51
|
Human and computational models of atopic dermatitis: A review and perspectives by an expert panel of the International Eczema Council. J Allergy Clin Immunol 2018; 143:36-45. [PMID: 30414395 PMCID: PMC6626639 DOI: 10.1016/j.jaci.2018.10.033] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/10/2018] [Accepted: 10/30/2018] [Indexed: 12/14/2022]
Abstract
Atopic dermatitis (AD) is a prevalent disease worldwide and is associated with systemic comorbidities representing a significant burden on patients, their families, and society. Therapeutic options for AD remain limited, in part because of a lack of well-characterized animal models. There has been increasing interest in developing experimental approaches to study the pathogenesis of human AD in vivo, in vitro, and in silico to better define pathophysiologic mechanisms and identify novel therapeutic targets and biomarkers that predict therapeutic response. This review critically appraises a range of models, including genetic mutations relevant to AD, experimental challenge of human skin in vivo, tissue culture models, integration of “omics” data sets, and development of predictive computational models. Although no one individual model recapitulates the complex AD pathophysiology, our review highlights insights gained into key elements of cutaneous biology, molecular pathways, and therapeutic target identification through each approach. Recent developments in computational analysis, including application of machine learning and a systems approach to data integration and predictive modeling, highlight the applicability of these methods to AD subclassification (endotyping), therapy development, and precision medicine. Such predictive modeling will highlight knowledge gaps, further inform refinement of biological models, and support new experimental and systems approaches to AD. (J Allergy Clin Immunol 2019;143:36–45.)
Collapse
|
52
|
Dudeck J, Froebel J, Kotrba J, Lehmann CHK, Dudziak D, Speier S, Nedospasov SA, Schraven B, Dudeck A. Engulfment of mast cell secretory granules on skin inflammation boosts dendritic cell migration and priming efficiency. J Allergy Clin Immunol 2018; 143:1849-1864.e4. [PMID: 30339853 DOI: 10.1016/j.jaci.2018.08.052] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 07/13/2018] [Accepted: 08/26/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Mast cells (MCs) are best known as key effector cells of allergic reactions, but they also play an important role in host defense against pathogens. Despite increasing evidence for a critical effect of MCs on adaptive immunity, the underlying mechanisms are poorly understood. OBJECTIVE Here we monitored MC intercellular communication with dendritic cells (DCs), MC activation, and degranulation and tracked the fate of exocytosed mast cell granules (MCGs) during skin inflammation. METHODS Using a strategy to stain intracellular MCGs in vivo, we tracked the MCG fate after skin inflammation-induced MC degranulation. Furthermore, exogenous MCGs were applied to MC-deficient mice by means of intradermal injection. MCG effects on DC functionality and adaptive immune responses in vivo were assessed by combining intravital multiphoton microscopy with flow cytometry and functional assays. RESULTS We demonstrate that dermal DCs engulf the intact granules exocytosed by MCs on skin inflammation. Subsequently, the engulfed MCGs are actively shuttled to skin-draining lymph nodes and finally degraded inside DCs within the lymphoid tissue. Most importantly, MCG uptake promotes DC maturation and migration to skin-draining lymph nodes, partially through MC-derived TNF, and boosts their T-cell priming efficiency. Surprisingly, exogenous MCGs alone are sufficient to induce a prominent DC activation and T-cell response. CONCLUSION Our study highlights a unique feature of peripheral MCs to affect lymphoid tissue-borne adaptive immunity over distance by modifying DC functionality through delivery of granule-stored mediators.
Collapse
Affiliation(s)
- Jan Dudeck
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Julia Froebel
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Johanna Kotrba
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Christian H K Lehmann
- Department of Dermatology, Laboratory of Dendritic Cell Biology, University Hospital of Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Diana Dudziak
- Department of Dermatology, Laboratory of Dendritic Cell Biology, University Hospital of Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Stephan Speier
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, München-Neuherberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; DFG-Center for Regenerative Therapies Dresden (CRTD), Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Sergei A Nedospasov
- Engelhardt Institute of Molecular Biology and Lomonosov Moscow State University, Moscow, Russia
| | - Burkhart Schraven
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Anne Dudeck
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany.
| |
Collapse
|
53
|
Gaudenzio N, Marichal T, Galli SJ, Reber LL. Genetic and Imaging Approaches Reveal Pro-Inflammatory and Immunoregulatory Roles of Mast Cells in Contact Hypersensitivity. Front Immunol 2018; 9:1275. [PMID: 29922295 PMCID: PMC5996070 DOI: 10.3389/fimmu.2018.01275] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/22/2018] [Indexed: 01/31/2023] Open
Abstract
Contact hypersensitivity (CHS) is a common T cell-mediated skin disease induced by epicutaneous sensitization to haptens. Mast cells (MCs) are widely deployed in the skin and can be activated during CHS responses to secrete diverse products, including some with pro-inflammatory and anti-inflammatory functions. Conflicting results have been obtained regarding pathogenic versus protective roles of MCs in CHS, and this has been attributed in part to the limitations of certain models for studying MC functions in vivo. This review discusses recent advances in the development and analysis of mouse models to investigate the roles of MCs and MC-associated products in vivo. Notably, fluorescent avidin-based two-photon imaging approaches enable in vivo selective labeling and simultaneous tracking of MC secretory granules (e.g., during MC degranulation) and MC gene activation by real-time longitudinal intravital microscopy in living mice. The combination of such genetic and imaging tools has shed new light on the controversial role played by MCs in mouse models of CHS. On the one hand, they can amplify CHS responses of mild severity while, on the other hand, can limit the inflammation and tissue injury associated with more severe or chronic models, in part by representing an initial source of the anti-inflammatory cytokine IL-10.
Collapse
Affiliation(s)
- Nicolas Gaudenzio
- Unité de Différenciation Epithéliale et Autoimmunité Rhumatoïde (UDEAR), UMR 1056, INSERM, Université de Toulouse, Toulouse, France
| | - Thomas Marichal
- Laboratory of Cellular and Molecular Immunology, GIGA Institute, Liege University, Liège, Belgium
- Faculty of Veterinary Medicine, Liege University, Liège, Belgium
- WELBIO, Walloon Excellence in Life Sciences and Biotechnology, Wallonia, Belgium
| | - Stephen J. Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
- Department of Immunology and Microbiology, Stanford University School of Medicine, Stanford, CA, United States
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, United States
| | - Laurent L. Reber
- Unit of Antibodies in Therapy and Pathology, INSERM Unit 1222, Department of Immunology, Institut Pasteur, Paris, France
| |
Collapse
|
54
|
The role of extracellular vesicles when innate meets adaptive. Semin Immunopathol 2018; 40:439-452. [PMID: 29616308 PMCID: PMC6208666 DOI: 10.1007/s00281-018-0681-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/19/2018] [Indexed: 12/21/2022]
Abstract
Innate immune cells are recognized for their rapid and critical contribution to the body's first line of defense against invading pathogens and harmful agents. These actions can be further amplified by specific adaptive immune responses adapted to the activating stimulus. Recently, the awareness has grown that virtually all innate immune cells, i.e., mast cells, neutrophils, macrophages, eosinophils, basophils, and NK cells, are able to communicate with dendritic cells (DCs) and/or T and B cells, and thereby significantly contribute to the orchestration of adaptive immune responses. The means of communication that are thus far primarily associated with this function are cell-cell contacts and the release of a broad range of soluble mediators. Moreover, the possible contribution of innate immune cell-derived extracellular vesicles (EVs) to the modulation of adaptive immunity will be outlined in this review. EVs are submicron particles composed of a lipid bilayer, proteins, and nucleic acids released by cells in a regulated fashion. EVs are involved in intercellular communication between multiple cell types, including those of the immune system. A good understanding of the mechanisms by which innate immune cell-derived EVs influence adaptive immune responses, or vice versa, may reveal novel insights in the regulation of the immune system and can open up new possibilities for EVs (or their components) in controlling immune responses, either as a therapy, target, or as an adjuvant in future immune modulating treatments.
Collapse
|