51
|
Mikhed Y, Görlach A, Knaus UG, Daiber A. Redox regulation of genome stability by effects on gene expression, epigenetic pathways and DNA damage/repair. Redox Biol 2015; 5:275-289. [PMID: 26079210 PMCID: PMC4475862 DOI: 10.1016/j.redox.2015.05.008] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen and nitrogen species (e.g. H2O2, nitric oxide) confer redox regulation of essential cellular signaling pathways such as cell differentiation, proliferation, migration and apoptosis. In addition, classical regulation of gene expression or activity, including gene transcription to RNA followed by translation to the protein level, by transcription factors (e.g. NF-κB, HIF-1α) and mRNA binding proteins (e.g. GAPDH, HuR) is subject to redox regulation. This review will give an update of recent discoveries in this field, and specifically highlight the impact of reactive oxygen and nitrogen species on DNA repair systems that contribute to genomic stability. Emphasis will be placed on the emerging role of redox mechanisms regulating epigenetic pathways (e.g. miRNA, DNA methylation and histone modifications). By providing clinical correlations we discuss how oxidative stress can impact on gene regulation/activity and vise versa, how epigenetic processes, other gene regulatory mechanisms and DNA repair can influence the cellular redox state and contribute or prevent development or progression of disease.
Collapse
Affiliation(s)
- Yuliya Mikhed
- 2nd Medical Clinic, Department of Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Agnes Görlach
- German Heart Center Munich at the Technical University Munich, DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Ulla G Knaus
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Andreas Daiber
- 2nd Medical Clinic, Department of Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
52
|
Kim HS, Guo C, Thompson EL, Jiang Y, Kelley MR, Vasko MR, Lee SH. APE1, the DNA base excision repair protein, regulates the removal of platinum adducts in sensory neuronal cultures by NER. Mutat Res 2015; 779:96-104. [PMID: 26164266 DOI: 10.1016/j.mrfmmm.2015.06.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/22/2015] [Indexed: 01/24/2023]
Abstract
Peripheral neuropathy is one of the major side effects of treatment with the anticancer drug, cisplatin. One proposed mechanism for this neurotoxicity is the formation of platinum adducts in sensory neurons that could contribute to DNA damage. Although this damage is largely repaired by nuclear excision repair (NER), our previous findings suggest that augmenting the base excision repair pathway (BER) by overexpressing the repair protein APE1 protects sensory neurons from cisplatin-induced neurotoxicity. The question remains whether APE1 contributes to the ability of the NER pathway to repair platinum-damage in neuronal cells. To examine this, we manipulated APE1 expression in sensory neuronal cultures and measured Pt-removal after exposure to cisplatin. When neuronal cultures were treated with increasing concentrations of cisplatin for two or three hours, there was a concentration-dependent increase in Pt-damage that peaked at four hours and returned to near baseline levels after 24h. In cultures where APE1 expression was reduced by ∼ 80% using siRNA directed at APE1, there was a significant inhibition of Pt-removal over eight hours which was reversed by overexpressing APE1 using a lentiviral construct for human wtAPE1. Overexpressing a mutant APE1 (C65 APE1), which only has DNA repair activity, but not its other significant redox-signaling function, mimicked the effects of wtAPE1. Overexpressing DNA repair activity mutant APE1 (226 + 177APE1), with only redox activity was ineffective suggesting it is the DNA repair function of APE1 and not its redox-signaling, that restores the Pt-damage removal. Together, these data provide the first evidence that a critical BER enzyme, APE1, helps regulate the NER pathway in the repair of cisplatin damage in sensory neurons.
Collapse
Affiliation(s)
- Hyun-Suk Kim
- Department of Biochemistry and Molecular Biology, Indianapolis, IN 46202, USA
| | - Chunlu Guo
- Department of Pharmacology and Toxicology, Indianapolis, IN 46202, USA
| | - Eric L Thompson
- Department of Pharmacology and Toxicology, Indianapolis, IN 46202, USA
| | - Yanlin Jiang
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mark R Kelley
- Department of Biochemistry and Molecular Biology, Indianapolis, IN 46202, USA; Department of Pharmacology and Toxicology, Indianapolis, IN 46202, USA; Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michael R Vasko
- Department of Pharmacology and Toxicology, Indianapolis, IN 46202, USA
| | - Suk-Hee Lee
- Department of Biochemistry and Molecular Biology, Indianapolis, IN 46202, USA.
| |
Collapse
|
53
|
Montaldi AP, Godoy PRDV, Sakamoto-Hojo ET. APE1/REF-1 down-regulation enhances the cytotoxic effects of temozolomide in a resistant glioblastoma cell line. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 793:19-29. [PMID: 26520369 DOI: 10.1016/j.mrgentox.2015.06.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 06/02/2015] [Indexed: 01/25/2023]
Abstract
Temozolomide (TMZ) is widely used for patients with glioblastoma (GBM); however, tumor cells frequently exhibit drug-resistance. Base excision repair (BER) has been identified as a possible mediator of TMZ resistance, and an attractive approach to sensitizing cells to chemotherapy. Human apurinic/apyrimidinic endonuclease/redox factor-1 (APE1) is an essential enzyme with a role in the BER pathway by repairing abasic sites, and it also acts as a reduction factor, maintaining transcription factors in an active reduced state. Thus, we aimed to investigate whether the down-regulation of APE1 expression by siRNA can interfere with the resistance of GBM to TMZ, being evaluated by several cellular and molecular parameters. We demonstrated that APE1 knockdown associated with TMZ treatment efficiently reduced cell proliferation and clonogenic survival of resistant cells (T98G), which appears to be a consequence of increased DNA damage, S-phase arrest, and H2AX phosphorylation, resulting in apoptosis induction. On the contrary, for those assays, the sensitization effects of APE1 silencing plus TMZ treatment did not occur in the TMZ-sensitive cell line (U87MG). Interestingly, TMZ-treatment and APE1 knockdown significantly reduced cell invasion in both cell lines, but TMZ alone did not reduce the invasion capacity of U87MG cells, as observed for T98G. We also found that VEGF expression was down-regulated by TMZ treatment in T98G cells, regardless of APE1 knockdown, but U87MG showed a different response, since APE1 silencing counteracted VEGF induction promoted by TMZ, suggesting that the APE1-redox function may play an indirect role, depending on the cell line. The present results support the contribution of BER in the GBM resistance to TMZ, with a greater effect in TMZ-resistant, compared with TMZ-sensitive cells, emphasizing that APE1 can be a promising target for modifying TMZ tolerance. Furthermore, genetic characteristics of tumor cells should be considered as critical information to select an appropriate therapeutic strategy.
Collapse
Affiliation(s)
- Ana P Montaldi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Brazil; Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto - University of São Paulo (USP), Ribeirão Preto, S.P., Brazil
| | - Paulo R D V Godoy
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Brazil; Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto - University of São Paulo (USP), Ribeirão Preto, S.P., Brazil
| | - Elza T Sakamoto-Hojo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Brazil; Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto - University of São Paulo (USP), Ribeirão Preto, S.P., Brazil.
| |
Collapse
|
54
|
Barchiesi A, Wasilewski M, Chacinska A, Tell G, Vascotto C. Mitochondrial translocation of APE1 relies on the MIA pathway. Nucleic Acids Res 2015; 43:5451-64. [PMID: 25956655 PMCID: PMC4477663 DOI: 10.1093/nar/gkv433] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/23/2015] [Indexed: 01/08/2023] Open
Abstract
APE1 is a multifunctional protein with a fundamental role in repairing nuclear and mitochondrial DNA lesions caused by oxidative and alkylating agents. Unfortunately, comprehensions of the mechanisms regulating APE1 intracellular trafficking are still fragmentary and contrasting. Recent data demonstrate that APE1 interacts with the mitochondrial import and assembly protein Mia40 suggesting the involvement of a redox-assisted mechanism, dependent on the disulfide transfer system, to be responsible of APE1 trafficking into the mitochondria. The MIA pathway is an import machinery that uses a redox system for cysteine enriched proteins to drive them in this compartment. It is composed by two main proteins: Mia40 is the oxidoreductase that catalyzes the formation of the disulfide bonds in the substrate, while ALR reoxidizes Mia40 after the import. In this study, we demonstrated that: (i) APE1 and Mia40 interact through disulfide bond formation; and (ii) Mia40 expression levels directly affect APE1's mitochondrial translocation and, consequently, play a role in the maintenance of mitochondrial DNA integrity. In summary, our data strongly support the hypothesis of a redox-assisted mechanism, dependent on Mia40, in controlling APE1 translocation into the mitochondrial inner membrane space and thus highlight the role of this protein transport pathway in the maintenance of mitochondrial DNA stability and cell survival.
Collapse
Affiliation(s)
- Arianna Barchiesi
- Department of Medical and Biological Sciences, University of Udine, Udine 33100, Italy
| | - Michal Wasilewski
- International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
| | - Agnieszka Chacinska
- International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
| | - Gianluca Tell
- Department of Medical and Biological Sciences, University of Udine, Udine 33100, Italy
| | - Carlo Vascotto
- Department of Medical and Biological Sciences, University of Udine, Udine 33100, Italy
| |
Collapse
|
55
|
Kelley MR, Logsdon D, Fishel ML. Targeting DNA repair pathways for cancer treatment: what's new? Future Oncol 2015; 10:1215-37. [PMID: 24947262 DOI: 10.2217/fon.14.60] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Disruptions in DNA repair pathways predispose cells to accumulating DNA damage. A growing body of evidence indicates that tumors accumulate progressively more mutations in DNA repair proteins as cancers progress. DNA repair mechanisms greatly affect the response to cytotoxic treatments, so understanding those mechanisms and finding ways to turn dysregulated repair processes against themselves to induce tumor death is the goal of all DNA repair inhibition efforts. Inhibition may be direct or indirect. This burgeoning field of research is replete with promise and challenge, as more intricacies of each repair pathway are discovered. In an era of increasing concern about healthcare costs, use of DNA repair inhibitors can prove to be highly effective stewardship of R&D resources and patient expenses.
Collapse
Affiliation(s)
- Mark R Kelley
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | |
Collapse
|
56
|
Fontes FL, Pinheiro DML, Oliveira AHSD, Oliveira RKDM, Lajus TBP, Agnez-Lima LF. Role of DNA repair in host immune response and inflammation. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 763:246-57. [PMID: 25795123 DOI: 10.1016/j.mrrev.2014.11.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 12/28/2022]
Abstract
In recent years, the understanding of how DNA repair contributes to the development of innate and acquired immunity has emerged. The DNA damage incurred during the inflammatory response triggers the activation of DNA repair pathways, which are required for host-cell survival. Here, we reviewed current understanding of the mechanism by which DNA repair contributes to protection against the oxidized DNA damage generated during infectious and inflammatory diseases and its involvement in innate and adaptive immunity. We discussed the functional role of DNA repair enzymes in the immune activation and the relevance of these processes to: transcriptional regulation of cytokines and other genes involved in the inflammatory response; V(D)J recombination; class-switch recombination (CSR); and somatic hypermutation (SHM). These three last processes of DNA damage repair are required for effective humoral adaptive immunity, creating genetic diversity in developing T and B cells. Furthermore, viral replication is also dependent on host DNA repair mechanisms. Therefore, the elucidation of the pathways of DNA damage and its repair that activate innate and adaptive immunity will be important for a better understanding of the immune and inflammatory disorders and developing new therapeutic interventions for treatment of these diseases and for improving their outcome.
Collapse
Affiliation(s)
- Fabrícia Lima Fontes
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, RN, Brazil.
| | - Daniele Maria Lopes Pinheiro
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, RN, Brazil.
| | - Ana Helena Sales de Oliveira
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, RN, Brazil.
| | | | - Tirzah Braz Petta Lajus
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, RN, Brazil; Liga Contra o Cancer, Natal, RN, Brazil.
| | | |
Collapse
|
57
|
Sui J, Li M, Qian C, Wang S, Cheng Y, Chen BPC, Wang D. Functional analysis of tanshinone IIA that blocks the redox function of human apurinic/apyrimidinic endonuclease 1/redox factor-1. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:2147-60. [PMID: 25395832 PMCID: PMC4224025 DOI: 10.2147/dddt.s71124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is a multifunctional protein possessing both DNA repair and redox regulatory activities. It has been shown that blocking redox function leads to genotoxic, antiangiogenic, cytostatic, and proapoptotic effects in cells. Therefore, the selective inhibitors against APE1's redox function can be served as potential pharmaceutical candidates in cancer therapeutics. In the present study, we identified the biological specificity of the Chinese herbal compound tanshinone IIA (T2A) in blocking the redox function of APE1. Using dual polarization interferometry, the direct interaction between APE1 and T2A was observed with a KD value at subnanomolar level. In addition, we showed that T2A significantly compromised the growth of human cervical cancer and colon cancer cells. Furthermore, the growth-inhibitory or proapoptotic effect of T2A was diminished in APE1 knockdown or redox-deficient cells, suggesting that the cytostatic effect of T2A might be specifically through inhibiting the redox function of APE1. Finally, T2A pretreatment enhanced the cytotoxicity of ionizing radiation or other chemotherapeutic agents in human cervical cancer and colon cancer cell lines. The data presented herein suggest T2A as a promising bioactive inhibitor of APE1 redox activity.
Collapse
Affiliation(s)
- Jiangdong Sui
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People's Republic of China ; Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mengxia Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People's Republic of China
| | - Chengyuan Qian
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People's Republic of China
| | - Shufeng Wang
- Institute of Immunology, PLA, College of Basic Medical Sciences, Third Military Medical University, Chongqing, People's Republic of China
| | - Yi Cheng
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People's Republic of China
| | - Benjamin P C Chen
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dong Wang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People's Republic of China
| |
Collapse
|
58
|
Kaur G, Cholia RP, Mantha AK, Kumar R. DNA repair and redox activities and inhibitors of apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1): a comparative analysis and their scope and limitations toward anticancer drug development. J Med Chem 2014; 57:10241-56. [PMID: 25280182 DOI: 10.1021/jm500865u] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1) is a multifunctional enzyme involved in DNA repair and activation of transcription factors through its redox function. The evolutionarily conserved C- and N-termini are involved in these functions independently. It is also reported that the activity of APE1/Ref-1 abruptly increases several-fold in various human cancers. The control over the outcomes of these two functions is emerging as a new strategy to combine enhanced DNA damage and chemotherapy in order to tackle the major hurdle of increased cancer cell growth and proliferation. Studies have targeted these two domains individually for the design and development of inhibitors for APE1/Ref-1. Here, we have made, for the first time, an attempt at a comparative analysis of APE1/Ref-1 inhibitors that target both DNA repair and redox activities simultaneously. We further discuss their scope and limitations with respect to the development of potential anticancer agents.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Laboratory for Drug Design and Synthesis, Centre for Chemical and Pharmaceutical Sciences, School of Basic and Applied Sciences, Central University of Punjab , Bathinda, 151001, Punjab, India
| | | | | | | |
Collapse
|
59
|
Human AP endonuclease 1: a potential marker for the prediction of environmental carcinogenesis risk. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:730301. [PMID: 25243052 PMCID: PMC4158471 DOI: 10.1155/2014/730301] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/30/2014] [Indexed: 12/15/2022]
Abstract
Human apurinic/apyrimidinic endonuclease 1 (APE1) functions mainly in DNA repair as an enzyme removing AP sites and in redox signaling as a coactivator of various transcription factors. Based on these multifunctions of APE1 within cells, numerous studies have reported that the alteration of APE1 could be a crucial factor in development of human diseases such as cancer and neurodegeneration. In fact, the study on the combination of an individual's genetic make-up with environmental factors (gene-environment interaction) is of great importance to understand the development of diseases, especially lethal diseases including cancer. Recent reports have suggested that the human carcinogenic risk following exposure to environmental toxicants is affected by APE1 alterations in terms of gene-environment interactions. In this review, we initially outline the critical APE1 functions in the various intracellular mechanisms including DNA repair and redox regulation and its roles in human diseases. Several findings demonstrate that the change in expression and activity as well as genetic variability of APE1 caused by environmental chemical (e.g., heavy metals and cigarette smoke) and physical carcinogens (ultraviolet and ionizing radiation) is likely associated with various cancers. These enable us to ultimately suggest APE1 as a vital marker for the prediction of environmental carcinogenesis risk.
Collapse
|
60
|
Langie SA, Kowalczyk P, Tomaszewski B, Vasilaki A, Maas LM, Moonen EJ, Palagani A, Godschalk RW, Tudek B, van Schooten FJ, Berghe WV, Zabielski R, Mathers JC. Redox and epigenetic regulation of the APE1 gene in the hippocampus of piglets: The effect of early life exposures. DNA Repair (Amst) 2014; 18:52-62. [DOI: 10.1016/j.dnarep.2014.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 03/24/2014] [Accepted: 03/26/2014] [Indexed: 02/06/2023]
|
61
|
Qian C, Li M, Sui J, Ren T, Li Z, Zhang L, Zhou L, Cheng Y, Wang D. Identification of a novel potential antitumor activity of gossypol as an APE1/Ref-1 inhibitor. Drug Des Devel Ther 2014; 8:485-496. [PMID: 24872679 PMCID: PMC4026309 DOI: 10.2147/dddt.s62963] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The human apurinic/apyrimidinic endonuclease 1/redox enhancing factor-1 (APE1/Ref-1), an essential multifunctional protein involved in the repair of oxidative deoxyribonucleic acid (DNA) damage and transcriptional regulation, is often overexpressed in tumor tissues and cancer cells. Moreover, APE1/Ref-1 (APE1) overexpression has been linked to chemoresistance in human tumors. Thus, inhibiting APE1 function in cancer cells is considered a promising strategy to overcome resistance to therapeutic agents. Gossypol is a Bcl-2 homology 3 (BH3)-mimetic agent and is able to bind to the BH3 domain of B-cell lymphoma 2 (Bcl-2) family members. Other studies demonstrated that Bcl-2 directly interacted with APE1 via its BH domains. Using apurinic/apyrimidinic (AP) endonuclease assays, we found that gossypol inhibits the repair activity of APE1. Electrophoretic mobility shift assays and dual luciferase assays showed that gossypol could also inhibit the redox function of APE1. Using dual polarization interferometry technology, we show that gossypol can directly interact with APE1. Furthermore, addition of gossypol, in conjunction with APE1 overexpression, leads to cancer cell death. The addition of gossypol also enhances the cell killing effect of the laboratory alkylating agent methyl methanesulfonate and the clinical agent cisplatin (DDP). Administration of gossypol significantly inhibited the growth of xenografts. Furthermore, the combined treatment of gossypol and DDP resulted in a statistically higher antitumor activity compared with DDP alone in vivo. In conclusion, we have demonstrated that gossypol effectively inhibits the repair and redox activity of APE1 through a direct interaction.
Collapse
Affiliation(s)
- Chengyuan Qian
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Mengxia Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Jiangdong Sui
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Tao Ren
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Zheng Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Liang Zhang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Liwei Zhou
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Yi Cheng
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Dong Wang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
62
|
Effect of dietary α-lipoic acid on the mRNA expression of genes involved in drug metabolism and antioxidation system in rat liver. Br J Nutr 2014; 112:295-308. [DOI: 10.1017/s0007114514000841] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In the present study, the mRNA levels of hepatic proteins involved in the drug metabolism of rats fed α-lipoic acid were evaluated by DNA microarray and real-time PCR analyses. Experimental diets containing 0, 0·1, 0·25 and 0·5 % (w/w) α-lipoic acid were fed to four groups of rats consisting of seven animals each for 21 d. DNA microarray analysis revealed that the diet containing 0·5 % α-lipoic acid significantly (P< 0·05) increased the mRNA levels of various phase I drug-metabolising enzymes up to 15-fold and phase II enzymes up to 52-fold in an isoenzyme-specific manner. α-Lipoic acid also up-regulated the mRNA levels of some members of the ATP-binding cassette transporter superfamily, presumed to be involved in the exportation of xenobiotics, up to 6·6-fold. In addition, we observed that α-lipoic acid increased the mRNA levels of many proteins involved in antioxidation, such as members of the thiol redox system (up to 5·5-fold), metallothioneins (up to 12-fold) and haeme oxygenase 1 (1·5-fold). These results were confirmed using real-time PCR analysis, and α-lipoic acid dose dependently increased the mRNA levels of various proteins involved in drug metabolism and antioxidation. Consistent with these observations, α-lipoic acid dose dependently increased the hepatic concentration of glutathione and the activities of glutathione reductase and glutathione transferase measured using 1-chloro-2,4-dinitrobenzene and 1,2-dichloro-4-nitrobenzene as substrates, but decreased the hepatic and serum concentrations of malondialdehyde. In conclusion, the present study unequivocally demonstrated that α-lipoic acid increases the mRNA expression of proteins involved in drug metabolism and antioxidation in the liver.
Collapse
|
63
|
Moreno ML, Escobar J, Izquierdo-Álvarez A, Gil A, Pérez S, Pereda J, Zapico I, Vento M, Sabater L, Marina A, Martínez-Ruiz A, Sastre J. Disulfide stress: a novel type of oxidative stress in acute pancreatitis. Free Radic Biol Med 2014; 70:265-77. [PMID: 24456905 DOI: 10.1016/j.freeradbiomed.2014.01.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/26/2013] [Accepted: 01/07/2014] [Indexed: 11/25/2022]
Abstract
Glutathione oxidation and protein glutathionylation are considered hallmarks of oxidative stress in cells because they reflect thiol redox status in proteins. Our aims were to analyze the redox status of thiols and to identify mixed disulfides and targets of redox signaling in pancreas in experimental acute pancreatitis as a model of acute inflammation associated with glutathione depletion. Glutathione depletion in pancreas in acute pancreatitis is not associated with any increase in oxidized glutathione levels or protein glutathionylation. Cystine and homocystine levels as well as protein cysteinylation and γ-glutamyl cysteinylation markedly rose in pancreas after induction of pancreatitis. Protein cysteinylation was undetectable in pancreas under basal conditions. Targets of disulfide stress were identified by Western blotting, diagonal electrophoresis, and proteomic methods. Cysteinylated albumin was detected. Redox-sensitive PP2A and tyrosine protein phosphatase activities diminished in pancreatitis and this loss was abrogated by N-acetylcysteine. According to our findings, disulfide stress may be considered a specific type of oxidative stress in acute inflammation associated with protein cysteinylation and γ-glutamylcysteinylation and oxidation of the pair cysteine/cystine, but without glutathione oxidation or changes in protein glutathionylation. Two types of targets of disulfide stress were identified: redox buffers, such as ribonuclease inhibitor or albumin, and redox-signaling thiols, which include thioredoxin 1, APE1/Ref1, Keap1, tyrosine and serine/threonine phosphatases, and protein disulfide isomerase. These targets exhibit great relevance in DNA repair, cell proliferation, apoptosis, endoplasmic reticulum stress, and inflammatory response. Disulfide stress would be a specific mechanism of redox signaling independent of glutathione redox status involved in inflammation.
Collapse
Affiliation(s)
- Mari-Luz Moreno
- Department of Physiology, School of Pharmacy, University of Valencia, 46100 Burjasot (Valencia), Spain
| | - Javier Escobar
- Department of Physiology, School of Pharmacy, University of Valencia, 46100 Burjasot (Valencia), Spain; Division of Neonatology, University Hospital Materno-Infantil La Fe, 46026 Valencia, Spain
| | - Alicia Izquierdo-Álvarez
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | - Anabel Gil
- Department of Physiology, School of Pharmacy, University of Valencia, 46100 Burjasot (Valencia), Spain
| | - Salvador Pérez
- Department of Physiology, School of Pharmacy, University of Valencia, 46100 Burjasot (Valencia), Spain
| | - Javier Pereda
- Department of Physiology, School of Pharmacy, University of Valencia, 46100 Burjasot (Valencia), Spain
| | - Inés Zapico
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain; Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, Madrid, Spain
| | - Máximo Vento
- Division of Neonatology, University Hospital Materno-Infantil La Fe, 46026 Valencia, Spain
| | - Luis Sabater
- Department of Surgery, University Clinic Hospital, University of Valencia, 46010 Valencia, Spain
| | - Anabel Marina
- Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio Martínez-Ruiz
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | - Juan Sastre
- Department of Physiology, School of Pharmacy, University of Valencia, 46100 Burjasot (Valencia), Spain.
| |
Collapse
|
64
|
Gad H, Koolmeister T, Jemth AS, Eshtad S, Jacques SA, Ström CE, Svensson LM, Schultz N, Lundbäck T, Einarsdottir BO, Saleh A, Göktürk C, Baranczewski P, Svensson R, Berntsson RPA, Gustafsson R, Strömberg K, Sanjiv K, Jacques-Cordonnier MC, Desroses M, Gustavsson AL, Olofsson R, Johansson F, Homan EJ, Loseva O, Bräutigam L, Johansson L, Höglund A, Hagenkort A, Pham T, Altun M, Gaugaz FZ, Vikingsson S, Evers B, Henriksson M, Vallin KSA, Wallner OA, Hammarström LGJ, Wiita E, Almlöf I, Kalderén C, Axelsson H, Djureinovic T, Puigvert JC, Häggblad M, Jeppsson F, Martens U, Lundin C, Lundgren B, Granelli I, Jensen AJ, Artursson P, Nilsson JA, Stenmark P, Scobie M, Berglund UW, Helleday T. MTH1 inhibition eradicates cancer by preventing sanitation of the dNTP pool. Nature 2014; 508:215-21. [PMID: 24695224 DOI: 10.1038/nature13181] [Citation(s) in RCA: 389] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 02/20/2014] [Indexed: 01/10/2023]
Abstract
Cancers have dysfunctional redox regulation resulting in reactive oxygen species production, damaging both DNA and free dNTPs. The MTH1 protein sanitizes oxidized dNTP pools to prevent incorporation of damaged bases during DNA replication. Although MTH1 is non-essential in normal cells, we show that cancer cells require MTH1 activity to avoid incorporation of oxidized dNTPs, resulting in DNA damage and cell death. We validate MTH1 as an anticancer target in vivo and describe small molecules TH287 and TH588 as first-in-class nudix hydrolase family inhibitors that potently and selectively engage and inhibit the MTH1 protein in cells. Protein co-crystal structures demonstrate that the inhibitors bind in the active site of MTH1. The inhibitors cause incorporation of oxidized dNTPs in cancer cells, leading to DNA damage, cytotoxicity and therapeutic responses in patient-derived mouse xenografts. This study exemplifies the non-oncogene addiction concept for anticancer treatment and validates MTH1 as being cancer phenotypic lethal.
Collapse
Affiliation(s)
- Helge Gad
- 1] Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden [2]
| | - Tobias Koolmeister
- 1] Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden [2]
| | - Ann-Sofie Jemth
- 1] Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden [2]
| | - Saeed Eshtad
- 1] Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden [2]
| | - Sylvain A Jacques
- 1] Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden [2]
| | - Cecilia E Ström
- 1] Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden [2]
| | - Linda M Svensson
- Department of Biochemistry and Biophysics, Stockholm University, S-106 91 Stockholm, Sweden
| | - Niklas Schultz
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Thomas Lundbäck
- 1] Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden [2] Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Berglind Osk Einarsdottir
- Sahlgrenska Translational Melanoma Group, Sahlgrenska Cancer Center, Department of Surgery, University of Gothenburg and Sahlgrenska University Hospital, S-405 30 Gothenburg, Sweden
| | - Aljona Saleh
- Department of Analytical Chemistry, Stockholm University, S-106 91 Stockholm, Sweden
| | - Camilla Göktürk
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Pawel Baranczewski
- 1] Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden [2] Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Department of Pharmacy, Uppsala University, S-751 23 Uppsala, Sweden
| | - Richard Svensson
- 1] Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden [2] Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Department of Pharmacy, Uppsala University, S-751 23 Uppsala, Sweden
| | - Ronnie P-A Berntsson
- Department of Biochemistry and Biophysics, Stockholm University, S-106 91 Stockholm, Sweden
| | - Robert Gustafsson
- Department of Biochemistry and Biophysics, Stockholm University, S-106 91 Stockholm, Sweden
| | - Kia Strömberg
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Kumar Sanjiv
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Marie-Caroline Jacques-Cordonnier
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Matthieu Desroses
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Anna-Lena Gustavsson
- 1] Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden [2] Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Roger Olofsson
- Sahlgrenska Translational Melanoma Group, Sahlgrenska Cancer Center, Department of Surgery, University of Gothenburg and Sahlgrenska University Hospital, S-405 30 Gothenburg, Sweden
| | - Fredrik Johansson
- Department of Genetics, Microbiology and Toxicology, Stockholm University, S-106 91 Stockholm, Sweden
| | - Evert J Homan
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Olga Loseva
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Lars Bräutigam
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Lars Johansson
- 1] Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden [2] Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Andreas Höglund
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Anna Hagenkort
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Therese Pham
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Mikael Altun
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Fabienne Z Gaugaz
- 1] Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden [2] Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Department of Pharmacy, Uppsala University, S-751 23 Uppsala, Sweden
| | - Svante Vikingsson
- 1] Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden [2] Clinical Pharmacology, Department of Medical and Health Sciences, Linköping University, S-58185 Linköping, Sweden
| | - Bastiaan Evers
- 1] Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden [2] Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, 1006 Amsterdam, The Netherlands (B.E.); Department of Immunology, Genetics, and Pathology, Uppsala University, S-751 23 Uppsala, Sweden (T.D.)
| | - Martin Henriksson
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Karl S A Vallin
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Olov A Wallner
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Lars G J Hammarström
- 1] Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden [2] Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Elisee Wiita
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Ingrid Almlöf
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Christina Kalderén
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Hanna Axelsson
- 1] Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden [2] Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Tatjana Djureinovic
- 1] Department of Genetics, Microbiology and Toxicology, Stockholm University, S-106 91 Stockholm, Sweden [2] Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, 1006 Amsterdam, The Netherlands (B.E.); Department of Immunology, Genetics, and Pathology, Uppsala University, S-751 23 Uppsala, Sweden (T.D.)
| | - Jordi Carreras Puigvert
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Maria Häggblad
- Science for Life Laboratory, RNAi Cell Screening Facility, Department of Biochemistry and Biophysics, Stockholm University, S-106 91 Stockholm, Sweden
| | - Fredrik Jeppsson
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Ulf Martens
- Science for Life Laboratory, RNAi Cell Screening Facility, Department of Biochemistry and Biophysics, Stockholm University, S-106 91 Stockholm, Sweden
| | - Cecilia Lundin
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Bo Lundgren
- Science for Life Laboratory, RNAi Cell Screening Facility, Department of Biochemistry and Biophysics, Stockholm University, S-106 91 Stockholm, Sweden
| | - Ingrid Granelli
- Department of Analytical Chemistry, Stockholm University, S-106 91 Stockholm, Sweden
| | - Annika Jenmalm Jensen
- 1] Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden [2] Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Per Artursson
- 1] Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden [2] Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Department of Pharmacy, Uppsala University, S-751 23 Uppsala, Sweden
| | - Jonas A Nilsson
- Sahlgrenska Translational Melanoma Group, Sahlgrenska Cancer Center, Department of Surgery, University of Gothenburg and Sahlgrenska University Hospital, S-405 30 Gothenburg, Sweden
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, S-106 91 Stockholm, Sweden
| | - Martin Scobie
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Ulrika Warpman Berglund
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| |
Collapse
|
65
|
|
66
|
Antoniali G, Lirussi L, Poletto M, Tell G. Emerging roles of the nucleolus in regulating the DNA damage response: the noncanonical DNA repair enzyme APE1/Ref-1 as a paradigmatical example. Antioxid Redox Signal 2014; 20:621-39. [PMID: 23879289 PMCID: PMC3901381 DOI: 10.1089/ars.2013.5491] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 07/22/2013] [Indexed: 12/25/2022]
Abstract
SIGNIFICANCE An emerging concept in DNA repair mechanisms is the evidence that some key enzymes, besides their role in the maintenance of genome stability, display also unexpected noncanonical functions associated with RNA metabolism in specific subcellular districts (e.g., nucleoli). During the evolution of these key enzymes, the acquisition of unfolded domains significantly amplified the possibility to interact with different partners and substrates, possibly explaining their phylogenetic gain of functions. RECENT ADVANCES After nucleolar stress or DNA damage, many DNA repair proteins can freely relocalize from nucleoli to the nucleoplasm. This process may represent a surveillance mechanism to monitor the synthesis and correct assembly of ribosomal units affecting cell cycle progression or inducing p53-mediated apoptosis or senescence. CRITICAL ISSUES A paradigm for this kind of regulation is represented by some enzymes of the DNA base excision repair (BER) pathway, such as apurinic/apyrimidinic endonuclease 1 (APE1). In this review, the role of the nucleolus and the noncanonical functions of the APE1 protein are discussed in light of their possible implications in human pathologies. FUTURE DIRECTIONS A productive cross-talk between DNA repair enzymes and proteins involved in RNA metabolism seems reasonable as the nucleolus is emerging as a dynamic functional hub that coordinates cell growth arrest and DNA repair mechanisms. These findings will drive further analyses on other BER proteins and might imply that nucleic acid processing enzymes are more versatile than originally thought having evolved DNA-targeted functions after a previous life in the early RNA world.
Collapse
Affiliation(s)
- Giulia Antoniali
- Department of Medical and Biological Sciences, University of Udine , Udine, Italy
| | | | | | | |
Collapse
|
67
|
Avila J, Gómez-Ramos A, Soriano E. Variations in brain DNA. Front Aging Neurosci 2014; 6:323. [PMID: 25505410 PMCID: PMC4243573 DOI: 10.3389/fnagi.2014.00323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 11/06/2014] [Indexed: 12/16/2022] Open
Abstract
It is assumed that DNA sequences are conserved in the diverse cell types present in a multicellular organism like the human being. Thus, in order to compare the sequences in the genome of DNA from different individuals, nucleic acid is commonly isolated from a single tissue. In this regard, blood cells are widely used for this purpose because of their availability. Thus blood DNA has been used to study genetic familiar diseases that affect other tissues and organs, such as the liver, heart, and brain. While this approach is valid for the identification of familial diseases in which mutations are present in parental germinal cells and, therefore, in all the cells of a given organism, it is not suitable to identify sporadic diseases in which mutations might occur in specific somatic cells. This review addresses somatic DNA variations in different tissues or cells (mainly in the brain) of single individuals and discusses whether the dogma of DNA invariance between cell types is indeed correct. We will also discuss how single nucleotide somatic variations arise, focusing on the presence of specific DNA mutations in the brain.
Collapse
Affiliation(s)
- Jesús Avila
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIIIMadrid, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Neurobiology LaboratoryMadrid, Spain
- *Correspondence: Jesús Avila, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Neurobiology Laboratory, 208, C/ Nicolás Cabrera no. 1, Madrid, 28049, Spain e-mail: ; Eduardo Soriano, Department of Cell Biology, Faculty of Biology, University of Barcelona, Developmental Neurobiology and Regeneration Lab, Parc Científic de Barcelona, Baldiri i Reixac, 10, Barcelona 08028, Spain e-mail:
| | - Alberto Gómez-Ramos
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIIIMadrid, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Neurobiology LaboratoryMadrid, Spain
| | - Eduardo Soriano
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIIIMadrid, Spain
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Developmental Neurobiology and Regeneration Lab, Parc Científic de BarcelonaBarcelona, Spain
- Vall d’Hebrón Institut de Recerca (VHIR)Barcelona, Spain
- *Correspondence: Jesús Avila, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Neurobiology Laboratory, 208, C/ Nicolás Cabrera no. 1, Madrid, 28049, Spain e-mail: ; Eduardo Soriano, Department of Cell Biology, Faculty of Biology, University of Barcelona, Developmental Neurobiology and Regeneration Lab, Parc Científic de Barcelona, Baldiri i Reixac, 10, Barcelona 08028, Spain e-mail:
| |
Collapse
|
68
|
Sevilya Z, Leitner-Dagan Y, Pinchev M, Kremer R, Elinger D, Rennert HS, Schechtman E, Freedman LS, Rennert G, Paz-Elizur T, Livneh Z. Low integrated DNA repair score and lung cancer risk. Cancer Prev Res (Phila) 2013; 7:398-406. [PMID: 24356339 DOI: 10.1158/1940-6207.capr-13-0318] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
DNA repair is a prime mechanism for preventing DNA damage, mutation, and cancers. Adopting a functional approach, we examined the association with lung cancer risk of an integrated DNA repair score, measured by a panel of three enzymatic DNA repair activities in peripheral blood mononuclear cells. The panel included assays for AP endonuclease 1 (APE1), 8-oxoguanine DNA glycosylase (OGG1), and methylpurine DNA glycosylase (MPG), all of which repair oxidative DNA damage as part of the base excision repair pathways. A blinded population-based case-control study was conducted with 96 patients with lung cancer and 96 control subjects matched by gender, age (±1 year), place of residence, and ethnic group (Jews/non-Jews). The three DNA repair activities were measured, and an integrated DNA repair OMA (OGG1, MPG, and APE1) score was calculated for each individual. Conditional logistic regression analysis revealed that individuals in the lowest tertile of the integrated DNA repair OMA score had an increased risk of lung cancer compared with the highest tertile, with OR = 9.7; 95% confidence interval (CI), 3.1-29.8; P < 0.001, or OR = 5.6; 95% CI, 2.1-15.1; P < 0.001 after cross-validation. These results suggest that pending validation, this DNA repair panel of risk factors may be useful for lung cancer risk assessment, assisting prevention and referral to early detection by technologies such as low-dose computed tomography scanning.
Collapse
Affiliation(s)
- Ziv Sevilya
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel. and
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Analysis of Arabidopsis thioredoxin-h isotypes identifies discrete domains that confer specific structural and functional properties. Biochem J 2013; 456:13-24. [DOI: 10.1042/bj20130618] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this study, we identified specific domains and amino acids responsible for the structural and functional properties of AtTrx-hs (Arabidopsis h-type thioredoxins). Specific domains and amino acids for the chaperone function of AtTrx-hs played a critical role in heat-shock-resistance in vivo.
Collapse
|
70
|
Storr SJ, Woolston CM, Zhang Y, Martin SG. Redox environment, free radical, and oxidative DNA damage. Antioxid Redox Signal 2013; 18:2399-408. [PMID: 23249296 DOI: 10.1089/ars.2012.4920] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Effective redox homeostasis is critical, and disruption of this process can have important cellular consequences. An array of systems protect the cell from potentially damaging reactive oxygen species (ROS), however if these systems are overwhelmed, for example, in aberrantly functioning cells, ROS can have a number of detrimental consequences, including DNA damage. Oxidative DNA damage can be repaired by a number of DNA repair pathways, such as base excision repair (BER). RECENT ADVANCES The role of ROS in oxidative DNA damage is well established, however, there is an emerging role for ROS and the redox environment in modulating the efficiency of DNA repair pathways targeting oxidative DNA lesions. CRITICAL ISSUES Oxidative DNA damage and modulation of DNA damage and repair by the redox environment are implicated in a number of diseases. Understanding how the redox environment plays such a critical role in DNA damage and repair will allow us to further understand the far reaching cellular consequence of ROS. FUTURE DIRECTIONS In this review, we discuss the detrimental effects of ROS, oxidative DNA damage repair, and the redox systems that exist to control redox homeostasis. We also describe how DNA pathways can be modulated by the redox environment and how the redox environment and oxidative DNA damage plays a role in disease.
Collapse
Affiliation(s)
- Sarah J Storr
- Academic Oncology, University of Nottingham, School of Molecular Medical Sciences, Nottingham University Hospitals Trust, City Hospital Campus, Nottingham, United Kingdom
| | | | | | | |
Collapse
|
71
|
Jerome-Morais A, Bera S, Rachidi W, Gann P, Diamond A. The effects of selenium and the GPx-1 selenoprotein on the phosphorylation of H2AX. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1830:3399-406. [PMID: 23518201 PMCID: PMC3668444 DOI: 10.1016/j.bbagen.2013.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 02/17/2013] [Accepted: 03/06/2013] [Indexed: 11/22/2022]
Abstract
BACKGROUND Significant data supports the health benefits of selenium although supplementation trials have yielded mixed results. GPx-1, whose levels are responsive to selenium availability, is implicated in cancer etiology by human genetic data. Selenium's ability to alter the phosphorylation of the H2AX, a histone protein that functions in the reduction of DNA damage by recruiting repair proteins to the damage site, following exposure to ionizing radiation and bleomycin was investigated. METHODS Human cell lines that were either exposed to selenium or were transfected with a GPx-1 expression construct were exposed to ionizing radiation or bleomycin. Phosphorylation of histone H2AX was quantified by flow cytometry and survival by the MTT assay. Phosphorylation of the Chk1 and Chk2 checkpoint proteins was quantified by western blotting. RESULTS In colon-derived cells, selenium increases GPx-1 and attenuated H2AX phosphorylation following genotoxic exposures while the viability of these cells was unaffected. MCF-7 cells and transfectants that express high GPx-1 levels were exposed to ionizing radiation and bleomycin, and H2AX phosphorylation and cell viability were assessed. GPx-1 increased H2AX phosphorylation and viability following the induction of DNA damage while enhancing the levels of activated Chk1 and Chk2. CONCLUSIONS Exposure of mammalian cells to selenium can alter the DNA damage response and do so by mechanisms that are dependent and independent of its effect on GPx-1. GENERAL SIGNIFICANCE Selenium and GPx-1 may stimulate the repair of genotoxic DNA damage and this may account for some of the benefits attributed to selenium intake and elevated GPx-1 activity.
Collapse
Affiliation(s)
- A Jerome-Morais
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - S Bera
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - W Rachidi
- Université Joseph Fourier, Grenoble 1, CEA, INAC, SCIB, Laboratoire, Lésions des AcidesNucléiques, 17 rue des Martyrs, F-38054 Grenoble Cedex 9, France
| | - P.H Gann
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - A.M Diamond
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
72
|
Zhang J, Luo M, Marasco D, Logsdon D, LaFavers KA, Chen Q, Reed A, Kelley MR, Gross ML, Georgiadis MM. Inhibition of apurinic/apyrimidinic endonuclease I's redox activity revisited. Biochemistry 2013; 52:2955-66. [PMID: 23597102 PMCID: PMC3706204 DOI: 10.1021/bi400179m] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The essential base excision repair protein, apurinic/apyrimidinic endonuclease 1 (APE1), plays an important role in redox regulation in cells and is currently targeted for the development of cancer therapeutics. One compound that binds APE1 directly is (E)-3-[2-(5,6-dimethoxy-3-methyl-1,4-benzoquinonyl)]-2-nonylpropenoic acid (E3330). Here, we revisit the mechanism by which this negatively charged compound interacts with APE1 and inhibits its redox activity. At high concentrations (millimolar), E3330 interacts with two regions in the endonuclease active site of APE1, as mapped by hydrogen-deuterium exchange mass spectrometry. However, this interaction lowers the melting temperature of APE1, which is consistent with a loss of structure in APE1, as measured by both differential scanning fluorimetry and circular dichroism. These results are consistent with other findings that E3330 concentrations of >100 μM are required to inhibit APE1's endonuclease activity. To determine the role of E3330's negatively charged carboxylate in redox inhibition, we converted the carboxylate to an amide by synthesizing (E)-2-[(4,5-dimethoxy-2-methyl-3,6-dioxocyclohexa-1,4-dien-1-yl)methylene]-N-methoxy-undecanamide (E3330-amide), a novel uncharged derivative. E3330-amide has no effect on the melting temperature of APE1, suggesting that it does not interact with the fully folded protein. However, E3330-amide inhibits APE1's redox activity in in vitro electrophoretic mobility shift redox and cell-based transactivation assays, producing IC(50) values (8.5 and 7 μM) lower than those produced with E3330 (20 and 55 μM, respectively). Thus, E3330's negatively charged carboxylate is not required for redox inhibition. Collectively, our results provide additional support for a mechanism of redox inhibition involving interaction of E3330 or E3330-amide with partially unfolded APE1.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Meihua Luo
- Section of Pediatric Hematology and Oncology, Department of Pediatrics, Indiana University School of Medicine
| | - Daniela Marasco
- Department of Pharmacy, University of Naples Federico II Via Mezzocannone, 16, 80134, Naples, Italy
| | - Derek Logsdon
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine
| | - Kaice A. LaFavers
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine
| | - Qiujia Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine
| | - April Reed
- Section of Pediatric Hematology and Oncology, Department of Pediatrics, Indiana University School of Medicine
| | - Mark R. Kelley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine
- Section of Pediatric Hematology and Oncology, Department of Pediatrics, Indiana University School of Medicine
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Millie M. Georgiadis
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine
- Department of Chemistry and Chemical Biology, Purdue School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202
| |
Collapse
|
73
|
Abstract
The carcinogenicity of cadmium, arsenic, and chromium(VI) compounds has been recognized for some decades. However, the underlying molecular mechanisms seem to be complex and are not completely understood at present. Although, with the exception of chromium(VI), direct DNA damage seems to be of minor importance, interactions with DNA repair processes, tumor suppressor functions, and signal transduction pathways have been described in diverse biological systems. In addition to the induction of damage to cellular macromolecules by reactive oxygen species, the interference with cellular redox regulation by reaction with redox-sensitive protein domains or amino acids may provide one plausible mechanism involved in metal carcinogenicity. Consequences are the distortion of zinc-binding structures and the activation or inactivation of redox-regulated signal transduction pathways, provoking metal-induced genomic instability. Nevertheless, the relevance of the respective mechanisms depends on the actual metal or metal species under consideration and more research is needed to further strengthen this hypothesis.
Collapse
Affiliation(s)
- Andrea Hartwig
- Institute of Applied Biosciences, Department of Food Chemistry and Toxicology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany.
| |
Collapse
|
74
|
Abstract
Over the past 250 years, human life expectancy has increased dramatically and continues to do so in most countries worldwide. Genetic factors account for about one third of variation in life expectancy so that most inter-individual variation in lifespan is explained by stochastic and environmental factors. The ageing process is plastic and is driven by the accumulation of molecular damage causing the changes in cell and tissue function which characterise the ageing phenotype. Early life exposures mark the developing embryo, foetus and child with potentially profound implications for the individual's ageing trajectory. Maternal factors including age, smoking, socioeconomic status, infections, nutritional status and season of birth influence offspring life expectancy and the development of age-related diseases. Although the mechanistic processes responsible are poorly understood, many of these factors appear to affect foetal growth directly or via effects on placental development. Those born relatively small i.e. which did not achieve their genetic potential in utero, appear to be at greatest disadvantage especially if they become overweight or obese in childhood. Early life events and exposures which enhance ageing are likely to contribute to molecular damage and/or reduce the repair of such damage. Such molecular damage may produce immediate defects in cellular or tissue function that are retained into later life. In addition, there is growing evidence that early life exposures produce aberrant patterns of epigenetic marks that are sustained across the life-course and result in down-regulation of cell defence mechanisms.
Collapse
Affiliation(s)
- S A S Langie
- Centre for Brain Ageing and Vitality, Institute for Ageing and Health, Newcastle University Campus for Ageing and Vitality, Newcastle on Tyne, UK.
| | | | | |
Collapse
|
75
|
Lefevre S, Brossas C, Auchère F, Boggetto N, Camadro JM, Santos R. Apn1 AP-endonuclease is essential for the repair of oxidatively damaged DNA bases in yeast frataxin-deficient cells. Hum Mol Genet 2012; 21:4060-72. [PMID: 22706278 PMCID: PMC3428155 DOI: 10.1093/hmg/dds230] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 06/09/2012] [Indexed: 01/16/2023] Open
Abstract
Frataxin deficiency results in mitochondrial dysfunction and oxidative stress and it is the cause of the hereditary neurodegenerative disease Friedreich ataxia (FA). Here, we present evidence that one of the pleiotropic effects of oxidative stress in frataxin-deficient yeast cells (Δyfh1 mutant) is damage to nuclear DNA and that repair requires the Apn1 AP-endonuclease of the base excision repair pathway. Major phenotypes of Δyfh1 cells are respiratory deficit, disturbed iron homeostasis and sensitivity to oxidants. These phenotypes are weak or absent under anaerobiosis. We show here that exposure of anaerobically grown Δyfh1 cells to oxygen leads to down-regulation of antioxidant defenses, increase in reactive oxygen species, delay in G1- and S-phases of the cell cycle and damage to mitochondrial and nuclear DNA. Nuclear DNA lesions in Δyfh1 cells are primarily caused by oxidized bases and single-strand breaks that can be detected 15-30 min after oxygen exposition. The Apn1 enzyme is essential for the repair of the DNA lesions in Δyfh1 cells. Compared with Δyfh1, the double Δyfh1Δapn1 mutant shows growth impairment, increased mutagenesis and extreme sensitivity to H(2)O(2). On the contrary, overexpression of the APN1 gene in Δyfh1 cells decreases spontaneous and induced mutagenesis. Our results show that frataxin deficiency in yeast cells leads to increased DNA base oxidation and requirement of Apn1 for repair, suggesting that DNA damage and repair could be important features in FA disease progression.
Collapse
Affiliation(s)
- Sophie Lefevre
- Institut Jacques Monod, CNRS-Université Paris Diderot, Sorbonne Paris Cité, 15 rue Hélène Brion, 75205 Paris cedex 13, France
- ED515 UPMC, 4 place Jussieu, 75005 Paris, France and
| | - Caroline Brossas
- Institut Jacques Monod, CNRS-Université Paris Diderot, Sorbonne Paris Cité, 15 rue Hélène Brion, 75205 Paris cedex 13, France
| | - Françoise Auchère
- Institut Jacques Monod, CNRS-Université Paris Diderot, Sorbonne Paris Cité, 15 rue Hélène Brion, 75205 Paris cedex 13, France
| | - Nicole Boggetto
- ImagoSeine Bioimaging Core Facility, Institut Jacques Monod, 15 rue Hélène Brion, 75205 Paris cedex 13, France
| | - Jean-Michel Camadro
- Institut Jacques Monod, CNRS-Université Paris Diderot, Sorbonne Paris Cité, 15 rue Hélène Brion, 75205 Paris cedex 13, France
| | - Renata Santos
- Institut Jacques Monod, CNRS-Université Paris Diderot, Sorbonne Paris Cité, 15 rue Hélène Brion, 75205 Paris cedex 13, France
| |
Collapse
|
76
|
DNA Repair and Cancer Therapy: Targeting APE1/Ref-1 Using Dietary Agents. JOURNAL OF ONCOLOGY 2012; 2012:370481. [PMID: 22997517 PMCID: PMC3444914 DOI: 10.1155/2012/370481] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 07/31/2012] [Indexed: 12/21/2022]
Abstract
Epidemiological studies have demonstrated the cancer protective effects of dietary agents and other natural compounds isolated from fruits, soybeans, and vegetables on neoplasia. Studies have also revealed the potential for these natural products to be combined with chemotherapy or radiotherapy for the more effective treatment of cancer. In this paper we discuss the potential for targeting the DNA base excision repair enzyme APE1/Ref-1 using dietary agents such as soy isoflavones, resveratrol, curcumin, and the vitamins ascorbate and α-tocopherol. We also discuss the potential role of soy isoflavones in sensitizing cancer cells to the effects of radiotherapy. A comprehensive review of the dual nature of APE1/Ref-1 in DNA repair and redox activation of cellular transcription factors, NF-κB and HIF-1α, is also discussed. Further research efforts dedicated to delineating the role of APE1/Ref-1 DNA repair versus redox activity in sensitizing cancer cells to conventional treatment are warranted.
Collapse
|
77
|
Kelley MR, Georgiadis MM, Fishel ML. APE1/Ref-1 role in redox signaling: translational applications of targeting the redox function of the DNA repair/redox protein APE1/Ref-1. Curr Mol Pharmacol 2012; 5:36-53. [PMID: 22122463 DOI: 10.2174/1874467211205010036] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 08/18/2010] [Accepted: 08/25/2010] [Indexed: 12/22/2022]
Abstract
The heterogeneity of most cancers diminishes the treatment effectiveness of many cancer-killing regimens. Thus, treatments that hold the most promise are ones that block multiple signaling pathways essential to cancer survival. One of the most promising proteins in that regard is APE1, whose reduction-oxidation activity influences multiple cancer survival mechanisms, including growth, proliferation, metastasis, angiogenesis, and stress responses. With the continued research using APE1 redox specific inhibitors alone or coupled with developing APE1 DNA repair inhibitors it will now be possible to further delineate the role of APE1 redox, repair and protein-protein interactions. Previously, use of siRNA or over expression approaches, while valuable, do not give a clear picture of the two major functions of APE1 since both techniques severely alter the cellular milieu. Additionally, use of the redox-specific APE1 inhibitor, APX3330, now makes it possible to study how inhibition of APE1's redox signaling can affect multiple tumor pathways and can potentiate the effectiveness of existing cancer regimens. Because APE1 is an upstream effector of VEGF, as well as other molecules that relate to angiogenesis and the tumor microenvironment, it is also being studied as a possible treatment for agerelated macular degeneration and diabetic retinopathy. This paper reviews all of APE1's functions, while heavily focusing on its redox activities. It also discusses APE1's altered expression in many cancers and the therapeutic potential of selective inhibition of redox regulation, which is the subject of intense preclinical studies.
Collapse
Affiliation(s)
- Mark R Kelley
- Department of Pediatrics (Section of Hematology/Oncology), Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | |
Collapse
|
78
|
Yu H, Zhao H, Wang LE, Liu Z, Li D, Wei Q. Correlation between base-excision repair gene polymorphisms and levels of in-vitro BPDE-induced DNA adducts in cultured peripheral blood lymphocytes. PLoS One 2012; 7:e40131. [PMID: 22792228 PMCID: PMC3390316 DOI: 10.1371/journal.pone.0040131] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 06/02/2012] [Indexed: 01/08/2023] Open
Abstract
In vitro benzo[a]pyrene diol epoxide (BPDE)-induced DNA adducts in cultured peripheral lymphocytes have been shown to be a phenotypic biomarker of individual’s DNA repair phenotype that is associated with cancer risk. In this study, we explored associations between genotypes of base-excision repair genes (PARP1 Val762Ala, APEX1 Asp148Glu, and XRCC1 Arg399Gln) and in vitro BPDE-induced DNA adducts in cultured peripheral blood lymphocytes in 706 cancer-free non-Hispanic white subjects. We found that levels of BPDE-induced DNA adducts were significantly higher in ever smokers than in never smokers and that individuals with the Glu variant genotypes (i.e., Asp/Glu and Glu/Glu) exhibited lower levels of BPDE-induced DNA adducts than did individuals with the common Asp/Asp homozygous genotype (median RAL levels: 32.0 for Asp/Asp, 27.0 for Asp/Glu, and 17.0 for Glu/Glu, respectively; Ptrend = 0.030). Further stratified analysis showed that compared with individuals with the common APEX1-148 homozygous Asp/Asp genotype, individuals with the APEX1-148Asp/Glu genotype or the Glu/Glu genotype had a lower risk of having higher-level adducts (adjusted OR = 0.60, 95% CI: 0.36–0.98 and adjusted OR = 0.47, 95% CI: 0.26–0.86, respectively; Ptrend = 0.012) among smokers. Such an effect was not observed in non-smokers. However, there was no significant interaction between the APEX1 Asp148Glu polymorphism and smoking exposure in this study population (P = 0.512). Additional genotype-phenotype analysis found that the APEX1-148Glu allele had significantly increased expression of APEX1 mRNA in 270 Epstein-Barr virus-transformed lymphoblastoid cell lines, which is likely associated with more active repair activity. Our findings suggest that the functional APEX1-148Glu allele is associated with reduced risk of having high levels of BPDE-induced DNA adducts mediated with high levels of mRNA expression.
Collapse
Affiliation(s)
- Hongping Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Guiling Medical University, Guilin, China
- Department of Epidemiology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (HY); (QW)
| | - Hui Zhao
- Department of Epidemiology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Li-E Wang
- Department of Epidemiology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Zhensheng Liu
- Department of Epidemiology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Qingyi Wei
- Department of Epidemiology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (HY); (QW)
| |
Collapse
|
79
|
Rai G, Vyjayanti VN, Dorjsuren D, Simeonov A, Jadhav A, Wilson DM, Maloney DJ. Synthesis, biological evaluation, and structure-activity relationships of a novel class of apurinic/apyrimidinic endonuclease 1 inhibitors. J Med Chem 2012; 55:3101-12. [PMID: 22455312 PMCID: PMC3515842 DOI: 10.1021/jm201537d] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
APE1 is an essential protein that operates in the base excision repair (BER) pathway and is responsible for ≥95% of the total apurinic/apyrimidinic (AP) endonuclease activity in human cells. BER is a major pathway that copes with DNA damage induced by several anticancer agents, including ionizing radiation and temozolomide. Overexpression of APE1 and enhanced AP endonuclease activity have been linked to increased resistance of tumor cells to treatment with monofunctional alkylators, implicating inhibition of APE1 as a valid strategy for cancer therapy. We report herein the results of a focused medicinal chemistry effort around a novel APE1 inhibitor, N-(3-(benzo[d]thiazol-2-yl)-6-isopropyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridin-2-yl)acetamide (3). Compound 3 and related analogues exhibit single-digit micromolar activity against the purified APE1 enzyme and comparable activity in HeLa whole cell extract assays and potentiate the cytotoxicity of the alkylating agents methylmethane sulfonate and temozolomide. Moreover, this class of compounds possesses a generally favorable in vitro ADME profile, along with good exposure levels in plasma and brain following intraperitoneal dosing (30 mg/kg body weight) in mice.
Collapse
Affiliation(s)
- Ganesha Rai
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-3370
| | - Vaddadi N. Vyjayanti
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Dorjbal Dorjsuren
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-3370
| | - Anton Simeonov
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-3370
| | - Ajit Jadhav
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-3370
| | - David M. Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - David J. Maloney
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-3370
| |
Collapse
|
80
|
Luo M, Zhang J, He H, Su D, Chen Q, Gross ML, Kelley MR, Georgiadis MM. Characterization of the redox activity and disulfide bond formation in apurinic/apyrimidinic endonuclease. Biochemistry 2012; 51:695-705. [PMID: 22148505 PMCID: PMC3293223 DOI: 10.1021/bi201034z] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Apurinic/apyrimidinic endonuclease (APE1) is an unusual nuclear redox factor in which the redox-active cysteines identified to date, C65 and C93, are surface inaccessible residues whose activities may be influenced by partial unfolding of APE1. To assess the role of the five remaining cysteines in APE1's redox activity, double-cysteine mutants were analyzed, excluding C65A, which is redox-inactive as a single mutant. C93A/C99A APE1 was found to be redox-inactive, whereas other double-cysteine mutants retained the same redox activity as that observed for C93A APE1. To determine whether these three cysteines, C65, C93, and C99, were sufficient for redox activity, all other cysteines were substituted with alanine, and this protein was shown to be fully redox-active. Mutants with impaired redox activity failed to stimulate cell proliferation, establishing an important role for APE1's redox activity in cell growth. Disulfide bond formation upon oxidation of APE1 was analyzed by proteolysis of the protein followed by mass spectrometry analysis. Within 5 min of exposure to hydrogen peroxide, a single disulfide bond formed between C65 and C138 followed by the formation of three additional disulfide bonds within 15 min; 10 total disulfide bonds formed within 1 h. A single mixed-disulfide bond involving C99 of APE1 was observed for the reaction of oxidized APE1 with thioredoxin (TRX). Disulfide-bonded APE1 or APE1-TRX species were further characterized by size exclusion chromatography and found to form large complexes. Taken together, our data suggest that APE1 is a unique redox factor with properties distinct from those of other redox factors.
Collapse
Affiliation(s)
- Meihua Luo
- Section of Pediatric Hematology and Oncology, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri
| | - Jun Zhang
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri
| | - Hongzhen He
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Dian Su
- Department of Chemistry and Chemical Biology, Purdue School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202
| | - Qiujia Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri
| | - Mark R. Kelley
- Section of Pediatric Hematology and Oncology, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri
| | - Millie M. Georgiadis
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Washington University in St. Louis, St. Louis, Missouri
- Department of Chemistry and Chemical Biology, Purdue School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202
| |
Collapse
|
81
|
Batinic-Haberle I, Rajic Z, Tovmasyan A, Ye X, Leong KW, Dewhirst MW, Vujaskovic Z, Benov L, Spasojevic I. Diverse functions of cationic Mn(III) N-substituted pyridylporphyrins, recognized as SOD mimics. Free Radic Biol Med 2011; 51:1035-53. [PMID: 21616142 PMCID: PMC3178885 DOI: 10.1016/j.freeradbiomed.2011.04.046] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 03/30/2011] [Accepted: 04/29/2011] [Indexed: 10/18/2022]
Abstract
Oxidative stress, a redox imbalance between the endogenous reactive species and antioxidant systems, is common to numerous pathological conditions such as cancer, central nervous system injuries, radiation injury, diabetes etc. Therefore, compounds able to reduce oxidative stress have been actively sought for over 3 decades. Superoxide is the major species involved in oxidative stress either in its own right or through its progeny, such as ONOO⁻, H₂O₂, •OH, CO₃•⁻, and •NO₂. Hence, the very first compounds developed in the late 1970-ies were the superoxide dismutase (SOD) mimics. Thus far the most potent mimics have been the cationic meso Mn(III) N-substituted pyridylporphyrins and N,N'-disubstituted imidazolylporphyrins (MnPs), some of them with k(cat)(O₂·⁻) similar to the k(cat) of SOD enzymes. Most frequently studied are ortho isomers MnTE-2-PyP⁵⁺, MnTnHex-2-PyP⁵⁺, and MnTDE-2-ImP⁵⁺. The ability to disproportionate O₂·⁻ parallels their ability to remove the other major oxidizing species, peroxynitrite, ONOO⁻. The same structural feature that gives rise to the high k(cat)(O₂·⁻) and k(red)(ONOO⁻), allows MnPs to strongly impact the activation of the redox-sensitive transcription factors, HIF-1α, NF-κB, AP-1, and SP-1, and therefore modify the excessive inflammatory and immune responses. Coupling with cellular reductants and other redox-active endogenous proteins seems to be involved in the actions of Mn porphyrins. While hydrophilic analogues, such as MnTE-2-PyP⁵⁺ and MnTDE-2-ImP⁵⁺ are potent in numerous animal models of diseases, the lipophilic analogues, such as MnTnHex-2-PyP⁵⁺, were developed to cross blood brain barrier and target central nervous system and critical cellular compartments, mitochondria. The modification of its structure, aimed to preserve the SOD-like potency and lipophilicity, and diminish the toxicity, has presently been pursued. The pulmonary radioprotection by MnTnHex-2-PyP⁵⁺ was the first efficacy study performed successfully with non-human primates. The Phase I toxicity clinical trials were done on amyotrophic lateral sclerosis patients with N,N'-diethylimidazolium analogue, MnTDE-2-ImP⁵⁺ (AEOL10150). Its aggressive development as a wide spectrum radioprotector by Aeolus Pharmaceuticals has been supported by USA Federal government. The latest generation of compounds, bearing oxygens in pyridyl substituents is presently under aggressive development for cancer and CNS injuries at Duke University and is supported by Duke Translational Research Institute, The Wallace H. Coulter Translational Partners Grant Program, Preston Robert Tisch Brain Tumor Center at Duke, and National Institute of Allergy and Infectious Diseases. Metal center of cationic MnPs easily accepts and donates electrons as exemplified in the catalysis of O₂·⁻ dismutation. Thus such compounds may be equally good anti- and pro-oxidants; in either case the beneficial therapeutic effects may be observed. Moreover, while the in vivo effects may appear antioxidative, the mechanism of action of MnPs that produced such effects may be pro-oxidative; the most obvious example being the inhibition of NF-κB. The experimental data therefore teach us that we need to distinguish between the mechanism/s of action/s of MnPs and the effects we observe. A number of factors impact the type of action of MnPs leading to favorable therapeutic effects: levels of reactive species and oxygen, levels of endogenous antioxidants (enzymes and low-molecular compounds), levels of MnPs, their site of accumulation, and the mutual encounters of all of those species. The complexity of in vivo redox systems and the complex redox chemistry of MnPs challenge and motivate us to further our understanding of the physiology of the normal and diseased cell with ultimate goal to successfully treat human diseases.
Collapse
Affiliation(s)
- Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
- Corresponding authors: Ines Batinic-Haberle, Ph. D. Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, Tel: 919-684-2101, Fax: 919-684-8718, . Ivan Spasojevic, Ph. D. Department of Medicine, Duke University Medical Center, Durham, NC 27710, Tel: 919-684-8311, Fax: 919-684-8380,
| | - Zrinka Rajic
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Artak Tovmasyan
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Xiaodong Ye
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Mark W. Dewhirst
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Zeljko Vujaskovic
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ludmil Benov
- Department of Biochemistry, Faculty of Medicine, Kuwait School of Medicine, Kuwait
| | - Ivan Spasojevic
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Corresponding authors: Ines Batinic-Haberle, Ph. D. Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, Tel: 919-684-2101, Fax: 919-684-8718, . Ivan Spasojevic, Ph. D. Department of Medicine, Duke University Medical Center, Durham, NC 27710, Tel: 919-684-8311, Fax: 919-684-8380,
| |
Collapse
|
82
|
Vascotto C, Bisetto E, Li M, Zeef LAH, D'Ambrosio C, Domenis R, Comelli M, Delneri D, Scaloni A, Altieri F, Mavelli I, Quadrifoglio F, Kelley MR, Tell G. Knock-in reconstitution studies reveal an unexpected role of Cys-65 in regulating APE1/Ref-1 subcellular trafficking and function. Mol Biol Cell 2011; 22:3887-901. [PMID: 21865600 PMCID: PMC3192867 DOI: 10.1091/mbc.e11-05-0391] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1) protects cells from oxidative stress via the base excision repair pathway and as a redox transcriptional coactivator. It is required for tumor progression/metastasis, and its up-regulation is associated with cancer resistance. Loss of APE1 expression causes cell growth arrest, mitochondrial impairment, apoptosis, and alterations of the intracellular redox state and cytoskeletal structure. A detailed knowledge of the molecular mechanisms regulating its different activities is required to understand the APE1 function associated with cancer development and for targeting this protein in cancer therapy. To dissect these activities, we performed reconstitution experiments by using wild-type and various APE1 mutants. Our results suggest that the redox function is responsible for cell proliferation through the involvement of Cys-65 in mediating APE1 localization within mitochondria. C65S behaves as a loss-of-function mutation by affecting the in vivo folding of the protein and by causing a reduced accumulation in the intermembrane space of mitochondria, where the import protein Mia40 specifically interacts with APE1. Treatment of cells with (E)-3-(2-[5,6-dimethoxy-3-methyl-1,4-benzoquinonyl])-2-nonyl propenoic acid, a specific inhibitor of APE1 redox function through increased Cys-65 oxidation, confirm that Cys-65 controls APE1 subcellular trafficking and provides the basis for a new role for this residue.
Collapse
Affiliation(s)
- Carlo Vascotto
- Department of Medical and Biological Sciences, University of Udine, 33100 Udine, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Vasko MR, Guo C, Thompson EL, Kelley MR. The repair function of the multifunctional DNA repair/redox protein APE1 is neuroprotective after ionizing radiation. DNA Repair (Amst) 2011; 10:942-52. [PMID: 21741887 DOI: 10.1016/j.dnarep.2011.06.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 06/09/2011] [Accepted: 06/12/2011] [Indexed: 11/19/2022]
Abstract
Although exposure to ionizing radiation (IR) can produce significant neurotoxicity, the mechanisms mediating this toxicity remain to be determined. Previous studies using neurons isolated from the central nervous system show that IR produces reactive oxygen species and oxidative DNA damage in those cells. Because the base excision DNA repair pathway repairs single-base modifications caused by ROS, we asked whether manipulating this pathway by altering APE1 expression would affect radiation-induced neurotoxicity. In cultures of adult hippocampal and sensory neurons, IR produces DNA damage as measured by phosphorylation of histone H2A.X and results in dose-dependent cell death. In isolated sensory neurons, we demonstrate for the first time that radiation decreases the capsaicin-evoked release of the neuropeptide CGRP. Reducing APE1 expression in cultured cells augments IR-induced neurotoxicity, whereas overexpressing APE1 is neuroprotective. Using lentiviral constructs with a neuronal specific promoter that selectively expresses APE1s different functions in neurons, we show that selective expression of the DNA repair competent (redox inactive) APE1 constructs in sensory neurons resurrects cell survival and neuronal function, whereas use of DNA-repair deficient (redox active) constructs is not protective. Use of an APE1 redox-specific inhibitor, APX3330, also facilitates neuronal protection against IR-induced toxicity. These results demonstrate for the first time that the repair function of APE1 is required to protect both hippocampal and DRG neuronal cultures--specifically neuronal cells--from IR-induced damage, while the redox activity of APE1 does not appear to be involved.
Collapse
Affiliation(s)
- Michael R Vasko
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, 635 Barnhill Drive Room MSA401, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
84
|
Fishel ML, Jiang Y, Rajeshkumar NV, Scandura G, Sinn AL, He Y, Shen C, Jones DR, Pollok KE, Ivan M, Maitra A, Kelley MR. Impact of APE1/Ref-1 redox inhibition on pancreatic tumor growth. Mol Cancer Ther 2011; 10:1698-708. [PMID: 21700832 DOI: 10.1158/1535-7163.mct-11-0107] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pancreatic cancer is especially a deadly form of cancer with a survival rate less than 2%. Pancreatic cancers respond poorly to existing chemotherapeutic agents and radiation, and progress for the treatment of pancreatic cancer remains elusive. To address this unmet medical need, a better understanding of critical pathways and molecular mechanisms involved in pancreatic tumor development, progression, and resistance to traditional therapy is therefore critical. Reduction-oxidation (redox) signaling systems are emerging as important targets in pancreatic cancer. AP endonuclease1/Redox effector factor 1 (APE1/Ref-1) is upregulated in human pancreatic cancer cells and modulation of its redox activity blocks the proliferation and migration of pancreatic cancer cells and pancreatic cancer-associated endothelial cells in vitro. Modulation of APE1/Ref-1 using a specific inhibitor of APE1/Ref-1's redox function, E3330, leads to a decrease in transcription factor activity for NFκB, AP-1, and HIF1α in vitro. This study aims to further establish the redox signaling protein APE1/Ref-1 as a molecular target in pancreatic cancer. Here, we show that inhibition of APE1/Ref-1 via E3330 results in tumor growth inhibition in cell lines and pancreatic cancer xenograft models in mice. Pharmacokinetic studies also show that E3330 attains more than10 μmol/L blood concentrations and is detectable in tumor xenografts. Through inhibition of APE1/Ref-1, the activity of NFκB, AP-1, and HIF1α that are key transcriptional regulators involved in survival, invasion, and metastasis is blocked. These data indicate that E3330, inhibitor of APE1/Ref-1, has potential in pancreatic cancer and clinical investigation of APE1/Ref-1 molecular target is warranted.
Collapse
Affiliation(s)
- Melissa L Fishel
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University of School of Medicine, 980 W. Walnut, R3-548, Indianapolis, IN 46202, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Kelley MR, Luo M, Reed A, Su D, Delaplane S, Borch RF, Nyland RL, Gross ML, Georgiadis MM. Functional analysis of novel analogues of E3330 that block the redox signaling activity of the multifunctional AP endonuclease/redox signaling enzyme APE1/Ref-1. Antioxid Redox Signal 2011; 14:1387-401. [PMID: 20874257 PMCID: PMC3061197 DOI: 10.1089/ars.2010.3410] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
APE1 is a multifunctional protein possessing DNA repair and redox activation of transcription factors. Blocking these functions leads to apoptosis, antiangiogenesis, cell-growth inhibition, and other effects, depending on which function is blocked. Because a selective inhibitor of the APE redox function has potential as a novel anticancer therapeutic, new analogues of E3330 were synthesized. Mass spectrometry was used to characterize the interactions of the analogues (RN8-51, 10-52, and 7-60) with APE1. RN10-52 and RN7-60 were found to react rapidly with APE1, forming covalent adducts, whereas RN8-51 reacted reversibly. Median inhibitory concentration (IC(50) values of all three compounds were significantly lower than that of E3330. EMSA, transactivation assays, and endothelial tube growth-inhibition analysis demonstrated the specificity of E3330 and its analogues in blocking the APE1 redox function and demonstrated that the analogues had up to a sixfold greater effect than did E3330. Studies using cancer cell lines demonstrated that E3330 and one analogue, RN8-51, decreased the cell line growth with little apoptosis, whereas the third, RN7-60, caused a dramatic effect. RN8-51 shows particular promise for further anticancer therapeutic development. This progress in synthesizing and isolating biologically active novel E3330 analogues that effectively inhibit the APE1 redox function validates the utility of further translational anticancer therapeutic development.
Collapse
Affiliation(s)
- Mark R Kelley
- Department of Pediatrics (Section of Hematology/Oncology), Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 980 West Walnut Street, Indianapolis, IN 46202, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Jedinak A, Dudhgaonkar S, Kelley MR, Sliva D. Apurinic/Apyrimidinic endonuclease 1 regulates inflammatory response in macrophages. Anticancer Res 2011; 31:379-385. [PMID: 21378315 PMCID: PMC3256557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The multi-functional apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) DNA repair and redox signaling protein has been shown to have a role in cancer growth and survival, however, little has been investigated concerning its role in inflammation. In this study, an APE1 redox-specific inhibitor (E3330) was used in lypopolysaccharide (LPS)-stimulated macrophages (RAW264.7). E3330 clearly suppressed secretion of inflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin (IL-6) and IL-12 and inflammatory mediators nitric oxide (NO) as well as prostaglandin E(2) (PGE(2)) from the LPS-stimulated RAW264.7 cells. These data were supported by the down-regulation of the LPS-dependent expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) genes in the RAW264.7 cells. The effects of E3330 were mediated by the inhibition of transcription factors nuclear factor-κB (NF-κB) and activator protein 1 (AP-1) in the LPS-stimulated macrophages, both known targets of APE1. In conclusion, pharmacological inhibition of APE1 by E3330 suppresses inflammatory response in activated macrophages and can be considered as a novel therapeutic strategy for the inhibition of tumor-associated macrophages.
Collapse
Affiliation(s)
- Andrej Jedinak
- Cancer Research Laboratory, Methodist Research Institute, Indiana University Health, 1800 N Capitol Ave, E504, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
87
|
Wilson DM, Kim D, Berquist BR, Sigurdson AJ. Variation in base excision repair capacity. Mutat Res 2010; 711:100-12. [PMID: 21167187 DOI: 10.1016/j.mrfmmm.2010.12.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 11/29/2010] [Accepted: 12/07/2010] [Indexed: 01/20/2023]
Abstract
The major DNA repair pathway for coping with spontaneous forms of DNA damage, such as natural hydrolytic products or oxidative lesions, is base excision repair (BER). In particular, BER processes mutagenic and cytotoxic DNA lesions such as non-bulky base modifications, abasic sites, and a range of chemically distinct single-strand breaks. Defects in BER have been linked to cancer predisposition, neurodegenerative disorders, and immunodeficiency. Recent data indicate a large degree of sequence variability in DNA repair genes and several studies have associated BER gene polymorphisms with disease risk, including cancer of several sites. The intent of this review is to describe the range of BER capacity among individuals and the functional consequences of BER genetic variants. We also discuss studies that associate BER deficiency with disease risk and the current state of BER capacity measurement assays.
Collapse
Affiliation(s)
- David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States.
| | | | | | | |
Collapse
|
88
|
Su D, Delaplane S, Luo M, Rempel DL, Vu B, Kelley MR, Gross ML, Georgiadis MM. Interactions of apurinic/apyrimidinic endonuclease with a redox inhibitor: evidence for an alternate conformation of the enzyme. Biochemistry 2010; 50:82-92. [PMID: 21117647 DOI: 10.1021/bi101248s] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Apurinic/apyrimidinic endonuclease (APE1) is an essential base excision repair protein that also functions as a reduction and oxidation (redox) factor in mammals. Through a thiol-based mechanism, APE1 reduces a number of important transcription factors, including AP-1, p53, NF-κB, and HIF-1α. What is known about the mechanism to date is that the buried residues Cys 65 and Cys 93 are critical for APE1's redox activity. To further detail the redox mechanism, we developed a chemical footprinting-mass spectrometric assay using N-ethylmaleimide (NEM), an irreversible Cys modifier, to characterize the interaction of the redox inhibitor, E3330, with APE1. When APE1 was incubated with E3330, two NEM-modified products were observed, one with two and a second with seven added NEMs; this latter product corresponds to a fully modified APE1. In a similar control reaction without E3330, only the +2NEM product was observed in which the two solvent-accessible Cys residues, C99 and C138, were modified by NEM. Through hydrogen-deuterium amide exchange with analysis by mass spectrometry, we found that the +7NEM-modified species incorporates approximately 40 more deuterium atoms than the native protein, which exchanges nearly identically as the +2NEM product, suggesting that APE1 can be trapped in a partially unfolded state. E3330 was also found to increase the extent of disulfide bond formation involving redox critical Cys residues in APE1 as assessed by liquid chromatography and tandem mass spectrometry, suggesting a basis for its inhibitory effects on APE1's redox activity. Collectively, our results suggest that APE1 adopts a partially unfolded state, which we propose is the redox active form of the enzyme.
Collapse
Affiliation(s)
- Dian Su
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Tell G, Wilson DM. Targeting DNA repair proteins for cancer treatment. Cell Mol Life Sci 2010; 67:3569-72. [PMID: 20706767 PMCID: PMC2956794 DOI: 10.1007/s00018-010-0484-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 07/28/2010] [Indexed: 01/23/2023]
Affiliation(s)
- Gianluca Tell
- Molecular Biology Section, Department of Biomedical Sciences and Technologies, School of Medicine, University of Udine, Piazzale Kolbe 4, 33100, Udine, Italy.
| | | |
Collapse
|
90
|
Wilson DM, Simeonov A. Small molecule inhibitors of DNA repair nuclease activities of APE1. Cell Mol Life Sci 2010; 67:3621-31. [PMID: 20809131 PMCID: PMC2956791 DOI: 10.1007/s00018-010-0488-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 07/28/2010] [Indexed: 10/19/2022]
Abstract
APE1 is a multifunctional protein that possesses several nuclease activities, including the ability to incise at apurinic/apyrimidinic (AP) sites in DNA or RNA, to excise 3'-blocking termini from DNA ends, and to cleave at certain oxidized base lesions in DNA. Pre-clinical and clinical data indicate a role for APE1 in the pathogenesis of cancer and in resistance to DNA-interactive drugs, particularly monofunctional alkylators and antimetabolites. In an effort to improve the efficacy of therapeutic compounds, such as temozolomide, groups have begun to develop high-throughput screening assays and to identify small molecule inhibitors against APE1 repair nuclease activities. It is envisioned that such inhibitors will be used in combinatorial treatment paradigms to enhance the efficacy of DNA-interactive drugs that introduce relevant cytotoxic DNA lesions. In this review, we summarize the current state of the efforts to design potent and selective inhibitors against APE1 AP site incision activity.
Collapse
Affiliation(s)
- David M Wilson
- Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, NIH, IRP, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | | |
Collapse
|
91
|
Tell G, Fantini D, Quadrifoglio F. Understanding different functions of mammalian AP endonuclease (APE1) as a promising tool for cancer treatment. Cell Mol Life Sci 2010; 67:3589-608. [PMID: 20706766 PMCID: PMC11115856 DOI: 10.1007/s00018-010-0486-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 07/28/2010] [Indexed: 12/27/2022]
Abstract
The apurinic endonuclease 1/redox factor-1 (APE1) has a crucial function in DNA repair and in redox signaling in mammals, and recent studies identify it as an excellent target for sensitizing tumor cells to chemotherapy. APE1 is an essential enzyme in the base excision repair pathway of DNA lesions caused by oxidation and alkylation. As importantly, APE1 also functions as a redox agent maintaining transcription factors involved in cancer promotion and progression in an active reduced state. Very recently, a new unsuspected function of APE1 in RNA metabolism was discovered, opening new perspectives for this multifunctional protein. These observations underline the necessity to understand the molecular mechanisms responsible for fine-tuning its different biological functions. This survey intends to give an overview of the multifunctional roles of APE1 and their regulation in the context of considering this protein a promising tool for anticancer therapy.
Collapse
Affiliation(s)
- Gianluca Tell
- Department of Biomedical Sciences and Technologies, University of Udine, Piazzale Kolbe 4, 33100, Udine, Italy.
| | | | | |
Collapse
|
92
|
Jiang Y, Zhou S, Sandusky GE, Kelley MR, Fishel ML. Reduced expression of DNA repair and redox signaling protein APE1/Ref-1 impairs human pancreatic cancer cell survival, proliferation, and cell cycle progression. Cancer Invest 2010; 28:885-95. [PMID: 20919954 DOI: 10.3109/07357907.2010.512816] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Pancreatic cancer is a deadly disease that is virtually never cured. Understanding the chemoresistance intrinsic to this cancer will aid in developing new regimens. High expression of APE1/Ref-1, a DNA repair and redox signaling protein, is associated with resistance, poor outcome, and angiogenesis; little is known in pancreatic cancer. Immunostaining of adenocarcinoma shows greater APE1/Ref-1 expression than in normal pancreas tissue. A decrease in APE1/Ref-1 protein levels results in pancreatic cancer cell growth inhibition, increased apoptosis, and altered cell cycle progression. Endogenous cell cycle inhibitors increase when APE1/ Ref-1 is reduced, demonstrating its importance to proliferation and growth of pancreatic cancer.
Collapse
Affiliation(s)
- Yanlin Jiang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Walnut, Indianapolis 46202, USA
| | | | | | | | | |
Collapse
|
93
|
Fishel ML, Colvin ES, Luo M, Kelley MR, Robertson KA. Inhibition of the redox function of APE1/Ref-1 in myeloid leukemia cell lines results in a hypersensitive response to retinoic acid-induced differentiation and apoptosis. Exp Hematol 2010; 38:1178-88. [PMID: 20826193 DOI: 10.1016/j.exphem.2010.08.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 08/11/2010] [Accepted: 08/30/2010] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The standard of care for promyelocytic leukemia includes use of the differentiating agent all-trans retinoic acid (RA) and chemotherapy. RA induces cell differentiation through retinoic acid receptor (RAR) transcription factors. Because redox mechanisms influence how readily transcription factors bind to DNA response elements (RARE), the impact of small molecule (E3330) inhibition of the redox regulatory protein, apurinic-apyrimidinic endonuclease/redox effector factor (APE1/Ref-1) on RAR DNA binding and function in RA-induced myeloid leukemia cell differentiation and apoptosis was investigated. MATERIALS AND METHODS The redox function of APE1 was studied using the small molecule inhibitor E3330 in HL-60 and PLB acute myeloid leukemia cells. Electrophoretic mobility shift assays were employed to determine effect of inhibitor on APE1/Ref-1 redox signaling function. Trypan blue assays, Annexin-V/propidium iodide and CD11b staining, and real-time polymerase chain reaction analyses were employed to determine survival, apoptosis, and differentiation status of cells in culture. RESULTS RARα binds to its RARE in a redox-dependent manner mediated by APE1/Ref-1 redox regulation. Redox-dependent RAR-RARE binding is blocked by E3330, a small molecule redox inhibitor of APE1/Ref-1. Combination treatment of RA + E3330 results in a profound hypersensitivity of myeloid leukemia cells to RA-induced differentiation and apoptosis. Additionally, redox inhibition by E3330 results in enhanced RAR target gene, BLR-1, expression in myeloid leukemia cells. CONCLUSIONS The redox function of APE1/Ref-1 regulates RAR binding to its DNA RAREs influencing the response of myeloid leukemia cells to RA-induced differentiation. Targeting of APE1/Ref-1 redox function may allow manipulation of the retinoid response with therapeutic implications.
Collapse
Affiliation(s)
- Melissa L Fishel
- Department of Pediatrics (Section of Hematology/Oncology), Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 980 W. Walnut, Indianapolis, IN 46202, USA.
| | | | | | | | | |
Collapse
|
94
|
Bapat A, Glass LS, Luo M, Fishel ML, Long EC, Georgiadis MM, Kelley MR. Novel small-molecule inhibitor of apurinic/apyrimidinic endonuclease 1 blocks proliferation and reduces viability of glioblastoma cells. J Pharmacol Exp Ther 2010; 334:988-98. [PMID: 20504914 PMCID: PMC2939666 DOI: 10.1124/jpet.110.169128] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 05/25/2010] [Indexed: 11/22/2022] Open
Abstract
Apurinic/apyrimidinic (AP) endonuclease 1 (Ape1) is an essential DNA repair protein that plays a critical role in repair of AP sites via base excision repair. Ape1 has received attention as a druggable oncotherapeutic target, especially for treating intractable cancers such as glioblastoma. The goal of this study was to identify small-molecule inhibitors of Ape1 AP endonuclease. For this purpose, a fluorescence-based high-throughput assay was used to screen a library of 60,000 small-molecule compounds for ability to inhibit Ape1 AP endonuclease activity. Four compounds with IC(50) values less than 10 microM were identified, validated, and characterized. One of the most promising compounds, designated Ape1 repair inhibitor 03 [2,4,9-trimethylbenzo[b][1,8]-naphthyridin-5-amine; AR03), inhibited cleavage of AP sites in vivo in SF767 glioblastoma cells and in vitro in whole cell extracts and inhibited purified human Ape1 in vitro. AR03 has low affinity for double-stranded DNA and weakly inhibits the Escherichia coli endonuclease IV, requiring a 20-fold higher concentration than for inhibition of Ape1. AR03 also potentiates the cytotoxicity of methyl methanesulfonate and temozolomide in SF767 cells. AR03 is chemically distinct from the previously reported small-molecule inhibitors of Ape1. AR03 is a novel small-molecule inhibitor of Ape1, which may have potential as an oncotherapeutic drug for treating glioblastoma and other cancers.
Collapse
Affiliation(s)
- Aditi Bapat
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | | | | | | |
Collapse
|
95
|
The Mutyh base excision repair gene influences the inflammatory response in a mouse model of ulcerative colitis. PLoS One 2010; 5:e12070. [PMID: 20706593 PMCID: PMC2919403 DOI: 10.1371/journal.pone.0012070] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 07/11/2010] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND The Mutyh DNA glycosylase is involved in the repair of oxidized DNA bases. Mutations in the human MUTYH gene are responsible for colorectal cancer in familial adenomatous polyposis. Since defective DNA repair genes might contribute to the increased cancer risk associated with inflammatory bowel diseases, we compared the inflammatory response of wild-type and Mutyh(-/-) mice to oxidative stress. METHODOLOGY/PRINCIPAL FINDINGS The severity of colitis, changes in expression of genes involved in DNA repair and inflammation, DNA 8-oxoguanine levels and microsatellite instability were analysed in colon of mice treated with dextran sulfate sodium (DSS). The Mutyh(-/-) phenotype was associated with a significant accumulation of 8-oxoguanine in colon DNA of treated mice. A single DSS cycle induced severe acute ulcerative colitis in wild-type mice, whereas lesions were modest in Mutyh(-/-) mice, and this was associated with moderate variations in the expression of several cytokines. Eight DSS cycles caused chronic colitis in both wild-type and Mutyh(-/-) mice. Lymphoid hyperplasia and a significant reduction in Foxp3(+) regulatory T cells were observed only in Mutyh(-/-) mice. CONCLUSIONS The findings indicate that, in this model of ulcerative colitis, Mutyh plays a major role in maintaining intestinal integrity by affecting the inflammatory response.
Collapse
|