51
|
Hosseini S, Shamekhi MA, Jahangir S, Bagheri F, Eslaminejad MB. The Robust Potential of Mesenchymal Stem Cell-Loaded Constructs for Hard Tissue Regeneration After Cancer Removal. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1084:17-43. [DOI: 10.1007/5584_2017_131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
52
|
DEMİRBİLEK M, TÜRKOĞLU LAÇİN N, AKTÜRK S. N-Acetylglucoseamine modified alginate sponges as scaffolds for skin tissue engineering. Turk J Biol 2017. [DOI: 10.3906/biy-1704-31] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
53
|
Perez RA, Jung CR, Kim HW. Biomaterials and Culture Technologies for Regenerative Therapy of Liver Tissue. Adv Healthc Mater 2017; 6. [PMID: 27860372 DOI: 10.1002/adhm.201600791] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/10/2016] [Indexed: 12/18/2022]
Abstract
Regenerative approach has emerged to substitute the current extracorporeal technologies for the treatment of diseased and damaged liver tissue. This is based on the use of biomaterials that modulate the responses of hepatic cells through the unique matrix properties tuned to recapitulate regenerative functions. Cells in liver preserve their phenotype or differentiate through the interactions with extracellular matrix molecules. Therefore, the intrinsic properties of the engineered biomaterials, such as stiffness and surface topography, need to be tailored to induce appropriate cellular functions. The matrix physical stimuli can be combined with biochemical cues, such as immobilized functional groups or the delivered actions of signaling molecules. Furthermore, the external modulation of cells, through cocultures with nonparenchymal cells (e.g., endothelial cells) that can signal bioactive molecules, is another promising avenue to regenerate liver tissue. This review disseminates the recent approaches of regenerating liver tissue, with a focus on the development of biomaterials and the related culture technologies.
Collapse
Affiliation(s)
- Roman A. Perez
- Institute of Tissue Regeneration Engineering (ITREN); Dankook University; Cheonan 330-714 Republic of Korea
- Regenerative Medicine Research Institute; Universitat Internacional de Catalunya; Barcelona 08017 Spain
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine; Dankook University; Cheonan 330-714 Republic of Korea
| | - Cho-Rok Jung
- Gene Therapy Research Unit; KRIBB; 125 Gwahak-ro Yuseong-gu, Daejeon 34141 Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN); Dankook University; Cheonan 330-714 Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine; Dankook University; Cheonan 330-714 Republic of Korea
- Department of Biomaterials Science; Dankook University Dental College; Cheonan 330-714 Republic of Korea
| |
Collapse
|
54
|
Zhang Y, Wang QS, Yan K, Qi Y, Wang GF, Cui YL. Preparation, characterization, and evaluation of genipin crosslinked chitosan/gelatin three-dimensional scaffolds for liver tissue engineering applications. J Biomed Mater Res A 2016; 104:1863-70. [DOI: 10.1002/jbm.a.35717] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/22/2016] [Accepted: 03/11/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Yi Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine; Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine; Tianjin 300193 People's Republic of China
| | - Qiang-Song Wang
- Tianjin Key Laboratory of Biomedical Materials; Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College; Tianjin 300192 People's Republic of China
| | - Kuo Yan
- Tianjin State Key Laboratory of Modern Chinese Medicine; Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine; Tianjin 300193 People's Republic of China
| | - Yun Qi
- Faculty of Environmental Science and Engineering; Tianjin University; Tianjin 300072 People's Republic of China
| | - Gui-Fang Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine; Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine; Tianjin 300193 People's Republic of China
| | - Yuan-Lu Cui
- Tianjin State Key Laboratory of Modern Chinese Medicine; Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine; Tianjin 300193 People's Republic of China
| |
Collapse
|
55
|
Kehr NS. Enantiomorphous Periodic Mesoporous Organosilica-Based Nanocomposite Hydrogel Scaffolds for Cell Adhesion and Cell Enrichment. Biomacromolecules 2016; 17:1117-22. [DOI: 10.1021/acs.biomac.5b01739] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nermin Seda Kehr
- Physikalisches Institut and
CeNTech, Westfälische Wilhelms-Universität Münster, Heisenbergstraße
11, D-48149 Münster, Germany
| |
Collapse
|
56
|
Sarika PR, James NR, Anilkumar PR, Raj DK, Kumary TV. Microgravity as a means to incorporate HepG2 aggregates in polysaccharide-protein hybrid scaffold. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:27. [PMID: 26704544 DOI: 10.1007/s10856-015-5638-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/27/2015] [Indexed: 06/05/2023]
Abstract
Tissue culture under microgravity provides a venue which promotes cell-cell association while avoiding the detrimental effects of high shear stress. Hepatocytes cultured on carriers or entrapped within matrices under simulated microgravity conditions showed improved cell function and proliferation. In the present study, a new approach was adopted where a non-cell adherent scaffold was incorporated with hepatospheroids (HepG2) under microgravity. Gum arabic (GA) was cross-linked with gelatin (GA-Gel) and collagen (GA-Col) to prepare non-cell adherent scaffolds. Microgravity experiments with GA-Gel and GA-Col indicated that GA-Col is a better substrate compared to GA-Gel. Microgravity experiments of GA-Col scaffolds with HepG2 cells confirmed that the non-adherent surface with porous architecture can incorporate hepatocyte spheroids and maintain liver specific functions. Albumin and urea synthesis of hepatocytes was sustained up to 6 days under microgravity conditions in the presence of GA-Col scaffold. This new approach of using non-cell adherent matrix and microgravity environment for developing biological substitutes will be beneficial in tissue engineering, bioartificial liver devices and in vitro safety assessment of drugs.
Collapse
Affiliation(s)
- P R Sarika
- Department of Chemistry, Indian Institute of Space Science and Technology (IIST), Govt. of India, Valiamala, Thiruvananthapuram, 695 547, Kerala, India.
| | - Nirmala Rachel James
- Department of Chemistry, Indian Institute of Space Science and Technology (IIST), Govt. of India, Valiamala, Thiruvananthapuram, 695 547, Kerala, India.
| | - P R Anilkumar
- Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Thirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram, 695 012, Kerala, India.
| | - Deepa K Raj
- Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Thirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram, 695 012, Kerala, India.
| | - T V Kumary
- Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Thirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram, 695 012, Kerala, India.
| |
Collapse
|
57
|
In Situ Transplantation of Alginate Bioencapsulated Adipose Tissues Derived Stem Cells (ADSCs) via Hepatic Injection in a Mouse Model. PLoS One 2015; 10:e0138184. [PMID: 26372641 PMCID: PMC4570793 DOI: 10.1371/journal.pone.0138184] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/27/2015] [Indexed: 01/01/2023] Open
Abstract
Objective Adipose tissue derived stem cells (ADSCs) transplantation has recently gained widespread enthusiasm, particularly in the perspective to use them as potential alternative cell sources for hepatocytes in cell based therapy, mainly because of their capability of hepatogenic differentiation in vitro and in vivo. But some challenges remain to be addressed, including whether ADSCs can be provided effectively to the target organ and whether subsequent proliferation of transplanted cells can be achieved. To date, intrasplenic injection is the conventional method to deliver ADSCs into the liver; however, a number of donor cells retained in the spleen has been reported. In this study, our objective is to evaluate a novel route to transplant ADSCs specifically to the liver. We aimed to test the feasibility of in situ transplantation of ADSCs by injecting bioencapsulated ADSCs into the liver in mouse model. Methods The ADSCs isolated from human alpha 1 antitrypsin (M-hAAT) transgenic mice were used to allow delivered ADSCs be readily identified in the liver of recipient mice, and alginate was selected as a cell carrier. We first evaluated whether alginate microspheres are implantable into the liver tissue by injection and whether ADSCs could migrate from alginate microspheres (study one). Once proven, we then examined the in vivo fate of ADSCs loaded microspheres in the liver. Specifically, we evaluated whether transplanted, undifferentiated ASDCs could be induced by the local microenvironment toward hepatogenic differentiation and the distribution of surviving ADSCs in major tissue organs (study two). Results Our results indicated ADSCs loaded alginate microspheres were implantable into the liver. Both degraded and residual alginate microspheres were observed in the liver up to three weeks. The viable ADSCs were detectable surrounding degraded and residual alginate microspheres in the liver and other major organs such as bone marrow and the lungs. Importantly, transplanted ADSCs underwent hepatogenic differentiation to become cells expressing albumin in the liver. These findings improve our understanding of the interplay between ADSCs (donor cells), alginate (biomaterial), and local microenvironment in a hepatectomized mouse model, and might improve the strategy of in situ transplantation of ADSCs in treating liver diseases.
Collapse
|
58
|
Abstract
The development of safe, effective and patient-acceptable drug products is an expensive and lengthy process and the risk of failure at different stages of the development life-cycle is high. Improved biopharmaceutical tools which are robust, easy to use and accurately predict the in vivo response are urgently required to help address these issues. In this review the advantages and challenges of in vitro 3D versus 2D cell culture models will be discussed in terms of evaluating new drug products at the pre-clinical development stage. Examples of models with a 3D architecture including scaffolds, cell-derived matrices, multicellular spheroids and biochips will be described. The ability to simulate the microenvironment of tumours and vital organs including the liver, kidney, heart and intestine which have major impact on drug absorption, distribution, metabolism and toxicity will be evaluated. Examples of the application of 3D models including a role in formulation development, pharmacokinetic profiling and toxicity testing will be critically assessed. Although utilisation of 3D cell culture models in the field of drug delivery is still in its infancy, the area is attracting high levels of interest and is likely to become a significant in vitro tool to assist in drug product development thus reducing the requirement for unnecessary animal studies.
Collapse
|
59
|
Stevens KR, Miller JS, Blakely BL, Chen CS, Bhatia SN. Degradable hydrogels derived from PEG-diacrylamide for hepatic tissue engineering. J Biomed Mater Res A 2015; 103:3331-8. [PMID: 25851120 PMCID: PMC4890565 DOI: 10.1002/jbm.a.35478] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/02/2015] [Accepted: 04/02/2015] [Indexed: 01/19/2023]
Abstract
Engineered tissue constructs have the potential to augment or replace whole organ transplantation for the treatment of liver failure. Poly(ethylene glycol) (PEG)‐based systems are particularly promising for the construction of engineered liver tissue due to their biocompatibility and amenability to modular addition of bioactive factors. To date, primary hepatocytes have been successfully encapsulated in non‐degradable hydrogels based on PEG‐diacrylate (PEGDA). In this study, we describe a hydrogel system based on PEG‐diacrylamide (PEGDAAm) containing matrix‐metalloproteinase sensitive (MMP‐sensitive) peptide in the hydrogel backbone that is suitable for hepatocyte culture both in vitro and after implantation. By replacing hydrolytically unstable esters in PEGDA with amides in PEGDAAm, resultant hydrogels resisted non‐specific hydrolysis, while still allowing for MMP‐mediated hydrogel degradation. Optimization of polymerization conditions, hepatocellular density, and multicellular tissue composition modulated both the magnitude and longevity of hepatic function in vitro. Importantly, hepatic PEGDAAm‐based tissues survived and functioned for over 3 weeks after implantation ectopically in the intraperitoneal (IP) space of nude mice. Together, these studies suggest that MMP‐sensitive PEGDAAm‐based hydrogels may be a useful material system for applications in tissue engineering and regenerative medicine. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 3331–3338, 2015.
Collapse
Affiliation(s)
- Kelly R Stevens
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Jordan S Miller
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Brandon L Blakely
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Christopher S Chen
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Sangeeta N Bhatia
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139.,Howard Hughes Medical Institute, Cambridge, Massachusetts, 02139.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| |
Collapse
|
60
|
Alimperti S, Andreadis ST. CDH2 and CDH11 act as regulators of stem cell fate decisions. Stem Cell Res 2015; 14:270-82. [PMID: 25771201 DOI: 10.1016/j.scr.2015.02.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 01/24/2015] [Accepted: 02/10/2015] [Indexed: 12/14/2022] Open
Abstract
Accumulating evidence suggests that the mechanical and biochemical signals originating from cell-cell adhesion are critical for stem cell lineage specification. In this review, we focus on the role of cadherin mediated signaling in development and stem cell differentiation, with emphasis on two well-known cadherins, cadherin-2 (CDH2) (N-cadherin) and cadherin-11 (CDH11) (OB-cadherin). We summarize the existing knowledge regarding the role of CDH2 and CDH11 during development and differentiation in vivo and in vitro. We also discuss engineering strategies to control stem cell fate decisions by fine-tuning the extent of cell-cell adhesion through surface chemistry and microtopology. These studies may be greatly facilitated by novel strategies that enable monitoring of stem cell specification in real time. We expect that better understanding of how intercellular adhesion signaling affects lineage specification may impact biomaterial and scaffold design to control stem cell fate decisions in three-dimensional context with potential implications for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Stella Alimperti
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, NY 14260-4200, USA
| | - Stelios T Andreadis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, NY 14260-4200, USA; Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA.
| |
Collapse
|
61
|
Bachmann A, Moll M, Gottwald E, Nies C, Zantl R, Wagner H, Burkhardt B, Sánchez JJM, Ladurner R, Thasler W, Damm G, Nussler AK. 3D Cultivation Techniques for Primary Human Hepatocytes. MICROARRAYS (BASEL, SWITZERLAND) 2015; 4:64-83. [PMID: 27600213 PMCID: PMC4996383 DOI: 10.3390/microarrays4010064] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/08/2015] [Accepted: 02/03/2015] [Indexed: 01/27/2023]
Abstract
One of the main challenges in drug development is the prediction of in vivo toxicity based on in vitro data. The standard cultivation system for primary human hepatocytes is based on monolayer cultures, even if it is known that these conditions result in a loss of hepatocyte morphology and of liver-specific functions, such as drug-metabolizing enzymes and transporters. As it has been demonstrated that hepatocytes embedded between two sheets of collagen maintain their function, various hydrogels and scaffolds for the 3D cultivation of hepatocytes have been developed. To further improve or maintain hepatic functions, 3D cultivation has been combined with perfusion. In this manuscript, we discuss the benefits and drawbacks of different 3D microfluidic devices. For most systems that are currently available, the main issues are the requirement of large cell numbers, the low throughput, and expensive equipment, which render these devices unattractive for research and the drug-developing industry. A higher acceptance of these devices could be achieved by their simplification and their compatibility with high-throughput, as both aspects are of major importance for a user-friendly device.
Collapse
Affiliation(s)
- Anastasia Bachmann
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, Schnarrenbergstr. 95, 72076 Tü̈bingen, Germany.
| | - Matthias Moll
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, Schnarrenbergstr. 95, 72076 Tü̈bingen, Germany.
| | - Eric Gottwald
- Institute for Biological Interfaces, Karlsruhe Institute of Technology, POB 3640, 76021 Karlsruhe, Germany.
| | - Cordula Nies
- Institute for Biological Interfaces, Karlsruhe Institute of Technology, POB 3640, 76021 Karlsruhe, Germany.
| | - Roman Zantl
- GmbH, Am Klopferspitz 19, 82152 Martinsried, Germany.
| | - Helga Wagner
- GmbH, Am Klopferspitz 19, 82152 Martinsried, Germany.
| | - Britta Burkhardt
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, Schnarrenbergstr. 95, 72076 Tü̈bingen, Germany.
| | - Juan J Martínez Sánchez
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, Schnarrenbergstr. 95, 72076 Tü̈bingen, Germany.
| | - Ruth Ladurner
- Clinic for General, Visceral and Transplantation Surgery, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany.
| | - Wolfgang Thasler
- Department of Surgery, Ludwig-Maximilians-University of Munich Hospital Grosshadern, 81377 Munich, Germany.
| | - Georg Damm
- Department for General, Visceral and Transplantation Surgery, Charité Medical University Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Andreas K Nussler
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, Schnarrenbergstr. 95, 72076 Tü̈bingen, Germany.
| |
Collapse
|
62
|
Nair DG, Weiskirchen R, Al-Musharafi SK. The use of marine-derived bioactive compounds as potential hepatoprotective agents. Acta Pharmacol Sin 2015; 36:158-70. [PMID: 25500871 DOI: 10.1038/aps.2014.114] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 09/26/2014] [Indexed: 12/20/2022]
Abstract
The marine environment may be explored as a rich source for novel drugs. A number of marine-derived compounds have been isolated and identified, and their therapeutic effects and pharmacological profiles are characterized. In the present review, we highlight the recent studies using marine compounds as potential hepatoprotective agents for the treatment of liver fibrotic diseases and discuss the proposed mechanisms of their activities. In addition, we discuss the significance of similar studies in Oman, where the rich marine life provides a potential for the isolation of novel natural, bioactive products that display therapeutic effects on liver diseases.
Collapse
|
63
|
Olsen TR, Mattix B, Casco M, Herbst A, Williams C, Tarasidis A, Simionescu D, Visconti RP, Alexis F. Manipulation of cellular spheroid composition and the effects on vascular tissue fusion. Acta Biomater 2015; 13:188-98. [PMID: 25463485 DOI: 10.1016/j.actbio.2014.11.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/02/2014] [Accepted: 11/13/2014] [Indexed: 01/02/2023]
Abstract
Cellular spheroids were investigated as tissue-engineered building blocks that can be fused to form functional tissue constructs. While spheroids can be assembled using passive contacts for the fusion of complex tissues, physical forces can be used to promote active contacts to improve tissue homogeneity and accelerate tissue fusion. Understanding the mechanisms affecting the fusion of spheroids is critical to fabricating tissues. Here, manipulation of the spheroid composition was used to accelerate the fusion process mediated by magnetic forces. The Janus structure of magnetic cellular spheroids spatially controls iron oxide magnetic nanoparticles (MNPs) to form two distinct domains: cells and extracellular MNPs. Studies were performed to evaluate the influence of extracellular matrix (ECM) content and cell number on the fusion of Janus magnetic cellular spheroids (JMCSs). Results showed that the integration of iron oxide MNPs into spheroids increased the production of collagen over time when compared to spheroids without MNPs. The results also showed that ring tissues composed of JMCSs with high ECM concentrations and high cell numbers fused together, but exhibited less contraction when compared to their lower concentration counterparts. Results from spheroid fusion in capillary tubes showed that low ECM concentrations and high cell numbers experienced more fusion and cellular intermixing over time when compared to their higher counterparts. These findings indicate that cell-cell and cell-matrix interactions play an important role in regulating fusion, and this understanding sets the rationale of spheroid composition to fabricate larger and more complex tissue-engineered constructs.
Collapse
Affiliation(s)
- T R Olsen
- Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC 29634, USA
| | - B Mattix
- Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC 29634, USA
| | - M Casco
- Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC 29634, USA
| | - A Herbst
- Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC 29634, USA
| | - C Williams
- Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC 29634, USA
| | - A Tarasidis
- Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC 29634, USA
| | - D Simionescu
- Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC 29634, USA.
| | - R P Visconti
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue - BSB 601, Charleston, SC 29425, USA.
| | - F Alexis
- Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC 29634, USA; Institute of Biological Interfaces of Engineering, Department of Bioengineering, Clemson University, 401-2 Rhodes Engineering Research Center, Clemson, SC 29634, USA.
| |
Collapse
|
64
|
Hadidi P, Yeh TC, Hu JC, Athanasiou KA. Critical seeding density improves the properties and translatability of self-assembling anatomically shaped knee menisci. Acta Biomater 2015; 11:173-82. [PMID: 25234157 DOI: 10.1016/j.actbio.2014.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 08/17/2014] [Accepted: 09/09/2014] [Indexed: 02/07/2023]
Abstract
A recent development in the field of tissue engineering is the rise of all-biologic, scaffold-free engineered tissues. Since these biomaterials rely primarily upon cells, investigation of initial seeding densities constitutes a particularly relevant aim for tissue engineers. In this study, a scaffold-free method was used to create fibrocartilage in the shape of the rabbit knee meniscus. The objectives of this study were to: (i) determine the minimum seeding density, normalized by an area of 44 mm(2), necessary for the self-assembling process of fibrocartilage to occur; (ii) examine relevant biomechanical properties of engineered fibrocartilage, such as tensile and compressive stiffness and strength, and their relationship to seeding density; and (iii) identify a reduced, or optimal, number of cells needed to produce this biomaterial. It was found that a decreased initial seeding density, normalized by the area of the construct, produced superior mechanical and biochemical properties. Collagen per wet weight, glycosaminoglycans per wet weight, tensile properties and compressive properties were all significantly greater in the 5 million cells per construct group as compared to the historical 20 million cells per construct group. Scanning electron microscopy demonstrated that a lower seeding density results in a denser tissue. Additionally, the translational potential of the self-assembling process for tissue engineering was improved though this investigation, as fewer cells may be used in the future. The results of this study underscore the potential for critical seeding densities to be investigated when researching scaffold-free engineered tissues.
Collapse
Affiliation(s)
- Pasha Hadidi
- Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Timothy C Yeh
- Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Jerry C Hu
- Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA; Department of Orthopedic Surgery, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
65
|
Sarika PR, Sidhy Viha CV, Sajin Raj RG, Nirmala RJ, Anil Kumar PR. A non-adhesive hybrid scaffold from gelatin and gum Arabic as packed bed matrix for hepatocyte perfusion culture. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 46:341-7. [PMID: 25491996 DOI: 10.1016/j.msec.2014.10.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 09/27/2014] [Accepted: 10/21/2014] [Indexed: 10/24/2022]
Abstract
Development of liver support systems has become one of the most investigated areas for the last 50 years because of the shortage of donor organs for orthotopic liver transplantations. Bioartificial liver (BAL) device is one of the alternatives for liver failure which provides a curing method and support patients to recover from certain liver failure diseases. The biological compartment of BAL is called the bioreactor where functionally active hepatocytes are maintained to support the liver specific functions. We have developed a packed bed bioreactor with a cytocompatible, polysaccharide-protein hybrid scaffold. The scaffold prepared from gelatin and gum Arabic acts as a packed bed matrix for hepatocyte culture. Quantitative evaluation of the hepatocytes cultured using packed bed bioreactor demonstrated that cells maintained liver specific functions like albumin and urea synthesis for seven days. These results indicated that the system can be scaled up to form the biological component of a bioartificial liver.
Collapse
Affiliation(s)
- P R Sarika
- Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram, Kerala 695 547, India
| | - C V Sidhy Viha
- Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum, Kerala 695 012, India
| | - R G Sajin Raj
- Device Testing Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum, Kerala 695 012, India
| | - Rachel James Nirmala
- Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram, Kerala 695 547, India
| | - P R Anil Kumar
- Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum, Kerala 695 012, India.
| |
Collapse
|
66
|
Caralt M, Velasco E, Lanas A, Baptista PM. Liver bioengineering: from the stage of liver decellularized matrix to the multiple cellular actors and bioreactor special effects. Organogenesis 2014; 10:250-9. [PMID: 25102189 DOI: 10.4161/org.29892] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Liver bioengineering has been a field of intense research and popular excitement in the past decades. It experiences great interest since the introduction of whole liver acellular scaffolds generated by perfusion decellularization (1-3). Nevertheless, the different strategies developed so far have failed to generate hepatic tissue in vitro bioequivalent to native liver tissue. Even notable novel strategies that rely on iPSC-derived liver progenitor cells potential to self-organize in association with endothelial cells in hepatic organoids are lacking critical components of the native tissue (e.g., bile ducts, functional vascular network, hepatic microarchitecture, etc) (4). Hence, it is vital to understand the strengths and short comes of our current strategies in this quest to re-create liver organogenesis in vitro. To shed some light into these issues, this review describes the different actors that play crucial roles in liver organogenesis and highlights the steps still missing to successfully generate whole livers and hepatic organoids in vitro for multiple applications.
Collapse
Affiliation(s)
- Mireia Caralt
- Vall d'Hebron University Hospital; Universitat Autònoma de Barcelona; Barcelona, Spain
| | | | - Angel Lanas
- University of Zaragoza; Zaragoza, Spain; IIS Aragón; CIBERehd; Zaragoza, Spain; Aragon Health Sciences Institute (IACS); Zaragoza, Spain
| | - Pedro M Baptista
- University of Zaragoza; Zaragoza, Spain; IIS Aragón; CIBERehd; Zaragoza, Spain; Aragon Health Sciences Institute (IACS); Zaragoza, Spain
| |
Collapse
|
67
|
Shteyer E, Ben Ya'acov A, Zolotaryova L, Sinai A, Lichtenstein Y, Pappo O, Kryukov O, Elkayam T, Cohen S, Ilan Y. Reduced liver cell death using an alginate scaffold bandage: a novel approach for liver reconstruction after extended partial hepatectomy. Acta Biomater 2014; 10:3209-16. [PMID: 24607858 DOI: 10.1016/j.actbio.2014.02.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 02/17/2014] [Accepted: 02/25/2014] [Indexed: 12/19/2022]
Abstract
Extended partial hepatectomy may be needed in cases of large hepatic mass, and can lead to fulminant hepatic failure. Macroporous alginate scaffold is a biocompatible matrix which promotes the growth, differentiation and long-term hepatocellular function of primary hepatocytes in vitro. Our aim was to explore the ability of implanted macroporous alginate scaffolds to protect liver remnants from acute hepatic failure after extended partial hepatectomy. An 87% partial hepatectomy (PH) was performed on C57BL/6 mice to compare non-treated mice to mice in which alginate or collagen scaffolds were implanted after PH. Mice were scarified 3, 6, 24 and 48 h and 6 days following scaffold implantation and the extent of liver injury and repair was examined. Alginate scaffolds significantly increased animal survival to 60% vs. 10% in non-treated and collagen-treated mice (log rank=0.001). Mice with implanted alginate scaffolds manifested normal and prolonged aspartate aminotransferases and alanine aminotransferases serum levels as compared with the 2- to 20-fold increase in control groups (P<0.0001) accompanied with improved liver histology. Sustained normal serum albumin levels were observed in alginate-scaffold-treated mice 48 h after hepatectomy. Incorporation of BrdU-positive cells was 30% higher in the alginate-scaffold-treated group, compared with non-treated mice. Serum IL-6 levels were significantly decreased 3h post PH. Biotin-alginate scaffolds were quickly well integrated within the liver tissue. Collectively, implanted alginate scaffolds support liver remnants after extended partial hepatectomy, thus eliminating liver injury and leading to enhanced animal survival after extended partial hepatectomy.
Collapse
Affiliation(s)
- Eyal Shteyer
- Liver Unit, Hebrew University - Hadassah Medical Center, Jerusalem, Israel; Pediatric Gastroenterology Unit, Department of Pediatrics, Hebrew University - Hadassah Medical Center, Jerusalem, Israel.
| | - Ami Ben Ya'acov
- Liver Unit, Hebrew University - Hadassah Medical Center, Jerusalem, Israel
| | - Lidia Zolotaryova
- Liver Unit, Hebrew University - Hadassah Medical Center, Jerusalem, Israel
| | - Avital Sinai
- Liver Unit, Hebrew University - Hadassah Medical Center, Jerusalem, Israel
| | - Yoav Lichtenstein
- Liver Unit, Hebrew University - Hadassah Medical Center, Jerusalem, Israel
| | - Orit Pappo
- Department of Pathology, Hebrew University - Hadassah Medical Center, Jerusalem, Israel
| | - Olga Kryukov
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University, Beer Sheva, Israel
| | - Tsiona Elkayam
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University, Beer Sheva, Israel
| | - Smadar Cohen
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University, Beer Sheva, Israel; Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University, Beer Sheva, Israel.
| | - Yaron Ilan
- Liver Unit, Hebrew University - Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
68
|
Transferrin targeted core-shell nanomedicine for combinatorial delivery of doxorubicin and sorafenib against hepatocellular carcinoma. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:1649-59. [PMID: 24905399 DOI: 10.1016/j.nano.2014.05.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/12/2014] [Accepted: 05/16/2014] [Indexed: 12/19/2022]
Abstract
UNLABELLED Combinatorial drug delivery is an attractive, but challenging requirement of next generation cancer nanomedicines. Here, we report a transferrin-targeted core-shell nanomedicine formed by encapsulating two clinically used single-agent drugs, doxorubicin and sorafenib against liver cancer. Doxorubicin was loaded in poly(vinyl alcohol) nano-core and sorafenib in albumin nano-shell, both formed by a sequential freeze-thaw/coacervation method. While sorafenib from the nano-shell inhibited aberrant oncogenic signaling involved in cell proliferation, doxorubicin from the nano-core evoked DNA intercalation thereby killing >75% of cancer cells. Upon targeting using transferrin ligands, the nanoparticles showed enhanced cellular uptake and synergistic cytotoxicity in ~92% of cells, particularly in iron-deficient microenvironment. Studies using 3D spheroids of liver tumor indicated efficient penetration of targeted core-shell nanoparticles throughout the tissue causing uniform cell killing. Thus, we show that rationally designed core-shell nanoparticles can effectively combine clinically relevant single-agent drugs for exerting synergistic activity against liver cancer. FROM THE CLINICAL EDITOR Transferrin-targeted core-shell nanomedicine encapsulating doxorubicin and sorafenib was studied as a drug delivery system against hepatocellular carcinoma, resulting in enhanced and synergistic therapeutic effects, paving the way towards potential future clinical applications of similar techniques.
Collapse
|
69
|
Burkhardt B, Martinez-Sanchez JJ, Bachmann A, Ladurner R, Nüssler AK. Long-term culture of primary hepatocytes: new matrices and microfluidic devices. Hepatol Int 2014; 8:14-22. [PMID: 26202403 DOI: 10.1007/s12072-013-9487-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 10/25/2013] [Indexed: 11/25/2022]
Abstract
Prediction of in vivo drug-induced hepatotoxicity by in vitro cell culture systems is still one of the main challenges in drug development. To date, most in vitro approaches are based on monolayer cultures of primary hepatocytes, although it is known that they rapidly lose their morphology and liver-specific functions, such as activities of drug-metabolizing enzymes and transporters. Hepatocyte dedifferentiation can be delayed by culturing cells in a 3D environment. Combination with continuous medium flow, which creates a more physiological situation, further improves the maintenance of hepatic functions. Here, we present recently developed hydrogels and scaffolds for 3D culture of hepatocytes, which aim at preserving hepatic morphology and functionality for up to 4 weeks in culture. Furthermore, major benefits and drawbacks of microfluidic devices for in vitro hepatotoxicity screening are discussed. Although promising advances have been made regarding the preservation of hepatic functions in 3D flow culture, major issues, such as expensive equipment, large cell numbers and low throughput, are still hampering their use in drug toxicity screening. For these devices to be applied and accepted in the drug-developing industry, it is necessary to combine easily accessible matrices that highly preserve the activities of drug-metabolizing enzymes with a user-friendly microfluidic platform, thereby finding the right balance between reflecting the in vivo situation and enabling satisfying throughput for drug candidate screening.
Collapse
Affiliation(s)
- Britta Burkhardt
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany.
| | - Juan José Martinez-Sanchez
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany
| | - Anastasia Bachmann
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany
| | - Ruth Ladurner
- Clinic for General, Visceral and Transplantation Surgery, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Andreas K Nüssler
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany.
| |
Collapse
|
70
|
Mellati A, Dai S, Bi J, Jin B, Zhang H. A biodegradable thermosensitive hydrogel with tuneable properties for mimicking three-dimensional microenvironments of stem cells. RSC Adv 2014. [DOI: 10.1039/c4ra12215a] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chitosan-g-poly(N-isopropylacrylamide) was synthesized as a stem cell mimicking microenvironment. Solubility and gel mechanical strength were optimised through manipulating the grafting parameters.
Collapse
Affiliation(s)
- Amir Mellati
- School of Chemical Engineering
- The University of Adelaide
- Adelaide SA5005, Australia
| | - Sheng Dai
- School of Chemical Engineering
- The University of Adelaide
- Adelaide SA5005, Australia
| | - Jingxiu Bi
- School of Chemical Engineering
- The University of Adelaide
- Adelaide SA5005, Australia
| | - Bo Jin
- School of Chemical Engineering
- The University of Adelaide
- Adelaide SA5005, Australia
| | - Hu Zhang
- School of Chemical Engineering
- The University of Adelaide
- Adelaide SA5005, Australia
| |
Collapse
|
71
|
Abstract
Liver extracellular matrix (ECM) composition, topography and biomechanical properties influence cell-matrix interactions. The ECM presents guiding cues for hepatocyte phenotype maintenance, differentiation and proliferation both in vitro and in vivo. Current understanding of such cell-guiding cues along with advancement of techniques for scaffold fabrication has led to evolution of matrices for liver tissue culture from simple porous scaffolds to more complex 3D matrices with microarchitecture similar to in vivo. Natural and synthetic polymeric biomaterials fabricated in different topographies and porous matrices have been used for hepatocyte culture. Heterotypic and homotypic cell interactions are necessary for developing an adult liver as well as an artificial liver. A high oxygen demand of hepatocytes as well as graded oxygen distribution in liver is another challenging attribute of the normal liver architecture that further adds to the complexity of engineered substrate design. A balanced interplay of cell-matrix interactions along with cell-cell interactions and adequate supply of oxygen and nutrient determines the success of an engineered substrate for liver cells. Techniques devised to incorporate these features of hepatic function and mimic liver architecture range from maintaining liver cells in mm-sized tailor-made scaffolds to a more bottoms up approach that starts from building the microscopic subunit of the whole tissue. In this review, we discuss briefly various biomaterials used for liver tissue engineering with respect to design parameters such as scaffold composition and chemistry, biomechanical properties, topography, cell-cell interactions and oxygenation.
Collapse
Affiliation(s)
- Era Jain
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India.,Biomedical Engineering Department, St. Louis University, St. Louis, MO, USA
| | - Apeksha Damania
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India.
| |
Collapse
|
72
|
Design and Validation of a Physiologically-Adapted Bioreactor for Tissue Engineering of the Nucleus Pulposus. Processes (Basel) 2013. [DOI: 10.3390/pr2010001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
73
|
Moshaverinia A, Xu X, Chen C, Akiyama K, Snead ML, Shi S. Dental mesenchymal stem cells encapsulated in an alginate hydrogel co-delivery microencapsulation system for cartilage regeneration. Acta Biomater 2013; 9:9343-50. [PMID: 23891740 PMCID: PMC3818395 DOI: 10.1016/j.actbio.2013.07.023] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/13/2013] [Accepted: 07/19/2013] [Indexed: 01/09/2023]
Abstract
Dental-derived mesenchymal stem cells (MSCs) are promising candidates for cartilage regeneration, with a high capacity for chondrogenic differentiation. This property helps make dental MSCs an advantageous therapeutic option compared to current treatment modalities. The MSC delivery vehicle is the principal determinant for the success of MSC-mediated cartilage regeneration therapies. The objectives of this study were to: (1) develop a novel co-delivery system based on TGF-β1 loaded RGD-coupled alginate microspheres encapsulating periodontal ligament stem cells (PDLSCs) or gingival mesenchymal stem cells (GMSCs); and (2) investigate dental MSC viability and chondrogenic differentiation in alginate microspheres. The results revealed the sustained release of TGF-β1 from the alginate microspheres. After 4 weeks of chondrogenic differentiation in vitro, PDLSCs and GMSCs as well as human bone marrow mesenchymal stem cells (hBMMSCs) (as positive control) revealed chondrogenic gene expression markers (Col II and Sox-9) via qPCR, as well as matrix positively stained by Toluidine Blue and Safranin-O. In animal studies, ectopic cartilage tissue regeneration was observed inside and around the transplanted microspheres, confirmed by histochemical and immunofluorescent staining. Interestingly, PDLSCs showed more chondrogenesis than GMSCs and hBMMSCs (p<0.05). Taken together, these results suggest that RGD-modified alginate microencapsulating dental MSCs make a promising candidate for cartilage regeneration. Our results highlight the vital role played by the microenvironment, as well as value of presenting inductive signals for viability and differentiation of MSCs.
Collapse
Affiliation(s)
- Alireza Moshaverinia
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA.
| | | | | | | | | | | |
Collapse
|
74
|
Andersen T, Markussen C, Dornish M, Heier-Baardson H, Melvik JE, Alsberg E, Christensen BE. In situ gelation for cell immobilization and culture in alginate foam scaffolds. Tissue Eng Part A 2013; 20:600-10. [PMID: 24125496 DOI: 10.1089/ten.tea.2013.0223] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Essential cellular functions are often lost under culture in traditional two-dimensional (2D) systems. Therefore, biologically more realistic three-dimensional (3D) cell culture systems are needed that provide mechanical and biochemical cues which may otherwise be unavailable in 2D. For the present study, an alginate-based hydrogel system was used in which cells in an alginate solution were seeded onto dried alginate foams. A uniform distribution of NIH:3T3 and NHIK 3025 cells entrapped within the foam was achieved by in situ gelation induced by calcium ions integrated in the foam. The seeding efficiency of the cells was about 100% for cells added in a seeding solution containing 0.1-1.0% alginate compared with 18% when seeded without alginate. The NHIK 3025 cells were allowed to proliferate and form multi-cellular structures inside the transparent gel that were later vital stained and evaluated by confocal microscopy. Gels were de-gelled at different time points to isolate the multi-cellular structures and to determine the spheroid growth rate. It was also demonstrated that the mechanical properties of the gel could largely be varied through selection of type and concentration of the applied alginate and by immersing the already gelled disks in solutions providing additional gel-forming ions. Cells can efficiently be incorporated into the gel, and single cells and multi-cellular structures that may be formed inside can be retrieved without influencing cell viability or contaminating the sample with enzymes. The data show that the current system may overcome some limitations of current 3D scaffolds such as cell retrieval and in situ cell staining and imaging.
Collapse
|
75
|
Mattix BM, Olsen TR, Casco M, Reese L, Poole JT, Zhang J, Visconti RP, Simionescu A, Simionescu DT, Alexis F. Janus magnetic cellular spheroids for vascular tissue engineering. Biomaterials 2013; 35:949-60. [PMID: 24183699 DOI: 10.1016/j.biomaterials.2013.10.036] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 10/08/2013] [Indexed: 02/07/2023]
Abstract
Cell aggregates, or spheroids, have been used as building blocks to fabricate scaffold-free tissues that can closely mimic the native three-dimensional in vivo environment for broad applications including regenerative medicine and high throughput testing of drugs. The incorporation of magnetic nanoparticles (MNPs) into spheroids permits the manipulation of spheroids into desired shapes, patterns, and tissues using magnetic forces. Current strategies incorporating MNPs often involve cellular uptake, and should therefore be avoided because it induces adverse effects on cell activity, viability, and phenotype. Here, we report a Janus structure of magnetic cellular spheroids (JMCS) with spatial control of MNPs to form two distinct domains: cells and extracellular MNPs. This separation of cells and MNPs within magnetic cellular spheroids was successfully incorporated into cellular spheroids with various cellular and extracellular compositions and contents. The amount of cells that internalized MNPs was quantified and showed that JMCSs resulted in significantly lower internalization (35%) compared to uptake spheroids (83%, p < 0.05). Furthermore, the addition of MNPs to cellular spheroids using the Janus method has no adverse effects on cellular viability up to seven weeks, with spheroids maintaining at least 82% viability over 7 weeks when compared to control spheroids without MNPs. By safely incorporating MNPs into cellular spheroids, results demonstrated that JMCSs were capable of magnetic manipulation, and that magnetic forces used during magnetic force assembly mediate fusion into controlled patterns and complex tissues. Finally, JMCSs were assembled and fused into a vascular tissue construct 5 mm in diameter using magnetic force assembly.
Collapse
Affiliation(s)
- Brandon M Mattix
- Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC 29634, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Hong MH, Kim SM, Om JY, Kwon N, Lee YK. Seeding cells on calcium phosphate scaffolds using hydrogel enhanced osteoblast proliferation and differentiation. Ann Biomed Eng 2013; 42:1424-35. [PMID: 24129755 DOI: 10.1007/s10439-013-0926-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/07/2013] [Indexed: 01/07/2023]
Abstract
Internal pores in calcium phosphate (CaP) scaffolds pose an obstacle in cell seeding efficiency. Previous studies have shown inverse relationships between cell attachment and internal pore size, which mainly resulted from cells flowing to the bottom of culture plates. In order to overcome this structure-based setback, we have designed a method for cell seeding that involves hydrogel. CaP scaffolds fabricated with hydroxyapatite, biphasic calcium phosphate, and β-tricalcium phosphate, had respective porosities of 77.0, 77.9, and 82.5% and pore diameters of 671.1, 694.7, and 842.8 μm. We seeded the cells on the scaffolds using two methods: the first using osteogenic medium and the second using hydrogel to entrap cells. As expected, cell seeding efficiency of the groups with hydrogel ranged from 92.5 to 96.3%, whereas efficiency of the control groups ranged only from 64.2 to 71.8%. Cell proliferation followed a similar trend, which may have further influenced early stages of cell differentiation. We suggest that our method of cell seeding with hydrogel can impact the field of tissue engineering even further with modifications of the materials or the addition of biological factors.
Collapse
Affiliation(s)
- Min-Ho Hong
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, Columbia University Medical Center, 650 West 168th Street, New York, NY, 10032, USA
| | | | | | | | | |
Collapse
|
77
|
Vosough M, Omidinia E, Kadivar M, Shokrgozar MA, Pournasr B, Aghdami N, Baharvand H. Generation of functional hepatocyte-like cells from human pluripotent stem cells in a scalable suspension culture. Stem Cells Dev 2013; 22:2693-2705. [PMID: 23731381 DOI: 10.1089/scd.2013.0088] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Recent advances in human embryonic and induced pluripotent stem cell-based therapies in animal models of hepatic failure have led to an increased appreciation of the need to translate the proof-of-principle concepts into more practical and feasible protocols for scale up and manufacturing of functional hepatocytes. In this study, we describe a scalable stirred-suspension bioreactor culture of functional hepatocyte-like cells (HLCs) from the human pluripotent stem cells (hPSCs). To promote the initial differentiation of hPSCs in a carrier-free suspension stirred bioreactor into definitive endoderm, we used rapamycin for "priming" phase and activin A for induction. The cells were further differentiated into HLCs in the same system. HLCs were characterized and then purified based on their physiological function, the uptake of DiI-acetylated low-density lipoprotein (LDL) by flow cytometry without genetic manipulation or antibody labeling. The sorted cells were transplanted into the spleens of mice with acute liver injury from carbon tetrachloride. The differentiated HLCs had multiple features of primary hepatocytes, for example, the expression patterns of liver-specific marker genes, albumin secretion, urea production, collagen synthesis, indocyanin green and LDL uptake, glycogen storage, and inducible cytochrome P450 activity. They increased the survival rate, engrafted successfully into the liver, and continued to present hepatic function (i.e., albumin secretion after implantation). This amenable scaling up and outlined enrichment strategy provides a new platform for generating functional HLCs. This integrated approach may facilitate biomedical applications of the hPSC-derived hepatocytes.
Collapse
Affiliation(s)
- Massoud Vosough
- 1 Department of Biochemistry, Pasteur Institute of Iran , Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
78
|
The use of porous scaffold as a tumor model. Int J Biomater 2013; 2013:396056. [PMID: 24101930 PMCID: PMC3786466 DOI: 10.1155/2013/396056] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 08/12/2013] [Accepted: 08/12/2013] [Indexed: 12/30/2022] Open
Abstract
Background. Human cancer is a three-dimensional (3D) structure consisting of neighboring cells, extracellular matrix, and blood vessels. It is therefore critical to mimic the cancer cells and their surrounding environment during in vitro study. Our aim was to establish a 3D cancer model using a synthetic composite scaffold. Methods. High-density low-volume seeding was used to promote attachment of a non-small-cell lung cancer cell line (NCI-H460) to scaffolds. Growth patterns in 3D culture were compared with those of monolayers. Immunohistochemistry was conducted to compare the expression of Ki67, CD44, and carbonic anhydrase IX. Results. NCI-H460 readily attached to the scaffold without surface pretreatment at a rate of 35% from a load of 1.5 × 106 cells. Most cells grew vertically to form clumps along the surface of the scaffold, and cell morphology resembled tissue origin; 2D cultures exhibited characteristics of adherent epithelial cancer cell lines. Expression patterns of Ki67, CD44, and CA IX varied markedly between 3D and monolayer cultures. Conclusions. The behavior of cancer cells in our 3D model is similar to tumor growth in vivo. This model will provide the basis for future study using 3D cancer culture.
Collapse
|
79
|
Zhou S, Bismarck A, Steinke JHG. Ion-responsive alginate based macroporous injectable hydrogel scaffolds prepared by emulsion templating. J Mater Chem B 2013; 1:4736-4745. [PMID: 32261157 DOI: 10.1039/c3tb20888e] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ion-responsive biocompatible macroporous hydrogels with a well-defined highly interconnected open porous structure were synthesised using oil-in-water (o/w) high internal phase emulsion (HIPE) templating. Methacrylate-modified alginate was crosslinked in the continuous minority water phase and the oil internal phase removed to produce macroporous hydrogel monoliths. The physical dimensions, pore and pore throat size as well as water uptake of the alginate polyHIPE hydrogel can be controllably tuned by ion-responsive behaviour towards Ca2+ ions. The ionic crosslinks formed are fully reversible and be dissolved using sodium citrate to remove Ca2+ ions through chelation. The polyHIPE hydrogels possess mechanical properties with storage moduli up to 20 kPa and are biocompatible as shown by cytotoxicity assays. The hydrogel can be extruded through a hypodermic needle causing it to break into small pieces (about 1 to 3 mm in diameter) while retaining the interconnected pore morphology after injection. Furthermore, these hydrogel fragments can be reformed into a coherent scaffold under mild conditions using an alginate solution containing Ca2+ ions.
Collapse
Affiliation(s)
- Shengzhong Zhou
- Department of Chemical Engineering, Polymer & Composite Engineering (PaCE) Group, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | | | | |
Collapse
|
80
|
Thankam FG, Muthu J. Biosynthetic hydrogels--studies on chemical and physical characteristics on long-term cellular response for tissue engineering. J Biomed Mater Res A 2013; 102:2238-47. [PMID: 23894028 DOI: 10.1002/jbm.a.34895] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 07/15/2013] [Indexed: 11/11/2022]
Abstract
Biosynthetic hydrogels can meet the drawbacks caused by natural and synthetic ones for biomedical applications. In the current article we present a novel biosynthetic alginate-poly(propylene fumarate) copolymer based chemically crosslinked hydrogel scaffolds for cardiac tissue engineering applications. Partially crosslinked PA hydrogel and fully cross linked PA-A hydrogel scaffolds were prepared. The influence of chemical and physical (morphology and architecture of hydrogel) characteristics on the long term cellular response was studied. Both these hydrogels were cytocompatible and showed no genotoxicity upon contact with fibroblast cells. Both PA and PA-A were able to resist deleterious effects of reactive oxygen species and sustain the viability of L929 cells. The hydrogel incubated oxidative stress induced cells were capable of maintaining the intra cellular reduced glutathione (GSH) expression to the normal level confirmed their protective effect. Relatively the PA hydrogel was found to be unstable in the cell culture medium. The PA-A hydrogel was able to withstand appreciable cyclic stretching. The cyclic stretching introduced complex macro and microarchitectural features with interconnected pores and more structured bound water which would provide long-term viability of around 250% after the 24th day of culture. All these qualities make PA-A hydrogel form a potent candidate for cardiac tissue engineering.
Collapse
Affiliation(s)
- Finosh Gnanaprakasam Thankam
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Polymer Science Division, BMT Wing, Thiruvananthapuram, 695 012, Kerala, India
| | | |
Collapse
|
81
|
Zustiak SP, Pubill S, Ribeiro A, Leach JB. Hydrolytically degradable poly(ethylene glycol) hydrogel scaffolds as a cell delivery vehicle: characterization of PC12 cell response. Biotechnol Prog 2013; 29:1255-64. [PMID: 24474590 DOI: 10.1002/btpr.1761] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/08/2013] [Indexed: 12/19/2022]
Abstract
The central nervous system (CNS) has a low intrinsic potential for regeneration following injury and disease, yet neural stem/progenitor cell (NPC) transplants show promise to provide a dynamic therapeutic in this complex tissue environment. Moreover, biomaterial scaffolds may improve the success of NPC-based therapeutics by promoting cell viability and guiding cell response. We hypothesized that a hydrogel scaffold could provide a temporary neurogenic environment that supports cell survival during encapsulation, and degrades completely in a temporally controlled manner to allow progression of dynamic cellular processes such as neurite extension. We utilized PC12 cells as a model cell line with an inducible neuronal phenotype to define key properties of hydrolytically degradable poly(ethylene glycol) hydrogel scaffolds that impact cell viability and differentiation following release from the degraded hydrogel. Adhesive peptide ligands (RGDS, IKVAV, or YIGSR), were required to maintain cell viability during encapsulation; as compared to YIGSR, the RGDS, and IKVAV ligands were associated with a higher percentage of PC12 cells that differentiated to the neuronal phenotype following release from the hydrogel. Moreover, among the hydrogel properties examined (e.g., ligand type, concentration), total polymer density within the hydrogel had the most prominent effect on cell viability, with densities above 15% w/v leading to decreased cell viability likely due to a higher shear modulus. Thus, by identifying key properties of degradable hydrogels that affect cell viability and differentiation following release from the hydrogel, we lay the foundation for application of this system towards future applications of the scaffold as a neural cell delivery vehicle.
Collapse
Affiliation(s)
- Silviya P Zustiak
- Dept. of Chemical and Biochemical Engineering, UMBC, 1000 Hilltop Circle, Baltimore, MD, 21250
| | | | | | | |
Collapse
|
82
|
Kathawala MH, Xiong S, Richards M, Ng KW, George S, Loo SCJ. Emerging in vitro models for safety screening of high-volume production nanomaterials under environmentally relevant exposure conditions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:1504-1520. [PMID: 23019115 DOI: 10.1002/smll.201201452] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Indexed: 06/01/2023]
Abstract
The rising production of nanomaterial-based consumer products has raised safety concerns. Testing these with animal and other direct models is neither ethically nor economically viable, nor quick enough. This review aims to discuss the strength of in vitro testing, including the use of 2D and 3D cultures, stem cells, and tissue constructs, etc., which would give fast and repeatable answers of a highly specific nature, while remaining relevant to in vivo outcomes. These results can then be combined and the overall toxicity predicted with relative accuracy. Such in vitro models can screen potentially toxic nanomaterials which, if required, can undergo further stringent studies in animals. The cyto- and phototoxicity of some high-volume production nanomaterials, using in vitro models, is also reviewed.
Collapse
Affiliation(s)
- Mustafa Hussain Kathawala
- Nanyang Technological University, School of Materials Science and Engineering, 50 Nanyang Avenue, Singapore 639798, Singapore
| | | | | | | | | | | |
Collapse
|
83
|
Saeed A, Iqbal M. Loofa (Luffa cylindrica) sponge: Review of development of the biomatrix as a tool for biotechnological applications. Biotechnol Prog 2013; 29:573-600. [DOI: 10.1002/btpr.1702] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 11/11/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Asma Saeed
- Environmental Biotechnology Group; Biotechnology and Food Research Centre; Lahore 54600 Pakistan
| | - Muhammad Iqbal
- Environmental Biotechnology Group; Biotechnology and Food Research Centre; Lahore 54600 Pakistan
| |
Collapse
|
84
|
Orimoto A, Suzuki T, Ueno A, Kawai T, Nakamura H, Kanamori T. Effect of 2-hydroxyethyl methacrylate on antioxidant responsive element-mediated transcription: a possible indication of its cytotoxicity. PLoS One 2013; 8:e58907. [PMID: 23516576 PMCID: PMC3597541 DOI: 10.1371/journal.pone.0058907] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 02/08/2013] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The resin monomer 2-hydroxyethyl methacrylate (HEMA) is known to be more cytotoxic than methyl methacrylate (MMA). Using a luciferase reporter assay system, we previously showed that MMA activates the glutathione S-transferase alpha 1 gene (Gsta1) promoter through the anti-oxidant responsive element (ARE). However, it is not known whether HEMA induces ARE-mediated transcription. METHODOLOGY/PRINCIPAL FINDINGS We further developed the reporter system and studied the concentration-dependent effect of HEMA on ARE enhancer activity. The revised system employed HepG2 cells stably transfected with a destabilized luciferase reporter vector carrying 2 copies of the 41-bp ARE region of Gsta1. In this system, MMA increased ARE activity by 244-fold at 30 mM; HEMA augmented ARE activity at 3 mM more intensely than MMA (36-fold versus 11-fold) and was equipotent as MMA at 10 mM (56-fold activation); however, HEMA failed to increase ARE activity at 30 mM. In HepG2 cells, HEMA detectably lowered the cellular glutathione levels at 10 mM and cell viability at 30 mM, but MMA did not. CONCLUSIONS These results suggest that the low-concentration effect of HEMA on ARE activity reflects its cytotoxicity. Our reporter system used to examine ARE activity may be useful for evaluating cytotoxicities of resin monomers at concentrations lower than those for which cell viabilities are reduced.
Collapse
Affiliation(s)
- Ai Orimoto
- Department of Endodontics, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Takahiro Suzuki
- Department of Biochemistry, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Atsuko Ueno
- Department of Gerodontology, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Tatsushi Kawai
- Department of Dental Material Science, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Hiroshi Nakamura
- Department of Endodontics, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Takao Kanamori
- Department of Biochemistry, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| |
Collapse
|
85
|
Sivertsson L, Edebert I, Palmertz MP, Ingelman-Sundberg M, Neve EPA. Induced CYP3A4 expression in confluent Huh7 hepatoma cells as a result of decreased cell proliferation and subsequent pregnane X receptor activation. Mol Pharmacol 2013; 83:659-70. [PMID: 23264496 DOI: 10.1124/mol.112.082305] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We have previously shown that confluent growth of the human hepatoma cell line Huh7 substantially induces the CYP3A4 mRNA, protein, and activity levels. Here, the mechanisms behind were investigated, and a transcriptome analysis revealed significant up-regulation of liver-specific functions, whereas pathways related to proliferation and cell cycle were down-regulated in the confluent cells. Reporter analysis revealed that the CYP3A4 gene was transcriptionally activated during confluence in a process involving pregnane X receptor (PXR). PXR expression was increased, and PXR protein accumulated in the nuclei during confluent growth. The PXR ligand rifampicin further increased the expression of CYP3A4, and siRNA-mediated knock-down of PXR in confluent cells resulted in decreased CYP3A4 expression. Cyclin-dependent kinase 2 (CDK2), a known modulator of the cell cycle and a negative regulator of PXR, was more highly expressed in proliferating control cells. Trypsinization of the confluent cells and replating them subconfluent resulted in a decrease in CYP3A4 and PXR expression back to levels observed in subconfluent control cells, whereas the CDK2 levels increased. Knock-down of CDK2 in proliferating control cells increased the CYP3A4 and PXR protein levels. Moreover, the CDK inhibitor roscovitine stimulated the expression of CYP3A4. A phosphorylation-deficient mutation (S350A) in the PXR protein significantly induced the CYP3A4 transcription. In conclusion, the data strongly suggest that the increased CYP3A4 expression in confluent Huh7 cells is caused by the endogenous induction of PXR as a result of cell-cell contact inhibited proliferation and subsequent decreased CDK2 activities, indicating an endogenous, non-ligand-dependent regulation of PXR and CYP3A4, possibly of physiologic and pharmacological significance.
Collapse
Affiliation(s)
- Louise Sivertsson
- Karolinska Institutet, Department of Physiology and Pharmacology, Nanna Svartz v. 2, SE-171 77 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
86
|
Development of thermoresponsive poly(propylene-g-N-isopropylacrylamide) non-woven 3D scaffold for smart cell culture using oxyfluorination-assisted graft polymerisation. Colloids Surf A Physicochem Eng Asp 2013. [DOI: 10.1016/j.colsurfa.2012.11.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
87
|
Joshi SD, Davidson LA. Epithelial machines of morphogenesis and their potential application in organ assembly and tissue engineering. Biomech Model Mechanobiol 2012; 11:1109-21. [PMID: 22854913 PMCID: PMC3664917 DOI: 10.1007/s10237-012-0423-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 07/17/2012] [Indexed: 01/16/2023]
Abstract
Sheets of embryonic epithelial cells coordinate their efforts to create diverse tissue structures such as pits, grooves, tubes, and capsules that lead to organ formation. Such cells can use a number of cell behaviors including contractility, proliferation, and directed movement to create these structures. By contrast, tissue engineers and researchers in regenerative medicine seeking to produce organs for repair or replacement therapy can combine cells with synthetic polymeric scaffolds. Tissue engineers try to achieve these goals by shaping scaffold geometry in such a way that cells embedded within these scaffold self-assemble to form a tissue, for instance aligning to synthetic fibers, and assembling native extracellular matrix to form the desired tissue-like structure. Although self-assembly is a dominant process that guides tissue assembly both within the embryo and within artificial tissue constructs, we know little about these critical processes. Here, we compare and contrast strategies of tissue assembly used by embryos to those used by engineers during epithelial morphogenesis and highlight opportunities for future applications of developmental biology in the field of tissue engineering.
Collapse
Affiliation(s)
- Sagar D. Joshi
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh PA 15213
| | - Lance A. Davidson
- Departments of Bioengineering and Developmental Biology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh PA 15213
| |
Collapse
|
88
|
Influence of a three-dimensional, microarray environment on human cell culture in drug screening systems. Biomaterials 2012; 33:9087-96. [PMID: 22998815 DOI: 10.1016/j.biomaterials.2012.08.065] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 08/29/2012] [Indexed: 11/23/2022]
Abstract
We have used a modified 3D cellular microarray platform for the high-throughput analysis of growth, cytotoxicity, and protein expression profile of a human hepatocellular carcinoma cell line, HepG2, in alginate. The results obtained were compared to analogous studies in 2D and 3D environments at the microtiter scale. The antiproliferative effects of four drugs, tamoxifen, 5-fluorouracil, doxorubicin, and amitriptyline, were studied as a function of seeding density in the three different culture platforms. The chemosensitivity of HepG2 cells to all four compounds decreased substantially with increasing cell number in the 2D and 3D microtiter-based cultures, while no seeding density dependence was observed in the IC(50) values obtained in the 3D microarray culture platform. These results can be rationalized based on the development of confluence-dependent resistance in cultures where proliferation is restricted by cell-cell contacts and nutrient availability, as is the case for both of the microtiter-based cultures. Additionally, further development of an on-chip, in-cell immunofluorescence assay provided quantitative data on the levels of specific target proteins involved in proliferation, adhesion, angiogenesis and drug metabolism, and was used to compare expression profiles between 2D and 3D environments. The up-regulation of several CYP450 enzymes, β1-integrin and vascular endothelial growth factor (VEGF) in the 3D microarray cultures suggests that this platform provides a more in vivo-like environment allowing cells to approach their natural phenotype.
Collapse
|
89
|
Wang X, Magalhães R, Wu Y, Wen F, Gouk SS, Watson PF, Yu H, Kuleshova LL. Development of a modified vitrification strategy suitable for subsequent scale-up for hepatocyte preservation. Cryobiology 2012; 65:289-300. [PMID: 22940432 DOI: 10.1016/j.cryobiol.2012.07.080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 07/11/2012] [Accepted: 07/11/2012] [Indexed: 12/22/2022]
Abstract
This work explores the design of a vitrification solution (VS) for scaled-up cryopreservation of hepatocytes, by adapting VS(basic) (40% (v/v) ethylene glycol 0.6M sucrose, i.e. 7.17 M ethylene glycol 0.6M sucrose), previously proven effective in vitrifying bioengineered constructs and stem cells. The initial section of the scale-up study involved the selection of non-penetrating additives to supplement VS(basic) and increase the solution's total solute concentration. This involved a systematic approach with a step-by-step elimination of non-penetrating cryoprotectants, based on their effect on cells after long/short term exposures to high/low concentrations of the additives alone or in combinations, on the attachment ability of hepatocytes after exposure. At a second stage, hepatocyte suspension was vitrified and functions were assessed after continuous culture up to 5 days. Results indicated Ficoll as the least toxic additive. Within 60 min, the exposure of hepatocytes to a solution composed of 9% Ficoll+0.6M sucrose (10⁻³ M Ficoll+0.6 M sucrose) sustained attachment efficiency of 95%, similar to control. Furthermore, this additive did not cause any detriment to the attachment of these cells when supplementing the base vitrification solution VS(basic). The addition of 9% Ficoll, raised the total solute concentration to 74.06% (w/v) with a negligible 10⁻³ M increase in molarity of the solution. This suggests main factor in inducing detriment to cells was the molar contribution of the additive. Vitrification protocol for scale-up condition sustained hepatocyte suspension attachment efficiency and albumin production. We conclude that although established approach will permit scaling-up of vitrification of hepatocyte suspension, vitrification of hepatocytes which are attached prior to vitrification is more effective by comparison.
Collapse
Affiliation(s)
- Xianwei Wang
- Low Temperature Preservation Unit, National University Medical Institutes, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
90
|
LeCluyse EL, Witek RP, Andersen ME, Powers MJ. Organotypic liver culture models: meeting current challenges in toxicity testing. Crit Rev Toxicol 2012; 42:501-48. [PMID: 22582993 PMCID: PMC3423873 DOI: 10.3109/10408444.2012.682115] [Citation(s) in RCA: 248] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 03/26/2012] [Accepted: 03/30/2012] [Indexed: 02/07/2023]
Abstract
Prediction of chemical-induced hepatotoxicity in humans from in vitro data continues to be a significant challenge for the pharmaceutical and chemical industries. Generally, conventional in vitro hepatic model systems (i.e. 2-D static monocultures of primary or immortalized hepatocytes) are limited by their inability to maintain histotypic and phenotypic characteristics over time in culture, including stable expression of clearance and bioactivation pathways, as well as complex adaptive responses to chemical exposure. These systems are less than ideal for longer-term toxicity evaluations and elucidation of key cellular and molecular events involved in primary and secondary adaptation to chemical exposure, or for identification of important mediators of inflammation, proliferation and apoptosis. Progress in implementing a more effective strategy for in vitro-in vivo extrapolation and human risk assessment depends on significant advances in tissue culture technology and increasing their level of biological complexity. This article describes the current and ongoing need for more relevant, organotypic in vitro surrogate systems of human liver and recent efforts to recreate the multicellular architecture and hemodynamic properties of the liver using novel culture platforms. As these systems become more widely used for chemical and drug toxicity testing, there will be a corresponding need to establish standardized testing conditions, endpoint analyses and acceptance criteria. In the future, a balanced approach between sample throughput and biological relevance should provide better in vitro tools that are complementary with animal testing and assist in conducting more predictive human risk assessment.
Collapse
Affiliation(s)
- Edward L LeCluyse
- The Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC, USA.
| | | | | | | |
Collapse
|
91
|
Marie Arockianathan P, Sekar S, Sankar S, Kumaran B, Sastry TP. Evaluation of biocomposite films containing alginate and sago starch impregnated with silver nano particles. Carbohydr Polym 2012; 90:717-24. [PMID: 24751098 DOI: 10.1016/j.carbpol.2012.06.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 05/09/2012] [Accepted: 06/02/2012] [Indexed: 10/28/2022]
Abstract
In recent years, the metal nanoparticles/polymer composites have created lot of attraction due to their wide range of applications. In the present study, the composite films of alginate (AL) and sago starch (SG) impregnated with silver nano particles (AgNP) with and without antibiotic gentamicin (G) were prepared by solvent casting method. The films prepared were characterized for thermo gravimetric analysis, SEM, TEM and mechanical properties and the results have shown the composite nature of the films. AL-SG-AgNP and AL-SG-AgNP-G composites were used as wound dressing materials in experimental wounds of rats. The healing pattern of the wounds was evaluated by planimetric studies, macroscopic observations, biochemical studies and histopathological observations. The results have shown faster healing pattern in the wounds treated with AL-SG-AgNP and AL-SG-AgNP-G composites compared to untreated control. This study revealed that AL-SG-AgNP film might be a potential and economical wound dressing material.
Collapse
Affiliation(s)
- P Marie Arockianathan
- Bio-products Laboratory, Central Leather Research Institute, Adyar, Chennai 600 020, India
| | - S Sekar
- Bio-products Laboratory, Central Leather Research Institute, Adyar, Chennai 600 020, India
| | - S Sankar
- Bio-products Laboratory, Central Leather Research Institute, Adyar, Chennai 600 020, India
| | - B Kumaran
- K.M Centre for P.G Studies, Lawspet, Puducherry 605008, India
| | - T P Sastry
- Bio-products Laboratory, Central Leather Research Institute, Adyar, Chennai 600 020, India
| |
Collapse
|
92
|
Liver tissue engineering: Recent advances in the development of a bio-artificial liver. BIOTECHNOL BIOPROC E 2012. [DOI: 10.1007/s12257-012-0047-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
93
|
Nakatsuka N, Barnaby SN, Fath KR, Banerjee IA. Fabrication of Collagen–Elastin-Bound Peptide Microtubes for Mammalian Cell Attachment. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 23:1843-62. [DOI: 10.1163/156856211x598229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Nako Nakatsuka
- a Department of Chemistry , Fordham University , 441 East Fordham Road, Bronx, New York , NY , 10458 , USA
| | - Stacey N. Barnaby
- a Department of Chemistry , Fordham University , 441 East Fordham Road, Bronx, New York , NY , 10458 , USA
| | - Karl R. Fath
- b Department of Biology , The City University of New York, Queens College , 65-30 Kissena Boulevard, Flushing, New York , NY , 11367 , USA
| | - Ipsita A. Banerjee
- a Department of Chemistry , Fordham University , 441 East Fordham Road, Bronx, New York , NY , 10458 , USA
| |
Collapse
|
94
|
Chen F, Tian M, Zhang D, Wang J, Wang Q, Yu X, Zhang X, Wan C. Preparation and characterization of oxidized alginate covalently cross-linked galactosylated chitosan scaffold for liver tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012. [DOI: 10.1016/j.msec.2011.10.034] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
95
|
He J, Wang XM, Spector M, Cui FZ. Scaffolds for central nervous system tissue engineering. FRONTIERS OF MATERIALS SCIENCE 2012; 6:1-25. [DOI: 10.1007/s11706-012-0157-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
96
|
Rossouw CL, Chetty A, Moolman FS, Birkholtz LM, Hoppe H, Mancama DT. Thermo-responsive non-woven scaffolds for “smart” 3D cell culture. Biotechnol Bioeng 2012; 109:2147-58. [DOI: 10.1002/bit.24469] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/27/2012] [Accepted: 02/09/2012] [Indexed: 12/11/2022]
|
97
|
Abstract
Alginate is a biomaterial that has found numerous applications in biomedical science and engineering due to its favorable properties, including biocompatibility and ease of gelation. Alginate hydrogels have been particularly attractive in wound healing, drug delivery, and tissue engineering applications to date, as these gels retain structural similarity to the extracellular matrices in tissues and can be manipulated to play several critical roles. This review will provide a comprehensive overview of general properties of alginate and its hydrogels, their biomedical applications, and suggest new perspectives for future studies with these polymers.
Collapse
|
98
|
Urciuolo F, Imparato G, Guaccio A, Mele B, Netti PA. Novel strategies to engineering biological tissue in vitro. Methods Mol Biol 2012; 811:223-244. [PMID: 22042683 DOI: 10.1007/978-1-61779-388-2_15] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Tissue engineering creates biological tissues that aim to improve the function of diseased or damaged tissues. In this chapter, we examine the promise and shortcomings of "top-down" and "bottom-up" approaches for creating engineered biological tissues. In top-down approaches, the cells are expected to populate the scaffold and create the appropriate extracellular matrix and microarchitecture often with the aid of a bioreactor that furnish the set of stimuli required for an optimal cellular viability. Specifically, we survey the role of cell material interaction on oxygen metabolism in three-dimensional (3D) in vitro cultures as well as the time and space evolution of the transport and biophysical properties during the development of de novo synthesized tissue-engineered constructs. We show how to monitor and control the evolution of these parameters that is of crucial importance to process biohybrid constructs in vitro as well as to elaborate reliable mathematical model to forecast tissue growth under specific culture conditions. Furthermore, novel strategies such as bottom-up approaches to build tissue constructs in vitro are examined. In this fashion, tissue building blocks with specific microarchitectural features are used as modular units to engineer biological tissues from the bottom up. In particular, the attention will be focused on the use of cell seeded microbeads as functional building blocks to realize 3D complex tissue. Finally, a challenge will be the potential integration of bottom-up techniques with more traditional top-down approaches to create more complex tissues than are currently achievable using either technique alone by optimizing the advantages of each technique.
Collapse
Affiliation(s)
- Francesco Urciuolo
- Institute of Composite and Biomedical Materials (IMCB), National Research Council (CNR), Naples, Italy
| | | | | | | | | |
Collapse
|
99
|
Xia L, Lenaghan SC, Wills AB, Chen Y, Zhang M. Evaluation of the nanofibrillar structure of Dioscorea opposite extract for cell attachment. Colloids Surf B Biointerfaces 2011; 88:425-31. [DOI: 10.1016/j.colsurfb.2011.07.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 06/21/2011] [Accepted: 07/06/2011] [Indexed: 11/26/2022]
|
100
|
Affiliation(s)
- Johann Peterson
- Department of Pediatrics, Stanford University School of Medicine
| | | |
Collapse
|