51
|
Ando T, Kawakami H, Mochizuki K, Murata K, Manabe Y, Takagi D, Yagasaki A, Niwa Y, Yamada N, Ogura S, Matsumoto K, Morita K, Todokoro D, Kamei K. Intraocular penetration of liposomal amphotericin B after intravenous injection in inflamed human eyes. J Infect Chemother 2021; 27:1319-1322. [PMID: 33994091 DOI: 10.1016/j.jiac.2021.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/05/2021] [Accepted: 04/23/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE To determine the intraocular penetration of amphotericin B (AMPH-B) after an intravenously injection of liposomal amphotericin B (L-AMB) in inflamed human eyes. METHODS Seven eyes of 5 patients with fungal eye diseases (endophthalmitis in 6 eyes and keratitis in 1 eye) were treated with intravenous injections of 100-250 mg/day of L-AMB. Samples of blood, corneal button, aqueous humor, and vitreous humor were collected and assessed for AMPH-B. RESULTS The AMPH-B level in the cornea (604.0 μg/g) of the case with fungal keratitis exceeded the minimum inhibitory concentration. However, the levels in the aqueous and vitreous humors of the cases with fungal endophthalmitis were lower, e.g., 0.02 ± 0.01 μg/ml (0.09% of serum level) in the aqueous humor and 0.05 ± 0.08 μg/ml (0.17% of serum level) in the vitreous humor. CONCLUSIONS The AMPH-B levels administered intravenously were very low in the aqueous and vitreous humors. Our findings indicate that intravenous L-AMB can be considered only for patients with mild endogenous fungal endophthalmitis, e.g., isolated chorioretinitis without vitreous extensions.
Collapse
Affiliation(s)
- Tomoko Ando
- Department of Ophthalmology, Gifu University Graduate School of Medicine, Gifu, Japan; Department of Ophthalmology, Gifu Municipal Hospital, Gifu, Japan
| | - Hideaki Kawakami
- Department of Ophthalmology, Gifu Municipal Hospital, Gifu, Japan.
| | - Kiyofumi Mochizuki
- Department of Ophthalmology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kazuhiro Murata
- Department of Ophthalmology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yusuke Manabe
- Department of Ophthalmology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Daisuke Takagi
- Department of Ophthalmology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Ayaka Yagasaki
- Department of Ophthalmology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yoshiaki Niwa
- Department of Ophthalmology, Gifu Prefectural General Medical Center, Gifu, Japan
| | - Noriaki Yamada
- Department of Emergency & Disaster Medicine, Advanced Critical Care Center Gifu University, Gifu, Japan
| | - Shinji Ogura
- Department of Emergency & Disaster Medicine, Advanced Critical Care Center Gifu University, Gifu, Japan
| | - Kana Matsumoto
- Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Kunihiko Morita
- Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Daisuke Todokoro
- Department of Ophthalmology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Katsuhiko Kamei
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| |
Collapse
|
52
|
Qin T, Dai Z, Xu X, Zhang Z, You X, Sun H, Liu M, Zhu H. Nanosuspension as an Efficient Carrier for Improved Ocular Permeation of Voriconazole. Curr Pharm Biotechnol 2021; 22:245-253. [PMID: 32867650 DOI: 10.2174/1389201021999200820154918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/25/2020] [Accepted: 07/21/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The present limitations related to the ocular administration of antifungal drugs for the treatment of fungal keratitis include poor ocular bioavailability, limited retention time, and low ocular tissue penetration. METHODS This study aimed to prepare a novel ophthalmic voriconazole-loaded nanosuspension based on Eudragit RS 100. Pharmasolve® was explored as a corneal permeation enhancer in voriconazole ophthalmic formulation using in vitro and in vivo experiments. Briefly, 1% voriconazole-loaded nanosuspension was prepared using the quasi-emulsion solvent evaporation process. RESULTS Characterizations of the voriconazole-loaded nanosuspension by Zetasizer Nano ZS and Transmission Electron Microscope (TEM) showed a uniform spherical shape without any agglomeration. The well-discreted nanoparticle with a size of 138 ± 1.3 nm was achieved with high entrapment efficiency (98.6 ± 2.5%) and positive zeta potential in the range of 22.5-31.2mV, indicating excellent physical stability. DISCUSSION Voriconazole-loaded nanosuspension containing the penetration enhancer displayed good permeability both in vitro and in vivo compared with the commercial voriconazole injection. The voriconazole-loaded nanosuspension exhibited good antifungal activity, significantly inhibiting the growth of Candida albicans at a lower concentration of voriconazole (2.5μg/mL, p < 0.05). CONCLUSION In conclusion, the voriconazole-loaded nanosuspension containing Pharmasolve® can be used as an effective ophthalmic formulation for the topical ocular delivery of voriconazole.
Collapse
Affiliation(s)
- Tang Qin
- School of Food and Biological Engineering, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Zhu Dai
- Pharmaceutical Department, Hubei Cancer Hospital, Wuhan, China
| | - Xiaodi Xu
- School of Food and Biological Engineering, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Zilin Zhang
- School of Food and Biological Engineering, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Xiangyu You
- School of Food and Biological Engineering, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Hongmei Sun
- School of Food and Biological Engineering, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Mingxing Liu
- School of Food and Biological Engineering, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Hongda Zhu
- School of Food and Biological Engineering, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| |
Collapse
|
53
|
Azish M, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M. Antifungal activity and mechanism of action of dichloromethane extract fraction A from Streptomyces libani against Aspergillus fumigatus. J Appl Microbiol 2021; 131:1212-1225. [PMID: 33590651 DOI: 10.1111/jam.15040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/01/2021] [Accepted: 02/13/2021] [Indexed: 12/21/2022]
Abstract
AIMS This study aimed to investigate the mechanism of antifungal action of Streptomyces libani dichloromethane extract fraction A (DCEFA) against Aspergillus fumigatus and the host cytotoxicity. METHODS AND RESULTS DCEFA was purified from S. libani by autobiography and showed strong antifungal activity against A. fumigatus. A combination of electron microscopy, cell permeability assays, total oxidant status (TOS) assay, cell cytotoxicity assay and haemolysis activity was carried out to determine the target site of DCEFA. Exposure of A. fumigatus to DCEFA caused the damage to membranous cellular structures and increased release of cellular materials, potassium ions and TOS production. DCEFA was bound to ergosterol but did not affect fungal cell wall and ergosterol content. DCEFA did not show any obvious haemolytic activity for RBCs and toxicity against HEK-293 cell line. CONCLUSIONS DCEFA may inhibit A. fumigatus growth by targeting fungal cell membrane which results in the leakage of potassium ions and other cellular components, TOS production and final cell death. SIGNIFICANCE AND IMPACT OF THE STUDY DCEFA of S. libani could be considered as a potential source of novel antifungals which may be useful for drug development against A. fumigatus as a life-threatening human pathogen.
Collapse
Affiliation(s)
- M Azish
- Department of Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - M Shams-Ghahfarokhi
- Department of Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
54
|
Gressler M, Löhr NA, Schäfer T, Lawrinowitz S, Seibold PS, Hoffmeister D. Mind the mushroom: natural product biosynthetic genes and enzymes of Basidiomycota. Nat Prod Rep 2021; 38:702-722. [PMID: 33404035 DOI: 10.1039/d0np00077a] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Covering: up to September 2020 Mushroom-forming fungi of the division Basidiomycota have traditionally been recognised as prolific producers of structurally diverse and often bioactive secondary metabolites, using the methods of chemistry for research. Over the past decade, -omics technologies were applied on these fungi, and sophisticated heterologous gene expression platforms emerged, which have boosted research into the genetic and biochemical basis of the biosyntheses. This review provides an overview on experimentally confirmed natural product biosyntheses of basidiomycete polyketides, amino acid-derived products, terpenoids, and volatiles. We also present challenges and solutions particular to natural product research with these fungi. 222 references are cited.
Collapse
Affiliation(s)
- Markus Gressler
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Nikolai A Löhr
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Tim Schäfer
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Stefanie Lawrinowitz
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Paula Sophie Seibold
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| |
Collapse
|
55
|
Mohammed I, Mohanty D, Said DG, Barik MR, Reddy MM, Alsaadi A, Das S, Dua HS, Mittal R. Antimicrobial peptides in human corneal tissue of patients with fungal keratitis. Br J Ophthalmol 2020; 105:1172-1177. [PMID: 32855162 DOI: 10.1136/bjophthalmol-2020-316329] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/09/2020] [Accepted: 07/03/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Fungal keratitis (FK) is the leading cause of unilateral blindness in the developing world. Antimicrobial peptides (AMPs) have been shown to play an important role on human ocular surface (OS) during bacterial, viral and protozoan infections. In this study, our aim was to profile a spectrum of AMPs in corneal tissue from patients with FK during the active pase of infection and after healing. METHODS OS samples were collected from patients at presentation by impression cytology and scraping. Corneal button specimens were collected from patients undergoing therapeutic penetrating keratoplasty for management of severe FK or healed keratitis. Gene expression of human beta-defensin (HBD)-1, -2, -3 and -9, S100A7, and LL-37 was determined by quantitative real-time PCR. RESULTS Messenger RNA expression (mRNA) for all AMPs was shown to be significantly upregulated in FK samples. The levels of HBD-1 and -2 mRNA were found to be elevated in 18/20 FK samples. Whereas mRNA for HBD-3 and S100A7 was upregulated in 11/20 and HBD9 was increased in 15/20 FK samples. LL-37 mRNA showed moderate upregulation in 7/20 FK samples compared with controls. In healed scar samples, mRNA of all AMPs was found to be low and matching the levels in controls. CONCLUSION AMP expression is a consistent feature of FK, but not all AMPs are equally expressed. HBD-1 and -2 are most consistently expressed and LL-37 the least, suggesting some specificity of AMP expression related to FK. These results will help to identify HBD sequence templates for designing FK-specific peptides to test for therapeutic potential.
Collapse
Affiliation(s)
- Imran Mohammed
- Academic Ophthalmology, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham United Kingdom
| | - Debasmita Mohanty
- Kanupriya Dalmia Ophthalmic Pathology Laboratory, L V Prasad Eye Institute, MTC Campus, Bhubaneswar, India
| | - Dalia G Said
- Academic Ophthalmology, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham United Kingdom.,Ophthalmology Department, Nottingham University Hospitals, Queens Medical Centre, Nottingham United Kingdom
| | - Manas Ranjan Barik
- Ocular Microbiology Service, L V Prasad Eye Institute, MTC Campus, Bhubaneswar, India
| | - Mamatha M Reddy
- Ocular Microbiology Service, L V Prasad Eye Institute, MTC Campus, Bhubaneswar, India
| | - Ahmed Alsaadi
- Ophthalmology Department, Zayed Military Hospital, Abu Dhabi, United Arab Emirates
| | - Sujata Das
- Cornea and Anterior Segment Service, L V Prasad Eye Institute, MTC Campus, Bhubaneswar, India
| | - Harminder Singh Dua
- Academic Ophthalmology, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham United Kingdom .,Ophthalmology Department, Nottingham University Hospitals, Queens Medical Centre, Nottingham United Kingdom
| | - Ruchi Mittal
- Kanupriya Dalmia Ophthalmic Pathology Laboratory, L V Prasad Eye Institute, MTC Campus, Bhubaneswar, India
| |
Collapse
|
56
|
Chennell P, Yessaad M, Abd El Kader F, Jouannet M, Wasiak M, Bouattour Y, Sautou V. Do Ophthalmic Solutions of Amphotericin B Solubilised in 2-Hydroxypropyl-γ-Cyclodextrins Possess an Extended Physicochemical Stability? Pharmaceutics 2020; 12:pharmaceutics12090786. [PMID: 32825121 PMCID: PMC7559369 DOI: 10.3390/pharmaceutics12090786] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/06/2020] [Accepted: 08/17/2020] [Indexed: 01/08/2023] Open
Abstract
Fungal keratitis is a sight-threatening disease for which amphotericin B eye drops is one of the front-line treatments. Unfortunately, there are currently no commercial forms available, and there is little data concerning the long-term stability of compounded formulations based on intravenous dosages forms. New formulations of amphotericin B ophthalmic solutions solubilised with γ-cyclodextrins have shown promising in-vitro results, but stability data is also lacking. The objective of this study was therefore to investigate the stability of a formulation of ready-to-use amphotericin B solubilised in 2-hydroxypropyl-γ-cyclodextrins (AB-HP-γ-CD), for 350 days. An amphotericin B deoxycholate (ABDC) formulation was used as a comparator. Analyses used were the following: visual inspection, turbidity, osmolality and pH measurements, amphotericin B quantification by a stability-indicating liquid chromatography method, breakdown product research, and sterility assay. AB-HP-γ-CD formulation showed signs of chemical instability (loss of amphotericin B) after 28 and 56 days at 25 °C and 5 °C. Adding an antioxidant (ascorbic acid) to the formulation did not improve stability. ABDC formulation showed signs of physical instability (increased turbidy and amphotericin B precipitation) after 28 days and 168 days at 25 °C and 5 °C. As such, AB-HP-γ-CD formulation does not provide long-term stability for ophthalmic amphotericin B solutions.
Collapse
Affiliation(s)
- Philip Chennell
- Université Clermont Auvergne, CHU Clermont-Ferrand, CNRS, SIGMA Clermont-Ferrand, ICCF, 63000 Clermont-Ferrand, France; (Y.B.); (V.S.)
- Correspondence:
| | - Mouloud Yessaad
- CHU Clermont-Ferrand, Pôle Pharmacie, 63000 Clermont-Ferrand, France; (M.Y.); (F.A.E.K.); (M.J.); (M.W.)
| | - Florence Abd El Kader
- CHU Clermont-Ferrand, Pôle Pharmacie, 63000 Clermont-Ferrand, France; (M.Y.); (F.A.E.K.); (M.J.); (M.W.)
| | - Mireille Jouannet
- CHU Clermont-Ferrand, Pôle Pharmacie, 63000 Clermont-Ferrand, France; (M.Y.); (F.A.E.K.); (M.J.); (M.W.)
| | - Mathieu Wasiak
- CHU Clermont-Ferrand, Pôle Pharmacie, 63000 Clermont-Ferrand, France; (M.Y.); (F.A.E.K.); (M.J.); (M.W.)
| | - Yassine Bouattour
- Université Clermont Auvergne, CHU Clermont-Ferrand, CNRS, SIGMA Clermont-Ferrand, ICCF, 63000 Clermont-Ferrand, France; (Y.B.); (V.S.)
| | - Valérie Sautou
- Université Clermont Auvergne, CHU Clermont-Ferrand, CNRS, SIGMA Clermont-Ferrand, ICCF, 63000 Clermont-Ferrand, France; (Y.B.); (V.S.)
| |
Collapse
|
57
|
Polat HK, Bozdağ Pehlivan S, Özkul C, Çalamak S, Öztürk N, Aytekin E, Fırat A, Ulubayram K, Kocabeyoğlu S, İrkeç M, Çalış S. Development of besifloxacin HCl loaded nanofibrous ocular inserts for the treatment of bacterial keratitis: In vitro, ex vivo and in vivo evaluation. Int J Pharm 2020; 585:119552. [DOI: 10.1016/j.ijpharm.2020.119552] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 11/29/2022]
|
58
|
Patil A, Lakhani P, Taskar P, Avula B, Majumdar S. Carboxyvinyl Polymer and Guar-Borate Gelling System Containing Natamycin Loaded PEGylated Nanolipid Carriers Exhibit Improved Ocular Pharmacokinetic Parameters. J Ocul Pharmacol Ther 2020; 36:410-420. [PMID: 32315560 DOI: 10.1089/jop.2019.0140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Purpose: Natamycin (NTM) ophthalmic suspension is the only FDA-approved formulation commercially available for treating ocular fungal infections. However, precorneal residence times and losses/drainage remain the foremost challenges associated with current ocular antifungal pharmacotherapy. In our previous investigations, NTM loaded polyethylene glycol nanolipid carriers (NTM-PNLCs) showed enhanced corneal permeation, both in vitro and in vivo. To further improve the corneal retention of NTM-PNLCs, this study aimed to develop a gelling system composed of carboxyvinyl polymer, guar gum, and boric acid in which the NTM-PNLCs were loaded. Methods: A 23 factorial design was employed in formulating and optimizing the gelling system for NTM-PNLCs, where the independent factors were the gelling excipients (guar gum, boric acid, and Carbopol® 940) and dependent variables were gelling time, gel depot collapse time, rheology, firmness, and work of adhesion. Optimized gel was evaluated for transcorneal permeation using rabbit cornea, in vitro; and tear pharmacokinetics and ocular biodistribution in male New Zealand White rabbits, in vivo. Results: Optimized NTM-PNLC-GEL was found to exhibit shear thinning rheology, adequate firmness, and spreadability, and formed a depot that did not collapse immediately. In addition, the in vitro transcorneal evaluation studies indicated that the NTM-PNLC-GEL exhibited a lower/slower flux and rate in comparison to Natacyn® suspension. NTM-PNLC-GEL (0.3%), at a 16-fold lower dose, exhibited mean residence time and elimination half-life comparable to Natacyn (5%), and provided similar in vivo concentrations in the innermost tissues of the eye. Conclusion: The data indicate that the NTM-PNLC-GEL formulation could serve as an alternative during ophthalmic antifungal therapy.
Collapse
Affiliation(s)
- Akash Patil
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, Mississippi, USA
| | - Prit Lakhani
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, Mississippi, USA
| | - Pranjal Taskar
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, Mississippi, USA
| | - Bharathi Avula
- National Center for Natural Products Research, University of Mississippi, University, Mississippi, USA
| | - Soumyajit Majumdar
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, Mississippi, USA
| |
Collapse
|
59
|
Lakhani P, Patil A, Wu KW, Sweeney C, Tripathi S, Avula B, Taskar P, Khan S, Majumdar S. Optimization, stabilization, and characterization of amphotericin B loaded nanostructured lipid carriers for ocular drug delivery. Int J Pharm 2019; 572:118771. [PMID: 31669555 PMCID: PMC7323935 DOI: 10.1016/j.ijpharm.2019.118771] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/02/2019] [Accepted: 10/06/2019] [Indexed: 12/22/2022]
Abstract
The current study sought to formulate, optimize, and stabilize amphotericin B (AmB) loaded PEGylated nanostructured lipid carriers (NLC) and to study its ocular biodistribution following topical instillation. AmB loaded PEGylated NLC (AmB-PEG-NLC) were fabricated by hot-melt emulsification followed by high-pressure homogenization (HPH) technique. 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)] (mPEG-2K-DSPE) was used for surface PEGylation. mPEG-DSPE with different PEG molecular weight, 1 K, 2 K, 5 K, 10 K, and 20 K, were screened for formulation stability. Furthermore, the AmB loaded PEGylated (2K) NLC (AmB-PEG2K-NLC) was optimized using Box-Behnken design with respect to the amount of AmB, castor oil, mPEG-2K-DSPE, and number of high-pressure homogenization cycles as the factors; particle size, zeta potential, PDI, entrapment efficiency, and loading efficiency as responses. Stability of the optimized AmB-PEG2K-NLC was assessed over 4 weeks, at 4 °C as well as 25 °C and effect of autoclaving was also evaluated. AmB-PEG2K-NLC were tested for their in vitro antifungal activity against Candida albicans (ATCC 90028), AmB resistant Candida albicans (ATCC 200955) and Aspergillus fumigatus (ATCC 204305). Cytotoxicity of AmB-PEG2K-NLC was studied in human retinal pigmented epithelium cells. In vivo ocular biodistribution of AmB was evaluated in rabbits, following topical application of PEGylated NLCs or marketed AmB preparations. PEGylation with mPEG-2K-DSPE prevented leaching of AmB and increased the drug load significantly. The optimized formulation was prepared with a particle size of 218 ± 5 nm; 0.3 ± 0.02 PDI, 4.6 ± 0.1% w/w drug loading, and 92.7 ± 2.5% w/w entrapment efficiency. The optimized colloidal dispersions were stable for over a month, at both 4 °C and 25 °C. AmB-PEG2K-NLCs showed significantly (p < 0.05) better antifungal activity in both wild-type and AmB resistant Candida strains and, was comparable to, or better than, commercially available parenteral AmB formulations like Fungizone™ and AmBisome®. AmB-PEG2K-NLC did not show any toxicity up to a highest concentration of 1% (v/v) (percent formulation in medium). Following topical instillation, AmB was detected in all the ocular tissues tested and statistically significant (p > 0.05) difference was not observed between the formulations tested. An optimized autoclavable and effective AmB-PEG2K-NLC ophthalmic formulation with at least one-month stability, in the reconstituted state, has been developed.
Collapse
Affiliation(s)
- Prit Lakhani
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, MS, USA
| | - Akash Patil
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, MS, USA
| | - Kai-Wei Wu
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, MS, USA
| | - Corinne Sweeney
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, MS, USA
| | - Siddharth Tripathi
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS, USA
| | - Bharathi Avula
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS, USA
| | - Pranjal Taskar
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, MS, USA
| | - Shabana Khan
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS, USA
| | - Soumyajit Majumdar
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, MS, USA; Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS, USA.
| |
Collapse
|
60
|
Gowda DV, Afrasim M, Meenakshi SI, Manohar M, Hemalatha S, Siddaramaiah H, Sathishbabu P, Rizvi SMD, Hussain T, Kamal MA. A Paradigm Shift in the Development of Anti-Candida Drugs. Curr Top Med Chem 2019; 19:2610-2628. [PMID: 31663480 DOI: 10.2174/1568026619666191029145209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/27/2019] [Accepted: 09/26/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND The considerable increase in the incidence of Candida infection in recent times has prompted the use of numerous antifungal agents, which has resulted in the development of resistance towards various antifungal agents. With rising Candida infections, the need for design and development of novel antifungal agents is in great demand. However, new therapeutic approaches are very essential in preventing the mortality rate and improving the patient outcome in those suffering from Candida infections. OBJECTIVE The present review objective is to describe the burden, types of Candidiasis, mechanism of action of antifungal agents and its resistance and the current novel approaches used to combat candidiasis. METHODS We have collected and analyzed 135 different peer-reviewed literature studies pertinent to candidiasis. In this review, we have compiled the major findings from these studies. RESULTS AND CONCLUSION The review describes the concerns related to candidiasis, its current treatment strategy, resistance mechanisms and imminent ways to tackle the problem. The review explored that natural plant extracts and essential oils could act as sources of newer therapeutic agents, however, the focus was on novel strategies, such as combinational therapy, new antibodies, utilization of photodynamic therapy and adaptive transfer primed immune cells with emphasis on the development of effective vaccination.
Collapse
Affiliation(s)
- D V Gowda
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru- 570015, India
| | - M Afrasim
- Department of Pharmaceutics, Hail University, Hail, Saudi Arabia
| | - S I Meenakshi
- Department of Prosthodontics and Crown & Bridge, JSS Dental College and Hospital, JSS Academy of Higher Education and Research, Mysuru-570015, India
| | - M Manohar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru- 570015, India
| | - S Hemalatha
- Department of Anaesthesia, JSS Medical College & Hospital, JSS Academy of Higher Education and Research, Mysuru - 570004, India
| | - H Siddaramaiah
- Department of Polymer Science and Technology, Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, Mysuru - 570006, India
| | - P Sathishbabu
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru- 570015, India
| | - S M Danish Rizvi
- Department of Pharmaceutics, Hail University, Hail, Saudi Arabia
| | - T Hussain
- Department of Pharmacology and Toxicology, University of Hail, Hail, Saudi Arabia
| | - M A Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia.,Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia.,Novel Global Community Educational Foundation, Australia
| |
Collapse
|
61
|
Pescina S, Lucca LG, Govoni P, Padula C, Favero ED, Cantù L, Santi P, Nicoli S. Ex Vivo Conjunctival Retention and Transconjunctival Transport of Poorly Soluble Drugs Using Polymeric Micelles. Pharmaceutics 2019; 11:pharmaceutics11090476. [PMID: 31540066 PMCID: PMC6781556 DOI: 10.3390/pharmaceutics11090476] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 12/14/2022] Open
Abstract
This paper addresses the problem of ocular delivery of lipophilic drugs. The aim of the paper is the evaluation of polymeric micelles, prepared using TPGS (d-α-Tocopheryl polyethylene glycol 1000 succinate), a water-soluble derivative of Vitamin E and/or poloxamer 407, as a vehicle for the ocular delivery of dexamethasone, cyclosporine, and econazole nitrate. The research steps were: (1) characterize polymeric micelles by dynamic light scattering (DLS) and X-ray scattering; (2) evaluate the solubility increase of the three drugs; (3) measure the in vitro transport and conjunctiva retention, in comparison to conventional vehicles; (4) investigate the mechanisms of enhancement, by studying drug release from the micelles and transconjunctival permeation of TPGS; and (5) study the effect of micelles application on the histology of conjunctiva. The data obtained demonstrate the application potential of polymeric micelles in ocular delivery, due to their ability to increase the solubility of lipophilic drugs and enhance transport in and across the conjunctival epithelium. The best-performing formulation was the one made of TPGS alone (micelles size ≈ 12 nm), probably because of the higher mobility of these micelles, an enhanced interaction with the conjunctival epithelium, and, possibly, the penetration of intact micelles.
Collapse
Affiliation(s)
- Silvia Pescina
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| | - Leticia Grolli Lucca
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| | - Paolo Govoni
- Department of Medicine and Surgery, University of Parma, via Volturno 39, 43126 Parma, Italy.
| | - Cristina Padula
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| | - Elena Del Favero
- Department of Medical Biotechnologies and Translational Medicine, LITA, University of Milan, 20090 Segrate (MI), Italy.
| | - Laura Cantù
- Department of Medical Biotechnologies and Translational Medicine, LITA, University of Milan, 20090 Segrate (MI), Italy.
| | - Patrizia Santi
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| | - Sara Nicoli
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| |
Collapse
|
62
|
Updates in Ocular Antifungal Pharmacotherapy: Formulation and Clinical Perspectives. CURRENT FUNGAL INFECTION REPORTS 2019. [DOI: 10.1007/s12281-019-00338-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|