51
|
Singh A, Trivedi P, Jain NK. Advances in siRNA delivery in cancer therapy. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:274-283. [PMID: 28423924 DOI: 10.1080/21691401.2017.1307210] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
RNA interference (RNAi)-based therapeutic approaches are under vibrant scrutinisation to seek cancer cure. siRNA suppress expression of the carcinogenic genes by targeting the mRNA expression. However, in vivo systemic siRNA therapy is hampered by the barriers such as poor cellular uptake, instability under physiological conditions, off-target effects and possible immunogenicity. To overcome these challenges, systemic siRNA therapy warrants the development of clinically suitable, safe, and effective drug delivery systems. Herein, we review the barriers, potential siRNA drug delivery systems, and application of siRNA in clinical trials for cancer therapy. Further research is required to harness the full potential of siRNA as a cancer therapeutic.
Collapse
Affiliation(s)
- Aishwarya Singh
- a School of Pharmaceutical Sciences, Rajiv Gandhi Technical University , Bhopal , Madhya Pradesh , India
| | - Piyush Trivedi
- a School of Pharmaceutical Sciences, Rajiv Gandhi Technical University , Bhopal , Madhya Pradesh , India
| | - Narendra Kumar Jain
- a School of Pharmaceutical Sciences, Rajiv Gandhi Technical University , Bhopal , Madhya Pradesh , India
| |
Collapse
|
52
|
Elkayam E, Parmar R, Brown CR, Willoughby JL, Theile CS, Manoharan M, Joshua-Tor L. siRNA carrying an (E)-vinylphosphonate moiety at the 5΄ end of the guide strand augments gene silencing by enhanced binding to human Argonaute-2. Nucleic Acids Res 2017; 45:3528-3536. [PMID: 27903888 PMCID: PMC5389677 DOI: 10.1093/nar/gkw1171] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/03/2016] [Accepted: 11/09/2016] [Indexed: 01/20/2023] Open
Abstract
Efficient gene silencing by RNA interference (RNAi) in vivo requires the recognition and binding of the 5΄- phosphate of the guide strand of an siRNA by the Argonaute protein. However, for exogenous siRNAs it is limited by the rapid removal of the 5΄- phosphate of the guide strand by metabolic enzymes. Here, we have determined the crystal structure of human Argonaute-2 in complex with the metabolically stable 5΄-(E)-vinylphosphonate (5΄-E-VP) guide RNA at 2.5-Å resolution. The structure demonstrates how the 5΄ binding site in the Mid domain of human Argonaute-2 is able to adjust the key residues in the 5΄-nucleotide binding pocket to compensate for the change introduced by the modified nucleotide. This observation also explains improved binding affinity of the 5΄-E-VP -modified siRNA to human Argonaute-2 in-vitro, as well as the enhanced silencing in the context of the trivalent N-acetylgalactosamine (GalNAc)-conjugated siRNA in mice relative to the un-modified siRNA.
Collapse
Affiliation(s)
- Elad Elkayam
- Keck Structural Biology Lab, Cold Spring Harbor, NY 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor, NY 11724, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Rubina Parmar
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, MA 02142, USA
| | | | | | | | | | - Leemor Joshua-Tor
- Keck Structural Biology Lab, Cold Spring Harbor, NY 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor, NY 11724, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
53
|
Mishra DK, Balekar N, Mishra PK. Nanoengineered strategies for siRNA delivery: from target assessment to cancer therapeutic efficacy. Drug Deliv Transl Res 2017; 7:346-358. [PMID: 28050890 DOI: 10.1007/s13346-016-0352-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The promise of RNA interference (RNAi) technology in cancer therapeutics aims to deliver small interfering RNA (siRNA) for silencing of gene expression in cell type-specific pathway. However, the challenge for the delivery of stable siRNA is hindered by an immune-hostile tumor microenvironment and physiological barriers of the circulatory system. Therefore, the development and validation of safe, stable, and efficient nanoengineered delivery systems are highly essential for effective delivery of siRNA into cancer cells. This review focuses on gene-silencing mechanisms, challenges to siRNA delivery, design and delivery of nanocarrier systems, ongoing clinical trials, and translational prospects for siRNA-mediated cancer therapeutics.
Collapse
Affiliation(s)
| | - Neelam Balekar
- IPS Academy, College of Pharmacy, A. B. Road, Indore, MP, 452 012, India
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, National Institute for Research in Environmental Health, Indian Council of Medical Research (ICMR), Bhopal, India
| |
Collapse
|
54
|
Jedrzejczyk D, Gendaszewska-Darmach E, Pawlowska R, Chworos A. Designing synthetic RNA for delivery by nanoparticles. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:123001. [PMID: 28004640 DOI: 10.1088/1361-648x/aa5561] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The rapid development of synthetic biology and nanobiotechnology has led to the construction of various synthetic RNA nanoparticles of different functionalities and potential applications. As they occur naturally, nucleic acids are an attractive construction material for biocompatible nanoscaffold and nanomachine design. In this review, we provide an overview of the types of RNA and nucleic acid's nanoparticle design, with the focus on relevant nanostructures utilized for gene-expression regulation in cellular models. Structural analysis and modeling is addressed along with the tools available for RNA structural prediction. The functionalization of RNA-based nanoparticles leading to prospective applications of such constructs in potential therapies is shown. The route from the nanoparticle design and modeling through synthesis and functionalization to cellular application is also described. For a better understanding of the fate of targeted RNA after delivery, an overview of RNA processing inside the cell is also provided.
Collapse
Affiliation(s)
- Dominika Jedrzejczyk
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | | | | | | |
Collapse
|
55
|
He F, Han Y, Gong J, Song J, Wang H, Li Y. Predicting siRNA efficacy based on multiple selective siRNA representations and their combination at score level. Sci Rep 2017; 7:44836. [PMID: 28317874 PMCID: PMC5357899 DOI: 10.1038/srep44836] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/13/2017] [Indexed: 12/31/2022] Open
Abstract
Small interfering RNAs (siRNAs) may induce to targeted gene knockdown, and the gene silencing effectiveness relies on the efficacy of the siRNA. Therefore, the task of this paper is to construct an effective siRNA prediction method. In our work, we try to describe siRNA from both quantitative and qualitative aspects. For quantitative analyses, we form four groups of effective features, including nucleotide frequencies, thermodynamic stability profile, thermodynamic of siRNA-mRNA interaction, and mRNA related features, as a new mixed representation, in which thermodynamic of siRNA-mRNA interaction is introduced to siRNA efficacy prediction for the first time to our best knowledge. And then an F-score based feature selection is employed to investigate the contribution of each feature and remove the weak relevant features. Meanwhile, we encode the siRNA sequence and existed empirical design rules as a qualitative siRNA representation. These two kinds of siRNA representations are combined to predict siRNA efficacy by supported Vector Regression (SVR) at score level. The experimental results indicate that our method may select the features with powerful discriminative ability and make the two kinds of siRNA representations work at full capacity. The prediction results also demonstrate that our method can outperform other popular siRNA efficacy prediction algorithms.
Collapse
Affiliation(s)
- Fei He
- Northeast Normal University, School of Computer Science and Information Technology, Changchun, 130117, China
- Northeast Normal University, School of Environment, Changchun, 130117, China
- Northeast Normal University, Institute of Computational Biology, Changchun, 130117, China
| | - Ye Han
- Jilin University, College of Computer Science and Technology, Changchun, 130012, China
- Jilin University, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Changchun, 130012, China
| | - Jianting Gong
- Northeast Normal University, School of Computer Science and Information Technology, Changchun, 130117, China
- Northeast Normal University, Institute of Computational Biology, Changchun, 130117, China
| | - Jiazhi Song
- Northeast Normal University, School of Computer Science and Information Technology, Changchun, 130117, China
- Northeast Normal University, Institute of Computational Biology, Changchun, 130117, China
| | - Han Wang
- Northeast Normal University, School of Computer Science and Information Technology, Changchun, 130117, China
- Northeast Normal University, Institute of Computational Biology, Changchun, 130117, China
| | - Yanwen Li
- Northeast Normal University, School of Computer Science and Information Technology, Changchun, 130117, China
- Northeast Normal University, Institute of Computational Biology, Changchun, 130117, China
| |
Collapse
|
56
|
|
57
|
Utilizing Selected Di- and Trinucleotides of siRNA to Predict RNAi Activity. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2017; 2017:5043984. [PMID: 28243313 PMCID: PMC5294759 DOI: 10.1155/2017/5043984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/15/2016] [Indexed: 02/04/2023]
Abstract
Small interfering RNAs (siRNAs) induce posttranscriptional gene silencing in various organisms. siRNAs targeted to different positions of the same gene show different effectiveness; hence, predicting siRNA activity is a crucial step. In this paper, we developed and evaluated a powerful tool named “siRNApred” with a new mixed feature set to predict siRNA activity. To improve the prediction accuracy, we proposed 2-3NTs as our new features. A Random Forest siRNA activity prediction model was constructed using the feature set selected by our proposed Binary Search Feature Selection (BSFS) algorithm. Experimental data demonstrated that the binding site of the Argonaute protein correlates with siRNA activity. “siRNApred” is effective for selecting active siRNAs, and the prediction results demonstrate that our method can outperform other current siRNA activity prediction methods in terms of prediction accuracy.
Collapse
|
58
|
Ansari AS, Santerre PJ, Uludağ H. Biomaterials for polynucleotide delivery to anchorage-independent cells. J Mater Chem B 2017; 5:7238-7261. [DOI: 10.1039/c7tb01833a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Comparison of various chemical vectors used for polynucleotide delivery to mammalian anchorage-independent cells.
Collapse
Affiliation(s)
- Aysha S. Ansari
- Department of Chemical & Materials Engineering
- Faculty of Engineering
- University of Alberta
- Edmonton
- Canada
| | - Paul J. Santerre
- Institute of Biomaterials & Biomedical Engineering
- University of Toronto
- Toronto
- Canada
| | - Hasan Uludağ
- Department of Chemical & Materials Engineering
- Faculty of Engineering
- University of Alberta
- Edmonton
- Canada
| |
Collapse
|
59
|
Janas MM, Jiang Y, Schlegel MK, Waldron S, Kuchimanchi S, Barros SA. Impact of Oligonucleotide Structure, Chemistry, and Delivery Method on In Vitro Cytotoxicity. Nucleic Acid Ther 2016; 27:11-22. [PMID: 27923110 DOI: 10.1089/nat.2016.0639] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Single-stranded (ss) 2'-fluoro (2'-F)-modified oligonucleotides (ONs) with a full phosphorothioate (PS) backbone have been reported to be cytotoxic and cause DNA double-strand breaks (DSBs) when transfected into HeLa cells. However, the molecular determinants of these effects have not been fully explored. In this study, we investigated the impact of ON structure, chemistry, delivery method, and cell type on in vitro cytotoxicity and DSBs. We found that ss PS-ONs were more cytotoxic than double-stranded (ds) PS-ONs, irrespective of the 2'-ribose chemistry, inclusive of the 2'-F modification. Cytotoxicity of ss ONs was most affected by the total PS content, with an additional contribution of 2'-F substitutions in HeLa, but not HepG2, cells. The relatively mild cytotoxicity of ds ONs was most impacted by long contiguous PS stretches combined with 2'-F substitutions. None of the tested ds 2'-F-modified PS-ONs caused DSBs, while the previously reported DSBs caused by ss 2'-F-modified PS-ONs were PS dependent. HeLa cells were more sensitive to ON-mediated toxicity when transfected with Lipofectamine 2000 versus Lipofectamine RNAiMax. Importantly, asialoglycoprotein receptor-mediated uptake of N-acetylgalactosamine-conjugated ss or ds PS-ONs, even those with long PS stretches and high 2'-F content, was neither cytotoxic nor caused DSBs at transfection-equivalent exposures. These results suggest that in vitro cytotoxicity and DSBs associated with ONs are delivery method dependent and primarily determined by single-stranded nature and PS content of ONs.
Collapse
Affiliation(s)
- Maja M Janas
- Alnylam Pharmaceuticals, Inc. , Cambridge, Massachusetts
| | - Yongfeng Jiang
- Alnylam Pharmaceuticals, Inc. , Cambridge, Massachusetts
| | | | - Scott Waldron
- Alnylam Pharmaceuticals, Inc. , Cambridge, Massachusetts
| | | | - Scott A Barros
- Alnylam Pharmaceuticals, Inc. , Cambridge, Massachusetts
| |
Collapse
|
60
|
Dar SA, Gupta AK, Thakur A, Kumar M. SMEpred workbench: A web server for predicting efficacy of chemicallymodified siRNAs. RNA Biol 2016; 13:1144-1151. [PMID: 27603513 DOI: 10.1080/15476286.2016.1229733] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chemical modifications have been extensively exploited to circumvent shortcomings in therapeutic applications of small interfering RNAs (siRNAs). However, experimental designing and testing of these siRNAs or chemically modified siRNAs (cm-siRNAs) involves enormous resources. Therefore, in-silico intervention in designing cm-siRNAs would be of utmost importance. We developed SMEpred workbench to predict the efficacy of normal siRNAs as well as cm-siRNAs using 3031 heterogeneous cm-siRNA sequences from siRNAmod database. These include 30 frequently used chemical modifications on different positions of either siRNA strand. Support Vector Machine (SVM) was employed to develop predictive models utilizing various sequence features namely mono-, di-nucleotide composition, binary pattern and their hybrids. We achieved highest Pearson Correlation Coefficient (PCC) of 0.80 during 10-fold cross validation and similar PCC value in independent validation. We have provided the algorithm in the 'SMEpred' pipeline to predict the normal siRNAs from the gene or mRNA sequence. For multiple modifications, we have assembled 'MultiModGen' module to design multiple modifications and further process them to evaluate their predicted efficacies. SMEpred webserver will be useful to scientific community engaged in use of RNAi-based technology as well as for therapeutic development. Web server is available for public use at following URL address: http://bioinfo.imtech.res.in/manojk/smepred .
Collapse
Affiliation(s)
- Showkat Ahmad Dar
- a Bioinformatics Center, Institute of Microbial Technology, Council of Scientific and Industrial Research , Chandigarh , India
| | - Amit Kumar Gupta
- a Bioinformatics Center, Institute of Microbial Technology, Council of Scientific and Industrial Research , Chandigarh , India
| | - Anamika Thakur
- a Bioinformatics Center, Institute of Microbial Technology, Council of Scientific and Industrial Research , Chandigarh , India
| | - Manoj Kumar
- a Bioinformatics Center, Institute of Microbial Technology, Council of Scientific and Industrial Research , Chandigarh , India
| |
Collapse
|
61
|
Chemical and structural modifications of RNAi therapeutics. Adv Drug Deliv Rev 2016; 104:16-28. [PMID: 26549145 DOI: 10.1016/j.addr.2015.10.015] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 10/14/2015] [Accepted: 10/23/2015] [Indexed: 12/25/2022]
Abstract
Small interfering RNA (siRNA), a 21-23nt double-stranded RNA responsible for post-transcriptional gene silencing, has attracted great interests as promising genomic drugs, due to its strong ability to silence target genes in a sequence-specific manner. Despite high silencing efficiency and on-target specificity, the clinical translation of siRNA has been hindered by its inherent features: poor intracellular delivery, limited blood stability, unpredictable immune responses and unwanted off-targeting effects. To overcome these hindrances, researchers have made various advances to modify siRNA itself and to improve its delivery. In this review paper, first we briefly discuss the innate properties and delivery barriers of siRNA. Then, we describe recent progress in (1) chemically and structurally modified siRNAs to solve their intrinsic problems and (2) siRNA delivery formulations including siRNA conjugates, polymerized siRNA, and nucleic acid-based nanoparticles to improve in vivo delivery.
Collapse
|
62
|
Docosahexaenoic Acid Conjugation Enhances Distribution and Safety of siRNA upon Local Administration in Mouse Brain. MOLECULAR THERAPY-NUCLEIC ACIDS 2016; 5:e344. [PMID: 27504598 PMCID: PMC5023396 DOI: 10.1038/mtna.2016.50] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 11/29/2022]
Abstract
The use of siRNA-based therapies for the treatment of neurodegenerative disease requires efficient, nontoxic distribution to the affected brain parenchyma, notably the striatum and cortex. Here, we describe the synthesis and activity of a fully chemically modified siRNA that is directly conjugated to docosahexaenoic acid (DHA), the most abundant polyunsaturated fatty acid in the mammalian brain. DHA conjugation enables enhanced siRNA retention throughout both the ipsilateral striatum and cortex following a single, intrastriatal injection (ranging from 6–60 μg). Within these tissues, DHA conjugation promotes internalization by both neurons and astrocytes. We demonstrate efficient and specific silencing of Huntingtin mRNA expression in both the ipsilateral striatum (up to 73%) and cortex (up to 51%) after 1 week. Moreover, following a bilateral intrastriatal injection (60 μg), we achieve up to 80% silencing of a secondary target, Cyclophilin B, at both the mRNA and protein level. Importantly, DHA-hsiRNAs do not induce neural cell death or measurable innate immune activation following administration of concentrations over 20 times above the efficacious dose. Thus, DHA conjugation is a novel strategy for improving siRNA activity in mouse brain, with potential to act as a new therapeutic platform for the treatment of neurodegenerative disorders.
Collapse
|
63
|
Schirle NT, Kinberger GA, Murray HF, Lima WF, Prakash TP, MacRae IJ. Structural Analysis of Human Argonaute-2 Bound to a Modified siRNA Guide. J Am Chem Soc 2016; 138:8694-7. [PMID: 27380263 PMCID: PMC4993527 DOI: 10.1021/jacs.6b04454] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Incorporation of chemical modifications into small interfering RNAs (siRNAs) increases their metabolic stability and improves their tissue distribution. However, how these modifications impact interactions with Argonaute-2 (Ago2), the molecular target of siRNAs, is not known. Herein we present the crystal structure of human Ago2 bound to a metabolically stable siRNA containing extensive backbone modifications. Comparison to the structure of an equivalent unmodified-siRNA complex indicates that the structure of Ago2 is relatively unaffected by chemical modifications in the bound siRNA. In contrast, the modified siRNA appears to be much more plastic and shifts, relative to the unmodified siRNA, to optimize contacts with Ago2. Structure-activity analysis reveals that even major conformational perturbations in the 3' half of the siRNA seed region have a relatively modest effect on knockdown potency. These findings provide an explanation for a variety of modification patterns tolerated in siRNAs and a structural basis for advancing therapeutic siRNA design.
Collapse
Affiliation(s)
- Nicole T. Schirle
- Department of Integrative Computational and Structural Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Garth A. Kinberger
- Ionis Pharmaceuticals Inc., 2855 Gazelle Ct, Carlsbad, CA 92010, United States
| | - Heather F. Murray
- Ionis Pharmaceuticals Inc., 2855 Gazelle Ct, Carlsbad, CA 92010, United States
| | - Walt F. Lima
- Ionis Pharmaceuticals Inc., 2855 Gazelle Ct, Carlsbad, CA 92010, United States
| | - Thazha P. Prakash
- Ionis Pharmaceuticals Inc., 2855 Gazelle Ct, Carlsbad, CA 92010, United States
| | - Ian J. MacRae
- Department of Integrative Computational and Structural Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
64
|
Martineau HM, Pyrah IT. Review of the Application of RNA Interference Technology in the Pharmaceutical Industry. Toxicol Pathol 2016; 35:327-36. [PMID: 17455080 DOI: 10.1080/01926230701197107] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Ribonucleic acid (RNA) interference (RNAi) is a recently discovered phenomenon whereby the introduction of double stranded (ds) RNA into the cytoplasm of the cell results in the specific and efficient degradation of complementary messenger (m) RNA and, therefore, reduced protein production. It was discovered by chance during attempts to develop flowers with increased colour intensity. The specific nature of the inhibition of protein production of cells has resulted in an explosion of research to understand and exploit RNAi. The technique is now established in in vitro systems, and much work is focussed in adapting RNAi for in vivo application. The potential of the technology in understanding physiological and pathological processes is significant, while its development as a therapeutic agent holds much promise as targeted agents. This review will describe the basic biological processes that drive RNAi, indicate current areas of areas research, and forecast future areas of development.
Collapse
Affiliation(s)
- Henny M Martineau
- Scottish Agricultural College, Allan Watt Building, Bush Estate, Penicuik, EH26 0QE, United Kingdom
| | | |
Collapse
|
65
|
Fakhr E, Zare F, Teimoori-Toolabi L. Precise and efficient siRNA design: a key point in competent gene silencing. Cancer Gene Ther 2016; 23:73-82. [DOI: 10.1038/cgt.2016.4] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 02/01/2016] [Accepted: 02/01/2016] [Indexed: 12/14/2022]
|
66
|
Terrazas M, Ivani I, Villegas N, Paris C, Salvans C, Brun-Heath I, Orozco M. Rational design of novel N-alkyl-N capped biostable RNA nanostructures for efficient long-term inhibition of gene expression. Nucleic Acids Res 2016; 44:4354-67. [PMID: 26975656 PMCID: PMC4872095 DOI: 10.1093/nar/gkw169] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/03/2016] [Indexed: 12/29/2022] Open
Abstract
Computational techniques have been used to design a novel class of RNA architecture with expected improved resistance to nuclease degradation, while showing interference RNA activity. The in silico designed structure consists of a 24–29 bp duplex RNA region linked on both ends by N-alkyl-N dimeric nucleotides (BCn dimers; n = number of carbon atoms of the alkyl chain). A series of N-alkyl-N capped dumbbell-shaped structures were efficiently synthesized by double ligation of BCn-loop hairpins. The resulting BCn-loop dumbbells displayed experimentally higher biostability than their 3′-N-alkyl-N linear version, and were active against a range of mRNA targets. We studied first the effect of the alkyl chain and stem lengths on RNAi activity in a screen involving two series of dumbbell analogues targeting Renilla and Firefly luciferase genes. The best dumbbell design (containing BC6 loops and 29 bp) was successfully used to silence GRB7 expression in HER2+ breast cancer cells for longer periods of time than natural siRNAs and known biostable dumbbells. This BC6-loop dumbbell-shaped structure displayed greater anti-proliferative activity than natural siRNAs.
Collapse
Affiliation(s)
- Montserrat Terrazas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Joint IRB-BSC Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Ivan Ivani
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Joint IRB-BSC Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Núria Villegas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Joint IRB-BSC Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona, Spain Barcelona Supercomputing Center, Jordi Girona 29, 08034 Barcelona, Spain
| | - Clément Paris
- Department of Organic Chemistry and IBUB, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Cándida Salvans
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Joint IRB-BSC Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Isabelle Brun-Heath
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Joint IRB-BSC Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Joint IRB-BSC Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona, Spain Barcelona Supercomputing Center, Jordi Girona 29, 08034 Barcelona, Spain Department of Biochemistry and Molecular Biology, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
67
|
Kel'in AV, Zlatev I, Harp J, Jayaraman M, Bisbe A, O'Shea J, Taneja N, Manoharan RM, Khan S, Charisse K, Maier MA, Egli M, Rajeev KG, Manoharan M. Structural Basis of Duplex Thermodynamic Stability and Enhanced Nuclease Resistance of 5'-C-Methyl Pyrimidine-Modified Oligonucleotides. J Org Chem 2016; 81:2261-79. [PMID: 26940174 DOI: 10.1021/acs.joc.5b02375] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Although judicious use of chemical modifications has contributed to the success of nucleic acid therapeutics, poor systemic stability remains a major hurdle. The introduction of functional groups around the phosphate backbone can enhance the nuclease resistance of oligonucleotides (ONs). Here, we report the synthesis of enantiomerically pure (R)- and (S)-5'-C-methyl (C5'-Me) substituted nucleosides and their incorporation into ONs. These modifications generally resulted in a decrease in thermal stability of oligonucleotide (ON) duplexes in a manner dependent on the stereoconfiguration at C5' with greater destabilization characteristic of (R)-epimers. Enhanced stability against snake venom phosphodiesterase resulted from modification of the 3'-end of an ON with either (R)- or (S)-C5'-Me nucleotides. The (S)-isomers with different 2'-substituents provided greater resistance against 3'-exonucleases than the corresponding (R)-isomers. Crystal structure analyses of RNA octamers with (R)- or (S)-5'-C-methyl-2'-deoxy-2'-fluorouridine [(R)- or (S)-C5'-Me-2'-FU, respectively] revealed that the stereochemical orientation of the C5'-Me and the steric effects that emanate from the alkyl substitution are the dominant determinants of thermal stability and are likely molecular origins of resistance against nucleases. X-ray and NMR structural analyses showed that the (S)-C5'-Me epimers are spatially and structurally more similar to their natural 5' nonmethylated counterparts than the corresponding (R)-epimers.
Collapse
Affiliation(s)
- Alexander V Kel'in
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Ivan Zlatev
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Joel Harp
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University, School of Medicine , Nashville, Tennessee 37232, United States
| | - Muthusamy Jayaraman
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Anna Bisbe
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Jonathan O'Shea
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Nate Taneja
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Rajar M Manoharan
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Saeed Khan
- Department of Chemistry and Biochemistry, University of California , Los Angeles, California 90095, United States
| | - Klaus Charisse
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Martin A Maier
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Martin Egli
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University, School of Medicine , Nashville, Tennessee 37232, United States
| | | | - Muthiah Manoharan
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
68
|
Groves B, Chen YJ, Zurla C, Pochekailov S, Kirschman JL, Santangelo PJ, Seelig G. Computing in mammalian cells with nucleic acid strand exchange. NATURE NANOTECHNOLOGY 2016; 11:287-294. [PMID: 26689378 PMCID: PMC4777654 DOI: 10.1038/nnano.2015.278] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 10/26/2015] [Indexed: 05/03/2023]
Abstract
DNA strand displacement has been widely used for the design of molecular circuits, motors, and sensors in cell-free settings. Recently, it has been shown that this technology can also operate in biological environments, but capabilities remain limited. Here, we look to adapt strand displacement and exchange reactions to mammalian cells and report DNA circuitry that can directly interact with a native mRNA. We began by optimizing the cellular performance of fluorescent reporters based on four-way strand exchange reactions and identified robust design principles by systematically varying the molecular structure, chemistry and delivery method. Next, we developed and tested AND and OR logic gates based on four-way strand exchange, demonstrating the feasibility of multi-input logic. Finally, we established that functional siRNA could be activated through strand exchange, and used native mRNA as programmable scaffolds for co-localizing gates and visualizing their operation with subcellular resolution.
Collapse
Affiliation(s)
- Benjamin Groves
- Department of Electrical Engineering, University of Washington
| | - Yuan-Jyue Chen
- Department of Electrical Engineering, University of Washington
| | - Chiara Zurla
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University
| | | | - Jonathan L. Kirschman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University
| | - Philip J. Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University
- To whom correspondence should be addressed: or
| | - Georg Seelig
- Department of Electrical Engineering, University of Washington
- Department of Computer Science & Engineering, University of Washington
- To whom correspondence should be addressed: or
| |
Collapse
|
69
|
Urbanska AM, Karagiannis ED, Au AS, Dai SY, Mozafari M, Prakash S. What's Next for Gastrointestinal Disorders: No Needles? J Control Release 2016; 221:48-61. [PMID: 26646543 DOI: 10.1016/j.jconrel.2015.11.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/26/2015] [Accepted: 11/27/2015] [Indexed: 12/28/2022]
Abstract
A myriad of pathologies affect the gastrointestinal tract, citing this affected area as a significant target for therapeutic intervention. One group of therapeutic agents, antisense and oligonucleotides and small interfering RNAs, offer a promising platform for treating a wide variety of diseases ranging from cancer to auto-immune diseases. Current delivery methods are carried out either systemically or locally into diseased areas, both of which involve needles. The challenge in orally administering this type of treatment lies in the complications that arise due to the vast environmental extremes found within the gastrointestinal tract, owing to the fact that, as the drug travels down the gastrointestinal tract, it is subjected to pH changes and interactions with bacteria and a variety of digestive and protective enzymes including proteases, DNAses, and RNAses. Overcoming these challenges to allow the practical application of these drugs is a priority that has invoked a multitude of research in the chemical, biological, and material sciences. In this review, we will address common gastrointestinal pathologies, the barriers to oral-based therapies and antisense-interfering technologies, the approaches that have already been applied for their delivery, and the current status of antisense drug therapy clinical trials for gastrointestinal-related disorders.
Collapse
Affiliation(s)
- Aleksandra M Urbanska
- Biomedical Technology and Cell Therapy Research Laboratory, Departments of Biomedical Engineering and Physiology Artificial Cells and Organs Research Center, Faculty of Medicine, McGill University, 3775 University Street, Montreal, Quebec, Canada
| | - Emmanouil D Karagiannis
- Synthetic Neurobiology Group, Massachusetts Institute of Technology Media Lab and McGovern Institute, Departments of Biological Engineering and Brain and Cognitive Sciences, Cambridge, MA 02139, USA
| | - Andrew S Au
- Division of Digestive and Liver Diseases, Columbia University College of Physicians and Surgeons, New York, NY 10032-3802, USA
| | - Si Yuan Dai
- Biomedical Technology and Cell Therapy Research Laboratory, Departments of Biomedical Engineering and Physiology Artificial Cells and Organs Research Center, Faculty of Medicine, McGill University, 3775 University Street, Montreal, Quebec, Canada
| | - Masoud Mozafari
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), P.O. Box 14155-4777, Tehran, Iran.
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Departments of Biomedical Engineering and Physiology Artificial Cells and Organs Research Center, Faculty of Medicine, McGill University, 3775 University Street, Montreal, Quebec, Canada
| |
Collapse
|
70
|
Roberts TC, Ezzat K, El Andaloussi S, Weinberg MS. Synthetic SiRNA Delivery: Progress and Prospects. Methods Mol Biol 2016; 1364:291-310. [PMID: 26472459 DOI: 10.1007/978-1-4939-3112-5_23] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Small interfering RNA (siRNA) is a powerful tool for modulating gene expression by RNA interference (RNAi). Duplex RNA oligonucleotides induce cleavage of homologous target transcripts, thereby enabling posttranscriptional silencing of potentially any gene. As such, siRNAs may have utility as novel pharmaceuticals for a wide range of diseases. However, a lack of "drug-likeness," physiological barriers, and potential toxicities have meant that systemic delivery of SiRNAs in vivo remains a major challenge. Here we discuss various strategies that have been employed to solve the problem of SiRNA delivery. These include chemical modification of the SiRNA, direct conjugation to bioactive moieties, and nanoparticle formulations.
Collapse
Affiliation(s)
- Thomas C Roberts
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Kariem Ezzat
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Samir El Andaloussi
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Marc S Weinberg
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA.
- Antiviral Gene Therapy Research Unit, Department of Molecular Medicine and Haematology, University of the Witwatersrand Medical School, Johannesburg, WITS 2050, South Africa.
- HIV Pathogenesis Research Unit, Department of Molecular Medicine and Haematology, University of the Witwatersrand Medical School, Johannesburg, WITS 2050, South Africa.
| |
Collapse
|
71
|
Dornseifer S, Willkomm S, Far RKK, Liebschwager J, Beltsiou F, Frank K, Laufer SD, Martinetz T, Sczakiel G, Claussen JC, Restle T. RNAi revised--target mRNA-dependent enhancement of gene silencing. Nucleic Acids Res 2015; 43:10623-32. [PMID: 26578554 PMCID: PMC4678823 DOI: 10.1093/nar/gkv1200] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/26/2015] [Indexed: 01/11/2023] Open
Abstract
The discovery of RNA interference (RNAi) gave rise to the development of new nucleic acid-based technologies as powerful investigational tools and potential therapeutics. Mechanistic key details of RNAi in humans need to be deciphered yet, before such approaches take root in biomedicine and molecular therapy. We developed and validated an in silico-based model of siRNA-mediated RNAi in human cells in order to link in vitro-derived pre-steady state kinetic data with a quantitative and time-resolved understanding of RNAi on the cellular level. The observation that product release by Argonaute 2 is accelerated in the presence of an excess of target RNA in vitro inspired us to suggest an associative mechanism for the RNA slicer reaction where incoming target mRNAs actively promote dissociation of cleaved mRNA fragments. This novel associative model is compatible with high multiple turnover rates of RNAi-based gene silencing in living cells and accounts for target mRNA concentration-dependent enhancement of the RNAi machinery.
Collapse
Affiliation(s)
- Simon Dornseifer
- Institute of Molecular Medicine, University of Lübeck, 23538 Lübeck, Germany
| | - Sarah Willkomm
- Institute of Molecular Medicine, University of Lübeck, 23538 Lübeck, Germany
| | | | - Janine Liebschwager
- Institute of Molecular Medicine, University of Lübeck, 23538 Lübeck, Germany
| | - Foteini Beltsiou
- Institute of Molecular Medicine, University of Lübeck, 23538 Lübeck, Germany
| | - Kirsten Frank
- Institute of Molecular Medicine, University of Lübeck, 23538 Lübeck, Germany
| | - Sandra D Laufer
- Institute of Molecular Medicine, University of Lübeck, 23538 Lübeck, Germany
| | - Thomas Martinetz
- Institute for Neuro- and Bioinformatics, University of Lübeck, 23538 Lübeck, Germany
| | - Georg Sczakiel
- Institute of Molecular Medicine, University of Lübeck, 23538 Lübeck, Germany
| | | | - Tobias Restle
- Institute of Molecular Medicine, University of Lübeck, 23538 Lübeck, Germany
| |
Collapse
|
72
|
Functional evaluation of gene silencing on macrophages derived from U937 cells using interference RNA (shRNA) in a model of macrophages infected with Leishmania (Viannia) braziliensis. Parasitology 2015; 142:1682-92. [DOI: 10.1017/s0031182015001304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
SUMMARYLeishmaniasis development is multifactorial; nonetheless, the establishment of the infection, which occurs by the survival and replication of the parasite inside its main host cell, the macrophage, is mandatory. Thus, the importance of studying the molecular mechanisms involved in the Leishmania–macrophage interaction is highlighted. The aim of this study was to characterize a cellular model of macrophages derived from U937 cells that would allow for the identification of infection phenotypes induced by genetic silencing with interference RNA in the context of macrophages infected with Leishmania (Viannia) braziliensis. The model was standardized by silencing an exogenous gene (gfp), an endogenous gene (lmna) and a differentially expressed gene between infected and non-infected macrophages (gro-β). The silencing process was successful for the three genes studied, obtaining reductions of 88·9% in the GFP levels, 87·5% in LMNA levels and 74·4% for Gro-β with respect to the corresponding control cell lines. The cell model revealed changes in the infection phenotype of the macrophages in terms of number of amastigotes per infected macrophage, number of amastigotes per sampled macrophage and percentage of infected macrophages as a result of gene silencing. Thus, this cell model constitutes a research platform for the study of parasite–host interactions and for the identification of potentially therapeutic targets.
Collapse
|
73
|
Kim JY. Current Prospects of RNA Interference-based Therapy in Organ Transplantation. KOREAN JOURNAL OF TRANSPLANTATION 2015. [DOI: 10.4285/jkstn.2015.29.3.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Jae Young Kim
- Department of Life Science, Gachon University, Seongnam, Korea
| |
Collapse
|
74
|
Murali R, John PG, Peter S D. Soft computing model for optimized siRNA design by identifying off target possibilities using artificial neural network model. Gene 2015; 562:152-8. [PMID: 25725126 DOI: 10.1016/j.gene.2015.02.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/25/2015] [Accepted: 02/22/2015] [Indexed: 01/22/2023]
Abstract
The ability of small interfering RNA (siRNA) to do posttranscriptional gene regulation by knocking down targeted genes is an important research topic in functional genomics, biomedical research and in cancer therapeutics. Many tools had been developed to design exogenous siRNA with high experimental inhibition. Even though considerable amount of work has been done in designing exogenous siRNA, design of effective siRNA sequences is still a challenging work because the target mRNAs must be selected such that their corresponding siRNAs are likely to be efficient against that target and unlikely to accidentally silence other transcripts due to sequence similarity. In some cases, siRNAs may tolerate mismatches with the target mRNA, but knockdown of genes other than the intended target could make serious consequences. Hence to design siRNAs, two important concepts must be considered: the ability in knocking down target genes and the off target possibility on any nontarget genes. So before doing gene silencing by siRNAs, it is essential to analyze their off target effects in addition to their inhibition efficacy against a particular target. Only a few methods have been developed by considering both efficacy and off target possibility of siRNA against a gene. In this paper we present a new design of neural network model with whole stacking energy (ΔG) that enables to identify the efficacy and off target effect of siRNAs against target genes. The tool lists all siRNAs against a particular target with their inhibition efficacy and number of matches or sequence similarity with other genes in the database. We could achieve an excellent performance of Pearson Correlation Coefficient (R=0. 74) and Area Under Curve (AUC=0.906) when the threshold of whole stacking energy is ≥-34.6 kcal/mol. To the best of the author's knowledge, this is one of the best score while considering the "combined efficacy and off target possibility" of siRNA for silencing a gene. The proposed model shall be useful for designing exogenous siRNA for therapeutic applications and gene silencing techniques in the area of bioinformatics. The software is developed as a desktop application and available at http://opsid.in/opsid/.
Collapse
Affiliation(s)
- Reena Murali
- Department of Computer Science and Engineering, Rajiv Gandhi Institute of Technology, Kerala, India.
| | - Philips George John
- Department of Computer Science and Engineering, Rajiv Gandhi Institute of Technology, Kerala, India
| | - David Peter S
- Department of Computer Science and Engineering, Cochin University of Science & Technology, Kerala, India
| |
Collapse
|
75
|
Thang BN, Ho TB, Kanda T. A semi-supervised tensor regression model for siRNA efficacy prediction. BMC Bioinformatics 2015; 16:80. [PMID: 25888201 PMCID: PMC4379720 DOI: 10.1186/s12859-015-0495-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 02/10/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Short interfering RNAs (siRNAs) can knockdown target genes and thus have an immense impact on biology and pharmacy research. The key question of which siRNAs have high knockdown ability in siRNA research remains challenging as current known results are still far from expectation. RESULTS This work aims to develop a generic framework to enhance siRNA knockdown efficacy prediction. The key idea is first to enrich siRNA sequences by incorporating them with rules found for designing effective siRNAs and representing them as enriched matrices, then to employ the bilinear tensor regression to predict knockdown efficacy of those matrices. Experiments show that the proposed method achieves better results than existing models in most cases. CONCLUSIONS Our model not only provides a suitable siRNA representation but also can predict siRNA efficacy more accurate and stable than most of state-of-the-art models. Source codes are freely available on the web at: http://www.jaist.ac.jp/\~bao/BiLTR/ .
Collapse
Affiliation(s)
- Bui Ngoc Thang
- School of Knowledge Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, Japan.
- University of Engineering and Technology, Vietnam National University Hanoi, 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam.
| | - Tu Bao Ho
- School of Knowledge Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, Japan.
- John von Neumann Institute, Vietnam National University Ho at Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh, Vietnam.
| | - Tatsuo Kanda
- Graduate School of Medicine, Chiba University, 1-8-1 Inohahan, Chuo-ku, Chiba, Japan.
| |
Collapse
|
76
|
Jahns H, Roos M, Imig J, Baumann F, Wang Y, Gilmour R, Hall J. Stereochemical bias introduced during RNA synthesis modulates the activity of phosphorothioate siRNAs. Nat Commun 2015; 6:6317. [PMID: 25744034 PMCID: PMC4366519 DOI: 10.1038/ncomms7317] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 01/19/2015] [Indexed: 12/18/2022] Open
Abstract
An established means of improving the pharmacokinetics properties of oligoribonucleotides (ORNs) is to exchange their phosphodiester linkages for phosphorothioates (PSs). However, this strategy has not been pursued for small interfering RNAs (siRNAs), possibly because of sporadic reports that PS siRNAs show reduced inhibitory activity. The PS group is chiral at phosphorous (Rp/Sp centres), and conventional solid-phase synthesis of PS ORNs produces a population of diastereoisomers. Here we show that the choice of the activating agent for the synthesis of a PS ORN influences the Rp/Sp ratio of PS linkages throughout the strand. Furthermore, PS siRNAs composed of ORNs with a higher fraction of Rp centres show greater resistance to nucleases in serum and are more effective inhibitors in cells than their Sp counterparts. The finding that a stereochemically biased population of ORN diastereoisomers can be synthesized and exploited pharmacologically is important because uniform PS modification of siRNAs may provide a useful compromise of their pharmacokinetics and pharmacodynamics properties in RNAi therapeutics. Therapeutic oligonucleotides can be made more stable by substituting their achiral phosphodiester groups for chiral phosphorothioate linkages. Here, the authors present a synthesis of phosphorothioated RNAs, where the activator controls strand stereochemistry, and also the activity of assembled siRNAs.
Collapse
Affiliation(s)
- Hartmut Jahns
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg-4, CH-8093 Zürich, Switzerland
| | - Martina Roos
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg-4, CH-8093 Zürich, Switzerland
| | - Jochen Imig
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg-4, CH-8093 Zürich, Switzerland
| | - Fabienne Baumann
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg-4, CH-8093 Zürich, Switzerland
| | - Yuluan Wang
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg-4, CH-8093 Zürich, Switzerland
| | - Ryan Gilmour
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg-4, CH-8093 Zürich, Switzerland
| |
Collapse
|
77
|
Tong L, Yuan Y, Wu S. Therapeutic microRNAs targeting the NF-kappa B signaling circuits of cancers. Adv Drug Deliv Rev 2015; 81:1-15. [PMID: 25220353 DOI: 10.1016/j.addr.2014.09.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/27/2014] [Accepted: 09/03/2014] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) not only directly regulate NF-κB expression, but also up- or down-regulate NF-κB activity via upstream and downstream signaling pathways of NF-κB. In many cancer cells, miRNA expressions are altered accompanied with an elevation of NF-κB activity, which often plays a role in promoting cancer development and progression as well as hindering the effectiveness of chemo and radiation therapies. Thus NF-κB-targeting miRNAs have been identified and characterized as potential therapeutics for cancer treatment and sensitizers of chemo and radiotherapies. However, due to cross-targeting and instability of miRNAs, some limitations of using miRNA as cancer therapeutics still exist. In this review, the mechanisms for miRNA-mediated alteration of NF-κB expression and activation in different types of cancers will be discussed. The results of therapeutic use of NF-κB-targeting miRNA for cancer treatment will be examined. Some limitations, challenges and potential strategies in future development of miRNA as cancer therapeutics are also assessed.
Collapse
|
78
|
Herrera-Carrillo E, Berkhout B. Gene therapy strategies to block HIV-1 replication by RNA interference. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 848:71-95. [PMID: 25757616 DOI: 10.1007/978-1-4939-2432-5_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cellular mechanism of RNA interference (RNAi) plays an antiviral role in many organisms and can be used for the development of therapeutic strategies against viral pathogens. Persistent infections like the one caused by the human immunodeficiency virus type 1 (HIV-1) likely require a durable gene therapy approach. The continuous expression of the inhibitory RNA molecules in T cells is needed to effectively block HIV-1 replication. We discuss here several issues, ranging from the choice of RNAi inhibitor and vector system, finding the best target in the HIV-1 RNA genome, alternatively by targeting host mRNAs that encode important viral cofactors, to the setup of appropriate preclinical test systems. Finally, we briefly discuss the relevance of this topic for other viral pathogens that cause a chronic infection in humans.
Collapse
Affiliation(s)
- Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, K3-110 Meibergdreef 15, Amsterdam, 1105 AS, The Netherlands
| | | |
Collapse
|
79
|
Ashizawa AT, Cortes J. Liposomal delivery of nucleic acid-based anticancer therapeutics: BP-100-1.01. Expert Opin Drug Deliv 2014; 12:1107-20. [PMID: 25539721 DOI: 10.1517/17425247.2015.996545] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Antisense oligonucleotides, siRNA, anti-microRNA are designed to selectively bind to target mRNAs, and silence disease-causing or -associated proteins. The clinical development of nucleic acid drugs has been limited by their poor bioavailability. AREAS COVERED This review article examines the strategies that have been utilized to improve the bioavailability of nucleic acids. The chemical modifications made to nucleic acids that have improved their resistance against nuclease degradation are briefly discussed. The design of cationic and neutral lipid nanoparticles that enable the systemic delivery of nucleic acids in vivo is reviewed, and the proof-of-concept evidence that intravenous administration of nucleic acids incorporated into lipid nanoparticles leads to decreased expression of target genes in humans. Preclinical results of the neutral BP-100-1.01 nanoparticle are highlighted. EXPERT OPINION To further improve the clinical potential of nucleic acid cancer drugs, we predict research on the next generation of lipid nanoparticles will focus on: i) enhancing nucleic acid delivery to poorly vascularized tumors, as well as tumors behind the blood-brain barrier; and ii) improving the accessibility of nucleic acids to the cytoplasm by enhancing endosomal escape of nucleic acids and/or reducing exocytosis of nucleic acids to the external milieu.
Collapse
Affiliation(s)
- Ana Tari Ashizawa
- BioPath Holdings, Inc. , 4710 Bellaire Blvd Suite 210, Houston, TX 77401 , USA +1 713 385 4392 ;
| | | |
Collapse
|
80
|
Wang X, Zhang J, Li Y, Chen G, Wang X. Enzymatic synthesis of modified oligonucleotides by PEAR using Phusion and KOD DNA polymerases. Nucleic Acid Ther 2014; 25:27-34. [PMID: 25517220 DOI: 10.1089/nat.2014.0513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antisense synthetic oligonucleotides have been developed as potential gene-targeted therapeutics. We previously reported polymerase-endonuclease amplification reaction (PEAR) for amplification of natural and 5'-O-(1-thiotriphosphate) (S)-modified oligonucleotides. Here, we extended the PEAR technique for enzymatic preparation of 2'-deoxy-2'-fluoro-(2'-F) and 2'-F/S double-modified oligonucleotides. The result showed that KOD and Phusion DNA polymerase could synthesize oligonucleotides with one or two modified nucleotides, and KOD DNA polymerase is more suitable than Phusion DNA polymerase for PEAR amplification of 2'-F and 2'-F/S double modified oligonucleotides. The composition of PEAR products were analyzed by electrospray ionization liquid chromatography mass spectrometry (ESI/LC/MS) detection and showed that the sequence of the PEAR products are maintained at an extremely high accuracy (>99.9%), and after digestion the area percent of full-length modified oligonucleotides reaches 89.24%. PEAR is suitable for synthesis of modified oligonucleotides efficiently and with high purity.
Collapse
Affiliation(s)
- Xuxiang Wang
- Department of Biotechnology, College of Marine Life Sciences, Ocean University of China , Qingdao, Shandong Province, China
| | | | | | | | | |
Collapse
|
81
|
Borna H, Imani S, Iman M, Azimzadeh Jamalkandi S. Therapeutic face of RNAi: in vivo challenges. Expert Opin Biol Ther 2014; 15:269-85. [PMID: 25399911 DOI: 10.1517/14712598.2015.983070] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION RNA interference is a sequence-specific gene silencing phenomenon in which small interfering RNAs (siRNAs) can trigger gene transcriptional and post-transcriptional silencing. This phenomenon represents an emerging therapeutic approach for in vivo studies by efficient delivery of specific synthetic siRNAs against diseases. Therefore, simultaneous development of synthetic siRNAs along with novel delivery techniques is considered as novel and interesting therapeutic challenges. AREAS COVERED This review provides a basic explanation to siRNA signaling pathways and their therapeutic challenges. Here, we provide a comprehensive explanation to failed and successful trials and their in vivo challenges. EXPERT OPINION Specific, efficient and targeted delivery of siRNAs is the major concern for their in vivo administrations. Also, anatomical barriers, drug stability and availability, immunoreactivity and existence of various delivery routes, different genetic backgrounds are major clinical challenges. However, successful administration of siRNA-based drugs is expected during foreseeable features. But, their systemic applications will depend on strong targeted drug delivery strategies.
Collapse
Affiliation(s)
- Hojat Borna
- Baqiyatallah University of Medical Sciences, Chemical Injuries Research Center , Tehran , Iran
| | | | | | | |
Collapse
|
82
|
Ittig D, Luisier S, Weiler J, Schümperli D, Leumann CJ. Improving gene silencing of siRNAs via tricyclo-DNA modification. ARTIFICIAL DNA, PNA & XNA 2014; 1:9-16. [PMID: 21687522 DOI: 10.4161/adna.1.1.11385] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 01/22/2010] [Accepted: 02/03/2010] [Indexed: 12/16/2022]
Abstract
Small interfering RNAs (siRNAs) can be exploited for the selective silencing of disease-related genes via the RNA interference (RNAi) machinery and therefore raise hope for future therapeutic applications. Especially chemically modified siRNAs are of interest as they are expected to convert lead siRNA sequences into effective drugs. To study the potential of tricyclo-DNA (tc-DNA) in this context we systematically incorporated tc-DNA units at various positions in a siRNA duplex targeted to the EGFP gene that was expressed in HeLa cells. Silencing activity was measured by FACS, mRNA levels were determined by RT-PCR and the biostability of the modifed siRNAs was determined in human serum. We found that modifications in the 3'-overhangs in both the sense and antisense strands were compatible with the RNAi machinery leading to similar activities compared to wild-type (wt) siRNA. Additional modifications at the 3'-end, the 5'-end and in the center of the sense (passenger) strand were also well tolerated and did not compromise activity. Extensive modifications of the 3'- and the 5'-end in the antisense (guide) strand, however, abolished RNAi activity. Interestingly, modifications in the center of the duplex on both strands, corresponding to the position of the cleavage site by AGO2, increased efficacy relative to wt by a factor of 4 at the lowest concentrations (2 nM) investigated. In all cases, reduction of EGFP fluorescence was accompanied with a reduction of the EGFP mRNA level. Serum stability analysis further showed that 3'-overhang modifications only moderately increased stability while more extensive substitution by tc-DNA residues significantly enhanced biostability.
Collapse
Affiliation(s)
- Damian Ittig
- Department of Chemistry and Biochemistry; University of Bern; Bern, Switzerland
| | | | | | | | | |
Collapse
|
83
|
RNAi for silencing drug resistance in microbes toward development of nanoantibiotics. J Control Release 2014; 189:150-7. [DOI: 10.1016/j.jconrel.2014.06.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/25/2014] [Accepted: 06/25/2014] [Indexed: 01/01/2023]
|
84
|
Zhao B, Tong Z, Zhao G, Mu R, Shang H, Guan Y. Effects of 2'-O-methyl nucleotide on ligation capability of T4 DNA ligase. Acta Biochim Biophys Sin (Shanghai) 2014; 46:727-37. [PMID: 25022752 DOI: 10.1093/abbs/gmu058] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To further understand the ligation mechanism, effects of 2'-O-methyl nucleotide (2'-OMeN) on the T4 DNA ligation efficiency were investigated. Fluorescence resonance energy transfer assay was used to monitor the nick-joining process by T4 DNA ligase. Results showed that substitutions at 5'- and 3'-ends of the nick decreased the ligation efficiency by 48.7% ± 6.7% and 70.6% ± 4.0%, respectively. Substitutions at both 5'- and 3'-ends decreased the ligation efficiency by 76.6% ± 1.3%. Corresponding kinetic parameters, Vmax, Km, and kcat, have been determined in each case by using the Michaelis-Menten equation. The kinetic data showed that the 2'-OMeN substitutions reduced the maximal initial velocity and increased the Michaelis constant of T4 DNA ligase. Mismatches at 5'- and 3'-ends of the nick have also shown different influences on the ligation. Results here showed that the sugar pucker conformation at 3'-end impairs the ligation efficiency more profoundly than that at 5'-end. Different concentrations of Mg(2+), Ca(2+), K(+), Na(+), and ATP were also demonstrated to affect the T4 DNA ligase activity. These results enriched our knowledge about the effects of 2'-OMeN substitutions on the T4 DNA ligase.
Collapse
Affiliation(s)
- Bin Zhao
- Key Laboratory of Medical Cell Biology, Ministry of Education, Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110001, China Department of Human Movement Science, Shenyang Sport University, Shenyang 110102, China
| | - Zhaoxue Tong
- Key Laboratory of Medical Cell Biology, Ministry of Education, Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110001, China
| | - Guojie Zhao
- Key Laboratory of Medical Cell Biology, Ministry of Education, Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110001, China
| | - Runqing Mu
- Department of Clinical Diagnosis, First Hospital of China Medical University, Shenyang 110001, China
| | - Hong Shang
- Department of Clinical Diagnosis, First Hospital of China Medical University, Shenyang 110001, China
| | - Yifu Guan
- Key Laboratory of Medical Cell Biology, Ministry of Education, Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110001, China
| |
Collapse
|
85
|
Tsai WH, Chang WT. Construction of simple and efficient siRNA validation systems for screening and identification of effective RNAi-targeted sequences from mammalian genes. Methods Mol Biol 2014; 1101:321-38. [PMID: 24233788 PMCID: PMC7121774 DOI: 10.1007/978-1-62703-721-1_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
RNA interference (RNAi) is an evolutionarily conserved mechanism of gene silencing induced by double-stranded RNAs (dsRNAs). Among the widely used dsRNAs, small interfering RNAs (siRNAs) and short hairpin RNAs have evolved as extremely powerful and the most popular gene silencing reagents. The key challenge to achieving efficient gene silencing especially for the purpose of therapeutics is mainly dependent on the effectiveness and specificity of the selected RNAi-targeted sequences. Practically, only a small number of dsRNAs are capable of inducing highly effective and sequence-specific gene silencing via RNAi mechanism. In addition, the efficiency of gene silencing induced by dsRNAs can only be experimentally examined based on inhibition of the target gene expression. Therefore, it is essential to develop a fully robust and comparative validation system for measuring the efficacy of designed dsRNAs. In this chapter, we focus our discussion on a reliable and quantitative reporter-based siRNA validation system that has been previously established in our laboratory. The system consists of a short synthetic DNA fragment containing an RNAi-targeted sequence of interest and two expression vectors for targeting reporter and triggering siRNA expressions. The efficiency of siRNAs is determined by their abilities to inhibit expression of the targeting reporters with easily quantified readouts including enhanced green fluorescence protein and firefly luciferase. Since only a readily available short synthetic DNA fragment is needed for constructing this reliable and efficient reporter-based siRNA validation system, this system not only provides a powerful strategy for screening highly effective RNAi-targeted sequences from mammalian genes but also implicates the use of RNAi-based dsRNA reagents for reverse functional genomics and molecular therapeutics.
Collapse
Affiliation(s)
- Wen-Hui Tsai
- Institute of Clinical Medicine, National Cheng Kung University Medical College, Taiwan, P.R. China
| | | |
Collapse
|
86
|
Probing the inherent stability of siRNA immobilized on nanoparticle constructs. Proc Natl Acad Sci U S A 2014; 111:9739-44. [PMID: 24946803 DOI: 10.1073/pnas.1409431111] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Small interfering RNA (siRNA) is a powerful and highly effective method to regulate gene expression in vitro and in vivo. However, the susceptibility to serum nuclease-catalyzed degradation is a major challenge and it remains unclear whether the strategies developed to improve the stability of siRNA free in serum solution are ideal for siRNA conjugated to nanoparticle surfaces. Herein, we use spherical nucleic acid nanoparticle conjugates, consisting of gold nanoparticles (AuNPs) with siRNA chemisorbed to the surface, as a platform to study how a model siRNA targeting androgen receptor degrades in serum (SNA-siRNAAR). In solutions of 10% (vol/vol) FBS, we find rapid endonuclease hydrolysis at specific sites near the AuNP-facing terminus of siRNAAR, which were different from those of siRNAAR free in solution. These data indicate that the chemical environment of siRNA on a nanoparticle surface can alter the recognition of siRNA by serum nucleases and change the inherent stability of the nucleic acid. Finally, we demonstrate that incorporation of 2'-O-methyl RNA nucleotides at sites of nuclease hydrolysis on SNA-siRNAAR results in a 10-fold increase in siRNA lifetime. These data suggest that strategies for enhancing the serum stability of siRNA immobilized to nanoparticles must be developed from a dedicated analysis of the siRNA-nanoparticle conjugate, rather than a reliance on strategies developed for siRNA free in solution. We believe these findings are important for fundamentally understanding interactions between biological media and oligonucleotides conjugated to nanoparticles for the development of gene regulatory and therapeutic agents in a variety of disease models.
Collapse
|
87
|
Mutisya D, Selvam C, Lunstad BD, Pallan PS, Haas A, Leake D, Egli M, Rozners E. Amides are excellent mimics of phosphate internucleoside linkages and are well tolerated in short interfering RNAs. Nucleic Acids Res 2014; 42:6542-51. [PMID: 24813446 PMCID: PMC4041415 DOI: 10.1093/nar/gku235] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/20/2014] [Accepted: 03/08/2014] [Indexed: 12/22/2022] Open
Abstract
RNA interference (RNAi) has become an important tool in functional genomics and has an intriguing therapeutic potential. However, the current design of short interfering RNAs (siRNAs) is not optimal for in vivo applications. Non-ionic phosphate backbone modifications may have the potential to improve the properties of siRNAs, but are little explored in RNAi technologies. Using X-ray crystallography and RNAi activity assays, the present study demonstrates that 3'-CH2-CO-NH-5' amides are excellent replacements for phosphodiester internucleoside linkages in RNA. The crystal structure shows that amide-modified RNA forms a typical A-form duplex. The amide carbonyl group points into the major groove and assumes an orientation that is similar to the P-OP2 bond in the phosphate linkage. Amide linkages are well hydrated by tandem waters linking the carbonyl group and adjacent phosphate oxygens. Amides are tolerated at internal positions of both the guide and passenger strand of siRNAs and may increase the silencing activity when placed near the 5'-end of the passenger strand. As a result, an siRNA containing eight amide linkages is more active than the unmodified control. The results suggest that RNAi may tolerate even more extensive amide modification, which may be useful for optimization of siRNAs for in vivo applications.
Collapse
Affiliation(s)
- Daniel Mutisya
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, NY 13902, USA
| | - Chelliah Selvam
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, NY 13902, USA
| | - Benjamin D Lunstad
- Global Research and Development in Molecular Biology, Thermo Fisher Scientific Bioscience Division, Lafayette, CO 80026, USA
| | - Pradeep S Pallan
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - Amanda Haas
- Global Research and Development in Molecular Biology, Thermo Fisher Scientific Bioscience Division, Lafayette, CO 80026, USA
| | - Devin Leake
- Global Research and Development in Molecular Biology, Thermo Fisher Scientific Bioscience Division, Lafayette, CO 80026, USA
| | - Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - Eriks Rozners
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, NY 13902, USA
| |
Collapse
|
88
|
Berkhout B, Liu YP. Towards improved shRNA and miRNA reagents as inhibitors of HIV1 replication. Future Microbiol 2014; 9:561-71. [DOI: 10.2217/fmb.14.5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
ABSTRACT: miRNAs are the key players of the RNAi mechanism, which regulates the expression of a large number of mRNAs in human cells. shRNAs are man-made synthetic miRNA mimics that exploit similar intracellular RNA processing routes. Massive amounts of data derived from next-generation sequencing have revealed miRNA species that are derived from alternative biosynthesis pathways. Here, we review recent progress in our understanding of these noncanonical routes of miRNA and shRNA biosynthesis. We focus on ways to use these novel insights for the design of more potent and specific RNAi reagents for therapeutic applications, including the AgoshRNA design, which is processed differently than regular shRNAs. We will also discuss the development of a durable gene therapy against HIV1.
Collapse
Affiliation(s)
- Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection & Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Ying Poi Liu
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection & Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands
- Current address: uniQure biopharma BV, Department of Research & Development, The Netherlands
| |
Collapse
|
89
|
Han J, Wang QW, Wang SQ. Fluorescent tag is not a reliable marker for small RNA transfection in the presence of serum. J Biosci 2014; 38:471-8. [PMID: 23938380 DOI: 10.1007/s12038-013-9336-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chemically synthetic siRNA and miRNA have become powerful tools to study gene function in the past decade. Fluorescent dyes covalently attached to the 5' or 3' ends of synthetic small RNAs are widely used for fluorescently imaging and detection of these RNAs. However, the reliability of fluorescent tags as small RNA markers in different conditions has not attracted enough attention. We used Cy3-labelled small RNAs to explore the reliability of fluorescent tags as small RNA markers in cell cultures involving serum. A strong Cy3-fluorescence signal was observed in the cytoplasm of the cells transfected with Cy3-miR24 in the culture medium containing fetal bovine serum (FBS), but qRT-PCR results showed that little miR24 were detected in these cells. Further study demonstrated that small RNAs were degraded in the presence of FBS, suggesting that it was Cy3-RNA fragments, rather than the original Cy3-miR24, diffused into cells. These phenomena disappeared when FBS was replaced by boiled-FBS, further supporting that the Cy3-fluorescence we observed in cells in the presence of FBS could not represent the presence of intact small RNAs. These findings addressed that fluorescent tags are not reliable for small RNA transfection in the presence of serum in culture.
Collapse
Affiliation(s)
- Jing Han
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | |
Collapse
|
90
|
Impact of extracellular RNA on endothelial barrier function. Cell Tissue Res 2014; 355:635-45. [DOI: 10.1007/s00441-014-1850-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 02/13/2014] [Indexed: 11/25/2022]
|
91
|
Tanui P, Kennedy SD, Lunstad BD, Haas A, Leake D, Rozners E. Synthesis, biophysical studies and RNA interference activity of RNA having three consecutive amide linkages. Org Biomol Chem 2014; 12:1207-10. [PMID: 24435630 PMCID: PMC3970907 DOI: 10.1039/c3ob42532k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
RNA sequences having up to three consecutive internal amide linkages were synthesized and studied using UV and NMR spectroscopy. The amide modifications did not interfere with normal base-pairing and A-type RNA conformation. Three consecutive amides were well tolerated in the passenger strand of siRNA and caused little change in RNAi activity.
Collapse
Affiliation(s)
- Paul Tanui
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York 13902, USA.
| | | | | | | | | | | |
Collapse
|
92
|
Abstract
INTRODUCTION RNA interference (RNAi) is a powerful mechanism for gene silencing with the potential to greatly impact the development of new therapies for many human diseases. Short interfering RNAs (siRNAs) may be the ideal molecules for therapeutic RNAi. However, therapeutic siRNAs face significant challenges that must be overcome prior to widespread clinical use. Many efforts have been made to overcome the hurdles associated with systemic administration of siRNA; however, current approaches are still limited. As such, there is an urgent need to develop new strategies for siRNA delivery that have the potential to impact a broad spectrum of systemic diseases. AREAS COVERED This review focuses on the promise of siRNA therapies and highlights current siRNA delivery methods. With an eye toward new strategies, this review first introduces high-density lipoprotein (HDL) and describes its natural biological functions, and then transitions into how HDLs may provide significant opportunities as next-generation siRNA delivery vehicles. Importantly, this review describes how synthetic HDLs leverage the natural ability of HDL to stabilize and deliver siRNAs. EXPERT OPINION HDLs are natural nanoparticles that are critical to understanding the systemic delivery of therapeutic nucleic acids, like siRNA. Methods to synthesize biomimetic HDLs are being explored, and data demonstrate that this type of delivery vehicle may be highly beneficial for targeted and efficacious systemic delivery of siRNAs.
Collapse
Affiliation(s)
- Kaylin Marie McMahon
- Northwestern University, Feinberg School of Medicine, Department of Urology , 303 E. Chicago Avenue, Tarry 16-703, Chicago, IL 60611 , USA +1 312 503 9354 ; +1 312 503 1867 ;
| | | |
Collapse
|
93
|
Abstract
RNA interference mediated by small interfering RNAs is a powerful tool for investigation of gene functions and is increasingly used as a therapeutic agent. However, not all siRNAs are equally potent, and although simple rules for the selection of good siRNAs were proposed early on, siRNAs are still plagued with widely fluctuating efficiency. Recently, new design tools incorporating both the structural features of the targeted RNAs and the sequence features of the siRNAs substantially improved the efficacy of siRNAs. In this chapter we will present a review of sequence and structure-based algorithms behind them.
Collapse
Affiliation(s)
- Hakim Tafer
- Institut fur Informatik, Universitat Leipzig, Leipzig, Germany
| |
Collapse
|
94
|
Sharma VK, Rungta P, Prasad AK. Nucleic acid therapeutics: basic concepts and recent developments. RSC Adv 2014. [DOI: 10.1039/c3ra47841f] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
95
|
Gherardini L, Bardi G, Gennaro M, Pizzorusso T. Novel siRNA delivery strategy: a new "strand" in CNS translational medicine? Cell Mol Life Sci 2014; 71:1-20. [PMID: 23508806 PMCID: PMC11113879 DOI: 10.1007/s00018-013-1310-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 02/18/2013] [Accepted: 02/19/2013] [Indexed: 12/12/2022]
Abstract
RNA interference has been envisaged as a powerful tool for molecular and clinical investigation with a great potential for clinical applications. In recent years, increased understanding of cancer biology and stem cell biology has dramatically accelerated the development of technology for cell and gene therapy in these areas. This paper is a review of the most recent report of innovative use of siRNA to benefit several central nervous system diseases. Furthermore, a description is made of innovative strategies of delivery into the brain by means of viral and non-viral vectors with high potential for translation into clinical use. Problems are also highlighted that might hamper the transition from bench to bed, analyzing the lack of reliable preclinical models with predictive validity and the lack of effective delivery systems, which are able to overcome biological barriers and specifically reach the brain site of action.
Collapse
Affiliation(s)
| | - Giuseppe Bardi
- Center for MicroBioRobotics @SSSA, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | | | - Tommaso Pizzorusso
- Institute of Neuroscience, CNR, Via Moruzzi, 1 56124 Pisa, Italy
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, Florence, Italy
| |
Collapse
|
96
|
Chen CJ, Cox JE, Kincaid RP, Martinez A, Sullivan CS. Divergent MicroRNA targetomes of closely related circulating strains of a polyomavirus. J Virol 2013; 87:11135-47. [PMID: 23926342 PMCID: PMC3807300 DOI: 10.1128/jvi.01711-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 07/30/2013] [Indexed: 11/20/2022] Open
Abstract
Hundreds of virus-encoded microRNAs (miRNAs) have been uncovered, but an in-depth functional understanding is lacking for most. A major challenge for the field is separating those miRNA targets that are biologically relevant from those that are not advantageous to the virus. Here, we show that miRNAs from related variants of the polyomavirus simian vacuolating virus 40 (SV40) have differing host target repertoires (targetomes) while their direct autoregulatory activity on virus-encoded early gene products is completely preserved. These results underscore the importance of miRNA-mediated viral gene autoregulation in some polyomavirus life cycles. More broadly, these findings imply that some host targets of virus-encoded miRNAs are likely to be of little selective advantage to the virus, and our approach provides a strategy for prioritizing relevant targets.
Collapse
Affiliation(s)
- Chun Jung Chen
- The University of Texas at Austin, Molecular Genetics & Microbiology, Austin, Texas, USA
| | - Jennifer E. Cox
- The University of Texas at Austin, Molecular Genetics & Microbiology, Austin, Texas, USA
| | - Rodney P. Kincaid
- The University of Texas at Austin, Molecular Genetics & Microbiology, Austin, Texas, USA
| | - Angel Martinez
- American Chemical Society Project SEED Summer Internship Program, James Bowie High School, Austin, Texas, USA
| | | |
Collapse
|
97
|
Zeng M, Kuzirian MS, Harper L, Paradis S, Nakayama T, Lau NC. Organic small hairpin RNAs (OshR): a do-it-yourself platform for transgene-based gene silencing. Methods 2013; 63:101-9. [PMID: 23707624 PMCID: PMC3966114 DOI: 10.1016/j.ymeth.2013.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/14/2013] [Accepted: 05/14/2013] [Indexed: 12/14/2022] Open
Abstract
The RNA interference (RNAi) pathway in animal cells can be harnessed to silence gene expression with artificial small interfering RNAs (siRNAs) or transgenes that express small hairpin RNAs (shRNAs). The transgene-expressing shRNA approach has been adapted into large-scale resources for genome-wide loss-of-function screens, whereas focused studies on a narrow set of genes can be achieved by using individual shRNA constructs from these resources. Although current shRNA repositories generally work, they might fail in certain situations and therefore necessitate other alternatives. We detail here a new highly-accessible and rational design of custom shRNAs that utilizes a refined backbone configuration termed the 'organic' shRNA (OshR) platform. The OshR platform is 'organic' because it conforms more naturally to the endogenous vertebrate miRNAs by maintaining specific bulges and incorporating strategic mismatches to insure the desired guide strand is produced while reducing the accumulation of passenger strands that might contribute to off-target effects. We also demonstrate that the reliability of the OshR platform for gene silencing is increased when sequences target the 3' UnTranslated Region (3'UTR) of a gene. We further compare the OshR platform with the current and emerging shRNA designs, and propose that the OshR platform is a novel approach that can allow investigators to generate custom and effective shRNAs for individual gene functional studies.
Collapse
Affiliation(s)
- Mei Zeng
- Department of Biology, Brandeis University
- Rosenstiel Basic Medical Science Research Center
| | - Marissa S. Kuzirian
- Department of Biology, Brandeis University
- National Center for Behavioral Genomic and Volen Center for Complex Systems
| | - Lamia Harper
- Department of Biology, Brandeis University
- National Center for Behavioral Genomic and Volen Center for Complex Systems
| | - Suzanne Paradis
- Department of Biology, Brandeis University
- National Center for Behavioral Genomic and Volen Center for Complex Systems
| | - Takuya Nakayama
- Department of Biology, University of Virginia, Charlottesville
| | - Nelson C. Lau
- Department of Biology, Brandeis University
- Rosenstiel Basic Medical Science Research Center
| |
Collapse
|
98
|
Govan JM, Young DD, Lusic H, Liu Q, Lively MO, Deiters A. Optochemical control of RNA interference in mammalian cells. Nucleic Acids Res 2013; 41:10518-28. [PMID: 24021631 PMCID: PMC3905849 DOI: 10.1093/nar/gkt806] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Short interfering RNAs (siRNAs) and microRNAs (miRNAs) have been widely used in mammalian tissue culture and model organisms to selectively silence genes of interest. One limitation of this technology is the lack of precise external control over the gene-silencing event. The use of photocleavable protecting groups installed on nucleobases is a promising strategy to circumvent this limitation, providing high spatial and temporal control over siRNA or miRNA activation. Here, we have designed, synthesized and site-specifically incorporated new photocaged guanosine and uridine RNA phosphoramidites into short RNA duplexes. We demonstrated the applicability of these photocaged siRNAs in the light-regulation of the expression of an exogenous green fluorescent protein reporter gene and an endogenous target gene, the mitosis motor protein, Eg5. Two different approaches were investigated with the caged RNA molecules: the light-regulation of catalytic RNA cleavage by RISC and the light-regulation of seed region recognition. The ability to regulate both functions with light enables the application of this optochemical methodology to a wide range of small regulatory RNA molecules.
Collapse
Affiliation(s)
- Jeane M Govan
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA, Department of Chemistry, College of William & Mary, Williamsburg, VA 32187, USA, Center for Structural Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA and Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | | | |
Collapse
|
99
|
Hemphill J, Chou C, Chin JW, Deiters A. Genetically encoded light-activated transcription for spatiotemporal control of gene expression and gene silencing in mammalian cells. J Am Chem Soc 2013; 135:13433-9. [PMID: 23931657 DOI: 10.1021/ja4051026] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photocaging provides a method to spatially and temporally control biological function and gene expression with high resolution. Proteins can be photochemically controlled through the site-specific installation of caging groups on amino acid side chains that are essential for protein function. The photocaging of a synthetic gene network using unnatural amino acid mutagenesis in mammalian cells was demonstrated with an engineered bacteriophage RNA polymerase. A caged T7 RNA polymerase was expressed in cells with an expanded genetic code and used in the photochemical activation of genes under control of an orthogonal T7 promoter, demonstrating tight spatial and temporal control. The synthetic gene expression system was validated with two reporter genes (luciferase and EGFP) and applied to the light-triggered transcription of short hairpin RNA constructs for the induction of RNA interference.
Collapse
Affiliation(s)
- James Hemphill
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | | | | | | |
Collapse
|
100
|
|