51
|
Hwang CK, Kim CS, Choi HS, McKercher SR, Loh HH. Transcriptional Regulation of Mouse μ Opioid Receptor Gene by PU.1. J Biol Chem 2004; 279:19764-74. [PMID: 14998994 DOI: 10.1074/jbc.m400755200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously reported that the 34-bp cis-acting element of the mouse micro opioid receptor (MOR) gene represses transcription of the MOR gene from the distal promoter. Using a yeast one-hybrid screen to identify potential transcription factors of the MOR promoter, we have identified PU.1 as one of the candidate genes. PU.1 is a member of the ets family of transcription factors, expressed predominantly in hematopoietic cells and microglia of brain. PU.1 plays an essential role in the development of both lymphoid and myeloid lineages. Opioids exert neuromodulatory as well as immunomodulatory effects, which are transduced by MOR. Moreover, MOR-deficient mice exhibit increased proliferation of hematopoietic cells, suggesting a possible link between the opioid system and hematopoietic development. The PU.1 protein binds to the 34-bp element of the MOR gene in a sequence-specific manner confirmed by electrophoretic mobility shift assay and supershift assays. We have also determined endogenous PU.1 interactions with the 34-bp element of MOR promoter by chromatin immunoprecipitation assays. In co-transfection studies PU.1 represses MOR promoter reporter constructs through its PU.1 binding site. When the PU.1 gene is disrupted as in PU.1 knock-out mice and using small interfering RNA-based strategy in RAW264.7 cells, the transcription of the endogenous target MOR gene is increased significantly. This increase is probably mediated through modification of the chromatin structure, as suggested by the reversal of the PU.1-mediated repression of MOR promoter activity after trichostatin A treatment in neuroblastoma NMB cells. Our results suggest that PU.1 may be an important regulator of the MOR gene, particularly in brain and immune cells.
Collapse
MESH Headings
- Amino Acid Motifs
- Animals
- Base Sequence
- Binding Sites
- Brain/metabolism
- Cell Division
- Cell Line
- Cell Line, Tumor
- Chromatin/metabolism
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Genes, Reporter
- Histone Deacetylases/metabolism
- Hydroxamic Acids/pharmacology
- Mice
- Mice, Knockout
- Molecular Sequence Data
- Plasmids/metabolism
- Precipitin Tests
- Promoter Regions, Genetic
- Protein Binding
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins/physiology
- Proto-Oncogene Proteins c-ets
- RNA, Small Interfering/metabolism
- Rats
- Receptors, Opioid, mu/biosynthesis
- Receptors, Opioid, mu/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Trans-Activators/metabolism
- Trans-Activators/physiology
- Transcription Factors/metabolism
- Transcription, Genetic
- Transfection
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- Cheol Kyu Hwang
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA.
| | | | | | | | | |
Collapse
|
52
|
Yuh CH, Dorman ER, Howard ML, Davidson EH. An otx cis -regulatory module: a key node in the sea urchin endomesoderm gene regulatory network. Dev Biol 2004; 269:536-51. [PMID: 15110718 DOI: 10.1016/j.ydbio.2004.02.025] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Accepted: 02/26/2004] [Indexed: 11/18/2022]
Abstract
An essential node in the gene regulatory network (GRN) for endomesoderm specification in the sea urchin embryo lies within the regulatory system of the otx gene. According to the predictions of the GRN, based on perturbation analysis and expression data, the beta1/2 transcription unit of this gene is engaged during specification in interactions with two other regulatory genes, krox and gatae. It is predicted to be driven into activity by the krox gene, to form a positively reinforcing functional loop with the gatae gene, and to respond to its own output as well. Here we isolate the relevant otx cis-regulatory element, and examine the specific input predictions of the GRN at the level of its genomic DNA sequence. This beta1/2-otx regulatory module performs the necessary functions, as shown by use of expression constructs. It requires gatae, otx, and krox inputs, as predicted, and it operates as an "AND" logic processor in that removal of any one of these inputs essentially destroys activity. The necessary target sites were identified in the module sequence, and mutation of these sites was demonstrated to produce the same respective effects on construct expression as does blocking its regulatory inputs by treatment with morpholino antisense oligonucleotides. For spatial expression in the endoderm, one particular pair of Gata sites is essential and these function synergistically with an adjacent Otx site. We thus demonstrate directly the structure/function relationships of the genomic regulatory code, at this key node of the endomesoderm GRN.
Collapse
Affiliation(s)
- Chiou-Hwa Yuh
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
53
|
Abstract
More than a half a century ago, interferons (IFN) were identified as antiviral cytokines. Since that discovery, IFN have been in the forefront of basic and clinical cytokine research. The pleiotropic nature of these cytokines continues to engage a large number of investigators to define their actions further. IFN paved the way for discovery of Janus tyrosine kinase (JAK)-signal transducing activators of transcription (STAT) pathways. A number of important tumor suppressive pathways are controlled by IFN. Several infectious pathogens counteract IFN-induced signaling pathways. Recent studies indicate that IFN activate several new protein kinases, including the MAP kinase family, and downstream transcription factors. This review not only details the established IFN signaling paradigms but also provides insights into emerging alternate signaling pathways and mechanisms of pathogen-induced signaling interference.
Collapse
Affiliation(s)
- Dhananjaya V Kalvakolanu
- Molecular and Cellular Biology Graduate Program, Greenebaum Cancer Center, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
54
|
Hirose S, Nishizumi H, Sakano H. Pub, a novel PU.1 binding protein, regulates the transcriptional activity of PU.1. Biochem Biophys Res Commun 2004; 311:351-60. [PMID: 14592421 DOI: 10.1016/j.bbrc.2003.09.212] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PU.1 is a member of the Ets family of transcription factors and plays critical roles in the development of hematopoietic cells such as macrophages and B cells. To elucidate the molecular mechanism(s) underlying the regulation of PU.1 function, we screened for PU.1 interacting proteins using a yeast two-hybrid approach. As a result, a novel PU.1 binding factor, which we termed Pub, was isolated. The Pub protein has one B-box zinc finger domain, followed by a coiled-coil region and a B30.2-like domain, these features being characteristic of the tripartite motif (TRIM) family of protein. The PEST domain of PU.1 was found to interact with the N-terminal portion of Pub, a region that includes the TRIM which is considered to mediate protein-protein interactions. Northern blot and RT-PCR analyses demonstrated that Pub is predominantly expressed in hematopoietic tissues and cells where PU.1 is also expressed. Using a luciferase-based assay, we showed that Pub inhibited the transcriptional activity of PU.1. Moreover, the B-box zinc finger domain of Pub was critical for this inhibitory activity. These data suggest that Pub may be important in regulating the transcriptional activity of PU.1.
Collapse
Affiliation(s)
- Satoshi Hirose
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | |
Collapse
|
55
|
Stankovic T, Hubank M, Cronin D, Stewart GS, Fletcher D, Bignell CR, Alvi AJ, Austen B, Weston VJ, Fegan C, Byrd PJ, Moss PAH, Taylor AMR. Microarray analysis reveals that TP53- and ATM-mutant B-CLLs share a defect in activating proapoptotic responses after DNA damage but are distinguished by major differences in activating prosurvival responses. Blood 2004; 103:291-300. [PMID: 12958068 DOI: 10.1182/blood-2003-04-1161] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ATM/p53-dependent DNA damage response pathway plays an important role in the progression of lymphoid tumors. Inactivation of the ATM or TP53 gene is frequent in B-cell lymphocytic leukemia (B-CLL) and leads to aggressive disease. Although the ATM and p53 pathways overlap, they are not congruent, and it is unclear how the mechanism of tumor progression differs between ATM- and p53-deficient tumors. Using microarray analysis of ATM-mutant, TP53-mutant, and ATM/TP53 wild-type B-CLLs, we show that after exposure to DNA damage transcriptional responses are entirely dependent on ATM function. The p53 proapoptotic responses comprise only a part of ATM-regulated transcription; additionally, ATM regulates prosurvival responses independently of p53. Consequently, the greater severity of the TP53-mutant B-CLLs compared with ATM-mutant B-CLLs is consistent with the additive effect of defective apoptotic and elevated survival responses after DNA damage in these tumors. We also show that transcription expression profiles of ATM-deficient, TP53-deficient, and wild-type B-CLLs are indistinguishable before irradiation. Therefore, damage-induced transcriptional fingerprinting can be used to stratify tumors according to their biologic differences and simultaneously identify potential targets for treating refractory tumors.
Collapse
MESH Headings
- Apoptosis/genetics
- Apoptosis/radiation effects
- Ataxia Telangiectasia Mutated Proteins
- Cell Cycle Proteins
- Cell Survival/genetics
- Cell Survival/radiation effects
- DNA Damage
- DNA-Binding Proteins
- Gene Expression Profiling
- Genes, p53
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/classification
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Mutation
- Oligonucleotide Array Sequence Analysis
- Protein Serine-Threonine Kinases/genetics
- Transcriptional Activation/radiation effects
- Tumor Suppressor Proteins
Collapse
Affiliation(s)
- Tatjana Stankovic
- Cancer Research UK Institute for Cancer Studies, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Lehtonen A, Lund R, Lahesmaa R, Julkunen I, Sareneva T, Matikainen S. IFN-α and IL-12 activate IFN regulatory factor 1 (IRF-1), IRF-4, and IRF-8 gene expression in human NK and T cells. Cytokine 2003; 24:81-90. [PMID: 14581002 DOI: 10.1016/j.cyto.2003.07.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
IFN-alpha and IL-12 are macrophage-derived cytokines that enhance innate and Th1 immune responses. However, there is little information regarding IFN-alpha and IL-12 target genes that would be involved in mediating the immunostimulatory effects of these cytokines. The interferon regulatory factor (IRF) family of transcription factors is known to be involved in controlling lymphocyte differentiation and functions. In this work we have studied the effect of IFN-alpha and IL-12 on the expression of IRF transcription factors in human NK and T cells. Both IFN-alpha and IL-12 strongly up-regulated IRF-1, IRF-4, and IRF-8 mRNA and protein expression. The binding of IRF-4 and IRF-8 to the lambdaB gene enhancer sequence was also increased following IFN-alpha- and IL-12-treatment of NK and T cells. A GAS element from the promoter region of the IRF-4 gene was identified. Following stimulation of cells with IFN-alpha or IL-12, Stat4 was found to bind to this IRF-4 GAS element, as detected by EMSA and DNA affinity binding, implying that the IRF-4 gene is directly activated by both cytokines. Our results suggest that IFN-alpha and IL-12 may enhance innate and Th1 immune responses by inducing IRF-1, IRF-4, and IRF-8 gene expression.
Collapse
Affiliation(s)
- Anne Lehtonen
- Department of Microbiology, National Public Health Institute, Mannerheimintie 166, FIN-00300 Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
57
|
Calame KL, Lin KI, Tunyaplin C. Regulatory mechanisms that determine the development and function of plasma cells. Annu Rev Immunol 2003; 21:205-30. [PMID: 12524387 DOI: 10.1146/annurev.immunol.21.120601.141138] [Citation(s) in RCA: 255] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plasma cells are terminally differentiated final effectors of the humoral immune response. Plasma cells that result from antigen activation of B-1 and marginal zone B cells provide the first, rapid response to antigen. Plasma cells that develop after a germinal center reaction provide higher-affinity antibody and often survive many months in the bone marrow. Transcription factors Bcl-6 and Pax5, which are required for germinal center B cells, block plasmacytic differentiation and repress Blimp-1 and XBP-1, respectively. When Bcl-6-dependent repression of Blimp-1 is relieved, Blimp-1 ensures that plasmacytic development is irreversible by repressing BCL-6 and PAX5. In plasma cells, Blimp-1, XBP-1, IRF4, and other regulators cause cessation of cell cycle, decrease signaling from the B cell receptor and communication with T cells, inhibit isotype switching and somatic hypermutation, downregulate CXCR5, and induce copious immunoglobulin synthesis and secretion. Thus, commitment to plasmacytic differentiation involves inhibition of activities associated with earlier B cell developmental stages as well as expression of the plasma cell phenotype.
Collapse
Affiliation(s)
- Kathryn L Calame
- Department of Microbiology and Biochemistry, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA.
| | | | | |
Collapse
|
58
|
O'Reilly D, Quinn CM, El-Shanawany T, Gordon S, Greaves DR. Multiple Ets factors and interferon regulatory factor-4 modulate CD68 expression in a cell type-specific manner. J Biol Chem 2003; 278:21909-19. [PMID: 12676954 DOI: 10.1074/jbc.m212150200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD68 is a transmembrane glycoprotein expressed in all cells of the mononuclear phagocyte lineage including monocytes and tissue resident macrophages. Deletion analysis of the 5'-flanking sequences of the gene demonstrated that the proximal -150-bp sequence of the CD68 promoter exhibits high level promoter activity in macrophages. Mutations that abolish Ets factor binding at positions -106 and -89 reduce promoter activity in macrophages to 12 and 30%, respectively. Band shift experiments show that PU.1 associates with the -89 site whereas, Elf-1 preferentially binds the -106 Ets binding site and enhances CD68 activity in vitro. Furthermore, chromatin immunoprecipitation experiments confirm that Elf-1 and PU.1 associate with the CD68 proximal promoter in vivo in THP-1 cells. PU.1 does not bind to the CD68 promoter alone but instead forms heterocomplexes with members of the interferon regulatory factor family (IRF) including IRF-4 and IRF-8. IRF-4 and IRF-8 typically mediate transcriptional activation when associated with PU.1 on composite elements. However, our data show that PU.1/IRF-4 and IRF-8 heterocomplexes down-regulate CD68 promoter activity in macrophages and repression is dependent on the integrity of both the IRF and PU.1 half-sites of this composite element. Chromatin immunoprecipitation data reveal that neither IRF-4 nor IRF-8 associate with the CD68 proximal promoter in macrophages in vivo but IRF-4 is associated with the promoter in B lymphocytes. We propose that expression of CD68 in myeloid cells requires the Ets transcription factors Elf-1 and PU.1 and CD68 expression is down-regulated in lymphoid cells by combinatorial interactions between PU.1 and IRF-4.
Collapse
MESH Headings
- Amino Acid Motifs
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/biosynthesis
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- B-Lymphocytes/metabolism
- Base Sequence
- Binding Sites
- Blotting, Western
- COS Cells
- Cell Line
- DNA-Binding Proteins/metabolism
- Down-Regulation
- Genes, Reporter
- Genetic Vectors
- HL-60 Cells
- Humans
- Interferon Regulatory Factors
- Lymphocytes/metabolism
- Macrophages/metabolism
- Mice
- Models, Genetic
- Molecular Sequence Data
- Mutation
- Nuclear Proteins
- Plasmids/metabolism
- Polymerase Chain Reaction
- Precipitin Tests
- Promoter Regions, Genetic
- Protein Binding
- Proto-Oncogene Proteins/metabolism
- RNA, Messenger/metabolism
- Repressor Proteins/metabolism
- Time Factors
- Trans-Activators/metabolism
- Transcription Factors/metabolism
- Transcription, Genetic
- Transcriptional Activation
- Tumor Cells, Cultured
- U937 Cells
Collapse
Affiliation(s)
- Dawn O'Reilly
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
| | | | | | | | | |
Collapse
|
59
|
Barnes BJ, Field AE, Pitha-Rowe PM. Virus-induced heterodimer formation between IRF-5 and IRF-7 modulates assembly of the IFNA enhanceosome in vivo and transcriptional activity of IFNA genes. J Biol Chem 2003; 278:16630-41. [PMID: 12600985 DOI: 10.1074/jbc.m212609200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription factors of the interferon regulatory factor (IRF) family have been identified as critical mediators of early inflammatory gene transcription in infected cells. We have shown previously that IRF-5, like IRF-3 and IRF-7, is a direct transducer of virus-mediated signaling and plays a role in the expression of multiple cytokines/chemokines. The present study is focused on the molecular mechanisms underlying the formation and function of IRF-5/IRF-7 heterodimers in infected cells. The interaction between IRF-5 and IRF-7 is not cooperative and results in a repression rather than enhancement of IFNA gene transcription. The formation of the IRF-5/IRF-7 heterodimer is dependent on IRF-7 phosphorylation, as shown by the glutathione S-transferase pull-down and immunoprecipitation assays. Mapping of the interaction domain revealed that formation of IRF-5/IRF-7 heterodimers occurs through the amino terminus resulting in a masking of the DNA binding domain, the consequent alteration of the composition of the enhanceosome complex binding to IFNA promoters in vivo, and modulation of the expression profile of IFNA subtypes. Thus, these results indicate that IRF-5 can act as both an activator and a repressor of IFN gene induction dependent on the IRF-interacting partner, and IRF-5 may be a part of the regulatory network that ensures timely expression of the immediate early inflammatory genes.
Collapse
Affiliation(s)
- Betsy J Barnes
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland 21231, USA.
| | | | | |
Collapse
|
60
|
Gobin SJP, Biesta P, Van den Elsen PJ. Regulation of human beta 2-microglobulin transactivation in hematopoietic cells. Blood 2003; 101:3058-64. [PMID: 12480693 DOI: 10.1182/blood-2002-09-2924] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
beta(2)-Microglobulin (beta(2)m) is a chaperone of major histocompatibility complex (MHC) class I (-like) molecules that play a central role in antigen presentation, immunoglobulin transport, and iron metabolism. It is therefore of importance that beta(2)m is adequately expressed in cells that perform these functions, such as hematopoietic cells. In this study, we investigated the transcriptional regulation of beta(2)m in lymphoid and myeloid cell lines through a promoter containing a putative E box, Ets/interferon-stimulated response element (ISRE), and kappa B site. Here we show that upstream stimulatory factor 1 (USF1) and USF2 bind to the E box and regulate beta(2)m transactivation. The nuclear factor kappa B (NF-kappa B) subunits p50 and p65 bind to the kappa B box and p65 transactivates beta(2)m. Interferon regulatory factor 1 (IRF1), IRF2, IRF4, and IRF8, but not PU.1, bind to the Ets/ISRE, and IRF1 and IRF3 are strong transactivators of beta(2)m. Together, all 3 boxes are important for the constitutive and cytokine-induced levels of beta(2)m expression in lymphoid and myeloid cell types. As such, beta(2)m transactivation is under the control of important transcriptional pathways, which are activated during injury, infection, and inflammation.
Collapse
Affiliation(s)
- Sam J P Gobin
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | | | | |
Collapse
|
61
|
Arguello M, Sgarbanti M, Hernandez E, Mamane Y, Sharma S, Servant M, Lin R, Hiscott J. Disruption of the B-cell specific transcriptional program in HHV-8 associated primary effusion lymphoma cell lines. Oncogene 2003; 22:964-73. [PMID: 12592383 DOI: 10.1038/sj.onc.1206270] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Primary effusion lymphoma (PEL) is a lymphoproliferative disease of B-cell origin that is associated with HHV-8 infection. PEL cells harbor a non-B, non-T phenotype and lack significant surface immunoglobulin (Ig) expression, a characteristic that has not been fully explained. In the present study, we demonstrate that PEL cells constitutively express interferon regulatory factor (IRF)-4, a transcription factor that regulates the activity of the immunoglobulin light-chain enhancer elements lambdaB and kappaE3' through binding to a composite Ets-IRF site. IRF-4 activity requires its physical interaction with PU.1, an Ets family member involved in the activation of genes essential for B-cell development. However, in PEL-derived B-cell lines, PU.1 expression was completely abrogated; expression of the B cell specific transcription factor Oct-2, which is known to regulate PU.1 expression, was also abolished. Moreover, the B-cell-specific coactivator of octamer factors, BOB-1/OcaB, was expressed at very decreased levels in PEL cells. Ectopic expression of Oct-2 was able to fully restore PU.1 promoter activity in the PEL cell line BCBL-1, while PU.1 expression also reconstituted the activity of the lambdaB Ets-IRF site. In addition, protein levels of BSAP/Pax-5 and IRF-8/ICSBP were undetectable in PEL cells. The pattern of transcription factor ablation observed in PEL was found to be comparable to that observed in classical Hodgkin's disease-derived cell lines, which also lack B-cell-specific surface markers. These observations indicate that disruption of the B-cell-specific transcriptional program is likely to contribute to the incomplete B-cell phenotype characteristic of PEL cells.
Collapse
MESH Headings
- B-Lymphocytes/metabolism
- Body Fluids
- Burkitt Lymphoma/genetics
- Burkitt Lymphoma/metabolism
- Burkitt Lymphoma/pathology
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- Enhancer Elements, Genetic
- Gene Expression Regulation, Neoplastic
- Herpesviridae Infections/genetics
- Herpesviridae Infections/metabolism
- Herpesviridae Infections/pathology
- Herpesvirus 8, Human/isolation & purification
- Hodgkin Disease/genetics
- Hodgkin Disease/metabolism
- Hodgkin Disease/pathology
- Humans
- Immunoglobulin Light Chains/genetics
- Interferon Regulatory Factors
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/pathology
- Lymphoma, B-Cell/virology
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Octamer Transcription Factor-2
- PAX5 Transcription Factor
- Proto-Oncogene Proteins/biosynthesis
- Proto-Oncogene Proteins/genetics
- RNA, Messenger/biosynthesis
- RNA, Neoplasm/biosynthesis
- Recombinant Fusion Proteins/physiology
- Repressor Proteins/biosynthesis
- Repressor Proteins/genetics
- Trans-Activators/biosynthesis
- Trans-Activators/genetics
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- Transcription, Genetic
- Transfection
- Tumor Virus Infections/genetics
- Tumor Virus Infections/metabolism
- Tumor Virus Infections/pathology
Collapse
Affiliation(s)
- Meztli Arguello
- Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|