51
|
β-Hydroxybutyrate Increases Exercise Capacity Associated with Changes in Mitochondrial Function in Skeletal Muscle. Nutrients 2020; 12:nu12071930. [PMID: 32610627 PMCID: PMC7400376 DOI: 10.3390/nu12071930] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/17/2022] Open
Abstract
β-hydroxybutyrate is the main ketone body generated by the liver under starvation. Under these conditions, it can sustain ATP levels by its oxidation in mitochondria. As mitochondria can modify its shape and function under different nutritional challenges, we study the chronic effects of β-hydroxybutyrate supplementation on mitochondrial morphology and function, and its relation to exercise capacity. Male C57BL/6 mice were supplemented with β-hydroxybutyrate mineral salt (3.2%) or control (CT, NaCl/KCl) for six weeks and submitted to a weekly exercise performance test. We found an increase in distance, maximal speed, and time to exhaustion at two weeks of supplementation. Fatty acid metabolism and OXPHOS subunit proteins declined at two weeks in soleus but not in tibialis anterior muscles. Oxygen consumption rate on permeabilized fibers indicated a decrease in the presence of pyruvate in the short-term treatment. Both the tibialis anterior and soleus showed decreased levels of Mitofusin 2, while electron microscopy assessment revealed a significant reduction in mitochondrial cristae shape in the tibialis anterior, while a reduction in the mitochondrial number was observed only in soleus. These results suggest that short, but not long-term, β-hydroxybutyrate supplementation increases exercise capacity, associated with modifications in mitochondrial morphology and function in mouse skeletal muscle.
Collapse
|
52
|
Ishimwe JA, Garrett MR, Sasser JM. 1,3-Butanediol attenuates hypertension and suppresses kidney injury in female rats. Am J Physiol Renal Physiol 2020; 319:F106-F114. [PMID: 32508113 DOI: 10.1152/ajprenal.00141.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Thirty-seven million people in the United States are estimated to have chronic kidney disease (CKD). Hypertension (HTN) is the second leading risk factor for developing kidney disease. A recent study reported that increasing levels of β-hydroxybutyrate levels by administration of its precursor, 1,3-butanediol, decreased salt-induced HTN in male Dahl salt-sensitive (S) rats. The effect of 1,3-butanediol on hypertensive kidney disease in female rats or the absence of high salt has not been investigated. This study tested the hypothesis that 1,3-butanediol attenuates HTN and the progression of CKD in female S-SHR(11) rats. The S-SHR(11) strain is a congenic rat strain generated from genetic modification of the Dahl S rat, previously characterized as a model of accelerated renal disease. Rats received 1,3-butanediol (20% via drinking water) or control for 10 wk and were maintained on a 0.3% NaCl rodent diet (n = 12-14 rats/group). Blood pressure was measured after 6 and 9 wk of treatment by tail-cuff plethysmography; after 10 wk, urine and tissues were collected. Activity of the treatment was confirmed by measuring plasma β-hydroxybutyrate levels, which were greater in the treated group. The 1,3-butanediol-treated group had lower systolic blood pressure, proteinuria, plasma creatinine, and renal fibrosis after 9 wk of treatment compared with controls. The treated group had significantly smaller spleens and increased the renal anti-inflammatory molecules interleukin-10 and granulocyte-macrophage colony-stimulating factor, suggesting reduced inflammation. The present data demonstrate that 1,3-butanediol lowers blood pressure and renal injury in female rats and could be a novel nutritional intervention for the treatment of CKD.
Collapse
Affiliation(s)
- Jeanne A Ishimwe
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Michael R Garrett
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jennifer M Sasser
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
53
|
Liu J, Li R, Huang Z, Huang Z, Li Y, Wu X, Lin J, Jiang H, Cheng Y, Kong G, Wu X, Liu Q, Liu Y, Yang Z, Li R, Chen J, Fu J, Ramer MS, Kwon BK, Liu J, Kramer JLK, Tetzlaff W, Hu Y, Zhu Q. A Cervical Spinal Cord Hemi-Contusion Injury Model Based on Displacement Control in Non-Human Primates (Macaca fascicularis). J Neurotrauma 2020; 37:1669-1686. [PMID: 32174266 DOI: 10.1089/neu.2019.6822] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Non-human primate (NHP) spinal cord injury (SCI) models can be informative in the evaluation of treatments that show promise in rodent models prior to translation to humans. In the present study, we aimed to establish a cervical spinal hemi-contusion model with controlled displacement and evaluate the abnormalities in behavior, electrophysiology, histology, and magnetic resonance imaging. Twelve adult NHPs were divided into an SCI group (n = 8, 24 and 48 weeks) and a control group (n = 4). An impactor (Φ = 4 mm) was driven to compress the left C5 cord at 800 mm/sec. The contusion displacement and peak force was 4.08 ± 0.17 mm and 19.8 ± 4.6 N. The behavioral assessment showed a consistent dysfunction below the wrist and spontaneous recovery of limb function after injury. Lesion length and lesion area at the epicenter based on T2 hyperintensity were 5.68 ± 0.47 mm and 5.99 ± 0.24 mm2 at 24 weeks post-injury (wpi), and 5.29 ± 0.17 mm and 5.95 ± 0.24 mm2 at 48 wpi. The spared spinal cord area immuno-positive for glial fibrillary acidic protein was significantly reduced, while the staining intensity increased at 24 wpi and 48 wpi, compared with the sham group. Ipsilateral somatosensory and motor evoked potentials were dynamic, increasing in latency and decreasing in amplitude compared with pre-operative values or the contralateral values, and correlated to varying degrees with behavioral outcomes. A shift in size-frequency distribution of sensory neurons of the dorsal root ganglia (DRG) was consistent with a loss of large-diameter cells. The present study demonstrated that the NHP SCI model resulted in consistent unilateral limb dysfunction and potential plasticity in the face of loss of spinal cord and DRG tissue.
Collapse
Affiliation(s)
- Junhao Liu
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rong Li
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zucheng Huang
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiping Huang
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuefeng Li
- Guangdong Landau Biotechnology Co. Ltd., Guangzhou, China
| | - Xiaoliang Wu
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junyu Lin
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hui Jiang
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongquan Cheng
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ganggang Kong
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiuhua Wu
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qi Liu
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yapu Liu
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhou Yang
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruoyao Li
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianting Chen
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Joey Fu
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Center, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matt S Ramer
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Center, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian K Kwon
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Center, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jie Liu
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Center, University of British Columbia, Vancouver, British Columbia, Canada
| | - John L K Kramer
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Center, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wolfram Tetzlaff
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Center, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yong Hu
- Department of Orthopedics and Traumatology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Qingan Zhu
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
54
|
Kuno A, Kimura Y, Mizuno M, Oshima H, Sato T, Moniwa N, Tanaka M, Yano T, Tanno M, Miki T, Miura T. Empagliflozin attenuates acute kidney injury after myocardial infarction in diabetic rats. Sci Rep 2020; 10:7238. [PMID: 32350374 PMCID: PMC7190820 DOI: 10.1038/s41598-020-64380-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/15/2020] [Indexed: 12/19/2022] Open
Abstract
Acute kidney injury (AKI) predicts poor prognosis in patients with acute myocardial infarction (MI) and diabetes mellitus (DM) is an independent risk factor of AKI. Recent clinical studies have shown the beneficial effects of sodium-glucose cotransporter 2 (SGLT2) inhibitors on cardiovascular and renal outcomes in patients with DM. We recently reported that canagliflozin normalized susceptibility of diabetic rats to AKI after acute MI via β-hydroxybutyrate-mediated suppression of NOX expression. Here we examined whether the same renoprotective effect is shared by empagliflozin. Serum creatinine levels were not changed by MI induced by coronary artery occlusion in LETO, non-diabetic control rats, and OLETF, obese type 2 diabetic rats. However, immunohistochemistry revealed that MI increased renal expression of NGAL and KIM-1, early markers of tubular injury, by 3.2-fold and 2.6-fold, respectively, in OLETF. These increases in injury markers were not observed in LETO. Pretreatment with empagliflozin of OLETF for 2 weeks improved hyperglycemia, increased blood β-hydroxybutyrate level, and suppressed MI-induced expression of NGAL and KIM-1. Empagliflozin suppressed upregulation of NOX2 and NOX4 in the kidney of OLETF. Taken together with the results of our previous study, it was concluded that treatment with the SGLT2 inhibitor protects the diabetic kidney from MI-induced AKI.
Collapse
Affiliation(s)
- Atsushi Kuno
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan. .,Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | - Yukishige Kimura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masashi Mizuno
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroto Oshima
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tatsuya Sato
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Norihito Moniwa
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Marenao Tanaka
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshiyuki Yano
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masaya Tanno
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takayuki Miki
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tetsuji Miura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
55
|
Kong G, Huang Z, Zhu Q, Wan Y. Comparison of two modified methods of intrathecal catheterization in rats. Exp Anim 2020; 69:219-223. [PMID: 31866599 PMCID: PMC7220713 DOI: 10.1538/expanim.19-0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The study designed to compare two different methods of intrathecal catheterization in
rats and to develop a simple and safe drug administration in cervical spinal canal of
rats. The subarachnoid catheterization was performed via either atlanto-occipital membrane
or laminectomy at L3–4 in rats. Body weight, Basso, Beattie, and Bresnahan (BBB)
locomotion rating scores and forelimb locomotor rating scale (FLS) were measured on
pre-operative day 1 and postoperative day 1, 7, 14, respectively. FLS score of 37.5% rats
and BBB score of 50% rats in the atlanto-occipital approach (AOA) group decreased, but no
rats showed locomotor impairment in the lumber approach (LA) group. The mean body weight
of rats in AOA group reduced significantly compared with LA group. In LA group, 62.5% of
catheter tips were located at T1, and in AOA group, the tips of catheter located at C2 in
62.5% cases. The PE10 catheter can be successfully inserted into the spinal intrathecal
space for chronic delivery of drugs either via L3–L4 interlaminar space or via
atlanto-occipital membrane. And the subarachnoid catheterization via L3–L4 interlaminar
space could be easily placed at T1 with little complication.
Collapse
Affiliation(s)
- Ganggang Kong
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhong Shan Er Lu, Guangzhou 510080, Guangdong, China.,Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, 1838 N. Guangzhou Ave., Guangzhou, 510515, China
| | - Zhiping Huang
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, 1838 N. Guangzhou Ave., Guangzhou, 510515, China
| | - Qingan Zhu
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, 1838 N. Guangzhou Ave., Guangzhou, 510515, China
| | - Yong Wan
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhong Shan Er Lu, Guangzhou 510080, Guangdong, China
| |
Collapse
|
56
|
Morris G, Puri BK, Maes M, Olive L, Berk M, Carvalho AF. The role of microglia in neuroprogressive disorders: mechanisms and possible neurotherapeutic effects of induced ketosis. Prog Neuropsychopharmacol Biol Psychiatry 2020; 99:109858. [PMID: 31923453 DOI: 10.1016/j.pnpbp.2020.109858] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/03/2020] [Accepted: 01/05/2020] [Indexed: 12/23/2022]
Abstract
A comprehensive review of molecular mechanisms involved in the promotion and maintenance of distinct microglia phenotypes is provided. The acquisition and perpetuation of predominantly pro-inflammatory microglial phenotypes have been implicated in the pathophysiology of several neuroprogressive diseases and is associated with reduced ATP production via oxidative phosphorylation, increased ATP generation by glycolysis, elevated oxidative and nitrosative stress and other metabolic, inflammatory and hormonal insults. Microglia can also adopt a predominantly anti-inflammatory phenotypes with neuroprotective properties. Strategies that promote and maintain a predominantly anti-inflammatory phenotype may hold promise as novel therapeutic opportunities for neuroprogressive illness. Induced ketosis may promote a transition towards predominantly anti-inflammatory microglial states/phenotypes by several mechanisms, including inhibition of glycolysis and increased NAD+ production; engagement of microglial GPR109A receptors; histone deacetylase inhibition; and elevated n-3 polyunsaturated fatty acids levels. Since microglia activation can now be assessed in vivo, these data provide a clear rationale for the design of transdiagnostic randomized controlled trials of the ketogenic diet and other ketosis-inducing strategies for neuroprogressive diseases, which may also provide mechanistic insights through the assessment of "target engagement".
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | | | - Michael Maes
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Lisa Olive
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia; Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Andre F Carvalho
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.
| |
Collapse
|
57
|
Dąbek A, Wojtala M, Pirola L, Balcerczyk A. Modulation of Cellular Biochemistry, Epigenetics and Metabolomics by Ketone Bodies. Implications of the Ketogenic Diet in the Physiology of the Organism and Pathological States. Nutrients 2020; 12:nu12030788. [PMID: 32192146 PMCID: PMC7146425 DOI: 10.3390/nu12030788] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/05/2020] [Accepted: 03/11/2020] [Indexed: 12/13/2022] Open
Abstract
Ketone bodies (KBs), comprising β-hydroxybutyrate, acetoacetate and acetone, are a set of fuel molecules serving as an alternative energy source to glucose. KBs are mainly produced by the liver from fatty acids during periods of fasting, and prolonged or intense physical activity. In diabetes, mainly type-1, ketoacidosis is the pathological response to glucose malabsorption. Endogenous production of ketone bodies is promoted by consumption of a ketogenic diet (KD), a diet virtually devoid of carbohydrates. Despite its recently widespread use, the systemic impact of KD is only partially understood, and ranges from physiologically beneficial outcomes in particular circumstances to potentially harmful effects. Here, we firstly review ketone body metabolism and molecular signaling, to then link the understanding of ketone bodies’ biochemistry to controversies regarding their putative or proven medical benefits. We overview the physiological consequences of ketone bodies’ consumption, focusing on (i) KB-induced histone post-translational modifications, particularly β-hydroxybutyrylation and acetylation, which appears to be the core epigenetic mechanisms of activity of β-hydroxybutyrate to modulate inflammation; (ii) inflammatory responses to a KD; (iii) proven benefits of the KD in the context of neuronal disease and cancer; and (iv) consequences of the KD’s application on cardiovascular health and on physical performance.
Collapse
Affiliation(s)
- Arkadiusz Dąbek
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (A.D.); (M.W.)
| | - Martyna Wojtala
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (A.D.); (M.W.)
| | - Luciano Pirola
- INSERM Unit 1060, CarMeN Laboratory, 165 Chemin du Grand Revoyet - BP12, F-69495 Pierre Bénite CEDEX, France;
| | - Aneta Balcerczyk
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (A.D.); (M.W.)
- Correspondence: ; Tel.: +48 42 635 45 10
| |
Collapse
|
58
|
Morris G, Puri BK, Carvalho A, Maes M, Berk M, Ruusunen A, Olive L. Induced Ketosis as a Treatment for Neuroprogressive Disorders: Food for Thought? Int J Neuropsychopharmacol 2020; 23:366-384. [PMID: 32034911 PMCID: PMC7311648 DOI: 10.1093/ijnp/pyaa008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/05/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
Induced ketosis (or ketone body ingestion) can ameliorate several changes associated with neuroprogressive disorders, including schizophrenia, bipolar disorder, and major depressive disorder. Thus, the effects of glucose hypometabolism can be bypassed through the entry of beta-hydroxybutyrate, providing an alternative source of energy to glucose. The weight of evidence suggests that induced ketosis reduces levels of oxidative stress, mitochondrial dysfunction, and inflammation-core features of the above disorders. There are also data to suggest that induced ketosis may be able to target other molecules and signaling pathways whose levels and/or activity are also known to be abnormal in at least some patients suffering from these illnesses such as peroxisome proliferator-activated receptors, increased activity of the Kelch-like ECH-associated protein/nuclear factor erythroid 2-related factor 2, Sirtuin-1 nuclear factor-κB p65, and nicotinamide adenine dinucleotide (NAD). This review explains the mechanisms by which induced ketosis might reduce mitochondrial dysfunction, inflammation, and oxidative stress in neuropsychiatric disorders and ameliorate abnormal levels of molecules and signaling pathways that also appear to contribute to the pathophysiology of these illnesses. This review also examines safety data relating to induced ketosis over the long term and discusses the design of future studies.
Collapse
Affiliation(s)
- Gerwyn Morris
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Australia
| | - Basant K Puri
- C.A.R., Cambridge, United Kingdom,Hammersmith Hospital, London, United Kingdom
| | - Andre Carvalho
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Michael Maes
- Department of Psychiatry and Medical Psychology, Medical Faculty, Medical University of Plovdiv, Plovdiv, Bulgaria,Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Michael Berk
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Australia,Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry, and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Australia,Correspondence: Michael Berk, PO Box 281 Geelong, Victoria 3220 Australia ()
| | - Anu Ruusunen
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Australia
| | - Lisa Olive
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Australia
| |
Collapse
|
59
|
Versele R, Corsi M, Fuso A, Sevin E, Businaro R, Gosselet F, Fenart L, Candela P. Ketone Bodies Promote Amyloid-β 1-40 Clearance in a Human in Vitro Blood-Brain Barrier Model. Int J Mol Sci 2020; 21:E934. [PMID: 32023814 PMCID: PMC7037612 DOI: 10.3390/ijms21030934] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by the abnormal accumulation of amyloid-β (Aβ) peptides in the brain. The pathological process has not yet been clarified, although dysfunctional transport of Aβ across the blood-brain barrier (BBB) appears to be integral to disease development. At present, no effective therapeutic treatment against AD exists, and the adoption of a ketogenic diet (KD) or ketone body (KB) supplements have been investigated as potential new therapeutic approaches. Despite experimental evidence supporting the hypothesis that KBs reduce the Aβ load in the AD brain, little information is available about the effect of KBs on BBB and their effect on Aβ transport. Therefore, we used a human in vitro BBB model, brain-like endothelial cells (BLECs), to investigate the effect of KBs on the BBB and on Aβ transport. Our results show that KBs do not modify BBB integrity and do not cause toxicity to BLECs. Furthermore, the presence of KBs in the culture media was combined with higher MCT1 and GLUT1 protein levels in BLECs. In addition, KBs significantly enhanced the protein levels of LRP1, P-gp, and PICALM, described to be involved in Aβ clearance. Finally, the combined use of KBs promotes Aβ efflux across the BBB. Inhibition experiments demonstrated the involvement of LRP1 and P-gp in the efflux. This work provides evidence that KBs promote Aβ clearance from the brain to blood in addition to exciting perspectives for studying the use of KBs in therapeutic approaches.
Collapse
Affiliation(s)
- Romain Versele
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, Université d'Artois, F-62300 Lens, France; (R.V.); (M.C.); (E.S.); (F.G.); (L.F.)
| | - Mariangela Corsi
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, Université d'Artois, F-62300 Lens, France; (R.V.); (M.C.); (E.S.); (F.G.); (L.F.)
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy;
| | - Andrea Fuso
- Department of Experimental Medicine, Sapienza University of Rome, Dip. di Chirurgia “P. Valdoni”, Via A. Scarpa 16, 00161 Rome, Italy;
| | - Emmanuel Sevin
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, Université d'Artois, F-62300 Lens, France; (R.V.); (M.C.); (E.S.); (F.G.); (L.F.)
| | - Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy;
| | - Fabien Gosselet
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, Université d'Artois, F-62300 Lens, France; (R.V.); (M.C.); (E.S.); (F.G.); (L.F.)
| | - Laurence Fenart
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, Université d'Artois, F-62300 Lens, France; (R.V.); (M.C.); (E.S.); (F.G.); (L.F.)
| | - Pietra Candela
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, Université d'Artois, F-62300 Lens, France; (R.V.); (M.C.); (E.S.); (F.G.); (L.F.)
| |
Collapse
|
60
|
Metformin Promotes Axon Regeneration after Spinal Cord Injury through Inhibiting Oxidative Stress and Stabilizing Microtubule. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9741369. [PMID: 31998447 PMCID: PMC6969994 DOI: 10.1155/2020/9741369] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022]
Abstract
Spinal cord injury (SCI) is a devastating disease that may lead to lifelong disability. Thus, seeking for valid drugs that are beneficial to promoting axonal regrowth and elongation after SCI has gained wide attention. Metformin, a glucose-lowering agent, has been demonstrated to play roles in various central nervous system (CNS) disorders. However, the potential protective effect of metformin on nerve regeneration after SCI is still unclear. In this study, we found that the administration of metformin improved functional recovery after SCI through reducing neuronal cell apoptosis and repairing neurites by stabilizing microtubules via PI3K/Akt signaling pathway. Inhibiting the PI3K/Akt pathway with LY294002 partly reversed the therapeutic effects of metformin on SCI in vitro and vivo. Furthermore, metformin treatment weakened the excessive activation of oxidative stress and improved the mitochondrial function by activating the nuclear factor erythroid-related factor 2 (Nrf2) transcription and binding to the antioxidant response element (ARE). Moreover, treatment with Nrf2 inhibitor ML385 partially abolished its antioxidant effect. We also found that the Nrf2 transcription was partially reduced by LY294002 in vitro. Taken together, these results revealed that the role of metformin in nerve regeneration after SCI was probably related to stabilization of microtubules and inhibition of the excessive activation of Akt-mediated Nrf2/ARE pathway-regulated oxidative stress and mitochondrial dysfunction. Overall, our present study suggests that metformin administration may provide a potential therapy for SCI.
Collapse
|
61
|
Caplliure‐Llopis J, Peralta‐Chamba T, Carrera‐Juliá S, Cuerda‐Ballester M, Drehmer‐Rieger E, López‐Rodriguez MM, de la Rubia Ortí JE. Therapeutic alternative of the ketogenic Mediterranean diet to improve mitochondrial activity in Amyotrophic Lateral Sclerosis (ALS): A Comprehensive Review. Food Sci Nutr 2020; 8:23-35. [PMID: 31993129 PMCID: PMC6977418 DOI: 10.1002/fsn3.1324] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/07/2019] [Accepted: 10/17/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease which is pathogenically based on the mitochondrial alteration of motor neurons, causing progressive neuron death. While ALS is characterized by enormous oxidative stress, the Mediterranean diet has been seen to have high antioxidant power. Therefore, the aim of this study is to determine how the Mediterranean diet can improve mitochondrial activity, establishing the specific nutrients and, in addition, observing the pathogenic mechanisms related to the disease that would achieve this improvement. To this end, a comprehensive review of the literature was performed using PubMed. KBs have been observed to have a neuroprotective effect to improve energy balance, increasing survival and the number of motor neurons. This ketogenesis can be achieved after following a Mediterranean diet which is associated with great benefits in other neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and ALS. These benefits are due to the high antioxidant power especially based on polyphenols contained mainly in olive oil, wine, nuts, or berries. In short, KBs could be considered as a promising option to treat ALS, representing an alternative source to glucose in motor neurons by providing neuroprotection. In addition, treatment results can be improved as ketogenesis can be achieved (increase in KBs) by following a Mediterranean diet, thanks to the high antioxidant properties which, at the same time, would improve the high oxidative stress that characterizes the disease.
Collapse
Affiliation(s)
- Jordi Caplliure‐Llopis
- Doctoral Degree's SchoolCatholic University of ValenciaValenciaSpain
- University Hospital la RiberaAlziraSpain
| | | | - Sandra Carrera‐Juliá
- Doctoral Degree's SchoolCatholic University of ValenciaValenciaSpain
- Faculty of Medicine and OdontologyCatholic. University of ValenciaValenciaSpain
| | | | - Eraci Drehmer‐Rieger
- Department of Health and Functional ValorizationCatholic University of ValenciaValenciaSpain
| | | | | |
Collapse
|
62
|
Cui W, Luo W, Zhou X, Lu Y, Xu W, Zhong S, Feng G, Liang Y, Liang L, Mo Y, Xiao X, Huang G, Matskova L, Zhang Z, Li P, Zhou X. Dysregulation of Ketone Body Metabolism Is Associated With Poor Prognosis for Clear Cell Renal Cell Carcinoma Patients. Front Oncol 2019; 9:1422. [PMID: 31921677 PMCID: PMC6928137 DOI: 10.3389/fonc.2019.01422] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/29/2019] [Indexed: 12/15/2022] Open
Abstract
Kidney is an important organ for ketone body metabolism. However, the role of abnormal ketone metabolism and its possible function in tumorigenesis of clear cell renal cell carcinoma (ccRCC) have not yet been elucidated. Three differentially expressed key enzymes involved in ketone body metabolism, ACAT1, BDH2, and HMGCL, were screened out between ccRCC and normal kidney tissues using the GEO and TCGA databases.We confirmed that the transcription and protein expression of ACAT1, BDH2, and HMGCL were significantly lower in ccRCC by real-time RT-PCR and IHC assays. Those patients with lower expression of these three genes have a worse outcome. In addition, we demonstrated that ectopic expression of each of these genes inhibited the proliferation of ccRCC cells. The overexpressed ACAT1 and BDH2 genes remarkably impeded the migratory and invasive capacity of ccRCC cells. Furthermore, exogenous β-hydroxybutyrate suppressed the growth of ccRCC cells in vitro in a dose-dependent manner. Our findings suggest that ACAT1, BDH2, and HMGCL are potential tumor suppressor genes, and constitute effective prognostic biomarkers for ccRCC. Ketone body metabolism might thus be a promising target in a process for developing novel therapeutic approaches to treat ccRCC.
Collapse
Affiliation(s)
- Wanmeng Cui
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| | - Wenqi Luo
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, China.,Department of Pathology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiaohui Zhou
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Yunliang Lu
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| | - Wenqing Xu
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| | - Suhua Zhong
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| | - Guofei Feng
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| | - Yushan Liang
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| | - Libin Liang
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| | - Yingxi Mo
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| | - Xue Xiao
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| | - Guangwu Huang
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| | - Liudmila Matskova
- Institute of Living Systems, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Zhe Zhang
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| | - Ping Li
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, China.,Department of Pathology, College & Hospital of Stomatology, Guangxi Medical University, Nanning, China
| | - Xiaoying Zhou
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, China.,Life Science Institute, Guangxi Medical University, Nanning, China
| |
Collapse
|
63
|
Ginsenoside Rg1 defenses PC-12 cells against hydrogen peroxide-caused damage via up-regulation of miR-216a-5p. Life Sci 2019; 236:116948. [DOI: 10.1016/j.lfs.2019.116948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 12/14/2022]
|
64
|
Oh CM, Cho S, Jang JY, Kim H, Chun S, Choi M, Park S, Ko YG. Cardioprotective Potential of an SGLT2 Inhibitor Against Doxorubicin-Induced Heart Failure. Korean Circ J 2019; 49:1183-1195. [PMID: 31456369 PMCID: PMC6875592 DOI: 10.4070/kcj.2019.0180] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 06/27/2019] [Accepted: 07/05/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Recent studies have shown that sodium-glucose co-transporter 2 (SGLT2) inhibitors reduce the risk of heart failure (HF)-associated hospitalization and mortality in patients with diabetes. However, it is not clear whether SGLT2 inhibitors have a cardiovascular benefit in patients without diabetes. We aimed to determine whether empagliflozin (EMPA), an SGLT2 inhibitor, has a protective role in HF without diabetes. METHODS Cardiomyopathy was induced in C57BL/6J mice using intraperitoneal injection of doxorubicin (Dox). Mice with HF were fed a normal chow diet (NCD) or an NCD containing 0.03% EMPA. Then we analyzed their phenotypes and performed in vitro experiments to reveal underlying mechanisms of the EMPA's effects. RESULTS Mice fed NCD with EMPA showed improved heart function and reduced fibrosis. In vitro studies showed similar results. Phloridzin, a non-specific SGLT inhibitor, did not show any protective effect against Dox toxicity in H9C2 cells. SGLT2 inhibitor can cause increase in blood ketone levels. Beta hydroxybutyrate (βOHB), which is well known ketone body associated with SGLT2 inhibitor, showed a protective effect against Dox in H9C2 cells and in Dox-treated mice. These results suggest elevating βOHB might be a convincing mechanism for the protective effects of SGLT2 inhibitor. CONCLUSIONS SGLT2 inhibitors have a protective effect in Dox-induced HF in mice. This implied that SGLT2 inhibitor therapy could be a good treatment strategy even in HF patients without diabetes.
Collapse
Affiliation(s)
- Chang Myung Oh
- Division of Endocrinology and Metabolism, CHA Bundang Medical Center, School of Medicine CHA University, Seongnam, Korea
| | - Sungsoo Cho
- Division of Cardiovascular medicine, Department of Internal medicine, Dankook University Hospital, Dankook University School of Medicine, Cheonan, Korea
| | - Ji Yong Jang
- Division of Cardiology, National Health Insurance Service Ilsan Hospital, Goyang, Korea
| | - Hyeongseok Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Sukyung Chun
- Division of Endocrinology and Metabolism, CHA Bundang Medical Center, School of Medicine CHA University, Seongnam, Korea
| | - Minkyung Choi
- Division of Endocrinology and Metabolism, CHA Bundang Medical Center, School of Medicine CHA University, Seongnam, Korea
| | - Sangkyu Park
- Department of Biochemistry, College of Medicine, Catholic Kwandong University, Gangneung, Korea.
| | - Young Guk Ko
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
65
|
Jia G, Zhang Y, Li W, Dai H. Neuroprotective role of icariin in experimental spinal cord injury via its antioxidant, anti‑neuroinflammatory and anti‑apoptotic properties. Mol Med Rep 2019; 20:3433-3439. [PMID: 31432160 DOI: 10.3892/mmr.2019.10537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 07/12/2019] [Indexed: 11/05/2022] Open
Abstract
Icariin is a type of flavonoid derived from the Chinese herbal plant Epimedium sagittatum Maxim. Mounting evidence has confirmed the beneficial effects of icariin in neurological diseases, including spinal cord injury (SCI). The aim of the present study was to investigate the neuroprotective effects of icariin in SCI and the precise underlying mechanism. The weight‑drop injury technique was applied to construct an SCI model in Sprague‑Dawley rats. Icariin (35 µmol/kg) was administered orally once daily for 7 consecutive days to examine its neuroprotective effects. The Basso, Beattie and Bresnahan scoring system was used for neurobehavioral evaluation. The water content of the injured spinal cord was measured via the dry‑wet weight method. Biochemical indices were examined by colorimetric assay using commercially available kits. Western blot analysis was used to detect protein expression. Icariin significantly accelerated the recovery of the locomotor function of SCI rats and decreased spinal cord water content. Icariin also attenuated SCI‑induced pro‑apoptotic protein expression and activity, while it increased anti‑apoptotic protein levels. In addition, icariin alleviated oxidative stress in SCI rats and decreased the levels of inflammatory molecules, including interleukin (IL)‑1β, IL‑6, tumor necrosis factor‑α, nitric oxide, nuclear factor‑κB and inducible nitric oxide synthase, and increased the expression of anti‑inflammatory proteins, including NADPH‑quinone oxidoreductase‑1, heme oxygenase‑1 and nuclear factor erythroid 2‑related factor 2 in the injured spinal cord. Therefore, icariin treatment accelerated locomotor function recovery in SCI, and its protective effects may be mediated via its antioxidant, anti‑inflammatory and anti‑apoptotic bioactivity.
Collapse
Affiliation(s)
- Guizhi Jia
- Department of Physiology, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Yuqiang Zhang
- Department of Orthopedics, First Affiliated Hospital, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Weihong Li
- Department of Physiology, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Hongliang Dai
- School of Nursing, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|
66
|
Kimura Y, Kuno A, Tanno M, Sato T, Ohno K, Shibata S, Nakata K, Sugawara H, Abe K, Igaki Y, Yano T, Miki T, Miura T. Canagliflozin, a sodium-glucose cotransporter 2 inhibitor, normalizes renal susceptibility to type 1 cardiorenal syndrome through reduction of renal oxidative stress in diabetic rats. J Diabetes Investig 2019; 10:933-946. [PMID: 30663266 PMCID: PMC6626958 DOI: 10.1111/jdi.13009] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/12/2019] [Accepted: 01/17/2019] [Indexed: 12/18/2022] Open
Abstract
AIMS/INTRODUCTION Type 2 diabetes mellitus is a risk factor of acute kidney injury after myocardial infarction (MI), a form of cardiorenal syndrome. Recent clinical trials have shown that a sodium-glucose cotransporter 2 (SGLT2) inhibitor improved both cardiac and renal outcomes in patients with type 2 diabetes mellitus, but effects of an SGLT2 inhibitor on cardiorenal syndrome remain unclear. MATERIALS AND METHODS Type 2 diabetes mellitus (Otsuka Long-Evans Tokushima Fatty rats [OLETF]) and control (Long-Evans Tokushima Otsuka rats [LETO]) were treated with canagliflozin, an SGLT2 inhibitor, for 2 weeks. Renal tissues were analyzed at 12 h after MI with or without preoperative fasting. RESULTS Canagliflozin reduced blood glucose levels in OLETF, and blood β-hydroxybutyrate levels were increased by canagliflozin only with fasting. MI increased neutrophil gelatinase-associated lipocalin and kidney injury molecule-1 protein levels in the kidney by 3.2- and 1.6-fold, respectively, in OLETF, but not in LETO. The renal messenger ribonucleic acid level of Toll-like receptor 4 was higher in OLETF than in LETO after MI, whereas messenger ribonucleic acid levels of cytokines/chemokines were not significantly different. Levels of lipid peroxides, nicotinamide adenine dinucleotide phosphate oxidase (NOX)2 and NOX4 proteins after MI were significantly higher in OLETF than in LETO. Canagliflozin with pre-MI fasting suppressed MI-induced renal expression of neutrophil gelatinase-associated lipocalin and kidney injury molecule-1 in OLETF, together with reductions in lipid peroxides and NOX proteins in the kidney. Blood β-hydroxybutyrate levels before MI were inversely correlated with neutrophil gelatinase-associated lipocalin protein levels in OLETF. Pre-incubation with β-hydroxybutyrate attenuated angiotensin II-induced upregulation of NOX4 in NRK-52E cells. CONCLUSIONS The findings suggest that SGLT2 inhibitor treatment with a fasting period protects kidneys from MI-induced cardiorenal syndrome, possibly by β-hydroxybutyrate-mediated reduction of NOXs and oxidative stress, in type 2 diabetic rats.
Collapse
Affiliation(s)
- Yukishige Kimura
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Atsushi Kuno
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
- Department of PharmacologySapporo Medical University School of MedicineSapporoJapan
| | - Masaya Tanno
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Tatsuya Sato
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
- Department of Cellular Physiology and Signal TransductionSapporo Medical University School of MedicineSapporoJapan
| | - Kouhei Ohno
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Satoru Shibata
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Kei Nakata
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Hirohito Sugawara
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Koki Abe
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Yusuke Igaki
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Toshiyuki Yano
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Takayuki Miki
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Tetsuji Miura
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| |
Collapse
|
67
|
Wood TR, Stubbs BJ, Juul SE. Exogenous Ketone Bodies as Promising Neuroprotective Agents for Developmental Brain Injury. Dev Neurosci 2019; 40:451-462. [PMID: 31085911 DOI: 10.1159/000499563] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/12/2019] [Indexed: 11/19/2022] Open
Abstract
Ketone bodies are a promising area of neuroprotection research that may be ideally suited to the injured newborn. During normal development, the human infant is in significant ketosis for at least the first week of life. Ketone uptake and metabolism is upregulated in the both the fetus and neonate, with ketone bodies providing at least 10% of cerebral metabolic energy requirements, as well as being the preferred precursors for the synthesis of fatty acids and cholesterol. At the same time, ketone bodies have been shown to have multiple neuroprotective effects, including being anticonvulsant, decreasing oxidative stress and inflammation, and epigenetically upregulating the production of neurotrophic factors. While ketogenic diets and exogenous ketosis are largely being investigated in the setting of adult brain injury, the adaptation of the neonate to ketosis suggests that developmental brain injury may be the area most suited to the use of ketones for neuroprotection. Here, we describe the mechanisms by which ketone bodies exert their neuroprotective effects, and how these may translate to benefits within each of the phases of neonatal asphyxial brain injury.
Collapse
Affiliation(s)
- Thomas R Wood
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, Washington, USA, .,Institute for Human and Machine Cognition, Pensacola, Florida, USA,
| | - Brianna J Stubbs
- HVMN Inc., San Francisco, California, USA.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Sandra E Juul
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
68
|
Gross EC, Klement RJ, Schoenen J, D'Agostino DP, Fischer D. Potential Protective Mechanisms of Ketone Bodies in Migraine Prevention. Nutrients 2019; 11:E811. [PMID: 30974836 PMCID: PMC6520671 DOI: 10.3390/nu11040811] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 12/15/2022] Open
Abstract
An increasing amount of evidence suggests that migraines are a response to a cerebral energy deficiency or oxidative stress levels that exceed antioxidant capacity. The ketogenic diet (KD), a diet mimicking fasting that leads to the elevation of ketone bodies (KBs), is a therapeutic intervention targeting cerebral metabolism that has recently shown great promise in the prevention of migraines. KBs are an alternative fuel source for the brain, and are thus likely able to circumvent some of the abnormalities in glucose metabolism and transport found in migraines. Recent research has shown that KBs-D-β-hydroxybutyrate in particular-are more than metabolites. As signalling molecules, they have the potential to positively influence other pathways commonly believed to be part of migraine pathophysiology, namely: mitochondrial functioning, oxidative stress, cerebral excitability, inflammation and the gut microbiome. This review will describe the mechanisms by which the presence of KBs, D-BHB in particular, could influence those migraine pathophysiological mechanisms. To this end, common abnormalities in migraines are summarised with a particular focus on clinical data, including phenotypic, biochemical, genetic and therapeutic studies. Experimental animal data will be discussed to elaborate on the potential therapeutic mechanisms of elevated KBs in migraine pathophysiology, with a particular focus on the actions of D-BHB. In complex diseases such as migraines, a therapy that can target multiple possible pathogenic pathways seems advantageous. Further research is needed to establish whether the absence/restriction of dietary carbohydrates, the presence of KBs, or both, are of primary importance for the migraine protective effects of the KD.
Collapse
Affiliation(s)
- Elena C Gross
- Division of Paediatric Neurology, University Children's Hospital Basel (UKBB), University of Basel, 4056 Basel, Switzerland.
| | - Rainer J Klement
- Department of Radiation Oncology, Leopoldina Hospital Schweinfurt, 97422 Schweinfurt, Germany.
| | - Jean Schoenen
- Headache Research Unit, University of Liège, Dept of Neurology-Citadelle Hospital, 4000 Liège, Belgium.
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, Metabolic Medicine Research Laboratory, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
- Institute for Human and Machine Cognition, Ocala, FL 34471, USA.
| | - Dirk Fischer
- Division of Paediatric Neurology, University Children's Hospital Basel (UKBB), University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|
69
|
Tajima T, Yoshifuji A, Matsui A, Itoh T, Uchiyama K, Kanda T, Tokuyama H, Wakino S, Itoh H. β-hydroxybutyrate attenuates renal ischemia-reperfusion injury through its anti-pyroptotic effects. Kidney Int 2019; 95:1120-1137. [PMID: 30826015 DOI: 10.1016/j.kint.2018.11.034] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 11/16/2018] [Accepted: 11/21/2018] [Indexed: 01/05/2023]
Abstract
Ketone bodies including β-hydroxybutyrate (β-OHB) have been shown to protect against ischemic tissue injury when present at low concentrations. We evaluated the impact of β-OHB on renal ischemia/reperfusion injury (IRI). Mice were treated with a continuous infusion of β-OHB using an osmotic mini-pump before and after IRI. We also tested the effects of increasing endogenous serum β-OHB levels by fasting. Renal IRI was attenuated by β-OHB treatment compared to saline control, with similar results in the fasting condition. β-OHB treatment reduced the number of terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL)-positive cells and increased expression of forkhead transcription factor O3 (FOXO3), an upstream regulator of pyroptosis. Although β-OHB treatment did not impact markers of apoptosis, it decreased the expression of caspase-1 and proinflammatory cytokines, indicating that β-OHB blocked pyroptosis. In a human proximal tubular cell line exposed to hypoxia and reoxygenation, β-OHB reduced cell death in a FOXO3-dependent fashion. Histone acetylation was decreased in kidneys exposed to IRI and in proximal tubular cells exposed to hypoxia and reoxygenation, and this effect was ameliorated by β-OHB through the inactivation of histone deacetylases. In vitro, β-OHB treatment restored histone acetylation at the FOXO3 promoter. Consistent with epigenetic molecular effects, the renoprotective effects of β-OHB were still observed when the continuous infusion was stopped at the time of IRI. Thus, β-OHB attenuates renal IRI through anti-pyroptotic effects, likely mediated by an epigenetic effect on FOXO3 expression.
Collapse
Affiliation(s)
- Takaya Tajima
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Ayumi Yoshifuji
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Ayumi Matsui
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Tomoaki Itoh
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Kiyotaka Uchiyama
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Takeshi Kanda
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Hirobumi Tokuyama
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Shu Wakino
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan.
| | - Hiroshi Itoh
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
70
|
Yu L, Liu Y, Jin Y, Cao X, Chen J, Jin J, Gu Y, Bao X, Ren Z, Xu Y, Zhu X. Lentivirus-Mediated HDAC3 Inhibition Attenuates Oxidative Stress in APPswe/PS1dE9 Mice. J Alzheimers Dis 2019; 61:1411-1424. [PMID: 29376873 DOI: 10.3233/jad-170844] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Amyloid-β (Aβ) induces a burst of oxidative stress and plays a critical role in the pathogenesis of Alzheimer's disease (AD). Our previous results have shown that histone deacetylase 3 (HDAC3) inhibition ameliorates spatial memory deficits and decreases the Aβ burden in the brains of 9-month-old APPswe/PS1dE9 (APP/PS1) mice. In this study, we investigated the role of HDAC3 inhibition in oxidative stress in vivo and in vitro models of AD. HDAC3 was detected mainly in the neurons, and HDAC3 inhibition significantly decreased reactive oxygen species generation and improved primary cortical neuron viability. In addition, HDAC3 inhibition attenuated spatial memory dysfunction in 6-month-old APP/PS1 mice, and decreased the apoptotic rate in the hippocampi as demonstrated by TUNEL staining. HDAC3 inhibition also reduced markers of lipid peroxidation, protein oxidation, and DNA/RNA oxidation in the hippocampi of APP/PS1 mice. Moreover, HDAC3 inhibition inactivated the c-Abl/MST1/YAP signaling pathway in the hippocampi of APP/PS1 mice. In conclusion, our data show that HDAC3 inhibition can attenuate spatial memory deficits and inhibit oxidative stress in APP/PS1 mice; these results indicate a potential strategy for AD treatment.
Collapse
Affiliation(s)
- Linjie Yu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China
| | - Yi Liu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China
| | - Yuexinzi Jin
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China.,Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Cao
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China
| | - Jian Chen
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China.,Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, China
| | - Jiali Jin
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China
| | - Yue Gu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China
| | - Xinyu Bao
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China
| | - Zhuoying Ren
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China
| | - Xiaolei Zhu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China
| |
Collapse
|
71
|
Liu Q, Xu X, Yang Z, Liu Y, Wu X, Huang Z, Liu J, Huang Z, Kong G, Ding J, Li R, Lin J, Zhu Q. Metformin Alleviates the Bone Loss Induced by Ketogenic Diet: An In Vivo Study in Mice. Calcif Tissue Int 2019; 104:59-69. [PMID: 30167745 DOI: 10.1007/s00223-018-0468-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/16/2018] [Indexed: 12/11/2022]
Abstract
Metformin (Met), an anti-diabetes drug, has also shown therapeutic effects for ovariectomy-induced (OVX) osteoporosis. However, similar effects against bone loss induced by a ketogenic diet (KD) have not been tested. This study was aimed to evaluate the microarchitectures and biomechanics of KD-induced osteoporosis with and without administration of Met, and compare the effect of Met on bone loss induced by KD with OVX. Forty female C57BL/6J mice were randomly divided into Sham, OVX, OVX + Met (100 mg/kg/day), KD (3:1 ratio of fat to carbohydrate and protein), and KD + Met (100 mg/kg/day) groups. After 12 weeks, the bone mass and biomechanics were measured in distal cancellous bone and in mid-shaft cortical bone of the femur. The activities of serum alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP), together with immunohistochemistry staining of osteocalcin (OCN) and TRAP, were evaluated. Both OVX and KD induced significant bone loss and compromised biomechanical properties in the cancellous bone, but no effect was found in cortical bone. The administration of Met increased the cancellous bone volume fraction (BV/TV) from 3.78 to 5.23% following the OVX and from 4.04 to 6.33% following the KD, it also enhanced the compressive stiffness from 47 to 160 N/mm following the OVX and from 35 to 340 N/mm with the KD. Met effectively increased serum ALP in the KD group while decreased serum TRAP in the OVX group, but up-regulated expression of OCN and down-regulated expression of TRAP in both OVX and KD groups. The present study demonstrated that Met effectively attenuated the cancellous bone loss induced by KD and maintained the biomechanical properties of long bones, providing evidence for Met as a treatment of by KD-induced osteoporosis in teenage skeleton.
Collapse
Affiliation(s)
- Qi Liu
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Xiaolin Xu
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Zhou Yang
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Yapu Liu
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
- Department of Spinal Surgery, The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, China
| | - Xiuhua Wu
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Zhiping Huang
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Junhao Liu
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Zucheng Huang
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Ganggang Kong
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Jianyang Ding
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Rong Li
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Junyu Lin
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Qingan Zhu
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China.
| |
Collapse
|
72
|
Xu L, Botchway BOA, Zhang S, Zhou J, Liu X. Inhibition of NF-κB Signaling Pathway by Resveratrol Improves Spinal Cord Injury. Front Neurosci 2018; 12:690. [PMID: 30337851 PMCID: PMC6180204 DOI: 10.3389/fnins.2018.00690] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/14/2018] [Indexed: 12/13/2022] Open
Abstract
Spinal cord injury (SCI) can have a significant impact on an individual’s life. Herein, we discuss how resveratrol improves SCI by inhibiting nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway. Evidences show resveratrol suppresses NF-κB signaling pathway to exert its beneficial effects on various diseases. NF-κB signaling pathway plays a significant role in the pathophysiological mechanisms of SCI including increase in inflammation, augmentation of damage caused by free radicals and lipid peroxidation as well as facilitation of apoptosis and axonal demyelination. We also discuss mechanisms between resveratrol and NF-κB signaling pathway in the wake of SCI, which can be potential targets for resveratrol to treat SCI.
Collapse
Affiliation(s)
- Luyao Xu
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Songou Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, China
| | - Jingying Zhou
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, China
| |
Collapse
|
73
|
Liu Q, Wang X, Huang Z, Liu J, Ding J, Xu X, Kong G, Wu X, Yang Z, Zhu Q. Ketogenic diet delays spinal fusion and decreases bone mass in posterolateral lumbar spinal fusion: an in vivo rat model. Acta Neurochir (Wien) 2018; 160:1909-1916. [PMID: 29982887 DOI: 10.1007/s00701-018-3616-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 06/27/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Ketogenic diet (KD), a low-carbohydrate-and-high-fat diet, causes a metabolic state of ketogenesis and has been used to treat drug-resistance epilepsy. Our recent studies showed KD neuroprotective after spinal cord injury and causing bone loss. Effects of KD on spinal fusion were still unknown. This study was aimed to evaluate effects of KD on spinal fusion in rats. METHODS Thirty-two Sprague-Dawley rats were randomly divided into KD and standard diet (SD) groups. The KD group was fed with food of 1:4 carbohydrates to fat. All rats were subjected to L4/5 posterolateral lumbar spinal fusion. The blood ketone, and serum calcium, phosphorus, and insulin-like growth factor-1 (IGF-1) were measured, as well as the fusion rates, bone mass (BV), and bone mineral contents (BMC) of fusion sites were estimated at 4 and 8 weeks. RESULTS There was no significant difference in serum calcium or phosphorus levels between groups at 4 or 8 weeks. However, there was a significant increase of blood ketone (1.02 mmol/L vs 0.38 mmol/L at 4 weeks; 0.83 mmol/L vs 0.32 mmol/L, at 8 weeks) and decrease of serum IGF-1 (339.4 ng/mL vs 630.6 ng/mL at 4 weeks; 418.8 ng/mL vs 628.6 ng/mL, at 8 weeks) in the KD group compared with the SD group. The spinal fusion occurred less in the KD group (1/16 vs 6/16 at 4 weeks; 7/16 vs 10/16, at 8 weeks), particularly at 4 weeks after surgery. The BV and BMC were lower in the KD group than that in the SD group at 4 weeks, but not different between groups at 8 weeks. CONCLUSIONS This study demonstrated that KD delayed spinal fusion and decreased bone mass in posterolateral lumbar spinal fusion in rats.
Collapse
|
74
|
Lu Y, Yang YY, Zhou MW, Liu N, Xing HY, Liu XX, Li F. Ketogenic diet attenuates oxidative stress and inflammation after spinal cord injury by activating Nrf2 and suppressing the NF-κB signaling pathways. Neurosci Lett 2018; 683:13-18. [DOI: 10.1016/j.neulet.2018.06.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 12/19/2022]
|
75
|
Manea SA, Antonescu ML, Fenyo IM, Raicu M, Simionescu M, Manea A. Epigenetic regulation of vascular NADPH oxidase expression and reactive oxygen species production by histone deacetylase-dependent mechanisms in experimental diabetes. Redox Biol 2018; 16:332-343. [PMID: 29587244 PMCID: PMC5953221 DOI: 10.1016/j.redox.2018.03.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/02/2018] [Accepted: 03/16/2018] [Indexed: 01/04/2023] Open
Abstract
Reactive oxygen species (ROS) generated by up-regulated NADPH oxidase (Nox) contribute to structural-functional alterations of the vascular wall in diabetes. Epigenetic mechanisms, such as histone acetylation, emerged as important regulators of gene expression in cardiovascular disorders. Since their role in diabetes is still elusive we hypothesized that histone deacetylase (HDAC)-dependent mechanisms could mediate vascular Nox overexpression in diabetic conditions. Non-diabetic and streptozotocin-induced diabetic C57BL/6J mice were randomized to receive vehicle or suberoylanilide hydroxamic acid (SAHA), a pan-HDAC inhibitor. In vitro studies were performed on a human aortic smooth muscle cell (SMC) line. Aortic SMCs typically express Nox1, Nox4, and Nox5 subtypes. HDAC1 and HDAC2 proteins along with Nox1, Nox2, and Nox4 levels were found significantly elevated in the aortas of diabetic mice compared to non-diabetic animals. Treatment of diabetic mice with SAHA mitigated the aortic expression of Nox1, Nox2, and Nox4 subtypes and NADPH-stimulated ROS production. High concentrations of glucose increased HDAC1 and HDAC2 protein levels in cultured SMCs. SAHA significantly reduced the high glucose-induced Nox1/4/5 expression, ROS production, and the formation malondialdehyde-protein adducts in SMCs. Overexpression of HDAC2 up-regulated the Nox1/4/5 gene promoter activities in SMCs. Physical interactions of HDAC1/2 and p300 proteins with Nox1/4/5 promoters were detected at the sites of active transcription. High glucose induced histone H3K27 acetylation enrichment at the promoters of Nox1/4/5 genes in SMCs. The novel data of this study indicate that HDACs mediate vascular Nox up-regulation in diabetes. HDAC inhibition reduces vascular ROS production in experimental diabetes, possibly by a mechanism involving negative regulation of Nox expression.
Collapse
Affiliation(s)
- Simona-Adriana Manea
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania
| | - Mihaela-Loredana Antonescu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania
| | - Ioana Madalina Fenyo
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania
| | - Monica Raicu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania
| | - Maya Simionescu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania
| | - Adrian Manea
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania.
| |
Collapse
|
76
|
Short chain fatty acid, acetate ameliorates sepsis-induced acute kidney injury by inhibition of NADPH oxidase signaling in T cells. Int Immunopharmacol 2018; 58:24-31. [DOI: 10.1016/j.intimp.2018.02.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/07/2018] [Accepted: 02/28/2018] [Indexed: 12/29/2022]
|
77
|
Affiliation(s)
- Mark M. Hughes
- School of Biochemistry and Immunology; Trinity Biomedical Sciences Institute; Trinity College Dublin; Dublin Ireland
| | - Luke A.J. O'Neill
- School of Biochemistry and Immunology; Trinity Biomedical Sciences Institute; Trinity College Dublin; Dublin Ireland
| |
Collapse
|
78
|
More than a powerplant: the influence of mitochondrial transfer on the epigenome. CURRENT OPINION IN PHYSIOLOGY 2017; 3:16-24. [PMID: 29750205 DOI: 10.1016/j.cophys.2017.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Each cell in the human body, with the exception of red blood cells, contains multiple copies of mitochondria that house their own genetic material, the maternally inherited mitochondrial DNA. Mitochondria are the cell's powerplant due to their massive ATP generation. However, the mitochondrion is also a hub for metabolite production from the TCA cycle, fatty acid beta-oxidation, and ketogenesis. In addition to producing macromolecules for biosynthetic reactions and cell replication, several mitochondrial intermediate metabolites serve as cofactors or substrates for epigenome modifying enzymes that regulate chromatin structure and impact gene expression. Here, we discuss connections between mitochondrial metabolites and enzymatic writers and erasers of chromatin modifications. We do this from the unique perspective of cell-to-cell mitochondrial transfer and its potential impact on mitochondrial replacement therapies.
Collapse
|
79
|
Wang X, Wu X, Liu Q, Kong G, Zhou J, Jiang J, Wu X, Huang Z, Su W, Zhu Q. Ketogenic Metabolism Inhibits Histone Deacetylase (HDAC) and Reduces Oxidative Stress After Spinal Cord Injury in Rats. Neuroscience 2017; 366:36-43. [DOI: 10.1016/j.neuroscience.2017.09.056] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 09/26/2017] [Accepted: 09/28/2017] [Indexed: 12/12/2022]
|
80
|
Abstract
PURPOSE Radiotherapy (RT) is a mainstay in the treatment of solid tumors and works by inducing free radical stress in tumor cells, leading to loss of reproductive integrity. The optimal treatment strategy has to consider damage to both tumor and normal cells and is determined by five factors known as the 5 R's of radiobiology: Reoxygenation, DNA repair, radiosensitivity, redistribution in the cell cycle and repopulation. The aim of this review is (i) to present evidence that these 5 R's are strongly influenced by cellular and whole-body metabolism that in turn can be modified through ketogenic therapy in form of ketogenic diets and short-term fasting and (ii) to stimulate new research into this field including some research questions deserving further study. CONCLUSIONS Preclinical and some preliminary clinical data support the hypothesis that ketogenic therapy could be utilized as a complementary treatment in order to improve the outcome after RT, both in terms of higher tumor control and in terms of lower normal tissue complication probability. The first effect relates to the metabolic shift from glycolysis toward mitochondrial metabolism that selectively increases ROS production and impairs ATP production in tumor cells. The second effect is based on the differential stress resistance phenomenon, which is achieved when glucose and growth factors are reduced and ketone bodies are elevated, reprogramming normal but not tumor cells from proliferation toward maintenance and stress resistance. Underlying both effects are metabolic differences between normal and tumor cells that ketogenic therapy seeks to exploit. Specifically, the recently discovered role of the ketone body β-hydroxybutyrate as an endogenous class-I histone deacetylase inhibitor suggests a dual role as a radioprotector of normal cells and a radiosensitzer of tumor cells that opens up exciting possibilities to employ ketogenic therapy as a cost-effective adjunct to radiotherapy against cancer.
Collapse
Affiliation(s)
- Rainer J Klement
- a Department of Radiotherapy and Radiation Oncology , Leopoldina Hospital , Schweinfurt , Germany
| |
Collapse
|