion is temporally and spatially organized, allowing for the precise and reliable release of neurotransmitter. Importantly, AZs are highly dynamic structures, supporting presynaptic remodeling, changes in neurotransmitter release efficacy, and thus presynaptic forms of plasticity. In this review, we discuss recent advances in the study of active zones, highlighting how the CAZ molecularly defines sites of neurotransmitter release, endocytic zones, and the integrity of synapses.
Collapse
Affiliation(s)
- Frauke Ackermann
- German Center for Neurodegenerative Disease, Charité Medical University, Berlin, Germany
| | - Clarissa L Waites
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Craig C Garner
- German Center for Neurodegenerative Disease, Charité Medical University, Berlin, Germany
| |
Collapse
|
86
|
Wichmann C, Moser T. Relating structure and function of inner hair cell ribbon synapses. Cell Tissue Res 2015; 361:95-114. [PMID: 25874597 PMCID: PMC4487357 DOI: 10.1007/s00441-014-2102-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/18/2014] [Indexed: 01/28/2023]
Abstract
In the mammalian cochlea, sound is encoded at synapses between inner hair cells (IHCs) and type I spiral ganglion neurons (SGNs). Each SGN receives input from a single IHC ribbon-type active zone (AZ) and yet SGNs indefatigably spike up to hundreds of Hz to encode acoustic stimuli with submillisecond precision. Accumulating evidence indicates a highly specialized molecular composition and structure of the presynapse, adapted to suit these high functional demands. However, we are only beginning to understand key features such as stimulus-secretion coupling, exocytosis mechanisms, exo-endocytosis coupling, modes of endocytosis and vesicle reformation, as well as replenishment of the readily releasable pool. Relating structure and function has become an important avenue in addressing these points and has been applied to normal and genetically manipulated hair cell synapses. Here, we review some of the exciting new insights gained from recent studies of the molecular anatomy and physiology of IHC ribbon synapses.
Collapse
Affiliation(s)
- C. Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Collaborative Research Center 889, University Medical Center Göttingen, Göttingen, Germany
| | - T. Moser
- Collaborative Research Center 889, University Medical Center Göttingen, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University of Göttingen, Göttingen, Germany
- Bernstein Center for Computational Neuroscience, University of Göttingen, Göttingen, Germany
| |
Collapse
|
87
|
Rab3-interacting molecules 2α and 2β promote the abundance of voltage-gated CaV1.3 Ca2+ channels at hair cell active zones. Proc Natl Acad Sci U S A 2015; 112:E3141-9. [PMID: 26034270 DOI: 10.1073/pnas.1417207112] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ca(2+) influx triggers the fusion of synaptic vesicles at the presynaptic active zone (AZ). Here we demonstrate a role of Ras-related in brain 3 (Rab3)-interacting molecules 2α and β (RIM2α and RIM2β) in clustering voltage-gated CaV1.3 Ca(2+) channels at the AZs of sensory inner hair cells (IHCs). We show that IHCs of hearing mice express mainly RIM2α, but also RIM2β and RIM3γ, which all localize to the AZs, as shown by immunofluorescence microscopy. Immunohistochemistry, patch-clamp, fluctuation analysis, and confocal Ca(2+) imaging demonstrate that AZs of RIM2α-deficient IHCs cluster fewer synaptic CaV1.3 Ca(2+) channels, resulting in reduced synaptic Ca(2+) influx. Using superresolution microscopy, we found that Ca(2+) channels remained clustered in stripes underneath anchored ribbons. Electron tomography of high-pressure frozen synapses revealed a reduced fraction of membrane-tethered vesicles, whereas the total number of membrane-proximal vesicles was unaltered. Membrane capacitance measurements revealed a reduction of exocytosis largely in proportion with the Ca(2+) current, whereas the apparent Ca(2+) dependence of exocytosis was unchanged. Hair cell-specific deletion of all RIM2 isoforms caused a stronger reduction of Ca(2+) influx and exocytosis and significantly impaired the encoding of sound onset in the postsynaptic spiral ganglion neurons. Auditory brainstem responses indicated a mild hearing impairment on hair cell-specific deletion of all RIM2 isoforms or global inactivation of RIM2α. We conclude that RIM2α and RIM2β promote a large complement of synaptic Ca(2+) channels at IHC AZs and are required for normal hearing.
Collapse
|
88
|
Bruckner JJ, Zhan H, O'Connor-Giles KM. Advances in imaging ultrastructure yield new insights into presynaptic biology. Front Cell Neurosci 2015; 9:196. [PMID: 26052269 PMCID: PMC4440913 DOI: 10.3389/fncel.2015.00196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/05/2015] [Indexed: 11/13/2022] Open
Abstract
Synapses are the fundamental functional units of neural circuits, and their dysregulation has been implicated in diverse neurological disorders. At presynaptic terminals, neurotransmitter-filled synaptic vesicles are released in response to calcium influx through voltage-gated calcium channels activated by the arrival of an action potential. Decades of electrophysiological, biochemical, and genetic studies have contributed to a growing understanding of presynaptic biology. Imaging studies are yielding new insights into how synapses are organized to carry out their critical functions. The development of techniques for rapid immobilization and preservation of neuronal tissues for electron microscopy (EM) has led to a new renaissance in ultrastructural imaging that is rapidly advancing our understanding of synapse structure and function.
Collapse
Affiliation(s)
- Joseph J Bruckner
- Cell and Molecular Biology Training Program, University of Wisconsin-Madison Madison, WI, USA
| | - Hong Zhan
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison Madison, WI, USA
| | - Kate M O'Connor-Giles
- Cell and Molecular Biology Training Program, University of Wisconsin-Madison Madison, WI, USA ; Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison Madison, WI, USA ; Laboratory of Genetics, University of Wisconsin-Madison Madison, WI, USA
| |
Collapse
|
89
|
Keller D, Babai N, Kochubey O, Han Y, Markram H, Schürmann F, Schneggenburger R. An Exclusion Zone for Ca2+ Channels around Docked Vesicles Explains Release Control by Multiple Channels at a CNS Synapse. PLoS Comput Biol 2015; 11:e1004253. [PMID: 25951120 PMCID: PMC4423980 DOI: 10.1371/journal.pcbi.1004253] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/23/2015] [Indexed: 01/08/2023] Open
Abstract
The spatial arrangement of Ca2+ channels and vesicles remains unknown for most CNS synapses, despite of the crucial importance of this geometrical parameter for the Ca2+ control of transmitter release. At a large model synapse, the calyx of Held, transmitter release is controlled by several Ca2+ channels in a "domain overlap" mode, at least in young animals. To study the geometrical constraints of Ca2+ channel placement in domain overlap control of release, we used stochastic MCell modelling, at active zones for which the position of docked vesicles was derived from electron microscopy (EM). We found that random placement of Ca2+ channels was unable to produce high slope values between release and presynaptic Ca2+ entry, a hallmark of domain overlap, and yielded excessively large release probabilities. The simple assumption that Ca2+ channels can be located anywhere at active zones, except below a critical distance of ~ 30 nm away from docked vesicles ("exclusion zone"), rescued high slope values and low release probabilities. Alternatively, high slope values can also be obtained by placing all Ca2+ channels into a single supercluster, which however results in significantly higher heterogeneity of release probabilities. We also show experimentally that high slope values, and the sensitivity to the slow Ca2+ chelator EGTA-AM, are maintained with developmental maturation of the calyx synapse. Taken together, domain overlap control of release represents a highly organized active zone architecture in which Ca2+ channels must obey a certain distance to docked vesicles. Furthermore, domain overlap can be employed by near-mature, fast-releasing synapses. Ca2+ channels provide the rise in intracellular Ca2+ concentration necessary to initiate the membrane fusion of transmitter—filled vesicles at synapses. Because Ca2+ diffuses away from Ca2+ channels, the distance between Ca2+ channels and vesicles on the range of tens of nanometers is a crucial determinant of the vesicle fusion probability. However, there is still little experimental evidence on how Ca2+ channels and vesicles co-localize in the nanospace of a single synapse. We show by computational modelling that the channels should be located at some distance to vesicles (~ 30 nm), to allow for release control by several channels, a release mechanism found at many synapses. In realistic synapses with a high density of docked vesicles, this translates into a likely localization of Ca2+ channels at membrane sites not occupied by docked vesicles. Thus, we present a computational model of how Ca2+ channels can be localized in an active zone with several docked vesicles, to enable control of release by several Ca2+ channels.
Collapse
Affiliation(s)
- Daniel Keller
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Norbert Babai
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Olexiy Kochubey
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Yunyun Han
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Henry Markram
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Felix Schürmann
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ralf Schneggenburger
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
90
|
Abstract
Exocytosis is a highly regulated process that consists of multiple functionally, kinetically and/or morphologically definable stages such as recruitment, targeting, tethering and docking of secretory vesicles with the plasma membrane, priming of the fusion machinery and calcium-triggered membrane fusion. After fusion, the membrane around the secretory vesicle is incorporated into the plasma membrane and the granule releases its contents. The proteins involved in these processes belong to several highly conserved families: Rab GTPases, SNAREs (soluble NSF-attachment protein receptors), α-SNAP (α-NSF attachment protein), NSF (N-ethylmaleimide-sensitive factor), Munc13 and -18, complexins and synaptotagmins. In the present article, the molecules of exocytosis are reviewed, using human sperm as a model system. Sperm exocytosis is driven by isoforms of the same proteinaceous fusion machinery mentioned above, with their functions orchestrated in a hierarchically organized and unidirectional signalling cascade. In addition to the universal exocytosis regulator calcium, this cascade includes other second messengers such as diacylglycerol, inositol 1,4,5-trisphosphate and cAMP, as well as the enzymes that synthesize them and their target proteins. Of special interest is the cAMP-binding protein Epac (exchange protein directly activated by cAMP) due in part to its enzymatic activity towards Rap. The activation of Epac and Rap leads to a highly localized calcium signal which, together with assembly of the SNARE complex, governs the final stages of exocytosis. The source of this releasable calcium is the secretory granule itself.
Collapse
|
91
|
Milovanovic D, Jahn R. Organization and dynamics of SNARE proteins in the presynaptic membrane. Front Physiol 2015; 6:89. [PMID: 25852575 PMCID: PMC4365744 DOI: 10.3389/fphys.2015.00089] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 03/05/2015] [Indexed: 01/19/2023] Open
Abstract
Our view of the lateral organization of lipids and proteins in the plasma membrane has evolved substantially in the last few decades. It is widely accepted that many, if not all, plasma membrane proteins and lipids are organized in specific domains. These domains vary widely in size, composition, and stability, and they represent platforms governing diverse cell functions. The presynaptic plasma membrane is a well-studied example of a membrane which undergoes rearrangements, especially during exo- and endocytosis. Many proteins and lipids involved in presynaptic function are known, and major efforts have been made to understand their spatial organization and dynamics. Here, we focus on the mechanisms underlying the organization of SNAREs, the key proteins of the fusion machinery, in distinct domains, and we discuss the functional significance of these clusters.
Collapse
Affiliation(s)
- Dragomir Milovanovic
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry Göttingen, Germany
| | - Reinhard Jahn
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry Göttingen, Germany
| |
Collapse
|
92
|
Perkins GA, Jackson DR, Spirou GA. Resolving presynaptic structure by electron tomography. Synapse 2015; 69:268-82. [PMID: 25683026 DOI: 10.1002/syn.21813] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 02/07/2015] [Accepted: 02/11/2015] [Indexed: 01/09/2023]
Abstract
A key goal in neurobiology is to generate a theoretical framework that merges structural, physiological, and molecular explanations of brain function. These categories of explanation do not advance in synchrony; advances in one category define new experiments in other categories. For example, the synapse was defined physiologically and biochemically before it was visualized using electron microscopy. Indeed, the original descriptions of synapses in the 1950s were lent credence by the presence of spherical vesicles in presynaptic terminals that were considered to be the substrate for quantal neurotransmission. In the last few decades, our understanding of synaptic function has again been driven by physiological and molecular techniques. The key molecular players for synaptic vesicle structure, mobility and fusion were identified and applications of the patch clamp technique permitted physiological estimation of neurotransmitter release and receptor properties. These advances demand higher resolution structural images of synapses. During the 1990s a second renaissance in cell biology driven by EM was fueled by improved techniques for electron tomography (ET) with the ability to compute virtual images with nm resolution between image planes. Over the last 15 years, ET has been applied to the presynaptic terminal with special attention to the active zone and organelles of the nerve terminal. In this review, we first summarize the technical improvements that have led to a resurgence in utilization of ET and then we summarize new insights gained by the application of ET to reveal the high-resolution structure of the nerve terminal.
Collapse
Affiliation(s)
- Guy A Perkins
- National Center for Microscopy and Imaging Research, University of California, San Diego, San Diego, California, 92092-0608
| | | | | |
Collapse
|
93
|
Michel K, Müller JA, Oprişoreanu AM, Schoch S. The presynaptic active zone: A dynamic scaffold that regulates synaptic efficacy. Exp Cell Res 2015; 335:157-64. [PMID: 25720549 DOI: 10.1016/j.yexcr.2015.02.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 02/10/2015] [Indexed: 12/30/2022]
Abstract
Before fusing with the presynaptic plasma membrane to release neurotransmitter into the synaptic cleft synaptic vesicles have to be recruited to and docked at a specialized area of the presynaptic nerve terminal, the active zone. Exocytosis of synaptic vesicles is restricted to the presynaptic active zone, which is characterized by a unique and highly interconnected set of proteins. The protein network at the active zone is integrally involved in this process and also mediates changes in release properties, for example in response to alterations in the level of neuronal network activity. In recent years the development of novel techniques has greatly advanced our understanding of the molecular identity of respective active zone components as well as of the ultrastructure of this membranous subcompartment and of the SV release machinery. Furthermore, active zones are now viewed as dynamic structures whose composition and size are correlated with synaptic efficacy. Therefore, the dynamic remodeling of the protein network at the active zone has emerged as one potential mechanism underlying acute and long-term synaptic plasticity. Here, we will discuss this recent progress and its implications for our view of the role of the AZ in synaptic function.
Collapse
Affiliation(s)
- Katrin Michel
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, 53105 Bonn, Germany
| | - Johannes Alexander Müller
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, 53105 Bonn, Germany
| | - Ana-Maria Oprişoreanu
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, 53105 Bonn, Germany
| | - Susanne Schoch
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, 53105 Bonn, Germany; Department of Epileptology University of Bonn Medical Center, 53105 Bonn, Germany.
| |
Collapse
|
94
|
Ehmann N, Sauer M, Kittel RJ. Super-resolution microscopy of the synaptic active zone. Front Cell Neurosci 2015; 9:7. [PMID: 25688186 PMCID: PMC4311638 DOI: 10.3389/fncel.2015.00007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/07/2015] [Indexed: 12/31/2022] Open
Abstract
Brain function relies on accurate information transfer at chemical synapses. At the presynaptic active zone (AZ) a variety of specialized proteins are assembled to complex architectures, which set the basis for speed, precision and plasticity of synaptic transmission. Calcium channels are pivotal for the initiation of excitation-secretion coupling and, correspondingly, capture a central position at the AZ. Combining quantitative functional studies with modeling approaches has provided predictions of channel properties, numbers and even positions on the nanometer scale. However, elucidating the nanoscopic organization of the surrounding protein network requires direct ultrastructural access. Without this information, knowledge of molecular synaptic structure-function relationships remains incomplete. Recently, super-resolution microscopy (SRM) techniques have begun to enter the neurosciences. These approaches combine high spatial resolution with the molecular specificity of fluorescence microscopy. Here, we discuss how SRM can be used to obtain information on the organization of AZ proteins.
Collapse
Affiliation(s)
- Nadine Ehmann
- Department of Neurophysiology, Institute of Physiology, University of Würzburg Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, University of Würzburg Würzburg, Germany
| | - Robert J Kittel
- Department of Neurophysiology, Institute of Physiology, University of Würzburg Würzburg, Germany
| |
Collapse
|
95
|
Vogl C, Cooper BH, Neef J, Wojcik SM, Reim K, Reisinger E, Brose N, Rhee JS, Moser T, Wichmann C. Unconventional molecular regulation of synaptic vesicle replenishment in cochlear inner hair cells. J Cell Sci 2015; 128:638-44. [PMID: 25609709 DOI: 10.1242/jcs.162099] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Ribbon synapses of cochlear inner hair cells (IHCs) employ efficient vesicle replenishment to indefatigably encode sound. In neurons, neuroendocrine and immune cells, vesicle replenishment depends on proteins of the mammalian uncoordinated 13 (Munc13, also known as Unc13) and Ca(2+)-dependent activator proteins for secretion (CAPS) families, which prime vesicles for exocytosis. Here, we tested whether Munc13 and CAPS proteins also regulate exocytosis in mouse IHCs by combining immunohistochemistry with auditory systems physiology and IHC patch-clamp recordings of exocytosis in mice lacking Munc13 and CAPS isoforms. Surprisingly, we did not detect Munc13 or CAPS proteins at IHC presynaptic active zones and found normal IHC exocytosis as well as auditory brainstem responses (ABRs) in Munc13 and CAPS deletion mutants. Instead, we show that otoferlin, a C2-domain protein that is crucial for vesicular fusion and replenishment in IHCs, clusters at the plasma membrane of the presynaptic active zone. Electron tomography of otoferlin-deficient IHC synapses revealed a reduction of short tethers holding vesicles at the active zone, which might be a structural correlate of impaired vesicle priming in otoferlin-deficient IHCs. We conclude that IHCs use an unconventional priming machinery that involves otoferlin.
Collapse
Affiliation(s)
- Christian Vogl
- Institute for Auditory Neuroscience and InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, 37099 Göttingen, Germany
| | - Benjamin H Cooper
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Jakob Neef
- Institute for Auditory Neuroscience and InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, 37099 Göttingen, Germany
| | - Sonja M Wojcik
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Kerstin Reim
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Ellen Reisinger
- Molecular Biology of Cochlear Neurotransmission Group, InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany Collaborative Research Center 889, University of Göttingen, 37099 Göttingen, Germany Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University of Göttingen, 37073 Göttingen, Germany
| | - Jeong-Seop Rhee
- Neurophysiology Group, Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, 37099 Göttingen, Germany Collaborative Research Center 889, University of Göttingen, 37099 Göttingen, Germany Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University of Göttingen, 37073 Göttingen, Germany
| | - Carolin Wichmann
- Institute for Auditory Neuroscience and InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, 37099 Göttingen, Germany Collaborative Research Center 889, University of Göttingen, 37099 Göttingen, Germany Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37099 Göttingen, Germany
| |
Collapse
|
96
|
Mancuso JJ, Cheng J, Yin Z, Gilliam JC, Xia X, Li X, Wong STC. Integration of multiscale dendritic spine structure and function data into systems biology models. Front Neuroanat 2014; 8:130. [PMID: 25429262 PMCID: PMC4228840 DOI: 10.3389/fnana.2014.00130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/22/2014] [Indexed: 12/27/2022] Open
Abstract
Comprising 1011 neurons with 1014 synaptic connections the human brain is the ultimate systems biology puzzle. An increasing body of evidence highlights the observation that changes in brain function, both normal and pathological, consistently correlate with dynamic changes in neuronal anatomy. Anatomical changes occur on a full range of scales from the trafficking of individual proteins, to alterations in synaptic morphology both individually and on a systems level, to reductions in long distance connectivity and brain volume. The major sites of contact for synapsing neurons are dendritic spines, which provide an excellent metric for the number and strength of signaling connections between elements of functional neuronal circuits. A comprehensive model of anatomical changes and their functional consequences would be a holy grail for the field of systems neuroscience but its realization appears far on the horizon. Various imaging technologies have advanced to allow for multi-scale visualization of brain plasticity and pathology, but computational analysis of the big data sets involved forms the bottleneck toward the creation of multiscale models of brain structure and function. While a full accounting of techniques and progress toward a comprehensive model of brain anatomy and function is beyond the scope of this or any other single paper, this review serves to highlight the opportunities for analysis of neuronal spine anatomy and function provided by new imaging technologies and the high-throughput application of older technologies while surveying the strengths and weaknesses of currently available computational analytical tools and room for future improvement.
Collapse
Affiliation(s)
- James J Mancuso
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute Houston, TX, USA ; TT and WF Chao Center for Bioinformatics Research and Imaging for Neurosciences, Houston Methodist Research Institute Houston, TX, USA
| | - Jie Cheng
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute Houston, TX, USA ; TT and WF Chao Center for Bioinformatics Research and Imaging for Neurosciences, Houston Methodist Research Institute Houston, TX, USA
| | - Zheng Yin
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute Houston, TX, USA ; TT and WF Chao Center for Bioinformatics Research and Imaging for Neurosciences, Houston Methodist Research Institute Houston, TX, USA
| | - Jared C Gilliam
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute Houston, TX, USA ; TT and WF Chao Center for Bioinformatics Research and Imaging for Neurosciences, Houston Methodist Research Institute Houston, TX, USA
| | - Xiaofeng Xia
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute Houston, TX, USA ; TT and WF Chao Center for Bioinformatics Research and Imaging for Neurosciences, Houston Methodist Research Institute Houston, TX, USA
| | - Xuping Li
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute Houston, TX, USA ; TT and WF Chao Center for Bioinformatics Research and Imaging for Neurosciences, Houston Methodist Research Institute Houston, TX, USA
| | - Stephen T C Wong
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute Houston, TX, USA ; TT and WF Chao Center for Bioinformatics Research and Imaging for Neurosciences, Houston Methodist Research Institute Houston, TX, USA
| |
Collapse
|
97
|
Imig C, Min SW, Krinner S, Arancillo M, Rosenmund C, Südhof TC, Rhee J, Brose N, Cooper BH. The morphological and molecular nature of synaptic vesicle priming at presynaptic active zones. Neuron 2014; 84:416-31. [PMID: 25374362 DOI: 10.1016/j.neuron.2014.10.009] [Citation(s) in RCA: 299] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2014] [Indexed: 12/22/2022]
Abstract
Synaptic vesicle docking, priming, and fusion at active zones are orchestrated by a complex molecular machinery. We employed hippocampal organotypic slice cultures from mice lacking key presynaptic proteins, cryofixation, and three-dimensional electron tomography to study the mechanism of synaptic vesicle docking in the same experimental setting, with high precision, and in a near-native state. We dissected previously indistinguishable, sequential steps in synaptic vesicle active zone recruitment (tethering) and membrane attachment (docking) and found that vesicle docking requires Munc13/CAPS family priming proteins and all three neuronal SNAREs, but not Synaptotagmin-1 or Complexins. Our data indicate that membrane-attached vesicles comprise the readily releasable pool of fusion-competent vesicles and that synaptic vesicle docking, priming, and trans-SNARE complex assembly are the respective morphological, functional, and molecular manifestations of the same process, which operates downstream of vesicle tethering by active zone components.
Collapse
Affiliation(s)
- Cordelia Imig
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Sang-Won Min
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stefanie Krinner
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Marife Arancillo
- Neuroscience Research Center and NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Christian Rosenmund
- Neuroscience Research Center and NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - JeongSeop Rhee
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany.
| | - Benjamin H Cooper
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany.
| |
Collapse
|
98
|
|
99
|
Meriney SD, Umbach JA, Gundersen CB. Fast, Ca2+-dependent exocytosis at nerve terminals: shortcomings of SNARE-based models. Prog Neurobiol 2014; 121:55-90. [PMID: 25042638 DOI: 10.1016/j.pneurobio.2014.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 04/14/2014] [Accepted: 07/03/2014] [Indexed: 11/30/2022]
Abstract
Investigations over the last two decades have made major inroads in clarifying the cellular and molecular events that underlie the fast, synchronous release of neurotransmitter at nerve endings. Thus, appreciable progress has been made in establishing the structural features and biophysical properties of the calcium (Ca2+) channels that mediate the entry into nerve endings of the Ca2+ ions that trigger neurotransmitter release. It is now clear that presynaptic Ca2+ channels are regulated at many levels and the interplay of these regulatory mechanisms is just beginning to be understood. At the same time, many lines of research have converged on the conclusion that members of the synaptotagmin family serve as the primary Ca2+ sensors for the action potential-dependent release of neurotransmitter. This identification of synaptotagmins as the proteins which bind Ca2+ and initiate the exocytotic fusion of synaptic vesicles with the plasma membrane has spurred widespread efforts to reveal molecular details of synaptotagmin's action. Currently, most models propose that synaptotagmin interfaces directly or indirectly with SNARE (soluble, N-ethylmaleimide sensitive factor attachment receptors) proteins to trigger membrane fusion. However, in spite of intensive efforts, the field has not achieved consensus on the mechanism by which synaptotagmins act. Concurrently, the precise sequence of steps underlying SNARE-dependent membrane fusion remains controversial. This review considers the pros and cons of the different models of SNARE-mediated membrane fusion and concludes by discussing a novel proposal in which synaptotagmins might directly elicit membrane fusion without the intervention of SNARE proteins in this final fusion step.
Collapse
Affiliation(s)
- Stephen D Meriney
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Joy A Umbach
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Cameron B Gundersen
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA.
| |
Collapse
|
100
|
Wong FK, Nath AR, Chen RHC, Gardezi SR, Li Q, Stanley EF. Synaptic vesicle tethering and the CaV2.2 distal C-terminal. Front Cell Neurosci 2014; 8:71. [PMID: 24639630 PMCID: PMC3945931 DOI: 10.3389/fncel.2014.00071] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 02/18/2014] [Indexed: 01/18/2023] Open
Abstract
Evidence that synaptic vesicles (SVs) can be gated by a single voltage sensitive calcium channel (CaV2.2) predict a molecular linking mechanism or "tether" (Stanley, 1993). Recent studies have proposed that the SV binds to the distal C-terminal on the CaV2.2 calcium channel (Kaeser et al., 2011; Wong et al., 2013) while genetic analysis proposed a double tether mechanism via RIM: directly to the C terminus PDZ ligand domain or indirectly via a more proximal proline rich site (Kaeser et al., 2011). Using a novel in vitro SV pull down binding assay, we reported that SVs bind to a fusion protein comprising the C-terminal distal third (C3, aa 2137-2357; Wong et al., 2013). Here we limit the binding site further to the last 58 aa, beyond the proline rich site, by the absence of SV capture by a truncated C3 fusion protein (aa 2137-2299). To test PDZ-dependent binding we generated two C terminus-mutant C3 fusion proteins and a mimetic blocking peptide (H-WC, aa 2349-2357) and validated these by elimination of MINT-1 or RIM binding. Persistence of SV capture with all three fusion proteins or with the full length C3 protein but in the presence of blocking peptide, demonstrated that SVs can bind to the distal C-terminal via a PDZ-independent mechanism. These results were supported in situ by normal SV turnover in H-WC-loaded synaptosomes, as assayed by a novel peptide cryoloading method. Thus, SVs tether to the CaV2.2 C-terminal within a 49 aa region immediately prior to the terminus PDZ ligand domain. Long tethers that could reflect extended C termini were imaged by electron microscopy of synaptosome ghosts. To fully account for SV tethering we propose a model where SVs are initially captured, or "grabbed," from the cytoplasm by a binding site on the distal region of the channel C-terminal and are then retracted to be "locked" close to the channel by a second attachment mechanism in preparation for single channel domain gating.
Collapse
Affiliation(s)
- Fiona K Wong
- Laboratory of Synaptic Transmission, Toronto Western Research Institute Toronto, ON, Canada
| | - Arup R Nath
- Laboratory of Synaptic Transmission, Toronto Western Research Institute Toronto, ON, Canada
| | - Robert H C Chen
- Laboratory of Synaptic Transmission, Toronto Western Research Institute Toronto, ON, Canada
| | - Sabiha R Gardezi
- Laboratory of Synaptic Transmission, Toronto Western Research Institute Toronto, ON, Canada
| | - Qi Li
- Laboratory of Synaptic Transmission, Toronto Western Research Institute Toronto, ON, Canada
| | - Elise F Stanley
- Laboratory of Synaptic Transmission, Toronto Western Research Institute Toronto, ON, Canada
| |
Collapse
|