51
|
Rose-John S. Therapeutic targeting of IL-6 trans-signaling. Cytokine 2021; 144:155577. [PMID: 34022535 DOI: 10.1016/j.cyto.2021.155577] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023]
Abstract
Interleukin-6 (IL-6) is a cytokine, which is involved in innate and acquired immunity, in neural cell maintenance and in metabolism. IL-6 can be synthesized by many different cells including myeloid cells, fibroblasts, endothelial cells and lymphocytes. The synthesis of IL-6 is strongly stimulated by Toll like receptors and by IL-1. Therefore, IL-6 levels in the body are high during infection and inflammatory processes. Moreover, IL-6 is a prominent growth factor of tumor cells and plays a major role in inflammation associated cancer. On target cells, IL-6 binds to an IL-6 receptor, which is not signaling competent. The complex of IL-6 and IL-6 receptor associate with a second receptor subunit, glycoprotein gp130, which dimerizes and initiates intracellular signaling. Cells, which do not express the IL-6 receptor are not responsive to IL-6. They can, however, be stimulated by the complex of IL-6 and a soluble form of the IL-6 receptor, which is generated by limited proteolysis and to a lesser extent by translation from an alternatively spliced mRNA. This process has been named IL-6 trans-signaling. This review article will explain the biology of IL-6 trans-signaling and the specific inhibition of this mode of signaling, which has been recognized to be fundamental in inflammation and cancer.
Collapse
|
52
|
Cagdas D, Mayr D, Baris S, Worley L, Langley DB, Metin A, Aytekin ES, Atan R, Kasap N, Bal SK, Dmytrus J, Heredia RJ, Karasu G, Torun SH, Toyran M, Karakoc-Aydiner E, Christ D, Kuskonmaz B, Uçkan-Çetinkaya D, Uner A, Oberndorfer F, Schiefer AI, Uzel G, Deenick EK, Keller B, Warnatz K, Neven B, Durandy A, Sanal O, Ma CS, Özen A, Stepensky P, Tezcan I, Boztug K, Tangye SG. Genomic Spectrum and Phenotypic Heterogeneity of Human IL-21 Receptor Deficiency. J Clin Immunol 2021; 41:1272-1290. [PMID: 33929673 PMCID: PMC8086229 DOI: 10.1007/s10875-021-01031-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/29/2021] [Indexed: 01/04/2023]
Abstract
Biallelic inactivating mutations in IL21R causes a combined immunodeficiency that is often complicated by cryptosporidium infections. While eight IL-21R-deficient patients have been reported previously, the natural course, immune characteristics of disease, and response to hematopoietic stem cell transplantation (HSCT) remain to be comprehensively examined. In our study, we have collected clinical histories of 13 patients with IL-21R deficiency from eight families across seven centers worldwide, including five novel patients identified by exome or NGS panel sequencing. Eight unique mutations in IL21R were identified in these patients, including two novel mutations. Median age at disease onset was 2.5 years (0.5–7 years). The main clinical manifestations were recurrent bacterial (84.6%), fungal (46.2%), and viral (38.5%) infections; cryptosporidiosis-associated cholangitis (46.2%); and asthma (23.1%). Inflammatory skin diseases (15.3%) and recurrent anaphylaxis (7.9%) constitute novel phenotypes of this combined immunodeficiency. Most patients exhibited hypogammaglobulinemia and reduced proportions of memory B cells, circulating T follicular helper cells, MAIT cells and terminally differentiated NK cells. However, IgE levels were elevated in 50% of IL-21R-deficient patients. Overall survival following HSCT (6 patients, mean follow-up 1.8 year) was 33.3%, with pre-existing organ damage constituting a negative prognostic factor. Mortality of non-transplanted patients (n = 7) was 57.1%. Our detailed analysis of the largest cohort of IL-21R-deficient patients to date provides in-depth clinical, immunological and immunophenotypic features of these patients, thereby establishing critical non-redundant functions of IL-21/IL-21R signaling in lymphocyte differentiation, humoral immunity and host defense against infection, and mechanisms of disease pathogenesis due to IL-21R deficiency. Outcome following HSCT depends on prior chronic infections and organ damage, which should thus be considered as early as possible following molecular diagnosis.
Collapse
Affiliation(s)
- Deniz Cagdas
- Division of Pediatric Immunology, Department of Pediatrics, İhsan Doğramacı Children's Hospital, Hacettepe University Medical Faculty, Ankara, Turkey.
- Section of Pediatric Immunology, Institutes of Child Health, Health Science Institute, Hacettepe University, Ankara, Turkey.
| | - Daniel Mayr
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Safa Baris
- Department of Pediatric Allergy and Immunology, Marmara University Faculty of Medicine, İstanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Lisa Worley
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, Australia
| | - David B Langley
- St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, Australia
| | - Ayse Metin
- Department of Pediatric Immunology, Ankara City Hospital, University of Health Sciences, Ankara, Turkey
| | - Elif Soyak Aytekin
- Division of Pediatric Immunology, Department of Pediatrics, İhsan Doğramacı Children's Hospital, Hacettepe University Medical Faculty, Ankara, Turkey
| | - Raziye Atan
- Department of Pediatrics, Hacettepe University Medical Faculty, 1031, Ankara, Turkey
| | - Nurhan Kasap
- Department of Pediatric Allergy and Immunology, Marmara University Faculty of Medicine, İstanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Sevgi Köstel Bal
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Jasmin Dmytrus
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Raul Jimenez Heredia
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Gulsun Karasu
- School of Medicine, Goztepe Medicalpark Hospital, Pediatric stem Cell Transplantation Unit, İstinye University, İstanbul, Turkey
| | - Selda Hancerli Torun
- İstanbul Medical Faculty, Pediatric Infectious Disease, Istanbul University, İstanbul, Turkey
| | - Muge Toyran
- Department of Pediatric Immunology, Ankara City Hospital, University of Health Sciences, Ankara, Turkey
| | - Elif Karakoc-Aydiner
- Department of Pediatric Allergy and Immunology, Marmara University Faculty of Medicine, İstanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Daniel Christ
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, Australia
| | - Baris Kuskonmaz
- Department of Pediatrics, Division of Pediatric Hematology, Hacettepe University Medical School, Ankara, Turkey
| | - Duygu Uçkan-Çetinkaya
- Department of Pediatrics, Division of Pediatric Hematology, Hacettepe University Medical School, Ankara, Turkey
| | - Aysegul Uner
- Department of Pathology, Hacettepe University Medical School, Ankara, Turkey
| | | | - Ana-Iris Schiefer
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Elissa K Deenick
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, Australia
| | - Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bénédicte Neven
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker Children Hospital, Paris, France
| | - Anne Durandy
- Laboratory of Human Lymphohematopoiesis, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | - Ozden Sanal
- Division of Pediatric Immunology, Department of Pediatrics, İhsan Doğramacı Children's Hospital, Hacettepe University Medical Faculty, Ankara, Turkey
- Section of Pediatric Immunology, Institutes of Child Health, Health Science Institute, Hacettepe University, Ankara, Turkey
| | - Cindy S Ma
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, Australia
| | - Ahmet Özen
- Department of Pediatric Allergy and Immunology, Marmara University Faculty of Medicine, İstanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Polina Stepensky
- Department of Bone Marrow Transplantation, Hadassah Medical Center and Faculty of Medicine Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ilhan Tezcan
- Division of Pediatric Immunology, Department of Pediatrics, İhsan Doğramacı Children's Hospital, Hacettepe University Medical Faculty, Ankara, Turkey
- Section of Pediatric Immunology, Institutes of Child Health, Health Science Institute, Hacettepe University, Ankara, Turkey
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.
- St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.
| | - Stuart G Tangye
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia.
- St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, Australia.
| |
Collapse
|
53
|
Fadil I, Ben-Ali M, Jeddane L, Barbouche MR, Bousfiha AA. The Seven STAT3-Related Hyper-IgE Syndromes. J Clin Immunol 2021; 41:1384-1389. [PMID: 33903995 DOI: 10.1007/s10875-021-01041-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/12/2021] [Indexed: 11/24/2022]
Affiliation(s)
- Ilham Fadil
- Laboratory of Clinical Immunology, Inflammation, and Allergy (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Meriem Ben-Ali
- Laboratory of Transmission, Control and Immunobiology of Infections, Institut Pasteur de Tunis, University Tunis El-Manar, Tunis, Tunisia
| | - Leila Jeddane
- Laboratory of Clinical Immunology, Inflammation, and Allergy (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco.,Immunology-Allergology Unit, National Reference Laboratory, University Mohammed VI of Health Sciences, Casablanca, Morocco
| | - Mohamed-Ridha Barbouche
- Laboratory of Transmission, Control and Immunobiology of Infections, Institut Pasteur de Tunis, University Tunis El-Manar, Tunis, Tunisia.,Faculty of Medicine of Tunis, University Tunis El-Manar, Tunis, Tunisia
| | - Ahmed Aziz Bousfiha
- Laboratory of Clinical Immunology, Inflammation, and Allergy (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco. .,Clinical Immunology Unit, Department of Infectious Diseases, Harouchi Hospital, Ibn Rochd University Hospital, Casablanca, Morocco.
| |
Collapse
|
54
|
Kespohl B, Schumertl T, Bertrand J, Lokau J, Garbers C. The cytokine interleukin-11 crucially links bone formation, remodeling and resorption. Cytokine Growth Factor Rev 2021; 60:18-27. [PMID: 33940443 DOI: 10.1016/j.cytogfr.2021.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
Bone development is a complex process that requires the activity of several different signaling pathways and cell types. It involves the coordinated action of osteoclasts (cells that are capable of resorbing bone), osteoblasts (cells that are able to form bone), osteocytes (cells that form a syncytial network within the bone), skeletal muscle cells and the bone marrow. In recent years, the cytokine interleukin-11 (IL-11), a member of the IL-6 family of cytokines, has emerged as an important regulatory protein for bone formation, remodeling and resorption. Furthermore, coding missense mutations in the IL11RA gene, which encodes the IL-11 receptor (IL-11R), have recently been linked to craniosynostosis, a human disease in which the sutures that line the head bones close prematurely. This review summarizes current knowledge about IL-11 and highlights its role in bone development and homeostasis. It further discusses the specificity and redundancy provided by the other members of the IL-6 cytokine family and how they facilitate signaling and cross-talk between skeletal muscle cells, bone cells and the bone marrow. We describe their actions in physiological and in pathological states and discuss how this knowledge could be translated into therapy.
Collapse
Affiliation(s)
- Birte Kespohl
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Tim Schumertl
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Jessica Bertrand
- Department of Orthopaedic Surgery, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Juliane Lokau
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Christoph Garbers
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany.
| |
Collapse
|
55
|
García-García A, Buendia Arellano M, Deyà-Martínez À, Lozano Blasco J, Serrano M, Van Den Rym A, García-Solis B, Esteve-Solé A, Yiyi L, Vlagea A, Solanich X, Fisher MR, Lyons JJ, de Diego RP, Alsina L. Novel PGM3 compound heterozygous variants with IgE-related dermatitis, lymphopenia, without syndromic features. Pediatr Allergy Immunol 2021; 32:566-575. [PMID: 33098103 DOI: 10.1111/pai.13398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/17/2020] [Accepted: 10/07/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Phosphoglucomutase-3 (PGM3) deficiency is a congenital disorder of glycosylation (CDG) with hyperimmunoglobulin IgE, atopy, and a variable immunological phenotype; most reported patients display dysmorphic features. The aim of the study was to characterize the genotype and phenotype of individuals with newly identified compound heterozygous variants in the phosphate-binding domain of PGM3 in order to better understand phenotypic differences between these patients and published cases. METHODS We analyzed PGM3 protein expression, PGM3 enzymatic activity, the presence of other gene variants within the N-glycosylation pathway, and the clinical and immunological manifestations of two affected siblings. RESULTS Patients belonged to a non-consanguineous family, presenting with atopic dermatitis, elevated levels of IgE, and CD4+ lymphopenia (a more severe phenotype was observed in Patient 2), but lacked dysmorphic features or neurocognitive impairment. Compound heterozygous PGM3 variants were identified, located in the phosphate-binding domain of the enzyme. PGM3 expression was comparable to healthy donors, but L-PHA binding in naïve-CD4+ cells was decreased. Examination of exome sequence identified the presence of one additional candidate variant of unknown significance (VUS) in the N-glycosylation pathway in Patient 2: a variant predicted to have moderate-to-high impact in ALG12. CONCLUSIONS Our analysis revealed that L-PHA binding is reduced in naïve-CD4+ cells, which is consistent with decreased residual PGM3 enzymatic activity. Other gene variants in the N-glycosylation pathway may modify patient phenotypes in PGM3 deficiency. This study expands the clinical criteria for when PGM3 deficiency should be considered among individuals with hyper-IgE.
Collapse
Affiliation(s)
- Ana García-García
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,Clinical Immunology Unit Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | - Monserrat Buendia Arellano
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain.,Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain.,Interdepartmental group of Immunodeficiencies, Madrid, Spain
| | - Àngela Deyà-Martínez
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,Clinical Immunology Unit Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | - Jaime Lozano Blasco
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Mercedes Serrano
- Pediatric Neurology Department. Hospital Sant Joan de Déu, Barcelona, Spain.,U-703 Centre for Biomedical Research on Rare Diseases (CIBER-ER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Ana Van Den Rym
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain.,Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain.,Interdepartmental group of Immunodeficiencies, Madrid, Spain
| | - Blanca García-Solis
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain.,Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain.,Interdepartmental group of Immunodeficiencies, Madrid, Spain
| | - Ana Esteve-Solé
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,Clinical Immunology Unit Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | - Luo Yiyi
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,Clinical Immunology Unit Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | - Alexandru Vlagea
- Clinical Immunology Unit Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain.,Immunology Service, Biomedic Diagnostic Center, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Xavier Solanich
- Servei de Medicina Interna, Unitat Funcional d'Immunodeficiències Primàries de l'Adult, Hospital Univerisitari de Bellvitge, IDIBELL. L'Hospitalet de Llobregat, Barcelona, Spain
| | - Megan R Fisher
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Jonathan J Lyons
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Rebeca Pérez de Diego
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain.,Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain.,Interdepartmental group of Immunodeficiencies, Madrid, Spain
| | - Laia Alsina
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,Clinical Immunology Unit Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain.,Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
56
|
Stadler PC, Renner ED, Milner J, Wollenberg A. Inborn Error of Immunity or Atopic Dermatitis: When to be Concerned and How to Investigate. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:1501-1507. [DOI: 10.1016/j.jaip.2021.01.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 12/28/2022]
|
57
|
Functional and structural analysis of cytokine-selective IL6ST defects that cause recessive hyper-IgE syndrome. J Allergy Clin Immunol 2021; 148:585-598. [PMID: 33771552 DOI: 10.1016/j.jaci.2021.02.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 01/24/2021] [Accepted: 02/12/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Biallelic variants in IL6ST, encoding GP130, cause a recessive form of hyper-IgE syndrome (HIES) characterized by high IgE level, eosinophilia, defective acute phase response, susceptibility to bacterial infections, and skeletal abnormalities due to cytokine-selective loss of function in GP130, with defective IL-6 and IL-11 and variable oncostatin M (OSM) and IL-27 levels but sparing leukemia inhibitory factor (LIF) signaling. OBJECTIVE Our aim was to understand the functional and structural impact of recessive HIES-associated IL6ST variants. METHODS We investigated a patient with HIES by using exome, genome, and RNA sequencing. Functional assays assessed IL-6, IL-11, IL-27, OSM, LIF, CT-1, CLC, and CNTF signaling. Molecular dynamics simulations and structural modeling of GP130 cytokine receptor complexes were performed. RESULTS We identified a patient with compound heterozygous novel missense variants in IL6ST (p.Ala517Pro and the exon-skipping null variant p.Gly484_Pro518delinsArg). The p.Ala517Pro variant resulted in a more profound IL-6- and IL-11-dominated signaling defect than did the previously identified recessive HIES IL6ST variants p.Asn404Tyr and p.Pro498Leu. Molecular dynamics simulations suggested that the p.Ala517Pro and p.Asn404Tyr variants result in increased flexibility of the extracellular membrane-proximal domains of GP130. We propose a structural model that explains the cytokine selectivity of pathogenic IL6ST variants that result in recessive HIES. The variants destabilized the conformation of the hexameric cytokine receptor complexes, whereas the trimeric LIF-GP130-LIFR complex remained stable through an additional membrane-proximal interaction. Deletion of this membrane-proximal interaction site in GP130 consequently caused additional defective LIF signaling and Stüve-Wiedemann syndrome. CONCLUSION Our data provide a structural basis to understand clinical phenotypes in patients with IL6ST variants.
Collapse
|
58
|
Saikia B, Rawat A, Minz RW, Suri D, Pandiarajan V, Jindal A, Sahu S, Karim A, Desai M, Taur PD, Pandrowala A, Gowri V, Madkaikar M, Dalvi A, Yadav RM, Lashkari HP, Raj R, Uppuluri R, Swaminathan VV, Bhattad S, Cyril G, Kumar H, Shukla A, Kalra M, Govindaraj G, Singh S. Clinical Profile of Hyper-IgE Syndrome in India. Front Immunol 2021; 12:626593. [PMID: 33717144 PMCID: PMC7952512 DOI: 10.3389/fimmu.2021.626593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/05/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Hyper-IgE Syndrome (HIES) is a rare inborn error of immunity (IEI) characterized by a constellation of symptoms related to susceptibility to Staphylococcal skin and pulmonary infections, eczema, raised serum IgE (>2,000 IU/ml), craniofacial anomalies, and recurrent bone fractures. Data on HIES from the Indian subcontinent is scarce and restricted to small case series and case reports. This is the first compilation of national data on HIES. Materials and Methods: A total 103 cases clinically diagnosed and treated as HIES were analyzed from nine centers. Cases with clinical and/or molecular diagnosis of DOCK8 deficiency were not included. Patients were divided into two groups: group I for whom a heterozygous rare variant of STAT3 was identified, and group II, with clinical features similar to those of AD STAT3 deficiency, but without any genetic diagnosis. Results: Genetic diagnosis was available in 27 patients (26.2%) and all harbored rare variants in the STAT3 gene. Majority of these STAT3 HIES patients presented with recurrent skin abscesses (77.7%) or pneumonia (62.9%) or both (59.2%). Other features included eczema (37%), candidiasis (55.5%), facial dysmorphism (55.5%), recurrent fractures (11.1%), and retained primary teeth (7.4%). Mycobacterial infections were seen in a significant 18.5%. Mortality was seen in three subjects (11.1%). A similar trend in the clinical presentation was observed when all the 103 patients were analyzed together. Twenty percent of patients without a rare variant in the STAT3 gene had an NIH score of ≥40, whereas, 51.9% of STAT3 HIES subjects had scores below the cut off of ≥40. TH17 cell numbers were low in 10/11 (90.9%) STAT3 HIES tested. Rare variants observed were 8 in exon 21; 8 in exon 13; 3 in exon 10; 2 in exon 15, and one each in exon 6, 16, 17, 19, 22, and splice site downstream of exon 12. Seven variants were novel and included F174S, N567D, L404Sfs*8, G419 =, M329K, T714I, R518X, and a splice site variant downstream of exon 12. Conclusions: The report includes seven novel STAT3 variants, including a rare linker domain nonsense variant and a CC domain variant. Mycobacterial diseases were more frequent, compared to western literature.
Collapse
Affiliation(s)
- Biman Saikia
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Rawat
- Department of Pediatrics, Advanced Pediatric Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ranjana W. Minz
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Deepti Suri
- Department of Pediatrics, Advanced Pediatric Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Vignesh Pandiarajan
- Department of Pediatrics, Advanced Pediatric Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ankur Jindal
- Department of Pediatrics, Advanced Pediatric Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Smrity Sahu
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Adil Karim
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Mukesh Desai
- Department of Immunology, BJ Wadia Hospital for Children, Mumbai, India
| | - Prasad D. Taur
- Department of Immunology, BJ Wadia Hospital for Children, Mumbai, India
| | | | - Vijaya Gowri
- Department of Immunology, BJ Wadia Hospital for Children, Mumbai, India
| | | | - Aparna Dalvi
- ICMR-National Institute of Immunohaematology, Mumbai, India
| | | | | | - Revathi Raj
- Department of Pediatric Hematology, Oncology, Blood and Marrow Transplantation, Apollo Hospitals, Chennai, India
| | - Ramya Uppuluri
- Department of Pediatric Hematology, Oncology, Blood and Marrow Transplantation, Apollo Hospitals, Chennai, India
| | - Venkateswaran V. Swaminathan
- Department of Pediatric Hematology, Oncology, Blood and Marrow Transplantation, Apollo Hospitals, Chennai, India
| | | | | | | | | | | | | | - Surjit Singh
- Department of Pediatrics, Advanced Pediatric Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
59
|
Inborn errors of immunity with atopic phenotypes: A practical guide for allergists. World Allergy Organ J 2021; 14:100513. [PMID: 33717395 PMCID: PMC7907539 DOI: 10.1016/j.waojou.2021.100513] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/22/2020] [Accepted: 01/11/2021] [Indexed: 12/19/2022] Open
Abstract
Inborn errors of immunity (IEI) are a heterogeneous group of disorders, mainly resulting from mutations in genes associated with immunoregulation and immune host defense. These disorders are characterized by different combinations of recurrent infections, autoimmunity, inflammatory manifestations, lymphoproliferation, and malignancy. Interestingly, it has been increasingly observed that common allergic symptoms also can represent the expression of an underlying immunodeficiency and/or immune dysregulation. Very high IgE levels, peripheral or organ-specific hypereosinophilia, usually combined with a variety of atopic symptoms, may sometimes be the epiphenomenon of a monogenic disease. Therefore, allergists should be aware that severe and/or therapy-resistant atopic disorders might be the main clinical phenotype of some IEI. This could pave the way to target therapies, leading to better quality of life and improved survival in affected patients.
Collapse
|
60
|
Tangye SG, Al-Herz W, Bousfiha A, Cunningham-Rundles C, Franco JL, Holland SM, Klein C, Morio T, Oksenhendler E, Picard C, Puel A, Puck J, Seppänen MRJ, Somech R, Su HC, Sullivan KE, Torgerson TR, Meyts I. The Ever-Increasing Array of Novel Inborn Errors of Immunity: an Interim Update by the IUIS Committee. J Clin Immunol 2021; 41:666-679. [PMID: 33598806 PMCID: PMC7889474 DOI: 10.1007/s10875-021-00980-1] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022]
Abstract
The most recent updated classification of inborn errors of immunity/primary immunodeficiencies, compiled by the International Union of Immunological Societies Expert Committee, was published in January 2020. Within days of completing this report, it was already out of date, evidenced by the frequent publication of genetic variants proposed to cause novel inborn errors of immunity. As the next formal report from the IUIS Expert Committee will not be published until 2022, we felt it important to provide the community with a brief update of recent contributions to the field of inborn errors of immunity. Herein, we highlight studies that have identified 26 additional monogenic gene defects that reach the threshold to represent novel causes of immune defects.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, 2010, Australia. .,Faculty of Medicine, St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia.
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Aziz Bousfiha
- Laboratoire d'Immunologie Clinique, d'Inflammation et d'Allergy LICIA Clinical Immunology Unit, Casablanca Children's Hospital, Ibn Rochd Medical School, King Hassan II University, Casablanca, Morocco
| | | | - Jose Luis Franco
- Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Steven M Holland
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christoph Klein
- Dr von Hauner Childrens Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Eric Oksenhendler
- Department of Clinical Immunology, Hôpital Saint-Louis, APHP, University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Capucine Picard
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, APHP, Paris, France.,Laboratory of Lymphocyte Activation and Susceptibility to EBV, INSERM UMR1163, Imagine Institute, Necker Hospital for Sick Children, Paris University, Paris, France
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital, 75015, Paris, France.,Imagine Institute, University of Paris, 75015, Paris, France
| | - Jennifer Puck
- Department of Pediatrics, University of California San Francisco and UCSF Benioff Children's Hospital, San Francisco, CA, USA
| | - Mikko R J Seppänen
- Adult Immunodeficiency Unit, Infectious Diseases, Inflammation Center and Rare Diseases Center, Childrens Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Raz Somech
- Pediatric Department and Immunology Unit, Sheba Medical Center, Tel Aviv, Israel
| | - Helen C Su
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kathleen E Sullivan
- Division of Allergy Immunology, Department of Pediatrics, Childrens Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Isabelle Meyts
- Department of Immunology and Microbiology, Laboratory for Inborn Errors of Immunity, Department of Pediatrics, University Hospitals Leuven and KU Leuven, 3000, Leuven, Belgium
| |
Collapse
|
61
|
Dmitrieva NI, Walts AD, Nguyen DP, Grubb A, Zhang X, Wang X, Ping X, Jin H, Yu Z, Yu ZX, Yang D, Schwartzbeck R, Dalgard CL, Kozel BA, Levin MD, Knutsen RH, Liu D, Milner JD, López DB, O'Connell MP, Lee CCR, Myles IA, Hsu AP, Freeman AF, Holland SM, Chen G, Boehm M. Impaired angiogenesis and extracellular matrix metabolism in autosomal-dominant hyper-IgE syndrome. J Clin Invest 2021; 130:4167-4181. [PMID: 32369445 DOI: 10.1172/jci135490] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/29/2020] [Indexed: 12/21/2022] Open
Abstract
There are more than 7000 described rare diseases, most lacking specific treatment. Autosomal-dominant hyper-IgE syndrome (AD-HIES, also known as Job's syndrome) is caused by mutations in STAT3. These patients present with immunodeficiency accompanied by severe nonimmunological features, including skeletal, connective tissue, and vascular abnormalities, poor postinfection lung healing, and subsequent pulmonary failure. No specific therapies are available for these abnormalities. Here, we investigated underlying mechanisms in order to identify therapeutic targets. Histological analysis of skin wounds demonstrated delayed granulation tissue formation and vascularization during skin-wound healing in AD-HIES patients. Global gene expression analysis in AD-HIES patient skin fibroblasts identified deficiencies in a STAT3-controlled transcriptional network regulating extracellular matrix (ECM) remodeling and angiogenesis, with hypoxia-inducible factor 1α (HIF-1α) being a major contributor. Consistent with this, histological analysis of skin wounds and coronary arteries from AD-HIES patients showed decreased HIF-1α expression and revealed abnormal organization of the ECM and altered formation of the coronary vasa vasorum. Disease modeling using cell culture and mouse models of angiogenesis and wound healing confirmed these predicted deficiencies and demonstrated therapeutic benefit of HIF-1α-stabilizing drugs. The study provides mechanistic insights into AD-HIES pathophysiology and suggests potential treatment options for this rare disease.
Collapse
Affiliation(s)
- Natalia I Dmitrieva
- Laboratory of Cardiovascular Regenerative Medicine, Translational Vascular Medicine Branch
| | - Avram D Walts
- Laboratory of Cardiovascular Regenerative Medicine, Translational Vascular Medicine Branch
| | - Dai Phuong Nguyen
- Laboratory of Cardiovascular Regenerative Medicine, Translational Vascular Medicine Branch
| | - Alex Grubb
- Laboratory of Cardiovascular Regenerative Medicine, Translational Vascular Medicine Branch
| | - Xue Zhang
- Bioinformatics and Systems Biology Core, and
| | - Xujing Wang
- Bioinformatics and Systems Biology Core, and
| | - Xianfeng Ping
- Laboratory of Cardiovascular Regenerative Medicine, Translational Vascular Medicine Branch
| | - Hui Jin
- Laboratory of Cardiovascular Regenerative Medicine, Translational Vascular Medicine Branch
| | - Zhen Yu
- Laboratory of Cardiovascular Regenerative Medicine, Translational Vascular Medicine Branch
| | - Zu-Xi Yu
- Pathology Core, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
| | - Dan Yang
- Laboratory of Cardiovascular Regenerative Medicine, Translational Vascular Medicine Branch
| | - Robin Schwartzbeck
- Laboratory of Cardiovascular Regenerative Medicine, Translational Vascular Medicine Branch
| | - Clifton L Dalgard
- Department of Anatomy, Physiology & Genetics.,The American Genome Center, and.,Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Beth A Kozel
- Laboratory of Vascular and Matrix Genetics, NHLBI
| | - Mark D Levin
- Laboratory of Vascular and Matrix Genetics, NHLBI
| | | | - Delong Liu
- Laboratory of Vascular and Matrix Genetics, NHLBI
| | - Joshua D Milner
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Diego B López
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Michael P O'Connell
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Chyi-Chia Richard Lee
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), and
| | - Ian A Myles
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, Maryland, USA
| | - Amy P Hsu
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, Maryland, USA
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, Maryland, USA
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, Maryland, USA
| | - Guibin Chen
- Laboratory of Cardiovascular Regenerative Medicine, Translational Vascular Medicine Branch
| | - Manfred Boehm
- Laboratory of Cardiovascular Regenerative Medicine, Translational Vascular Medicine Branch
| |
Collapse
|
62
|
Mitchell AL, Urban AK, Freeman AF, Hammoud DA. An Unusual Pattern of Premature Cervical Spine Degeneration in STAT3-LOF. J Clin Immunol 2021; 41:576-584. [PMID: 33404973 DOI: 10.1007/s10875-020-00926-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/16/2020] [Indexed: 01/21/2023]
Abstract
Loss of function mutations in STAT3 (STAT3-LOF; autosomal dominant hyper-IgE (Job's) syndrome) are associated with a variety of musculoskeletal manifestations, including scoliosis, osteoporosis, and minimal trauma fractures. This retrospective magnetic resonance (MR) imaging study sought to characterize an unusual pattern of cervical spine degeneration among a cohort of STAT3-LOF patients. Cervical spine MR images of the STAT3-LOF cohort (n = 38) were assessed for a variety of degenerative changes and compared to age-matched groups of controls (n = 42) without known immune or musculoskeletal abnormalities. A unique pattern of premature cervical spine degeneration was identified among the STAT3-LOF cohort which included straightening and eventual reversal of the normal cervical lordosis, mainly due to multi-level spondylolisthesis, as well as early development of spinal canal narrowing, cord compression, and myelomalacia. Cervical spine degeneration in the STAT3-LOF cohort was significantly worse than controls in both the 30-45 and 45 + age groups. Moderate to severe degenerative changes were present after age 30, and markedly worsened over time in several cases. Bone mineral density (BMD) had a moderate negative correlation with cervical degeneration severity and a strong negative correlation with age among STAT3-LOF participants. Cervical degeneration in STAT3-LOF appears to be progressive and could result in cord compromise if left unaddressed. Focused history and physical examination for signs of neurologic compromise as well as periodic MR imaging are thus recommended for the evaluation of premature cervical spine degeneration in STAT3-LOF patients after age 30 so that timely surgical interventions may be considered to prevent spinal cord damage and permanent neurological deficits.
Collapse
Affiliation(s)
- Amelia L Mitchell
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Amanda K Urban
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dima A Hammoud
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
63
|
Park B, Liu GY. Staphylococcus aureus and Hyper-IgE Syndrome. Int J Mol Sci 2020; 21:ijms21239152. [PMID: 33271763 PMCID: PMC7729741 DOI: 10.3390/ijms21239152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/19/2020] [Accepted: 11/22/2020] [Indexed: 12/30/2022] Open
Abstract
Hyper-immunoglobulin E syndrome (HIES) is a primary immunodeficiency disease characterized by recurrent Staphylococcus aureus (S. aureus) infections, eczema, skeletal abnormalities and high titers of serum immunoglobulin E. Although the genetic basis of HIES was not known for almost a half century, HIES most frequently exhibits autosomal dominant trait that is transmitted with variable expressivity. Careful genetic studies in recent years identified dominant-negative mutations in human signal transducer and activator of transcription 3 (STAT3) gene as the cause of sporadic and dominant forms of HIES. The STAT3 mutations were localized to DNA-binding, SRC homology 2 (SH2) and transactivating domains and disrupted T helper 17 (TH17) cell differentiation and downstream expression of TH17 cytokines IL-17 and IL-22. Deficiency of IL-17 and IL-22 in turn is responsible for suboptimal expression of anti-staphylococcal host factors, such as neutrophil-recruiting chemokines and antimicrobial peptides, by human keratinocytes and bronchial epithelial cells. TH17 cytokines deficiency thereby explains the recurrent staphylococcal lung and skin infections of HIES patients.
Collapse
Affiliation(s)
- Bonggoo Park
- Division of Pediatric Infectious Diseases and the Immunobiology Research Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - George Y. Liu
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
- Correspondence:
| |
Collapse
|
64
|
Ophthalmic manifestations and management of common and rare autoimmune syndromes. Curr Opin Allergy Clin Immunol 2020; 20:493-500. [DOI: 10.1097/aci.0000000000000674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
65
|
Notarangelo LD, Bacchetta R, Casanova JL, Su HC. Human inborn errors of immunity: An expanding universe. Sci Immunol 2020; 5:5/49/eabb1662. [PMID: 32651211 DOI: 10.1126/sciimmunol.abb1662] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022]
Abstract
Molecular, cellular, and clinical studies of human inborn errors of immunity have revolutionized our understanding of their pathogenesis, considerably broadened their spectrum of immunological and clinical phenotypes, and enabled successful targeted therapeutic interventions. These studies have also been of great scientific merit, challenging a number of immunological notions initially established in inbred mice while revealing previously unrecognized mechanisms of host defense by leukocytes and other cells and of both innate and adaptive tolerance to self.
Collapse
Affiliation(s)
- Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Rosa Bacchetta
- Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France.,Paris University, Imagine Institute, Paris, France.,Pediatrics Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France.,Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Helen C Su
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
66
|
Autoantibodies against cytokines: phenocopies of primary immunodeficiencies? Hum Genet 2020; 139:783-794. [PMID: 32419033 PMCID: PMC7272486 DOI: 10.1007/s00439-020-02180-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/05/2020] [Indexed: 01/04/2023]
Abstract
Anti-cytokine autoantibodies may cause immunodeficiency and have been recently recognized as ‘autoimmune phenocopies of primary immunodeficiencies’ and are found in particular, but not exclusively in adult patients. By blocking the cytokine’s biological function, patients with anti-cytokine autoantibodies may present with a similar clinical phenotype as the related inborn genetic disorders. So far, autoantibodies to interferon (IFN)-γ, GM-CSF, to a group of TH-17 cytokines and to IL-6 have been found to be causative or closely associated with susceptibility to infection. This review compares infectious diseases associated with anti-cytokine autoantibodies with primary immunodeficiencies affecting similar cytokines or related pathways.
Collapse
|
67
|
Villanueva JCMM, Chan KW, Ong RC, Andaya AG, Lau YL, van Zelm MC, Kanegane H. Hyper IgE Syndrome Associated With Warts: A First Case of Dedicator of Cytokinesis 8 Deficiency in the Philippines. Front Pediatr 2020; 8:604725. [PMID: 33251169 PMCID: PMC7673426 DOI: 10.3389/fped.2020.604725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/09/2020] [Indexed: 11/13/2022] Open
Abstract
Hyper IgE syndrome (HIES) encompasses a group of primary immunodeficiency diseases (PIDs) that is characterized by severe atopy, and recurrent infections and markedly elevated serum IgE levels. The majority of HIES cases suffer from autosomal dominant mutations in the signal transducer and activator of transcription 3 gene. A minority of cases display autosomal recessive inheritance, and one form is caused by mutations in the dedicator of cytokinesis 8 (DOCK8) gene. Here we describe the first recognized and diagnosed case of DOCK8 deficiency in the Philippines. A 14 year-old-girl was referred due to recalcitrant atopic dermatitis, recurrent sinopulmonary infections, with widespread warts on the face, trunk and extremities. She had no coarse facial features or retained primary teeth, whereas she presented with widespread viral skin infections and multiple allergic diseases. Laboratory examinations revealed elevations in eosinophil count and serum IgE. The level of T-cell receptor excision circles was undetectable. The patient was suspected to have HIES with a probable DOCK8 deficiency. Genetic analysis disclosed a large genomic deletion involving exons 2-4 in the DOCK8 gene. A combination of recalcitrant atopic dermatitis, asthma, food allergies, with viral skin infections should increase the physician's consideration of a PID. Patients with HIES accompanied by warts and T-cell deficiency can be strongly suspected to have DOCK8 deficiency.
Collapse
Affiliation(s)
- Jose Carlo Miguel M Villanueva
- Section of Allergy and Clinical Immunology, Department of Pediatrics, University of Santo Tomas Hospital, Manila, Philippines
| | - Koon-Wing Chan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Remedios C Ong
- Section of Allergy and Clinical Immunology, Department of Pediatrics, University of Santo Tomas Hospital, Manila, Philippines
| | - Agnes G Andaya
- Section of Allergy and Clinical Immunology, Department of Pediatrics, University of Santo Tomas Hospital, Manila, Philippines
| | - Yu-Lung Lau
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Menno C van Zelm
- Department of Immunology and Pathology, Monash University and Alfred Hospital, Melbourne, VIC, Australia
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|