51
|
Tsuda M, Tone Y, Ogawa C, Nagaoka Y, Katsumata M, Necula A, Howie D, Masuda E, Waldmann H, Tone M. A Bacterial Artificial Chromosome Reporter System for Expression of the Human FOXP3 Gene in Mouse Regulatory T-Cells. Front Immunol 2017; 8:279. [PMID: 28348568 PMCID: PMC5346934 DOI: 10.3389/fimmu.2017.00279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/27/2017] [Indexed: 01/19/2023] Open
Abstract
The transcription factor FOXP3 plays key roles in the development and function of regulatory T cells (Treg) capable of preventing and correcting immunopathology. There has been much interest in exploiting Treg as adoptive cell therapy in man, but issues of lack of nominal antigen-specificity and stability of FoxP3 expression in the face of pro-inflammatory cytokines have been a concern. In order to enable fundamental studies of human FOXP3 (hFOXP3) gene regulation and to provide preclinical tools to guide the selection of drugs that might modulate hFOXP3 expression for therapeutic purposes, we generated hFOXP3/AmCyan bacterial artificial chromosome (BAC) transgenic mice and transfectants, wherein hFOXP3 expression was read out as AmCyan expression. Using the transgenic mice, one can now investigate hFOXP3 gene expression under defined experimental conditions used for mouse Foxp3 (mFoxp3) studies. Here, we demonstrate that hFOXP3 gene expression in BAC transgenic mice is solely restricted to CD4+ T-cells, as for mFoxp3 gene expression, showing that hFOXP3 expression in Treg cells depends on fundamentally similar processes to mFoxp3 expression in these cells. Similarly, hFOXP3 expression could be observed in mouse T-cells through TCR stimulation in the presence of TGF-β. These data suggest that, at least in part, cell type-specific human and mouse foxp3 gene expression is regulated by common regulatory regions which for the human, are located within the 110-kb human FOXP3 BAC DNA. To investigate hFOXP3 gene expression further and to screen potential therapeutics in modulating hFOXP3 gene expression in vitro, we also generated hFOXP3/AmCyan expression reporter cell lines. Using the reporter cells and transcription factor inhibitors, we showed that, just as for mFoxp3 expression, inhibitors of NF-κB, AP1, STAT5, Smad3, and NFAT also block hFOXP3 expression. hFOXP3 induction in the reporter cells was also TGF-β dependent, and substantially enhanced by an mTOR inhibitor, Torin1. In both the reporter transgenic mice and cell lines, histone H4 molecules in the hFOXP3 promoter and enhancers located in human CNS1 and CNS2 regions were highly acetylated in natural Treg and TCR/TGF-β-induced Treg, indicating hFOXP3 gene expression is regulated by mechanisms similar to those previously identified for the mFoxp3 gene.
Collapse
Affiliation(s)
- Masato Tsuda
- Department of Biomedical Sciences, Cedars-Sinai Medical Center , Los Angeles, CA , USA
| | - Yukiko Tone
- Department of Biomedical Sciences, Cedars-Sinai Medical Center , Los Angeles, CA , USA
| | - Chihiro Ogawa
- Department of Biomedical Sciences, Cedars-Sinai Medical Center , Los Angeles, CA , USA
| | - Yoshiko Nagaoka
- Department of Biomedical Sciences, Cedars-Sinai Medical Center , Los Angeles, CA , USA
| | - Makoto Katsumata
- Department of Biomedical Sciences, Cedars-Sinai Medical Center , Los Angeles, CA , USA
| | - Andra Necula
- Sir William Dunn School of Pathology, University of Oxford , Oxford , UK
| | - Duncan Howie
- Sir William Dunn School of Pathology, University of Oxford , Oxford , UK
| | | | - Herman Waldmann
- Sir William Dunn School of Pathology, University of Oxford , Oxford , UK
| | - Masahide Tone
- Department of Biomedical Sciences, Cedars-Sinai Medical Center , Los Angeles, CA , USA
| |
Collapse
|
52
|
Macrophages in gastrointestinal homeostasis and inflammation. Pflugers Arch 2017; 469:527-539. [PMID: 28283748 PMCID: PMC5362667 DOI: 10.1007/s00424-017-1958-2] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 02/12/2017] [Accepted: 02/14/2017] [Indexed: 02/07/2023]
Abstract
Monocyte-derived mononuclear phagocytes, particularly macrophages, are crucial to maintain gastrointestinal homeostasis in the steady state but are also important for protection against certain pathogens. However, when uncontrolled, they can promote immunopathology. Broadly two subsets of macrophages can be considered to perform the vast array of functions to complete these complex tasks: resident macrophages that dominate in the healthy gut and inflammation-elicited (inflammatory) macrophages that derive from circulating monocytes infiltrating inflamed tissue. Here, we discuss the features of resident and inflammatory intestinal macrophages, complexities in identifying and defining these populations and the mechanisms involved in their differentiation. In particular, focus will be placed on describing their unique ontogeny as well as local gastrointestinal signals that instruct specialisation of resident macrophages in healthy tissue. We then explore the very different roles of inflammatory macrophages and describe new data suggesting that they may be educated not only by the gut microenvironment but also by signals they receive during development in the bone marrow. Given the high degree of plasticity of gut macrophages and their multifaceted roles in both healthy and inflamed tissue, understanding the mechanisms controlling their differentiation could inform development of improved therapies for inflammatory diseases such as inflammatory bowel disease (IBD).
Collapse
|
53
|
Roles of RUNX Complexes in Immune Cell Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:395-413. [DOI: 10.1007/978-981-10-3233-2_24] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
54
|
Wawrzyniak P, Wawrzyniak M, Wanke K, Sokolowska M, Bendelja K, Rückert B, Globinska A, Jakiela B, Kast JI, Idzko M, Akdis M, Sanak M, Akdis CA. Regulation of bronchial epithelial barrier integrity by type 2 cytokines and histone deacetylases in asthmatic patients. J Allergy Clin Immunol 2017; 139:93-103. [DOI: 10.1016/j.jaci.2016.03.050] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 03/04/2016] [Accepted: 03/16/2016] [Indexed: 12/11/2022]
|
55
|
Ebel ME, Kansas GS. Functions of Smad Transcription Factors in TGF-β1-Induced Selectin Ligand Expression on Murine CD4 Th Cells. THE JOURNAL OF IMMUNOLOGY 2016; 197:2627-34. [PMID: 27543612 DOI: 10.4049/jimmunol.1600723] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/27/2016] [Indexed: 12/16/2022]
Abstract
Selectins are carbohydrate-binding adhesion molecules that control leukocyte traffic. Induction of selectin ligands on T cells is controlled primarily by cytokines, including TGF-β1, and requires p38α MAPK, but transcriptional mechanisms that underlie cytokine-driven selectin ligand expression are poorly understood. In this study, we show, using mice with conditional deletions of the TGF-β1-responsive transcription factors Smad2, Smad3, or Smad4, that induction of selectin ligands on CD4 cells in response to TGF-β1 requires Smad4 plus either Smad2 or Smad3. Analysis of CD4 cells from mice with only one functional Smad4 allele revealed a sharp gene dosage effect, suggesting the existence of a threshold of TGF-β1 signal strength required for selectin ligand induction. Both Smad4 plus either Smad2 or Smad3 were selectively required for induction of Fut7 and Gcnt1, glycosyltransferases critical for selectin ligand biosynthesis, but they were not required for St3gal4 or St3gal6 induction. Smad4 plus either Smad2 or Smad3 were also required for induction of Runx transcription factors by TGF-β1. Enforced expression of Runx2, but not Runx1 or Runx3, in Smad2/Smad3 doubly deficient CD4 cells restored selectin ligand expression to wild-type levels. In contrast, enforced expression of Runx1, Runx2, or Runx3 failed to restore differentiation of TGF-β1-dependent Th cell lineages, including Th17, Th9, and induced regulatory T cells. These results show that Smads are directly required for Th cell differentiation independent of Runx induction but only indirectly required via Runx2 for TGF-β1-induced selectin ligand induction on murine CD4 T cells.
Collapse
Affiliation(s)
- Mark E Ebel
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Geoffrey S Kansas
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
56
|
Chen T, Liu HX, Yan HY, Wu DM, Ping J. Developmental origins of inflammatory and immune diseases. Mol Hum Reprod 2016; 22:858-65. [PMID: 27226490 DOI: 10.1093/molehr/gaw036] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 05/18/2016] [Indexed: 12/23/2022] Open
Abstract
Epidemiological and experimental animal studies show that suboptimal environments in fetal and neonatal life exert a profound influence on physiological function and risk of diseases in adult life. The concepts of the 'developmental programming' and Developmental Origins of Health and Diseases (DOHaD) have become well accepted and have been applied across almost all fields of medicine. Adverse intrauterine environments may have programming effects on the crucial functions of the immune system during critical periods of fetal development, which can permanently alter the immune function of offspring. Immune dysfunction may in turn lead offspring to be susceptible to inflammatory and immune diseases in adulthood. These facts suggest that inflammatory and immune disorders might have developmental origins. In recent years, inflammatory and immune disorders have become a growing health problem worldwide. However, there is no systematic report in the literature on the developmental origins of inflammatory and immune diseases and the potential mechanisms involved. Here, we review the impacts of adverse intrauterine environments on the immune function in offspring. This review shows the results from human and different animal species and highlights the underlying mechanisms, including damaged development of cells in the thymus, helper T cell 1/helper T cell 2 balance disturbance, abnormal epigenetic modification, effects of maternal glucocorticoid overexposure on fetal lymphocytes and effects of the fetal hypothalamic-pituitary-adrenal axis on the immune system. Although the phenomena have already been clearly implicated in epidemiologic and experimental studies, new studies investigating the mechanisms of these effects may provide new avenues for exploiting these pathways for disease prevention.
Collapse
Affiliation(s)
- Ting Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Han-Xiao Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Hui-Yi Yan
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Dong-Mei Wu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Jie Ping
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| |
Collapse
|
57
|
Hsu FC, Shapiro MJ, Dash B, Chen CC, Constans MM, Chung JY, Romero Arocha SR, Belmonte PJ, Chen MW, McWilliams DC, Shapiro VS. An Essential Role for the Transcription Factor Runx1 in T Cell Maturation. Sci Rep 2016; 6:23533. [PMID: 27020276 PMCID: PMC4810436 DOI: 10.1038/srep23533] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/08/2016] [Indexed: 12/26/2022] Open
Abstract
The transcription factor Runx1 has essential roles throughout hematopoiesis. Here, we demonstrate that Runx1 is critical for T cell maturation. Peripheral naïve CD4(+) T cells from CD4-cre Runx1 cKO mice are phenotypically and functionally immature as shown by decreased production of TNF-α upon TCR stimulation. The loss of peripheral CD4(+) T cells in CD4-cre Runx1 cKO mice is not due to defects in homeostasis or decreased expression of IL-7Rα, as transgenic expression of IL-7Rα does not rescue the loss of CD4(+) T cells. Rather, immature Runx1-deficient CD4(+) T cells are eliminated in the periphery by the activation and fixation of the classical complement pathway. In the thymus, there is a severe block in all aspects of intrathymic T cell maturation, although both positive and negative selection are unaltered. Thus, loss of Runx1 leads to the earliest characterized block in post-positive selection intrathymic maturation of CD4 T cells.
Collapse
Affiliation(s)
- Fan-Chi Hsu
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | | | - Barsha Dash
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | - Chien-Chang Chen
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | - Megan M Constans
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | - Ji Young Chung
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | | | - Paul J Belmonte
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | - Meibo W Chen
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | | | | |
Collapse
|
58
|
Xu X, Ke Y, Yuan J, Liu Y, Li X, Wu D, Qin X, Mao J, Mao K. Trichloroethylene-induced hypersensitivity dermatitis was associated with hepatic metabolic enzyme genes and immune-related genes. Toxicol Res (Camb) 2016; 5:633-640. [PMID: 30090377 PMCID: PMC6062307 DOI: 10.1039/c5tx00400d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/20/2016] [Indexed: 11/21/2022] Open
Abstract
Trichloroethylene (TCE) is one of the common organic solvents that has been widely used in cleaning or degreasing of metal and electronic products. However, hundreds of cases of hypersensitivity dermatitis have occurred after the workers were occupationally exposed to TCE in China over the past decade. The purpose of this study was to investigate mRNA expression of hepatic metabolic enzyme genes, immune-related genes, apoptosis genes and oncogenes in patients with hypersensitivity dermatitis induced by trichloroethylene. 12 typical patients with TCE-induced hypersensitivity dermatitis were investigated as the study cases, peripheral blood samples were taken from patients and control, and real-time fluorescence PCR assay was applied for detection of mRNA expression of hepatic metabolic enzyme genes, immune-related genes, apoptosis genes and oncogenes. It was found that the relative levels of mRNA expression of CYP1A2, CYP2E1, CYP3A4 and CYP2C9 increased by 723%, 318%, 385% and 216%, respectively, when compared with control (p < 0.01 or p < 0.05); Foxp3, GATA3 and CTLA4 mRNA expression increased by 104%, 106% and 253%, respectively, in TCE patients when compared with control (p < 0.01); T-bet expression decreased by 44% when compared with control (p < 0.01); these findings indicate that some immune-related genes and hepatic metabolic enzyme genes might play an important role in the process of trichloroethylene-induced hypersensitivity dermatitis.
Collapse
Affiliation(s)
- Xinyun Xu
- Shenzhen Key Laboratory of Modern Toxicology , Shenzhen Center for Disease Control and Prevention , Shenzhen , Guangdong 518055 , China . ; ; Tel: +86-755-25609527
| | - Yuebin Ke
- Shenzhen Key Laboratory of Modern Toxicology , Shenzhen Center for Disease Control and Prevention , Shenzhen , Guangdong 518055 , China . ; ; Tel: +86-755-25609527
| | - Jianhui Yuan
- Shenzhen Key Laboratory of Modern Toxicology , Shenzhen Center for Disease Control and Prevention , Shenzhen , Guangdong 518055 , China . ; ; Tel: +86-755-25609527
| | - Yuefeng Liu
- Shenzhen Key Laboratory of Modern Toxicology , Shenzhen Center for Disease Control and Prevention , Shenzhen , Guangdong 518055 , China . ; ; Tel: +86-755-25609527
| | - Xueyu Li
- Shenzhen Key Laboratory of Modern Toxicology , Shenzhen Center for Disease Control and Prevention , Shenzhen , Guangdong 518055 , China . ; ; Tel: +86-755-25609527
| | - Desheng Wu
- Shenzhen Key Laboratory of Modern Toxicology , Shenzhen Center for Disease Control and Prevention , Shenzhen , Guangdong 518055 , China . ; ; Tel: +86-755-25609527
| | - Xiaoyun Qin
- Shenzhen Key Laboratory of Modern Toxicology , Shenzhen Center for Disease Control and Prevention , Shenzhen , Guangdong 518055 , China . ; ; Tel: +86-755-25609527
| | - Jiyan Mao
- Shenzhen Key Laboratory of Modern Toxicology , Shenzhen Center for Disease Control and Prevention , Shenzhen , Guangdong 518055 , China . ; ; Tel: +86-755-25609527
| | - Kanlang Mao
- Shenzhen Key Laboratory of Modern Toxicology , Shenzhen Center for Disease Control and Prevention , Shenzhen , Guangdong 518055 , China . ; ; Tel: +86-755-25609527
| |
Collapse
|
59
|
Jutel M, Kosowska A, Smolinska S. Allergen Immunotherapy: Past, Present, and Future. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2016; 8:191-7. [PMID: 26922928 PMCID: PMC4773206 DOI: 10.4168/aair.2016.8.3.191] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/03/2015] [Indexed: 01/01/2023]
Abstract
Allergen-specific immunotherapy (AIT), although in clinical use for more than a century, is still the only causal treatment of allergic diseases. The safety and efficacy of AIT has been demonstrated in a large number of clinical trials. In addition to allergy symptom reduction AIT plays an essential role in preventing new allergies and asthma and shows long-term effects after discontinuation of treatment. Ideally, it is capable of curing allergy. However, AIT is not effective in all allergic individuals and is not equally effective in the treatment of various hypersensitivities to different allergens. For many years, the route of administration and the vaccine compositions have been evolving. Still there is a strong need for research in the field of new AIT modalities to increase its effectiveness and safety. Growing evidence on immunological effects of AIT, especially new T cell subsets involved in antigen/allergen tolerance, provides novel concepts for safer and more effective vaccination. Pharmacoeconomic studies have demonstrated a clear advantage of AIT over pharmacologic therapies.
Collapse
Affiliation(s)
- Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland.,"ALL-MED" Medical Research Institute, Wroclaw, Poland.
| | - Anna Kosowska
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland.,"ALL-MED" Medical Research Institute, Wroclaw, Poland
| | - Sylwia Smolinska
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland.,"ALL-MED" Medical Research Institute, Wroclaw, Poland
| |
Collapse
|
60
|
Xiao H, Jiao J, Wang L, O'Brien S, Newick K, Wang LCS, Falkensammer E, Liu Y, Han R, Kapoor V, Hansen FK, Kurz T, Hancock WW, Beier UH. HDAC5 controls the functions of Foxp3(+) T-regulatory and CD8(+) T cells. Int J Cancer 2016; 138:2477-86. [PMID: 26704363 DOI: 10.1002/ijc.29979] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/14/2015] [Indexed: 12/13/2022]
Abstract
Histone/protein deacetylases (HDACs) are frequently upregulated in human malignancies and have therefore become therapeutic targets in cancer therapy. However, inhibiting certain HDAC isoforms can have protolerogenic effects on the immune system, which could make it easier for tumor cells to evade the host immune system. Therefore, a better understanding of how each HDAC isoform affects immune biology is needed to develop targeted cancer therapy. Here, we studied the immune phenotype of HDAC5(-/-) mice on a C57BL/6 background. While HDAC5(-/-) mice replicate at expected Mendelian ratios and do not develop overt autoimmune disease, their T-regulatory (Treg) cells show reduced suppressive function in vitro and in vivo. Likewise, CD4(+) T-cells lacking HDAC5 convert poorly to Tregs under appropriately polarizing conditions. To test if this attenuated Treg formation and suppressive function translated into improved anticancer immunity, we inoculated HDAC5(-/-) mice and littermate controls with a lung adenocarcinoma cell line. Cumulatively, lack of HDAC5 did not lead to better anticancer immunity. We found that CD8(+) T cells missing HDAC5 had a reduced ability to produce the cytokine, IFN-γ, in vitro and in vivo, which may offset the benefit of weakened Treg function and formation. Taken together, targeting HDAC5 weakens suppressive function and de-novo induction of Tregs, but also reduces the ability of CD8(+) T cells to produce IFN-γ.
Collapse
Affiliation(s)
- Haiyan Xiao
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Jing Jiao
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Liqing Wang
- Division of Transplant Immunology and Biesecker Center for Pediatric Liver Disease, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Shaun O'Brien
- Pulmonary, Allergy & Critical Care Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Kheng Newick
- Pulmonary, Allergy & Critical Care Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Liang-Chuan S Wang
- Pulmonary, Allergy & Critical Care Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Eva Falkensammer
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Yujie Liu
- Division of Transplant Immunology and Biesecker Center for Pediatric Liver Disease, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Rongxiang Han
- Division of Transplant Immunology and Biesecker Center for Pediatric Liver Disease, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Veena Kapoor
- Pulmonary, Allergy & Critical Care Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Finn K Hansen
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich Heine Universität Düsseldorf, Universitätsstr. 1, Düsseldorf, Germany
| | - Thomas Kurz
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich Heine Universität Düsseldorf, Universitätsstr. 1, Düsseldorf, Germany
| | - Wayne W Hancock
- Division of Transplant Immunology and Biesecker Center for Pediatric Liver Disease, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Ulf H Beier
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
61
|
Sarwal MM. Fingerprints of transplant tolerance suggest opportunities for immunosuppression minimization. Clin Biochem 2016; 49:404-10. [PMID: 26794635 DOI: 10.1016/j.clinbiochem.2016.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 12/18/2015] [Accepted: 01/07/2016] [Indexed: 12/13/2022]
Abstract
HLA incompatible organ transplant tolerance is the holy grail of transplantation. Stable engraftment of an HLA mismatched allograft and life-long tolerance induction, though feasible in highly selected cohorts with depletional protocols, is not ready for generalized application to the entire transplant recipient pool. It has thus been important to harness biomarkers that can uncover mechanisms and tools for monitoring HLA mismatched recipients that develop a state of operational tolerance, during accidental immunosuppression withdrawal secondary to problems of over-immunosuppression (infection or malignancy) or toxicity (mostly cosmetic or cardiovascular). A restricted and unpredictable group of patients can demonstrate a clinical state of operational tolerance, manifested by state of stable graft function of a graft with HLA mismatches between recipient and donor, intact immune responses to third party antigens and no measurable immunosuppression. These patients have served as the basis for the discovery of clinically correlative biomarkers, in distal biofluids (mainly blood), that can define the existing state of operational clinical tolerance. Operationally tolerant patients are rare, as withdrawal of immunosuppression most often results in rejection and graft loss. Nevertheless, operationally tolerant kidney, liver and heart allograft recipients have been reported. The presence of similar biomarker signature profiles in HLA mismatched transplant recipients on immunosuppression, suggests the feasibility of utilizing these biomarkers for educated immunosuppression minimization with a view to retaining immunological quiescence, while reducing the maintenance immunosuppression burden to a "safe" alloimmune threshold. Though clinical operational tolerance is rare, as immunosuppression cessation most often results in increased alloimmunity and rejection, the biomarker profile studies that have harnessed whole genome profiling suggest that the frequency of this state may be ~8% in kidney allograft recipients, and even more frequent in pediatric recipients and in liver transplantation: 25% in adult liver allograft recipients and ~60% in pediatric liver allograft recipients. In this review we discuss putative molecular mechanisms, cellular players and correlative biomarkers that have been developed through clinically associative studies of tolerant and non-tolerant patients. Through mechanisms of carefully constructed and monitored randomized, prospective clinical trials, the transplant community stands at the cusp of improved quality of recipient life through educated immunosuppression minimization.
Collapse
Affiliation(s)
- Minnie M Sarwal
- Division of Transplant Surgery, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
62
|
Klughammer J, Datlinger P, Printz D, Sheffield NC, Farlik M, Hadler J, Fritsch G, Bock C. Differential DNA Methylation Analysis without a Reference Genome. Cell Rep 2015; 13:2621-2633. [PMID: 26673328 PMCID: PMC4695333 DOI: 10.1016/j.celrep.2015.11.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/12/2015] [Accepted: 11/04/2015] [Indexed: 01/22/2023] Open
Abstract
Genome-wide DNA methylation mapping uncovers epigenetic changes associated with animal development, environmental adaptation, and species evolution. To address the lack of high-throughput methods for DNA methylation analysis in non-model organisms, we developed an integrated approach for studying DNA methylation differences independent of a reference genome. Experimentally, our method relies on an optimized 96-well protocol for reduced representation bisulfite sequencing (RRBS), which we have validated in nine species (human, mouse, rat, cow, dog, chicken, carp, sea bass, and zebrafish). Bioinformatically, we developed the RefFreeDMA software to deduce ad hoc genomes directly from RRBS reads and to pinpoint differentially methylated regions between samples or groups of individuals (http://RefFreeDMA.computational-epigenetics.org). The identified regions are interpreted using motif enrichment analysis and/or cross-mapping to annotated genomes. We validated our method by reference-free analysis of cell-type-specific DNA methylation in the blood of human, cow, and carp. In summary, we present a cost-effective method for epigenome analysis in ecology and evolution, which enables epigenome-wide association studies in natural populations and species without a reference genome.
Collapse
Affiliation(s)
- Johanna Klughammer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Paul Datlinger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Dieter Printz
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, 1090 Vienna, Austria
| | - Nathan C Sheffield
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Matthias Farlik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Johanna Hadler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Gerhard Fritsch
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, 1090 Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria; Max Planck Institute for Informatics, 66123 Saarbrücken, Germany.
| |
Collapse
|
63
|
Voon DCC, Hor YT, Ito Y. The RUNX complex: reaching beyond haematopoiesis into immunity. Immunology 2015; 146:523-36. [PMID: 26399680 DOI: 10.1111/imm.12535] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/13/2015] [Accepted: 07/15/2015] [Indexed: 12/24/2022] Open
Abstract
Among their diverse roles as transcriptional regulators during development and cell fate specification, the RUNX transcription factors are best known for the parts they play in haematopoiesis. RUNX proteins are expressed throughout all haematopoietic lineages, being necessary for the emergence of the first haematopoietic stem cells to their terminal differentiation. Although much progress has been made since their discoveries almost two decades ago, current appreciation of RUNX in haematopoiesis is largely grounded in their lineage-specifying roles. In contrast, the importance of RUNX to immunity has been mostly obscured for historic, technical and conceptual reasons. However, this paradigm is likely to shift over time, as a primary purpose of haematopoiesis is to resource the immune system. Furthermore, recent evidence suggests a role for RUNX in the innate immunity of non-haematopoietic cells. This review takes a haematopoiesis-centric approach to collate what is known of RUNX's contribution to the overall mammalian immune system and discuss their growing prominence in areas such as autoimmunity, inflammatory diseases and mucosal immunity.
Collapse
Affiliation(s)
- Dominic Chih-Cheng Voon
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan.,Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | | | - Yoshiaki Ito
- Cancer Biology Programme, Cancer Science Institute of Singapore, Singapore
| |
Collapse
|
64
|
van Nieuwenhuijze A, Liston A. The Molecular Control of Regulatory T Cell Induction. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 136:69-97. [PMID: 26615093 DOI: 10.1016/bs.pmbts.2015.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Regulatory T cells (Tregs) are characterized by the expression of the master transcription factor forkhead box P3 (Foxp3). Although Foxp3 expression is widely used as a marker of the Treg lineage, recent data show that the Treg fate is determined by a multifactorial signaling pathway, involving cytokines, nuclear factors, and epigenetic modifications. Foxp3 expression and the Treg phenotype can be acquired by T cells in the periphery, illustrating that the Treg fate is not necessarily conferred during thymic development. The two main Treg populations in vivo, thymic Tregs and peripheral Tregs, differ in the pathways followed for their maturation. This chapter discusses the molecular control of Treg induction, in the thymus as well as the periphery.
Collapse
Affiliation(s)
- Annemarie van Nieuwenhuijze
- Translational Immunology Laboratory, VIB, Leuven, Belgium; Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium.
| | - Adrian Liston
- Translational Immunology Laboratory, VIB, Leuven, Belgium; Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| |
Collapse
|
65
|
SINKOVICS JOSEPHG. The cnidarian origin of the proto-oncogenes NF-κB/STAT and WNT-like oncogenic pathway drives the ctenophores (Review). Int J Oncol 2015; 47:1211-29. [PMID: 26239915 PMCID: PMC4583530 DOI: 10.3892/ijo.2015.3102] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 06/26/2015] [Indexed: 01/09/2023] Open
Abstract
The cell survival pathways of the diploblastic early multicellular eukaryotic hosts contain and operate the molecular machinery resembling those of malignantly transformed individual cells of highly advanced multicellular hosts (including Homo). In the present review, the STAT/NF-κB pathway of the cnidarian Nematostella vectensis is compared with that of human tumors (malignant lymphomas, including Reed-Sternberg cells) pointing out similarities, including possible viral initiation in both cases. In the ctenophore genome and proteome, β-catenin gains intranuclear advantages due to a physiologically weak destructive complex in the cytoplasm, and lack of natural inhibitors (the dickkopfs). Thus, a scenario similar to what tumor cells initiate and achieve is presented through several constitutive loss-of-function type mutations in the destructive complex and in the elimination of inhibitors. Vice versa, malignantly transformed individual cells of advanced multicellular hosts assume pheno-genotypic resemblance to cells of unicellular or early multicellular hosts, and presumably to their ancient predecessors, by returning to the semblance of immortality and to the resumption of the state of high degree of resistance to physicochemical insults. Human leukemogenic and oncogenic pathways are presented for comparisons. The supreme bioengineers RNA/DNA complex encoded both the malignantly transformed immortal cell and the human cerebral cortex. The former generates molecules for the immortality of cellular life in the Universe. The latter invents the inhibitors of the process in order to gain control over it.
Collapse
Affiliation(s)
- JOSEPH G. SINKOVICS
- St. Joseph Hospital's Cancer Institute Affiliated with the H.L. Moffitt Comprehensive Cancer Center; Department of Molecular Medicine, The University of South Florida Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
66
|
Nie J, Li YY, Zheng SG, Tsun A, Li B. FOXP3(+) Treg Cells and Gender Bias in Autoimmune Diseases. Front Immunol 2015; 6:493. [PMID: 26441996 PMCID: PMC4585344 DOI: 10.3389/fimmu.2015.00493] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 09/09/2015] [Indexed: 01/22/2023] Open
Abstract
CD4+CD25+ regulatory T (Treg) cells play a pivotal role in the maintenance of immune homeostasis, where the X-linked master transcription factor forkhead box P3 (FOXP3) determines Treg cell development and function. Genetic deficiency of foxp3 induces dysfunction of Treg cells and immuno-dysregulation, polyendocrinopathy, enteropathy, and X-linked syndrome in humans. Functionally deficient Treg cells or the development of exTreg cells positively correlate with autoimmune diseases, such as systemic lupus erythematosus (SLE), multiple sclerosis (MS), and ankylosing spondylitis (AS). In general, females are more susceptible to SLE and MS but less susceptible to AS, where the expression of FOXP3 and its protein complex are perturbed by multiple factors, including hormonal fluctuations, inflammatory cytokines, and danger signals. Therefore, it is critical to explore the potential molecular mechanisms involved and these differences linked to gender. Here, we review recent findings on the regulation of FOXP3 activity in Treg cells and also discuss gender difference in the determination of Treg cell function in autoimmune diseases.
Collapse
Affiliation(s)
- Jia Nie
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai , China
| | - Yang Yang Li
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai , China
| | - Song Guo Zheng
- Clinical Immunology Center, The Third Affiliated Hospital, Sun Yat-Sen University , Guangzhou , China ; Department of Medicine, Division of Rheumatology, Penn State Hershey College of Medicine , Hershey, PA , USA
| | - Andy Tsun
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai , China ; Innovent Biologics Inc. , Suzhou , China
| | - Bin Li
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai , China
| |
Collapse
|
67
|
Peeters J, Vervoort S, Tan S, Mijnheer G, de Roock S, Vastert S, Nieuwenhuis E, van Wijk F, Prakken B, Creyghton M, Coffer P, Mokry M, van Loosdregt J. Inhibition of Super-Enhancer Activity in Autoinflammatory Site-Derived T Cells Reduces Disease-Associated Gene Expression. Cell Rep 2015; 12:1986-96. [DOI: 10.1016/j.celrep.2015.08.046] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/02/2015] [Accepted: 08/13/2015] [Indexed: 10/23/2022] Open
|
68
|
Sandrini A, Rolland JM, O'Hehir RE. Current developments for improving efficacy of allergy vaccines. Expert Rev Vaccines 2015; 14:1073-87. [PMID: 26013124 DOI: 10.1586/14760584.2015.1050385] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Allergic diseases are prevalent worldwide. Allergen immunotherapy (AIT) is a current treatment for allergy, leading to modification of the natural course of disease. Mechanisms of efficacy include Treg through release of IL-10 and TGF-β and specific IgG4 blocking antibodies. Subcutaneous and sublingual routes are popular, but uptake is limited by inconvenience and safety concerns. Inclusion criteria limit application to a small proportion of allergic patients. New forms of immunotherapy are being investigated for more efficacious, convenient and safer options with promising advances in recent years. The rationale of reducing vaccine allergenicity to increase safety while improving immunogenicity led to investigation of T-cell epitope-based peptides and recombinant allergen derivatives. Additionally, different routes of administration and adjuvants and adjunct therapies are being explored. This review discusses the current status of AIT and recent advances to improve clinical efficacy, safety and long-term immune tolerance.
Collapse
Affiliation(s)
- Alessandra Sandrini
- Department of Allergy, Immunology and Respiratory Medicine, Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
69
|
Akdis CA, Akdis M. Mechanisms of allergen-specific immunotherapy and immune tolerance to allergens. World Allergy Organ J 2015; 8:17. [PMID: 26023323 PMCID: PMC4430874 DOI: 10.1186/s40413-015-0063-2] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 02/06/2015] [Indexed: 12/25/2022] Open
Abstract
Substantial progress in understanding mechanisms of immune regulation in allergy, asthma, autoimmune diseases, tumors, organ transplantation and chronic infections has led to a variety of targeted therapeutic approaches. Allergen-specific immunotherapy (AIT) has been used for 100 years as a desensitizing therapy for allergic diseases and represents the potentially curative and specific way of treatment. The mechanisms by which allergen-AIT has its mechanisms of action include the very early desensitization effects, modulation of T- and B-cell responses and related antibody isotypes as well as inhibition of migration of eosinophils, basophils and mast cells to tissues and release of their mediators. Regulatory T cells (Treg) have been identified as key regulators of immunological processes in peripheral tolerance to allergens. Skewing of allergen-specific effector T cells to a regulatory phenotype appears as a key event in the development of healthy immune response to allergens and successful outcome in AIT. Naturally occurring FoxP3+ CD4+CD25+ Treg cells and inducible type 1 Treg (Tr1) cells contribute to the control of allergen-specific immune responses in several major ways, which can be summarized as suppression of dendritic cells that support the generation of effector T cells; suppression of effector Th1, Th2 and Th17 cells; suppression of allergen-specific IgE, and induction of IgG4; suppression of mast cells, basophils and eosinophils and suppression of effector T cell migration to tissues. New strategies for immune intervention will likely include targeting of the molecular mechanisms of allergen tolerance and reciprocal regulation of effector and regulatory T cell subsets.
Collapse
Affiliation(s)
- Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Obere Strasse 22, CH7270 Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Obere Strasse 22, CH7270 Davos, Switzerland
| |
Collapse
|
70
|
Sfrp2 is a transcriptional target of SREBP-1 in mouse chondrogenic cells. Mol Cell Biochem 2015; 406:163-71. [DOI: 10.1007/s11010-015-2434-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 05/06/2015] [Indexed: 11/26/2022]
|
71
|
Maccani JZ, Maccani MA. Altered placental DNA methylation patterns associated with maternal smoking: current perspectives. ADVANCES IN GENOMICS AND GENETICS 2015; 2015:205-214. [PMID: 26203295 PMCID: PMC4507353 DOI: 10.2147/agg.s61518] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The developmental origins of health and disease hypothesis states that adverse early life exposures can have lasting, detrimental effects on lifelong health. Exposure to maternal cigarette smoking during pregnancy is associated with morbidity and mortality in offspring, including increased risks for miscarriage, stillbirth, low birth weight, preterm birth, asthma, obesity, altered neurobehavior, and other conditions. Maternal cigarette smoking during pregnancy interferes with placental growth and functioning, and it has been proposed that this may occur through the disruption of normal and necessary placental epigenetic patterns. Epigenome-wide association studies have identified a number of differentially methylated placental genes that are associated with maternal smoking during pregnancy, including RUNX3, PURA, GTF2H2, GCA, GPR135, and HKR1. The placental methylation status of RUNX3 and NR3C1 has also been linked to adverse infant outcomes, including preterm birth and low birth weight, respectively. Candidate gene analyses have also found maternal smoking-associated placental methylation differences in the NR3C1, CYP1A1, HTR2A, and HSD11B2 genes, as well as in the repetitive elements LINE-1 and AluYb8. The differential methylation patterns of several genes have been confirmed to also exhibit altered gene expression patterns, including CYP1A1, CYP19A1, NR3C1, and HTR2A. Placental methylation patterns associated with maternal smoking during pregnancy may be largely gene-specific and tissue-specific and, to a lesser degree, involve global changes. It is important for future research to investigate the mechanistic roles that these differentially methylated genes may play in mediating the association between maternal smoking during pregnancy and disease in later life, as well as to elucidate the potential influence of emerging tobacco product use during pregnancy, including the use of electronic cigarettes, on placental epigenetics.
Collapse
Affiliation(s)
- Jennifer Zj Maccani
- Penn State Tobacco Center of Regulatory Science, College of Medicine, Department of Public Health Sciences, Hershey, PA, USA
| | - Matthew A Maccani
- Penn State Tobacco Center of Regulatory Science, College of Medicine, Department of Public Health Sciences, Hershey, PA, USA
| |
Collapse
|
72
|
Bai ZK, Li DD, Guo CH, Yang ZQ, Cao H, Guo B, Yue ZP. Differential expression and regulation of Runx1 in mouse uterus during the peri-implantation period. Cell Tissue Res 2015; 362:231-40. [DOI: 10.1007/s00441-015-2174-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/18/2015] [Indexed: 02/06/2023]
|
73
|
Panzeri I, Rossetti G, Abrignani S, Pagani M. Long Intergenic Non-Coding RNAs: Novel Drivers of Human Lymphocyte Differentiation. Front Immunol 2015; 6:175. [PMID: 25926836 PMCID: PMC4397839 DOI: 10.3389/fimmu.2015.00175] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/28/2015] [Indexed: 12/29/2022] Open
Abstract
Upon recognition of a foreign antigen, CD4(+) naïve T lymphocytes proliferate and differentiate into subsets with distinct functions. This process is fundamental for the effective immune system function, as CD4(+) T cells orchestrate both the innate and adaptive immune response. Traditionally, this differentiation event has been regarded as the acquisition of an irreversible cell fate so that memory and effector CD4(+) T subsets were considered terminally differentiated cells or lineages. Consequently, these lineages are conventionally defined thanks to their prototypical set of cytokines and transcription factors. However, recent findings suggest that CD4(+) T lymphocytes possess a remarkable phenotypic plasticity, as they can often re-direct their functional program depending on the milieu they encounter. Therefore, new questions are now compelling such as which are the molecular determinants underlying plasticity and stability and how the balance between these two opposite forces drives the cell fate. As already mentioned, in some cases, the mere expression of cytokines and master regulators could not fully explain lymphocytes plasticity. We should consider other layers of regulation, including epigenetic factors such as the modulation of chromatin state or the transcription of non-coding RNAs, whose high cell-specificity give a hint on their involvement in cell fate determination. In this review, we will focus on the recent advances in understanding CD4(+) T lymphocytes subsets specification from an epigenetic point of view. In particular, we will emphasize the emerging importance of non-coding RNAs as key players in these differentiation events. We will also present here new data from our laboratory highlighting the contribution of long non-coding RNAs in driving human CD4(+) T lymphocytes differentiation.
Collapse
Affiliation(s)
- Ilaria Panzeri
- Integrative Biology Unit, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", IRCCS Ospedale Maggiore Policlinico , Milano , Italy
| | - Grazisa Rossetti
- Integrative Biology Unit, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", IRCCS Ospedale Maggiore Policlinico , Milano , Italy
| | - Sergio Abrignani
- Integrative Biology Unit, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", IRCCS Ospedale Maggiore Policlinico , Milano , Italy
| | - Massimiliano Pagani
- Integrative Biology Unit, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", IRCCS Ospedale Maggiore Policlinico , Milano , Italy ; Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano , Milano , Italy
| |
Collapse
|
74
|
Fraccaroli L, Grasso E, Hauk V, Paparini D, Soczewski E, Mor G, Pérez Leirós C, Ramhorst R. VIP boosts regulatory T cell induction by trophoblast cells in an in vitro model of trophoblast-maternal leukocyte interaction. J Leukoc Biol 2015; 98:49-58. [PMID: 25877932 DOI: 10.1189/jlb.1a1014-492rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 02/28/2015] [Indexed: 12/17/2022] Open
Abstract
Inducible regulatory T cells (Tregs) exert a timely and efficient immunosuppressive action at the critical peri-implantation stage essential for maternal tolerance to the conceptus. Vasoactive intestinal peptide (VIP) promotes anti-inflammatory and tolerogenic profiles through binding to VIP receptors on immune cells. We evaluated whether VIP produced by trophoblast cells induces Tregs during the early interaction of maternal leukocytes with trophoblast cells, thus contributing to maternal tolerance. We used an in vitro model of maternal leukocyte-trophoblast cell interaction represented by cocultures of fertile women's PBMCs with a human trophoblast cell line (Swan-71) and evaluated the effect of VIP added exogenously and of the endogenous polypeptide. VIP increased the frequency of CD4(+)CD25(+)FoxP3(+) cells after coculture, and these cells were able to suppress the maternal alloresponse. VIP also increased the frequency of CD4(+)IL10(+) and CD4(+)TGFβ(+) cells, but it did not modulate IFN-γ or IL-17 production. Swan-71 secreted VIP, and their coculture with maternal PBMCs significantly increased the frequency of Tregs. This effect was even more pronounced if the trophoblast cells had been pretreated with VIP. In both situations, the VIP antagonist prevented the increase in the frequency of CD4(+)Foxp3(+) cells, reflecting a specific effect of the polypeptide after the interaction with Swan-71 cells. Finally, the increase in CD4(+)CD25(+)FoxP3(+) frequency was prevented by an anti-TGF-β Ab and a VIP antagonist. These results suggest that VIP could have an active role in the immunoregulatory processes operating in the maternal-placental interface by contributing to the induction of Tregs through a mechanism involving TGF-β1.
Collapse
Affiliation(s)
- Laura Fraccaroli
- *Laboratory of Immunopharmacology, University of Buenos Aires School of Sciences, IQUIBICEN-CONICET (National Research Council), Buenos Aires, Argentina; Reproductive Immunology Unit, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA; and University of Buenos Aires School of Medicine, Buenos Aires, Argentina
| | - Esteban Grasso
- *Laboratory of Immunopharmacology, University of Buenos Aires School of Sciences, IQUIBICEN-CONICET (National Research Council), Buenos Aires, Argentina; Reproductive Immunology Unit, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA; and University of Buenos Aires School of Medicine, Buenos Aires, Argentina
| | - Vanesa Hauk
- *Laboratory of Immunopharmacology, University of Buenos Aires School of Sciences, IQUIBICEN-CONICET (National Research Council), Buenos Aires, Argentina; Reproductive Immunology Unit, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA; and University of Buenos Aires School of Medicine, Buenos Aires, Argentina
| | - Daniel Paparini
- *Laboratory of Immunopharmacology, University of Buenos Aires School of Sciences, IQUIBICEN-CONICET (National Research Council), Buenos Aires, Argentina; Reproductive Immunology Unit, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA; and University of Buenos Aires School of Medicine, Buenos Aires, Argentina
| | - Elizabeth Soczewski
- *Laboratory of Immunopharmacology, University of Buenos Aires School of Sciences, IQUIBICEN-CONICET (National Research Council), Buenos Aires, Argentina; Reproductive Immunology Unit, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA; and University of Buenos Aires School of Medicine, Buenos Aires, Argentina
| | - Gil Mor
- *Laboratory of Immunopharmacology, University of Buenos Aires School of Sciences, IQUIBICEN-CONICET (National Research Council), Buenos Aires, Argentina; Reproductive Immunology Unit, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA; and University of Buenos Aires School of Medicine, Buenos Aires, Argentina
| | - Claudia Pérez Leirós
- *Laboratory of Immunopharmacology, University of Buenos Aires School of Sciences, IQUIBICEN-CONICET (National Research Council), Buenos Aires, Argentina; Reproductive Immunology Unit, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA; and University of Buenos Aires School of Medicine, Buenos Aires, Argentina
| | - Rosanna Ramhorst
- *Laboratory of Immunopharmacology, University of Buenos Aires School of Sciences, IQUIBICEN-CONICET (National Research Council), Buenos Aires, Argentina; Reproductive Immunology Unit, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA; and University of Buenos Aires School of Medicine, Buenos Aires, Argentina
| |
Collapse
|
75
|
Christie D, Zhu J. Transcriptional regulatory networks for CD4 T cell differentiation. Curr Top Microbiol Immunol 2015; 381:125-72. [PMID: 24839135 DOI: 10.1007/82_2014_372] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CD4(+) T cells play a central role in controlling the adaptive immune response by secreting cytokines to activate target cells. Naïve CD4(+) T cells differentiate into at least four subsets, Th1Th1 , Th2Th2 , Th17Th17 , and inducible regulatory T cellsregulatory T cells , each with unique functions for pathogen elimination. The differentiation of these subsets is induced in response to cytokine stimulation, which is translated into Stat activation, followed by induction of master regulator transcription factorstranscription factors . In addition to these factors, multiple other transcription factors, both subset specific and shared, are also involved in promoting subset differentiation. This review will focus on the network of transcription factors that control CD4(+) T cell differentiation.
Collapse
Affiliation(s)
- Darah Christie
- Molecular and Cellular Immunoregulation Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA,
| | | |
Collapse
|
76
|
Abstract
During blood cell development, hematopoietic stem cells generate diverse mature populations via several rounds of binary fate decisions. At each bifurcation, precursors adopt one fate and inactivate the alternative fate either stochastically or in response to extrinsic stimuli and stably maintain the selected fates. Studying of these processes would contribute to better understanding of etiology of immunodeficiency and leukemia, which are caused by abnormal gene regulation during the development of hematopoietic cells. The CD4(+) helper versus CD8(+) cytotoxic T-cell fate decision serves as an excellent model to study binary fate decision processes. These two cell types are derived from common precursors in the thymus. Positive selection of their TCRs by self-peptide presented on either MHC class I or class II triggers their fate decisions along with mutually exclusive retention and silencing of two coreceptors, CD4 and CD8. In the past few decades, extensive effort has been made to understand the T-cell fate decision processes by studying regulation of genes encoding the coreceptors and selection processes. These studies have identified several key transcription factors and gene regulatory networks. In this chapter, I will discuss recent advances in our understanding of the binary cell fate decision processes of T cells.
Collapse
Affiliation(s)
- Takeshi Egawa
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA.
| |
Collapse
|
77
|
Liu J, Lian Z, Xiao Y, Shi LL, Chai W, Wang Y. Analysis of clinical indexes and RUNX3, TBKBP1, PPARGC1B polymorphisms in Chinese Han patients with ankylosing spondylitis. Genet Test Mol Biomarkers 2014; 19:37-43. [PMID: 25494292 DOI: 10.1089/gtmb.2014.0194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Ankylosing spondylitis (AS) is a genetically determined disease. Runt-related transcription factor 3 (RUNX3), tumor necrosis factor family member-associated NF-κB activator binding kinase 1 binding protein (TBKBP1), and peroxisome proliferator-activated receptor-gamma coactivator 1 beta (PPARGC1B) have recently been found to be associated with susceptibility to AS in patients of Western European descent. We hypothesize that these three genes may be related to clinical outcomes of Chinese Han AS patients. METHODS Blood samples were drawn from 396 HLA-B27-positive Chinese Han AS patients. Clinical indexes were scored for each patient, including the Bath Ankylosing Spondylitis Functional Index (BASFI), Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), and modified Stoke Ankylosing Spondylitis Spine Score (mSASSS), which measure patients' function of daily life and severity of AS. Twelve tagSNPs were selected from these three genes and genotyped. We analyzed the clinical indexes in different genotyped patients to investigate the relationship between severity of AS and different genotypes. RESULTS The rs11249215 SNP in RUNX3 and the rs7379457 and rs32579 SNPs in PPARGC1B significantly affect the BASFI score in patients. The rs11249215, rs7551188, and rs1395621 SNPs in RUNX3 significantly affect the BASDAI scores. The two selected single nucleotide polymorphisms (SNPs) in TBKBP1 show no relationship with the clinical outcomes. None of the 12 SNPs is related to mSASSS. In conclusion, RUNX3 is related to both the severity of AS and the function of daily life. PPARGC1B is related to the function of daily life.
Collapse
Affiliation(s)
- Jun Liu
- 1 Department of Orthopedics, Tianjin Hospital , Tianjin, China
| | | | | | | | | | | |
Collapse
|
78
|
Ai Y, Zhu D, Wang C, Su C, Ma J, Ma J, Wang X. Core-binding factor subunit beta is not required for non-primate lentiviral Vif-mediated APOBEC3 degradation. J Virol 2014; 88:12112-22. [PMID: 25122780 PMCID: PMC4178706 DOI: 10.1128/jvi.01924-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/05/2014] [Indexed: 01/08/2023] Open
Abstract
Viral infectivity factor (Vif) is required for lentivirus fitness and pathogenicity, except in equine infectious anemia virus (EIAV). Vif enhances viral infectivity by a Cullin5-Elongin B/C E3 complex to inactivate the host restriction factor APOBEC3. Core-binding factor subunit beta (CBF-β) is a cell factor that was recently shown to be important for the primate lentiviral Vif function. Non-primate lentiviral Vif also degrades APOBEC3 through the proteasome pathway. However, it is unclear whether CBF-β is required for the non-primate lentiviral Vif function. In this study, we demonstrated that the Vifs of non-primate lentiviruses, including feline immunodeficiency virus (FIV), bovine immunodeficiency virus (BIV), caprine arthritis encephalitis virus (CAEV), and maedi-visna virus (MVV), do not interact with CBF-β. In addition, CBF-β did not promote the stability of FIV, BIV, CAEV, and MVV Vifs. Furthermore, CBF-β silencing or overexpression did not affect non-primate lentiviral Vif-mediated APOBEC3 degradation. Our results suggest that non-primate lentiviral Vif induces APOBEC3 degradation through a different mechanism than primate lentiviral Vif. Importance: The APOBEC3 protein family members are host restriction factors that block retrovirus replication. Vif, an accessory protein of lentivirus, degrades APOBEC3 to rescue viral infectivity by forming Cullin5-Elongin B/C-based E3 complex. CBF-β was proved to be a novel regulator of primate lentiviral Vif function. In this study, we found that CBF-β knockdown or overexpression did not affect FIV Vif's function, which induced polyubiquitination and degradation of APOBEC3 by recruiting the E3 complex in a manner similar to that of HIV-1 Vif. We also showed that other non-primate lentiviral Vifs did not require CBF-β to degrade APOBEC3. CBF-β did not interact with non-primate lentiviral Vifs or promote their stability. These results suggest that a different mechanism exists for the Vif-APOBEC interaction and that non-primates are not suitable animal models for exploring pharmacological interventions that disrupt Vif-CBF-β interaction.
Collapse
Affiliation(s)
- Youwei Ai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China College of Wildlife Resources, Northeast Forestry University, Harbin, China
| | - Dantong Zhu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China College of Wildlife Resources, Northeast Forestry University, Harbin, China
| | - Cuihui Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chao Su
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jian Ma
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jianzhang Ma
- College of Wildlife Resources, Northeast Forestry University, Harbin, China
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
79
|
Abstract
Combined with TCR stimuli, extracellular cytokine signals initiate the differentiation of naive CD4(+) T cells into specialized effector T-helper (Th) and regulatory T (Treg) cell subsets. The lineage specification and commitment process occurs through the combinatorial action of multiple transcription factors (TFs) and epigenetic mechanisms that drive lineage-specific gene expression programs. In this article, we review recent studies on the transcriptional and epigenetic regulation of distinct Th cell lineages. Moreover, we review current study linking immune disease-associated single-nucleotide polymorphisms with distal regulatory elements and their potential role in the disease etiology.
Collapse
Affiliation(s)
- Subhash K Tripathi
- Turku Centre for Biotechnology, University of Turku and
Åbo Akademi UniversityTurku, Finland
- National Doctoral Programme in Informational and
Structural BiologyTurku, Finland
- Turku Doctoral Programme of Molecular Medicine (TuDMM),
University of TurkuTurku, Finland
| | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku and
Åbo Akademi UniversityTurku, Finland
| |
Collapse
|
80
|
Regulatory T cells and immune regulation of allergic diseases: roles of IL-10 and TGF-β. Genes Immun 2014; 15:511-20. [PMID: 25056447 DOI: 10.1038/gene.2014.45] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/17/2014] [Accepted: 06/19/2014] [Indexed: 01/04/2023]
Abstract
The prevalence of allergic diseases has significantly increased in industrialized countries. Allergen-specific immunotherapy (AIT) remains as the only curative treatment. The knowledge about the mechanisms underlying healthy immune responses to allergens, the development of allergic reactions and restoration of appropriate immune responses to allergens has significantly improved over the last decades. It is now well-accepted that the generation and maintenance of functional allergen-specific regulatory T (Treg) cells and regulatory B (Breg) cells are essential for healthy immune responses to environmental proteins and successful AIT. Treg cells comprise different subsets of T cells with suppressive capacity, which control the development and maintenance of allergic diseases by various ways of action. Molecular mechanisms of generation of Treg cells, the identification of novel immunological organs, where this might occur in vivo, such as tonsils, and related epigenetic mechanisms are starting to be deciphered. The key role played by the suppressor cytokines interleukin (IL)-10 and transforming growth factor (TGF)-β produced by functional Treg cells during the generation of immune tolerance to allergens is now well established. Treg and Breg cells together have a role in suppression of IgE and induction of IgG4 isotype allergen-specific antibodies particularly mediated by IL-10. Other cell types such as subsets of dendritic cells, NK-T cells and natural killer cells producing high levels of IL-10 may also contribute to the generation of healthy immune responses to allergens. In conclusion, better understanding of the immune regulatory mechanisms operating at different stages of allergic diseases will significantly help the development of better diagnostic and predictive biomarkers and therapeutic interventions.
Collapse
|
81
|
Park SY, Yun Y, Kim MJ, Kim IS. Myogenin is a positive regulator of MEGF10 expression in skeletal muscle. Biochem Biophys Res Commun 2014; 450:1631-7. [PMID: 25044114 DOI: 10.1016/j.bbrc.2014.07.061] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/11/2014] [Indexed: 11/18/2022]
Abstract
MEGF10 is known to function as a myogenic regulator of satellite cells in skeletal muscle. Mutations in MEGF10 gene cause a congenital myopathy called early onset myopathy, areflexia, respiratory distress and dysphagia (EMARDD). Despite its biological importance in muscle physiology, transcriptional regulation of the MEGF10 gene is unknown. Here, we characterized the 5' flanking region of the human MEGF10 gene and showed that the role of myogenic basic helix-loop-helix factor (bHLH) myogenin in MEGF10 transcription in muscle cells. Myogenin was found to share a similar expression pattern with MEGF10 during muscle regeneration and to increase the promoter activity of the MEGF10 gene in C2C12 cells. Overexpression of myogenin led to upregulation of MEGF10 mRNA in C2C12 cells. Site-directed mutagenesis assays revealed that the conserved E-box element at the region -114/-108 serves as a myogenin-binding motif. Promoter enzyme immunoassays and chromatin immunoprecipitation analysis showed direct interaction between myogenin and the myogenin-binding motif in the MEGF10 promoter. Taken together, these results indicate that myogenin is a positive regulator in transcriptional regulation of MEGF10 in skeletal muscle.
Collapse
Affiliation(s)
- Seung-Yoon Park
- Department of Biochemistry, School of Medicine, Dongguk University, Gyeongju 780-714, Republic of Korea.
| | - Youngeun Yun
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Mi-Jin Kim
- Department of Biochemistry, School of Medicine, Dongguk University, Gyeongju 780-714, Republic of Korea
| | - In-San Kim
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea; Biomedical Research Institute, Korea Institute Science and Technology, Seoul 136-791, Republic of Korea.
| |
Collapse
|
82
|
Abstract
Differentiation of naïve CD4(+) T cells into effector (Th1, Th2, and Th17) and induced regulatory (iTreg) T cells requires lineage-specifying transcription factors and epigenetic modifications that allow appropriate repression or activation of gene transcription. The epigenetic silencing of cytokine genes is associated with the repressive H3K27 trimethylation mark, mediated by the Ezh2 or Ezh1 methyltransferase components of the polycomb repressive complex 2 (PRC2). Here we show that silencing of the Ifng, Gata3, and Il10 loci in naïve CD4(+) T cells is dependent on Ezh2. Naïve CD4(+) T cells lacking Ezh2 were epigenetically primed for overproduction of IFN-γ in Th2 and iTreg and IL-10 in Th2 cells. In addition, deficiency of Ezh2 accelerated effector Th cell death via death receptor-mediated extrinsic and intrinsic apoptotic pathways, confirmed in vivo for Ezh2-null IFN-γ-producing CD4(+) and CD8(+) T cells responding to Listeria monocytogenes infection. These findings demonstrate the key role of PRC2/Ezh2 in differentiation and survival of peripheral T cells and reveal potential immunotherapeutic targets.
Collapse
|
83
|
Mechanisms of allergen-specific immunotherapy: multiple suppressor factors at work in immune tolerance to allergens. J Allergy Clin Immunol 2014; 133:621-31. [PMID: 24581429 DOI: 10.1016/j.jaci.2013.12.1088] [Citation(s) in RCA: 391] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 12/18/2013] [Accepted: 12/24/2013] [Indexed: 01/08/2023]
Abstract
Allergen-specific immunotherapy (AIT) has been used for more than 100 years as a desensitizing therapy for IgE-mediated allergic diseases and represents a potentially curative way of treatment. The mechanisms of action of AIT include the induction of very early desensitization of mast cells and basophils; generation of regulatory T and regulatory B (Breg) cell responses; regulation of IgE and IgG4; decreases in numbers and activity of eosinophils and mast cells in mucosal allergic tissues; and decreases in the activity of basophils in circulation. Skewing of allergen-specific effector T and effector B cells to a regulatory phenotype appears as a key event in the course of AIT and normal immune response to allergens. Recently, inducible IL-10-secreting Breg cells were also demonstrated to contribute to allergen tolerance through suppression of effector T cells and selective induction of IgG4 isotype antibodies. Allergen-specific regulatory T and Breg cells orchestrate a general immunoregulatory activity, which can be summarized as suppression of cytokines from inflammatory dendritic cells; suppression of effector TH1, TH2, and TH17 cells; suppression of allergen-specific IgE and induction of IgG4; and suppression of migration of mast cells, basophils, eosinophils, and effector T cells to tissues. A detailed knowledge of the mechanisms of AIT is not only important in designing the prevention and treatment of allergic diseases but might also find applications in the treatment of autoimmune diseases, organ transplantation, chronic infection, and cancer.
Collapse
|
84
|
Xu W. Expression data analysis to identify biomarkers associated with asthma in children. Int J Genomics 2014; 2014:165175. [PMID: 24790987 PMCID: PMC3985200 DOI: 10.1155/2014/165175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 01/23/2014] [Accepted: 02/26/2014] [Indexed: 11/17/2022] Open
Abstract
Asthma is characterized by recurrent episodes of wheezing, shortness of breath, chest tightness, and coughing. It is usually caused by a combination of complex and incompletely understood environmental and genetic interactions. We obtained gene expression data with high-throughput screening and identified biomarkers of children's asthma using bioinformatics tools. Next, we explained the pathogenesis of children's asthma from the perspective of gene regulatory networks: DAVID was applied to perform Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enriching analysis for the top 3000 pairs of relationships in differentially regulatory network. Finally, we found that HAND1, PTK1, NFKB1, ZIC3, STAT6, E2F1, PELP1, USF2, and CBFB may play important roles in children's asthma initiation. On account of regulatory impact factor (RIF) score, HAND1, PTK7, and ZIC3 were the potential asthma-related factors. Our study provided some foundations of a strategy for biomarker discovery despite a poor understanding of the mechanisms underlying children's asthma.
Collapse
Affiliation(s)
- Wen Xu
- Department of Paediatrics, Rizhao City People's Hospital, No. 126 Donggang Area, Tai'an Road, Rizhao City, Shandong 276800, China
| |
Collapse
|
85
|
Zhang M, Qian YY, Chai SJ, Liang ZY, Xu Q, Wu ZQ, Wang K. Enhanced local Foxp3 expression in lung tissue attenuates airway inflammation in a mouse model of asthma. J Asthma 2014; 51:451-8. [PMID: 24467722 DOI: 10.3109/02770903.2014.887727] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Bronchial asthma is a chronic inflammatory disease of the airway mediated by a Th2 immune response. A great deal of data has demonstrated that regulatory T cells (Tregs) have the ability to suppress Th2 immune responses and the transcription factor fork-head box protein 3 (Foxp3) is indispensable for the development of CD4 + CD25 + Tregs. In this study, we hypothesized that enhanced local Foxp3 expression in lung tissue could suppress Th2-mediated allergic asthma. METHODS Foxp3/PMX retroviruses containing the mouse Foxp3 gene were constructed and administered into asthmatic mice through intra-tracheal instillation before ovalbumin challenging. Foxp3 expression, airway hyper-responsiveness (AHR), bronchoalveolar lavage fluid (BALF) and tissue inflammatory cell and cytokine profiles were characterized. RESULTS Foxp3 mRNA and protein were increased in the lung tissue of asthmatic mice. Enhanced expression of Foxp3 locally in the lung tissue reduced the airway AHR, inflammatory cell infiltration and mucus production. It also attenuated Th2 and Th17 immune responses as evidenced by reduced IL-4, IL-13 and IL-17 levels. CONCLUSIONS This study demonstrates that enhanced Foxp3 expression in the airway by intra-tracheally instilled Foxp3/PMX retroviruses alleviates allergic airway inflammation by reducing the Th2 immune response.
Collapse
Affiliation(s)
- Min Zhang
- Department of Respiratory Medicine, Second Affiliated Hospital of Zhejiang University, School of Medicine , Hangzhou , China
| | | | | | | | | | | | | |
Collapse
|
86
|
Liu X, Yin S, Cao W, Fan W, Yu L, Yin L, Wang L, Wang J. Runt-related transcription factor 3 is involved in the altered phenotype and function in ThPok-deficient invariant natural killer T cells. Cell Mol Immunol 2014; 11:232-44. [PMID: 24561456 DOI: 10.1038/cmi.2014.3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/10/2014] [Accepted: 01/12/2014] [Indexed: 01/09/2023] Open
Abstract
The interplay between the CD4-lineage transcription factor ThPok and the CD8-lineage transcription factor, runt-related transcription factor 3 (Runx3), in T-cell development has been extensively documented. However, little is known about the roles of these transcription factors in invariant natural killer T (iNKT) cell development. CD1d-restricted iNKT cells are committed to the CD4(+)CD8(-) and CD4(-)CD8(-) sublineages, which respond to antigen stimulation with rapid and potent release of T helper (Th) 1 and Th2 cytokines. However, previous reports have demonstrated a new population of CD8(+) NKT cells in ThPok-deficient mice. In the current study, we sought to determine whether Runx3 was involved in the re-expression of CD8 and function of iNKT cells in the absence of ThPok. We used mice lacking Runx3, ThPok or both and verified that Runx3 was partially responsible for the appearance of CD8(+) iNKT cells in ThPok knockout mice. Additionally, Runx3 participated in the immune response mediated by iNKT cells in a model of α-galactosylceramide-induced acute hepatitis. These results indicate that Runx3 is crucial for the phenotypic and functional changes observed in ThPok-deficient iNKT cells.
Collapse
|
87
|
Ogawa C, Tone Y, Tsuda M, Peter C, Waldmann H, Tone M. TGF-β-mediated Foxp3 gene expression is cooperatively regulated by Stat5, Creb, and AP-1 through CNS2. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:475-83. [PMID: 24298014 PMCID: PMC3905572 DOI: 10.4049/jimmunol.1301892] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Foxp3 plays an important role in the development and the function of regulatory T cells (Treg). Both the induction and maintenance of Foxp3 gene expression are controlled by several regulatory regions including two enhancers in the conserved noncoding sequences (CNS). The functions of Enhancer 1 in CNS1 are well established, whereas those of Enhancer 2 in CNS2 remain unclear. Although CNS2 contains enhancer activity, methylated CpG sequences in this region prevent Foxp3 gene expression in Foxp3(-) T cells. These sequences are, however, demethylated in Foxp3(+) Treg by mechanisms as yet unknown. To investigate the role of CNS2, we have determined the Enhancer 2 core sequence by luciferase reporter assays in the absence of methylation to exclude the inhibitory effect and shown that transcription factors AP-1, Stat5, and Creb cooperate in regulating Enhancer 2 activity. We have then determined the methylation sensitivity of each of the transcription factors. AP-1 was found to be methylation sensitive as has previously been described for Creb. However, Stat5 was active even when its binding site in CNS2 was methylated. Stat5 binding to Enhancer 2 occurred early and preceded that of AP-1 and Creb during Treg induction. In addition, Stat5 activation is itself dependent on TGF-β signaling through Smad3-mediated blockade of Socs3 expression. These findings suggest that Stat5 is a key regulator for opening up the CNS2 region during induced Treg induction, whereas AP-1 and Creb maintain Enhancer 2 activity.
Collapse
Affiliation(s)
- Chihiro Ogawa
- Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, 90048 USA
| | - Yukiko Tone
- Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, 90048 USA
| | - Masato Tsuda
- Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, 90048 USA
| | - Christian Peter
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Herman Waldmann
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Masahide Tone
- Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, 90048 USA
| |
Collapse
|
88
|
Delacher M, Schreiber L, Richards DM, Farah C, Feuerer M, Huehn J. Transcriptional control of regulatory T cells. Curr Top Microbiol Immunol 2014; 381:83-124. [PMID: 24831347 DOI: 10.1007/82_2014_373] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Regulatory T cells (Tregs) constitute unique T cell lineage that plays a key role for immunological tolerance. Tregs are characterized by the expression of the forkhead box transcription factor Foxp3, which acts as a lineage-specifying factor by determining the unique suppression profile of these immune cells. Here, we summarize the recent progress in understanding how Foxp3 expression itself is epigenetically and transcriptionally controlled, how the Treg-specific signature is achieved and how unique properties of Treg subsets are defined by other transcription factors. Finally, we will discuss recent studies focusing on the molecular targeting of Tregs to utilize the specific properties of this unique cell type in therapeutic settings.
Collapse
Affiliation(s)
- Michael Delacher
- Immune Tolerance, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
89
|
Maccani JZJ, Koestler DC, Houseman EA, Marsit CJ, Kelsey KT. Placental DNA methylation alterations associated with maternal tobacco smoking at the RUNX3 gene are also associated with gestational age. Epigenomics 2013; 5:619-30. [PMID: 24283877 PMCID: PMC3982305 DOI: 10.2217/epi.13.63] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AIMS The developmental origins of health and disease hypothesis states that later-life disease may be influenced by the quality of the in utero environment. Environmental toxicants can have detrimental effects on fetal development, potentially through effects on placental development and function. Maternal smoking during pregnancy is associated with low birth weight, preterm birth and other complications, and exposure to cigarette smoke in utero has been linked to gross pathologic and molecular changes to the placenta, including differential DNA methylation in placental tissue. The aim of this study was to investigate the relationship between maternal smoking during pregnancy, methylation changes in the placenta and gestational age. MATERIALS & METHODS We used Illumina(®)'s (CA, USA) Human Methylation27 BeadChip technology platform to investigate the methylation status of 21,551 autosomal, non-SNP-associated CpG loci in DNA extracted from 206 human placentas and examined loci whose variation in methylation was associated with maternal smoking during pregnancy. RESULTS We found that methylation patterns of a number of loci within the RUNX3 gene were significantly associated with smoking during pregnancy, and one of these loci was associated with decreased gestational age (p = 0.04). CONCLUSION Our findings, demonstrating maternal smoking-induced changes in DNA methylation at specific loci, suggest a mechanism by which in utero tobacco smoke exposure could exert its detrimental effects upon the health of the fetus.
Collapse
Affiliation(s)
- Jennifer ZJ Maccani
- Department of Pathology & Laboratory Medicine, Brown University, Providence, RI, USA
| | - Devin C Koestler
- Section of Biostatistics & Epidemiology, Department of Community & Family Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | | | - Carmen J Marsit
- Section of Biostatistics & Epidemiology, Department of Community & Family Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Pharmacology & Toxicology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Karl T Kelsey
- Department of Pathology & Laboratory Medicine, Brown University, Providence, RI, USA
- Department of Epidemiology, Brown University, Providence, RI, USA
| |
Collapse
|
90
|
Jutel M, Van de Veen W, Agache I, Azkur KA, Akdis M, Akdis CA. Mechanisms of allergen-specific immunotherapy and novel ways for vaccine development. Allergol Int 2013; 62:425-33. [PMID: 24153333 DOI: 10.2332/allergolint.13-rai-0608] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Indexed: 12/22/2022] Open
Abstract
Allergen-specific immunotherapy (SIT) is the only available curative treatment of allergic diseases. Recent evidence provided a plausible explanation to its multiple mechanisms inducing both rapid desensitization and long-term allergen-specific immune tolerance, and suppression of allergic inflammation in the affected tissues. During SIT, peripheral tolerance is induced by the generation of allergen-specific regulatory T cells, which suppress proliferative and cytokine responses against the allergen of interest. Regulatory T cells are characterized by IL-10 and TGF-beta secretion and expression of important cell surface suppressive molecules such as cytotoxic T lymphocyte antigen-4 and programmed death-1 that directly or indirectly influence effector cells of allergic inflammation, such as mast cells, basophils and eosinophils. Regulatory T cells and particularly IL-10 also have an influence on B cells, suppressing IgE production and inducing the production of blocking type IgG4 antibodies. In addition, development of allergen-specific B regulatory cells that produce IL-10 and develop into IgG4 producing plasma cells represent essential players in peripheral tolerance. These findings together with the new biotechnological approaches create a platform for development of the advanced vaccines. Moreover, reliable biomarkers could be selected and validated with the intention to select the patients who will benefit most from this immune-modifying treatment. Thus, allergen-SIT could provide a complete cure for a larger number of allergic patients and novel preventive approaches need to be elaborated.
Collapse
Affiliation(s)
- Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Poland
| | | | | | | | | | | |
Collapse
|
91
|
Comparison of IFN-β inducible gene expression in primary-progressive and relapsing-remitting multiple sclerosis. J Neuroimmunol 2013; 265:68-74. [DOI: 10.1016/j.jneuroim.2013.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/11/2013] [Accepted: 10/16/2013] [Indexed: 11/18/2022]
|
92
|
Ozdemir C, Kucuksezer UC, Akdis M, Akdis CA. Under the skin or under the tongue: differences and similarities in mechanisms of sublingual and subcutaneous immunotherapy. Immunotherapy 2013; 5:1151-8. [DOI: 10.2217/imt.13.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Cevdet Ozdemir
- Memorial Health Group, Atasehir Hospital, Department of Pediatric Allergy, Istanbul, Turkey
| | - Umut C Kucuksezer
- Istanbul University, Institute of Experimental Medicine (DETAE), Department of Immunology, Istanbul, Turkey
| | - Mübeccel Akdis
- Swiss Institute of Allergy & Asthma Research (SIAF), University of Zürich Obere Strasse 22, CH-7270 Davos Platz, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy & Asthma Research (SIAF), University of Zürich Obere Strasse 22, CH-7270 Davos Platz, Switzerland and Christine Kühne – Center for Allergy Research & Education, Davos, Switzerland
| |
Collapse
|
93
|
Karlsson F, Martinez NE, Gray L, Zhang S, Tsunoda I, Grisham MB. Therapeutic evaluation of ex vivo-generated versus natural regulatory T-cells in a mouse model of chronic gut inflammation. Inflamm Bowel Dis 2013; 19:2282-2294. [PMID: 23893082 PMCID: PMC3812251 DOI: 10.1097/mib.0b013e31829c32dd] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The objectives of this study were to (a) evaluate and compare the ability of ex vivo-generated induced regulatory T cells (iTregs) and freshly isolated natural Tregs (nTregs) to reverse/attenuate preexisting intestinal inflammation in a mouse model of chronic colitis and (b) quantify the Treg-targeted gene expression profiles of these two Treg populations. We found that ex vivo-generated iTregs were significantly more potent than nTregs at attenuating preexisting colitis. This superior therapeutic activity was associated with increased accumulation of iTregs within the mesenteric lymph nodes and large and significant reductions in interleukin (IL)-6 and IL-17A expression in the colons of iTreg- versus nTreg-treated mice. The enhanced immunosuppressive activity of iTregs was not because of increased expression or stability of Foxp3 as iTregs and nTregs obtained from the mesenteric lymph nodes, and colons of reconstituted mice expressed similar levels of this important transcription factor. In addition, we observed a total of 27 genes that were either upregulated or downregulated in iTregs when compared with nTregs. Although iTregs were found to be superior at reversing established disease, their message levels of IL-10 and IL-35 and surface expression of the gut-homing molecules CCR9 and α4β7 were significantly reduced when compared with nTregs. Taken together, our data demonstrate that ex vivo-generated iTregs are significantly more potent than nTregs at attenuating preexisting gut inflammation despite reduced expression of classical regulatory cytokines and gut-homing molecules. Our data suggest that the immunosuppressive activity of iTregs may be because of their ability to directly or indirectly decrease expression of IL-6 and IL-17A within the inflamed bowel.
Collapse
Affiliation(s)
- Fridrik Karlsson
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Nicholas E. Martinez
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Laura Gray
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Songlin Zhang
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Ikuo Tsunoda
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Matthew B. Grisham
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
94
|
Abstract
The differentiation of CD4 helper T cells into specialized effector lineages has provided a powerful model for understanding immune cell differentiation. Distinct lineages have been defined by differential expression of signature cytokines and the lineage-specifying transcription factors necessary and sufficient for their production. The traditional paradigm of differentiation towards Th1 and Th2 subtypes driven by T-bet and GATA3, respectively, has been extended to incorporate additional T cell lineages and transcriptional regulators. Technological advances have expanded our view of these lineage-specifying transcription factors to the whole genome and revealed unexpected interplay between them. From these data, it is becoming clear that lineage specification is more complex and plastic than previous models might have suggested. Here, we present an overview of the different forms of transcription factor interplay that have been identified and how T cell phenotypes arise as a product of this interplay within complex regulatory networks. We also suggest experimental strategies that will provide further insight into the mechanisms that underlie T cell lineage specification and plasticity.
Collapse
Affiliation(s)
- Catherine M Evans
- Division of Infection and Immunity and UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK.
| | | |
Collapse
|
95
|
FoxP3, Helios, and SATB1: Roles and relationships in regulatory T cells. Int Immunopharmacol 2013; 16:343-7. [DOI: 10.1016/j.intimp.2013.02.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 02/01/2013] [Indexed: 11/19/2022]
|
96
|
Analysis of PPARGC1B, RUNX3 and TBKBP1 polymorphisms in Chinese Han patients with ankylosing spondylitis: a case-control study. PLoS One 2013; 8:e61527. [PMID: 23637848 PMCID: PMC3630117 DOI: 10.1371/journal.pone.0061527] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 03/11/2013] [Indexed: 11/28/2022] Open
Abstract
Background Susceptibility to and severity of ankylosing spondylitis (AS) are largely genetically determined. PPARGC1B, RUNX3 and TBKBP1 have recently been found to be associated with AS in patients of western European descent. Our purpose is to examine the influence of PPARGC1B, RUNX3 and TBKBP1 polymorphisms on the susceptibility to and the severity of ankylosing spondylitis in Chinese ethnic majority Han population. Methods Blood samples are drawn from 396 AS patients and 404 unrelated healthy controls. All the patients and the controls are Han Chinese and the patients are HLA-B27 positive. The AS patients are classified based on the severity of the disease. Twelve tag single nucleotide polymorphisms (tagSNPs) in PPARGC1B, RUNX3 and TBKBP1 are selected and genotyped. Frequencies of different genotypes and alleles are analyzed among the different severity AS patients and the controls. Results After Bonferroni correction, the rs7379457 SNP in PPARGC1B shows significant difference when comparing all AS patients to controls (p = 0.005). This SNP also shows significant difference when comparing normal AS patients to controls (p = 0.002). The rs1395621 SNP in RUNX3 shows significant difference when comparing severe AS patients to controls (p = 0.007). The rs9438876 SNP in RUNX3 shows significant difference when comparing normal AS patients to controls (p = 0.007). The rs8070463 SNP in TBKBP1 shows significant difference in genotype distribution when comparing severe AS patients to controls (p = 0.003). Conclusions The rs7379457 SNP in PPARGC1B is related to susceptibility to AS in Chinese Han population. The rs7379457 SNP in PPARGC1B, the rs1395621 and rs9438876 SNPs in RUNX3, and the rs8070463 SNP in TBKBP1 are related to the severity of AS in Chinese Han population.
Collapse
|
97
|
Bai ZK, Guo B, Tian XC, Li DD, Wang ST, Cao H, Wang QY, Yue ZP. Expression and regulation of Runx3 in mouse uterus during the peri-implantation period. J Mol Histol 2013; 44:519-26. [PMID: 23572423 DOI: 10.1007/s10735-013-9501-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 03/12/2013] [Indexed: 01/21/2023]
Abstract
The aim of this study was to investigate the differential expression and regulation of Runt-related transcription factor 3 (Runx3) in mouse uterus during early pregnancy and its regulation by steroid hormones using in situ hybridization. There was a low level of the Runx3 mRNA expression in the mouse uterus on days 1-4 of pregnancy. On day 5 when embryo implanted, Runx3 mRNA signal was obviously observed in the stromal cells surrounding the implanting blastocyst. From day 6 to 8 of pregnancy, Runx3 mRNA was highly expressed in the decidual cells and mesometrial decidual beds. Similarly, Runx3 mRNA was strongly expressed in decidualized cells under artificial decidualization. Compared with the delayed uterus, a high level of Runx3 mRNA signal was detected in the uterus with activated implantation. In the ovariectomized mouse uterus, estrogen could induce the expression of Runx3, while progesterone had no effects. These results suggest that Runx3 may play an important role during mouse implantation and decidualization. Estrogen can induce the expression of Runx3 in the ovariectomized mouse uterus.
Collapse
Affiliation(s)
- Zhi-Kun Bai
- College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Park BS, Hong GU, Ro JY. Foxp3(+)-Treg cells enhanced by repeated low-dose gamma-irradiation attenuate ovalbumin-induced allergic asthma in mice. Radiat Res 2013; 179:570-83. [PMID: 23560633 DOI: 10.1667/rr3082.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Gamma radiation is used for several therapeutic indications such as cancers and autoimmune diseases. Low-dose whole-body γ irradiation has been shown to activate immune responses in several ways, however, the effect and mechanism of irradiation on allergic asthma remains poorly understood. This study investigated whether or not irradiation exacerbates allergic asthma responses and its potential mechanism. C57BL/6 mice were sensitized and challenged with ovalbumin (OVA) to induce asthma. The mice received whole-body irradiation once daily for 3 consecutive days with a dose of 0.667 Gy using (137)Cs γ rays 24 h before every OVA challenge. Repeated low-dose irradiation reduced OVA-specific IgE levels, the number of inflammatory cells including mast cells, goblet cell hyperplasia, collagen deposition, airway hyperresponsiveness, expression of inflammatory cytokines, CCL2/CCR2, as well as nuclear factor kappa B (NF-κB) and activator protein-1 activities. All of these factors were increased in BAL cells and lung tissue of OVA-challenged mice. Irradiation increased the number of Treg cells, expression of interleukin (IL)-10, IL-2 and IL-35 in BAL cells and lung tissue. Irradiation also increased Treg cell-expressed Foxp3 and IL-10 by NF-κB and RUNX1 in OVA-challenged mice. Furthermore, while Treg cell-expressing OX40 and IL-10 were enhanced in lung tissue or act-bone marrow-derived mast cells (BMMCs) with Treg cells, but BMMCs-expressing OX40L and TGF-β were decreased. The data suggest that irradiation enhances Foxp3(+)- and IL-10-producing Treg cells, which reduce OVA-induced allergic airway inflammation and tissue remodeling through the down-regulation of migration by the CCL2/CCR2 axis and activation of mast cells via OX40/OX40L in lung tissue of OVA-challenged mice.
Collapse
Affiliation(s)
- Bum Soo Park
- Department of Pharmacology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, South Korea
| | | | | |
Collapse
|
99
|
Kaczorowski M, Jutel M. Human T regulatory cells: on the way to cognition. Arch Immunol Ther Exp (Warsz) 2013; 61:229-36. [PMID: 23536196 DOI: 10.1007/s00005-013-0217-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 02/01/2013] [Indexed: 12/25/2022]
Abstract
Forkhead box P3 (Foxp3)(+) T regulatory (Treg) cells are powerful controllers of the immune response and their role in the human immune system is indispensable. Since a number of revolutionary and very convincing results were brought to light, Foxp3 has unquestionably been thought to be the "master regulator" of Treg lineage commitment. Herein, we depict the revised view on the role of Foxp3 transcription factor, challenging this theory, as well as the growing significance of Runt-related transcription factor (RUNX) family proteins for Treg lineage. The review presents the current notion of Treg cell heterogeneity, molecular characteristics and their mechanisms of action.
Collapse
Affiliation(s)
- Maciej Kaczorowski
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
| | | |
Collapse
|
100
|
Sackesen C, van de Veen W, Akdis M, Soyer O, Zumkehr J, Ruckert B, Stanic B, Kalaycı O, Alkan SS, Gursel I, Akdis CA. Suppression of B-cell activation and IgE, IgA, IgG1 and IgG4 production by mammalian telomeric oligonucleotides. Allergy 2013; 68:593-603. [PMID: 23480796 DOI: 10.1111/all.12133] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2013] [Indexed: 12/28/2022]
Abstract
BACKGROUND The fine balance of immunoglobulins (Ig) E, IgG1, IgG4 and IgA in healthy production is maintained by the interaction of B cells with adaptive and innate immune response. The regulation of toll-like receptors (TLRs)-driven innate and adaptive immune effector B-cell response and the role of mammalian telomeric TTAGGG repeat elements represent an important research area. METHODS Human PBMC and purified naive and memory B cells were stimulated with specific ligands for TLR2, TLR3, TLR4, TLR5, TLR7, TLR8 and TLR9 in the presence or absence of telomeric oligonucleotides. B-cell proliferation, differentiation and antibody production were determined. RESULTS TLR9 ligand directly activates naive and memory B cells, whereas TLR7 can stimulate them in the presence of plasmacytoid dendritic cells. Human B cells proliferate and turn into antibody-secreting cells in response to TLR3, TLR7 and TLR9, but not to TLR2, TLR4, TLR5 and TLR8 ligands. Stimulation of B cells with intracellular TLR3, TLR7 and TLR9 induced an activation cascade leading to memory B-cell generation and particularly IgG1, but also IgA, IgG4 and very low levels of IgE production. Mammalian telomeric oligodeoxynucleotide (ODN) significantly inhibited all features of TLR ligand-induced events in B cells including B-cell proliferation, IgE, IgG1, IgG4, IgA production, class switch recombination, plasma cell differentiation induced by TLR3, TLR7 and TLR9 ligands. CONCLUSION B cells require specific TLR stimulation, T-cell and plasmacytoid dendritic cell help for distinct activation and Ig production profiles. Host-derived telomeric ODN suppress B-cell activation and antibody production demonstrating a natural mechanism for the control of overexuberant B-cell activation, antibody production and generation of memory.
Collapse
Affiliation(s)
| | - W. van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos; Switzerland
| | - M. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos; Switzerland
| | | | - J. Zumkehr
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos; Switzerland
| | - B. Ruckert
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos; Switzerland
| | - B. Stanic
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos; Switzerland
| | - O. Kalaycı
- Department of Pediatric Allergy and Asthma; Hacettepe University School of Medicine; Ankara; Turkey
| | | | - I. Gursel
- Department of Molecular Biology and Genetics; Bilkent University; Ankara; Turkey
| | - C. A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos; Switzerland
| |
Collapse
|