51
|
Yin X, Fang Z, Fang Y, Zhu L, Pang J, Liu T, Zhao Z, Zhao J. Antimicrobial Photodynamic Therapy Involving a Novel Photosensitizer Combined With an Antibiotic in the Treatment of Rabbit Tibial Osteomyelitis Caused by Drug-Resistant Bacteria. Front Microbiol 2022; 13:876166. [PMID: 35531297 PMCID: PMC9073078 DOI: 10.3389/fmicb.2022.876166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Osteomyelitis is deep tissue inflammation caused by bacterial infection. If such an infection persists, it can lead to dissolution and necrosis of the bone tissue. As a result of the extensive use of antibiotics, drug-resistant bacteria are an increasingly common cause of osteomyelitis, limiting the treatment options available to surgeons. Photodynamic antibacterial chemotherapy has attracted increasing attention as a potential alternative treatment. Its advantages are a broad antibacterial spectrum, lack of drug resistance, and lack of toxic side effects. In this study, we explored the impact of the new photosensitizer LD4 in photodynamic antimicrobial chemotherapy (PACT), both alone and in combination with an antibiotic, on osteomyelitis. A rabbit tibial osteomyelitis model was employed and microbiological, histological, and radiological studies were performed. New Zealand white rabbits (n = 36) were randomly divided into a control group, antibiotic group, PACT group and PACT + antibiotic group for treatment. In microbiological analysis, a reduction in bacterial numbers of more than 99.9% was recorded in the PACT group and the PACT + antibiotic group 5 weeks after treatment (p < 0.01). In histological analysis, repair of the damaged bone tissue was observed in the PACT group, and bone repair in the PACT + antibiotic group was even more significant. In radiological analysis, the X-ray Norden score showed that the severity of bone tissue defects or destruction followed the pattern: PACT + antibiotic group < PACT group < antibiotic group < control group.
Collapse
Affiliation(s)
- Xiujuan Yin
- School of Clinical Medicine, Hebei University, Baoding, China
| | - Ziyuan Fang
- School of Clinical Medicine, Hebei University, Baoding, China
| | - Yan Fang
- School of Clinical Medicine, Hebei University, Baoding, China
| | - Lin Zhu
- School of Clinical Medicine, Hebei University, Baoding, China
| | - Jinwen Pang
- School of Clinical Medicine, Hebei University, Baoding, China
| | - Tianjun Liu
- Tianjin Key Laboratory of Biomedical Material, Institute of Biomedical Engineering, Peking Union Medical College, Chinese Academy of Medical Sciences, Tianjin, China
| | - Zhanjuan Zhao
- School of Basic Medicine, Hebei University, Baoding, China
| | - Jianxi Zhao
- Department of Radiology, Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
52
|
Mahdy S, Hamdy O, Hassan MA, Eldosoky MAA. A modified source-detector configuration for the discrimination between normal and diseased human breast based on the continuous-wave diffuse optical imaging approach: a simulation study. Lasers Med Sci 2022; 37:1855-1864. [PMID: 34651256 DOI: 10.1007/s10103-021-03440-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/06/2021] [Indexed: 11/29/2022]
Abstract
Breast tumors are among the most common types of tumors that can affect both genders. It may spread to the whole breast without any symptoms. Therefore, the early detection and accurate diagnosis of breast tumors are significantly important. Current approaches for breast cancer screening such as positron emission tomography (PET) and magnetic resonance imaging (MRI) have some limitations of being time and money-consuming. In addition, mammography screening is not recommended for women under forty. Consequently, optical techniques have been introduced as safe and functional alternatives. Diffuse optical imaging is a non-invasive imaging technique that utilizes near-infrared light to examine biological tissues based on measuring the optical transmission and/or reflection at various locations on the tissue surface. In this paper, we propose a modified arrangement between the laser source and the detectors for distinguishing tumors from normal breast tissue. A three-dimensional model of the normal human breast with three types of tumors is developed using a COMSOL simulation software based on the finite element solution of Helmholtz equation to estimate optical fluence distribution. The breast model consists of four layers: skin, fat, glandular, and muscle, where the tumor is included in the glandular layer. Different wavelengths were used to determine the most proper wavelength for the discrimination between the normal tissue and tumor. The obtained results were verified using the receiver operating characteristic (ROC) method. The resultant fluence images show different features between normal breast and breast with tumor especially using 600-nm incident laser as demonstrated by the obtained ROC curves.
Collapse
Affiliation(s)
- Shimaa Mahdy
- Department of Biomedical Engineering, Faculty of Engineering, Helwan University, Cairo, Egypt
- Department of Electrical Engineering, Egyptian Academy for Engineering and Advanced Technology (EAE&AT) Affiliated to Ministry of Military Production, Cairo, Egypt
| | - Omnia Hamdy
- Department of Engineering Applications of Lasers, National Institute of Laser Enhanced Sciences, Cairo University, Giza, Egypt.
| | - Mohammed A Hassan
- Department of Biomedical Engineering, Faculty of Engineering, Helwan University, Cairo, Egypt
| | - Mohamed A A Eldosoky
- Department of Biomedical Engineering, Faculty of Engineering, Helwan University, Cairo, Egypt
| |
Collapse
|
53
|
Wu H, Liu Z, Shao Y, Li G, Pan Y, Wang L, Akkaya EU. Degradation of amyloid peptide aggregates by targeted singlet oxygen delivery from a benzothiazole functionalized naphthalene endoperoxide. Chem Commun (Camb) 2022; 58:3747-3750. [PMID: 35072189 DOI: 10.1039/d1cc07133e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aggregate structures formed by amyloid-β (Aβ) are correlated with the progression of pathogenesis in Alzheimer's disease. Previous works have shown that photodynamic photosensitizers were effective in oxidatively degrading amyloid-β aggregates and thus decreasing their cytotoxicity under various conditions. In this work, we designed and synthesized a benzothiazole-naphthalene conjugate, with high level of structural analogy to Thioflavin T which is known to have high affinities for the amyloid peptide aggregates. The endoperoxide form (BZTN-O2) of this compound, which releases singlet oxygen with a half-life of 77 minutes at 37 °C, successfully inhibited and/or reversed amyloid aggregation. The endoperoxide is capable of singlet oxygen release without any need for light, and its charge-neutral form could allow blood-brain barrier (BBB) permeability. The therapeutic potential of such endoperoxide compounds with amyloid binding affinity is exciting.
Collapse
Affiliation(s)
- Hao Wu
- State Key Laboratory of Fine Chemicals, and Department of Pharmaceutical Science, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China.
| | - Ziang Liu
- State Key Laboratory of Fine Chemicals, and Department of Pharmaceutical Science, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China.
| | - Yujie Shao
- State Key Laboratory of Fine Chemicals, and Department of Pharmaceutical Science, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China.
| | - Guangzhe Li
- State Key Laboratory of Fine Chemicals, and Department of Pharmaceutical Science, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China.
| | - Yue Pan
- State Key Laboratory of Fine Chemicals, and Department of Pharmaceutical Science, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China.
| | - Lei Wang
- State Key Laboratory of Fine Chemicals, and Department of Pharmaceutical Science, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China.
| | - Engin U Akkaya
- State Key Laboratory of Fine Chemicals, and Department of Pharmaceutical Science, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China.
| |
Collapse
|
54
|
Liebert A, Seyedsadjadi N, Pang V, Litscher G, Kiat H. Evaluation of Gender Differences in Response to Photobiomodulation Therapy, Including Laser Acupuncture: A Narrative Review and Implication to Precision Medicine. Photobiomodul Photomed Laser Surg 2022; 40:78-87. [PMID: 34964662 DOI: 10.1089/photob.2021.0066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background: The influence of gender is significant in the manifestation and response to many diseases and in the treatment strategy. Photobiomodulation (PBM) therapy, including laser acupuncture, is an evidence-based treatment and disease prevention modality that has shown promising efficacy for a myriad of chronic and acute diseases. Anecdotal experience and limited clinical trials suggest gender differences exist in treatment outcomes to PBM therapy. There is preliminary evidence that gender may be as important as skin color in the individual response to PBM therapy. Purpose: To conduct a literature search of publications addressing the effects of gender differences in PBM therapy, including laser acupuncture, to provide a narrative review of the findings, and to explore potential mechanisms for the influence of gender. Methods: A narrative review of the literature on gender differences in PBM applications was conducted using key words relating to PBM therapy and gender. Results: A total of 13 articles were identified. Of these articles, 11 have direct experimental investigations into the response difference in gender for PBM, including laser acupuncture. A variety of cadaver, human, and experimental studies demonstrated results that gender effects were significant in PBM outcome responses, including differences in tendon structural and mechanical outcomes, and mitochondrial gene expression. One cadaver experiment showed that gender was more important than skin tone. The physiologic mechanisms directing gender differences are explored and postulated. Conclusions: The review suggests that to address the requirements of a proficient precision medicine-based strategy, it is important for PBM therapy to consider gender in its treatment plan and dosing prescription. Further research is warranted to determine the correct dose for optimal gender treatment, including gender-specific treatment plans to improve outcomes, taking into account wavelength, energy exposure, intensity, and parameters related to the deliverance of treatment to each anatomical location.
Collapse
Affiliation(s)
- Ann Liebert
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia.,Research and Governance, Adventist Hospital Group, Wahroonga, Australia.,SYMBYX Pty Ltd., Artarmon, Australia
| | - Neda Seyedsadjadi
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, Australia
| | | | - Gerhard Litscher
- Traditional Chinese Medicine, Research Center Graz, Research Unit of Biomedical Engineering in Anesthesia and Intensive Care Medicine, and Research Unit for Complementary and Integrative Laser Medicine, Medical University of Graz, Graz, Austria
| | - Hosen Kiat
- Cardiac Health Institute, Sydney, Australia.,Faculty of Medicine, University of NSW, Kensington, Australia.,Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie Park, Australia
| |
Collapse
|
55
|
Pera T, Loblundo C, Penn RB. Pharmacological Management of Asthma and COPD. COMPREHENSIVE PHARMACOLOGY 2022:762-802. [DOI: 10.1016/b978-0-12-820472-6.00095-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
56
|
Belova AN, Israelyan YA, Sushin VO, Shabanova MA, Rezenova AM. [Transcranial photobiomodulation in therapy of neurodegenerative diseases of the brain: theoretical background and clinical effectiveness]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOI FIZICHESKOI KULTURY 2022; 98:61-67. [PMID: 34965698 DOI: 10.17116/kurort20219806161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Transcranial photobiomodulation (tPBM) is a form of light therapy that uses monochromatic visible and infrared light from non-ionizing radiation sources (lasers, LEDs) placed on the scalp, forehead, or intranasally to project light directly to target areas of the brain. Accumulated experimental and clinical data indicate the safety and potential efficacy of tPBM in some central nervous system diseases.This article briefly reviews the general concepts of tPBM, the results of experimental and clinical studies on the efficacy of tPBM in Alzheimer's disease, Parkinson's disease, and brain stroke. The possible mechanisms of the tPBM therapeutic effect and the need to choose optimal exposure parameters are discussed. Although the evidence base regarding the efficacy of tPBM in neurodegenerative and vascular brain diseases is still insufficient, analysis of the published data justifies considering tPBM as a promising method of adjuvant therapy for some central nervous system diseases.
Collapse
Affiliation(s)
- A N Belova
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Yu A Israelyan
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - V O Sushin
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - M A Shabanova
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - A M Rezenova
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| |
Collapse
|
57
|
Amaroli A, Pasquale C, Zekiy A, Benedicenti S, Marchegiani A, Sabbieti MG, Agas D. Steering the multipotent mesenchymal cells towards an anti-inflammatory and osteogenic bias via photobiomodulation therapy: How to kill two birds with one stone. J Tissue Eng 2022; 13:20417314221110192. [PMID: 35832724 PMCID: PMC9272199 DOI: 10.1177/20417314221110192] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/13/2022] [Indexed: 12/17/2022] Open
Abstract
The bone marrow-derived multipotent mesenchymal cells (MSCs) have captured scientific interest due to their multi-purpose features and clinical applications. The operational dimension of MSCs is not limited to the bone marrow reservoir, which exerts bone-building and niche anabolic tasks; they also meet the needs of quenching inflammation and restoring inflamed tissues. Thus, the range of MSC activities extends to conditions such as neurodegenerative diseases, immune disorders and various forms of osteopenia. Steering these cells towards becoming an effective therapeutic tool has become mandatory. Many laboratories have employed distinct strategies to improve the plasticity and secretome of MSCs. We aimed to present how photobiomodulation therapy (PBM-t) can manipulate MSCs to render them an extraordinary anti-inflammatory and osteogenic instrument. Moreover, we discuss the outcomes of different PBM-t protocols on MSCs, concluding with some perplexities and complexities of PBM-t in vivo but encouraging and feasible in vitro solutions.
Collapse
Affiliation(s)
- Andrea Amaroli
- Department of Surgical and Diagnostic Sciences, University of Genoa, Genoa, Italy.,Department of Orthopedic Dentistry, Faculty of Dentistry, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Claudio Pasquale
- Department of Surgical and Diagnostic Sciences, University of Genoa, Genoa, Italy
| | - Angelina Zekiy
- Department of Orthopedic Dentistry, Faculty of Dentistry, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Stefano Benedicenti
- Department of Surgical and Diagnostic Sciences, University of Genoa, Genoa, Italy
| | - Andrea Marchegiani
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), Italy
| | | | - Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), Italy
| |
Collapse
|
58
|
Impact of visible light on skin health: The role of antioxidants and free radical quenchers in skin protection. J Am Acad Dermatol 2021; 86:S27-S37. [PMID: 34942294 DOI: 10.1016/j.jaad.2021.12.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/02/2021] [Accepted: 12/13/2021] [Indexed: 12/29/2022]
Abstract
Until recently, the primary focus of photobiology has centered on the impact of UV radiation on skin health, including DNA damage and oncogenesis; however, the significant effects of visible light (VL) on skin remain grossly underreported. VL has been reported to cause erythema in individuals with light skin (Fitzpatrick skin types [FSTs] I-III) and pigmentary changes in individuals with dark skin types (FSTs IV-VI). These effects have importance in dermatologic diseases and potentially play a role in conditions aggravated by sun exposure, including phototoxicity in patients with FSTs I to III and post-inflammatory hyperpigmentation and melasma in patients with FSTs IV to VI. The induction of free radicals, leading to the generation of reactive species, is one driving mechanism of VL-induced skin pathologies, leading to the induction of melanogenesis and hyperpigmentation. Initial clinical studies have demonstrated the effectiveness of topical sunscreen with antioxidant combinations in inhibiting VL + UV-A1-induced erythema in FSTs I to III and reducing pigmentation in FSTs IV to VI. Antioxidants may help prevent the worsening of pigmentary disorders and can be incorporated into photoprotective strategies. It is essential that dermatologists and the public are aware of the impact of VL on skin, especially in patients with skin of color, and understand the available options for VL protection.
Collapse
|
59
|
Perez Garcia G, Perez GM, Otero-Pagan A, Abutarboush R, Kawoos U, De Gasperi R, Gama Sosa MA, Pryor D, Hof PR, Cook DG, Gandy S, Ahlers ST, Elder GA. Transcranial Laser Therapy Does Not Improve Cognitive and Post-Traumatic Stress Disorder-Related Behavioral Traits in Rats Exposed to Repetitive Low-Level Blast Injury. Neurotrauma Rep 2021; 2:548-563. [PMID: 34901948 PMCID: PMC8655798 DOI: 10.1089/neur.2021.0005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many military veterans who experienced blast-related traumatic brain injuries (TBIs) in the conflicts in Iraq and Afghanistan suffer from chronic cognitive and mental health problems, including post-traumatic stress disorder (PTSD). Transcranial laser therapy (TLT) uses low-power lasers emitting light in the far- to near-infrared ranges. Beneficial effects of TLT have been reported in neurological and mental-health-related disorders in humans and animal models, including TBI. Rats exposed to repetitive low-level blast develop chronic cognitive and PTSD-related behavioral traits. We tested whether TLT treatment could reverse these traits. Rats received a 74.5-kPa blast or sham exposures delivered one per day for 3 consecutive days. Beginning at 34 weeks after blast exposure, the following groups of rats were treated with active or sham TLT: 1) Sham-exposed rats (n = 12) were treated with sham TLT; 2) blast-exposed rats (n = 13) were treated with sham TLT; and 3) blast-exposed rats (n = 14) were treated with active TLT. Rats received 5 min of TLT five times per week for 6 weeks (wavelength, 808 nm; power of irradiance, 240 mW). At the end of treatment, rats were tested in tasks found previously to be most informative (novel object recognition, novel object localization, contextual/cued fear conditioning, elevated zero maze, and light/dark emergence). TLT did not improve blast-related effects in any of these tests, and blast-exposed rats were worse after TLT in some anxiety-related measures. Based on these findings, TLT does not appear to be a promising treatment for the chronic cognitive and mental health problems that follow blast injury.
Collapse
Affiliation(s)
- Georgina Perez Garcia
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gissel M. Perez
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Alena Otero-Pagan
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Rania Abutarboush
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Usmah Kawoos
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Rita De Gasperi
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Miguel A. Gama Sosa
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Dylan Pryor
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - David G. Cook
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Sam Gandy
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Barbara and Maurice A. Deane Center for Wellness and Cognitive Health and the Mount Sinai NFL Neurological Care Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stephen T. Ahlers
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Gregory A. Elder
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| |
Collapse
|
60
|
Wang D, Kuzma ML, Tan X, He TC, Dong C, Liu Z, Yang J. Phototherapy and optical waveguides for the treatment of infection. Adv Drug Deliv Rev 2021; 179:114036. [PMID: 34740763 PMCID: PMC8665112 DOI: 10.1016/j.addr.2021.114036] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/11/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023]
Abstract
With rapid emergence of multi-drug resistant microbes, it is imperative to seek alternative means for infection control. Optical waveguides are an auspicious delivery method for precise administration of phototherapy. Studies have shown that phototherapy is promising in fighting against a myriad of infectious pathogens (i.e. viruses, bacteria, fungi, and protozoa) including biofilm-forming species and drug-resistant strains while evading treatment resistance. When administered via optical waveguides, phototherapy can treat both superficial and deep-tissue infections while minimizing off-site effects that afflict conventional phototherapy and pharmacotherapy. Despite great therapeutic potential, exact mechanisms, materials, and fabrication designs to optimize this promising treatment option are underexplored. This review outlines principles and applications of phototherapy and optical waveguides for infection control. Research advances, challenges, and outlook regarding this delivery system are rigorously discussed in a hope to inspire future developments of optical waveguide-mediated phototherapy for the management of infection and beyond.
Collapse
Affiliation(s)
- Dingbowen Wang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Michelle Laurel Kuzma
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xinyu Tan
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Academy of Orthopedics, Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province 510280, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Cheng Dong
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Zhiwen Liu
- Department of Electrical Engineering, Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
61
|
Caldieraro MA, Laufer-Silva T, Cassano P. Dosimetry and Clinical Efficacy of Transcranial Photobiomodulation for Major Depression Disorder: Could they Guide Dosimetry for Alzheimer's Disease? J Alzheimers Dis 2021; 83:1453-1469. [PMID: 34487045 DOI: 10.3233/jad-210586] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is prevalent and has significant impact on individuals and society. Cognitive symptoms are frequent in MDD and insufficiently treated by antidepressant medications. Transcranial photobiomodulation (t-PBM) is a novel device therapy which shows promise as an antidepressant and pro-cognitive treatment. To date, despite the encouraging results, the optimal stimulation parameters of t-PBM to treat MDD are not established, and clinical studies are very heterogeneous in terms of these parameters. While the literature provides guidance on the appropriate fluence to achieve therapeutic results, little is known on the other parameters. OBJECTIVE To evaluate the relationship between different parameters and the antidepressant effect of t-PBM. METHODS We reviewed clinical studies on MDD and on depressive symptoms comorbid with other diseases. We calculated the standardized effect size of the change in symptoms severity before and after t-PBM and we performed a descriptive analysis of the reviewed papers. RESULTS The greatest effect sizes for the antidepressant effect were found in studies using pulse-wave t-PBM with high peak irradiance (but low average irradiance) over large skin surface. One well-designed and sufficiently powered, double-blind, sham-controlled trial indicated that t-PBM with low irradiance over a small skin surface is ineffective to treat depression. CONCLUSION The use of t-PBM for Alzheimer's disease and for dementia is still at its inception; these dosimetry lessons from the use of t-PBM for depression might serve as guidance.
Collapse
Affiliation(s)
- Marco Antonio Caldieraro
- Centro de Pesquisa Experimental (CPE) e Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre -RS, Brasil.,Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Departamento de Psiquiatria e Medicina Legal, Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Porto Alegre -RS, Brasil
| | - Tatiana Laufer-Silva
- Centro de Pesquisa Experimental (CPE) e Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre -RS, Brasil.,Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Departamento de Psiquiatria e Medicina Legal, Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Porto Alegre -RS, Brasil
| | - Paolo Cassano
- Harvard Medical School, Boston, MA, USA.,MGH Division of Neuropsychiatry, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
62
|
Mohammed HS, Khadrawy YA. Antidepressant and antioxidant effects of transcranial irradiation with 830-nm low-power laser in an animal model of depression. Lasers Med Sci 2021; 37:1615-1623. [PMID: 34487275 DOI: 10.1007/s10103-021-03410-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
The present study aimed at investigating the antidepressant and antioxidant actions of near-infrared (NIR) laser at a wavelength of 830 nm and power of 100 mW which applied transcranially on an animal model of depression induced by repeated doses of reserpine (0.2 mg/kg). Thirty male Wistar adult rats were divided into three groups: rat model of depression; rat model of depression irradiated with laser for 14 days after induction of depression; and the control group that was given the drug vehicle and sham-exposed to the laser. Forced swimming test (FST) was used to verify the induction of animal model of depression and to screen the effect of antidepressant effect of low-level laser at the end of the experiment. Monoamine level, oxidative stress markers, and activities of acetylcholinesterase (AchE) and monoamine oxidase (MAO) were determined in the cortex and hippocampus of the rat brain. Reserpine resulted in depletion of monoamines and elevation in the oxidative stress markers and change in the enzymatic activities measured in both brain areas. Laser irradiation has an inhibitory action on the monoamine oxidase (MAO) in the cortex and hippocampus leading to elevation of the monoamine levels and attenuation of the oxidative stress in the studied areas. FST has emphasized the antidepressant effect of the utilized laser irradiation parameters on the behavioral level. The present findings provide evidence for the antidepressant and antioxidant actions of NIR low-power laser in the rat model of depression. Accordingly, low-laser irradiation may be presented as a potential candidate modality for depression treatment.
Collapse
Affiliation(s)
- Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Yasser A Khadrawy
- Medical Physiology Department, National Research Center, Giza, Egypt
| |
Collapse
|
63
|
Cardoso FDS, Gonzalez-Lima F, Gomes da Silva S. Photobiomodulation for the aging brain. Ageing Res Rev 2021; 70:101415. [PMID: 34325071 DOI: 10.1016/j.arr.2021.101415] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/15/2022]
Abstract
Longevity is one of the great triumphs of humanity. Worldwide, the elderly is the fastest growing segment of the population. As a consequence, the number of cases of age-related cognitive decline and neurological diseases associated with aging, such as Alzheimer's and Parkinson's, has been increasing. Among the non-pharmacological interventions studied for the treatment or prevention of age-related neurocognitive impairment, photobiomodulation (PBM) has gained prominence for its beneficial effects on brain functions relevant to aging brains. In animal models, the neuroprotective and neuromodulatory capacity of PBM has been observed. Studies using both animals and humans have shown promising metabolic and hemodynamic effects of PBM on the brain, such as improved mitochondrial and vascular functions. Studies in humans have shown that PBM can improve electrophysiological activity and cognitive functions such as attention, learning, memory and mood in older people. In this paper we will review the main brain effects of PBM during aging, discuss its mechanisms of action relevant to the aging brain, and call for more controlled studies in older populations.
Collapse
Affiliation(s)
- Fabrízio Dos Santos Cardoso
- Núcleo de Pesquisas Tecnológicas, Universidade de Mogi das Cruzes, Mogi das Cruzes, SP, Brazil; Department of Psychology and Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - F Gonzalez-Lima
- Department of Psychology and Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - Sérgio Gomes da Silva
- Núcleo de Pesquisas Tecnológicas, Universidade de Mogi das Cruzes, Mogi das Cruzes, SP, Brazil; Centro Universitário UNIFAMINAS (UNIFAMINAS), Muriaé, MG, Brazil; Hospital do Câncer de Muriaé, Fundação Cristiano Varella (FCV), Muriaé, MG, Brazil.
| |
Collapse
|
64
|
Hamblin MR, Salehpour F. Photobiomodulation of the Brain: Shining Light on Alzheimer's and Other Neuropathological Diseases. J Alzheimers Dis 2021; 83:1395-1397. [PMID: 34459408 DOI: 10.3233/jad-210743] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Johannesburg, South Africa.,Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Salehpour
- College for Light Medicine and Photobiomodulation, Starnberg, Bavaria, Germany.,ProNeuroLIGHT LLC, Phoenix, AZ, USA
| |
Collapse
|
65
|
Huang X, Tian X, Zhang Q, Hu H, Gao J, Ma B, Wu K, Bai J, Du S, Lu Y, Han N. Combined photothermal-immunotherapy via poly-tannic acid coated PLGA nanoparticles for cancer treatment. Biomater Sci 2021; 9:6282-6294. [PMID: 34378577 DOI: 10.1039/d1bm00474c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Photothermal therapy (PTT) is able to ablate tumors via hyperthermia, while immunotherapy could prevent tumor recurrence and metastasis by activating the host immune responses. Therefore, the combination of PTT and immunotherapy offers great advantages for the treatment of cancer. To achieve this goal, poly tannic acid (pTA) coated PLGA nanoparticles (PLGA-pTA NPs) were synthesized for combined photothermal-immunotherapy. pTA was a coordination complex formed by TA and Fe3+ and it could be easily coated on PLGA NPs within seconds with a coating rate of 5.89%. As a photothermal agent, PLGA-pTA revealed high photothermal conversion efficiency and excellent photo-stability upon 808 nm laser irradiation. It also exhibited strong photothermal cytotoxicity against 4T1 cells. Moreover, PLGA-pTA based PTT could effectively trigger DC maturation since it could induce the release of DAMPs. The result of animal experiments showed that PLGA-pTA plus laser irradiation raised the tumor temperature up to ca. 60 °C and effectively suppressed the growth of primary tumors. What's more, the progression of distant tumors as well as lung metastasis was also significantly inhibited due to the activation of anti-tumor responses by PLGA-pTA mediated PTT. When further combined with anti-PD-L1 antibody (a-PD-L1), the tumor growth and metastasis were almost completely inhibited. Our study provided a versatile platform to achieve combined photothermal-immunotherapy with enhanced therapeutic efficacy.
Collapse
Affiliation(s)
- Xingyue Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Xuehao Tian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Qing Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Haiyan Hu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Jiahui Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Baonan Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Kai Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Jie Bai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Shouying Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Yang Lu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Ning Han
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
66
|
Schiffer F, Khan A, Bolger E, Flynn E, Seltzer WP, Teicher MH. An Effective and Safe Novel Treatment of Opioid Use Disorder: Unilateral Transcranial Photobiomodulation. Front Psychiatry 2021; 12:713686. [PMID: 34447323 PMCID: PMC8382852 DOI: 10.3389/fpsyt.2021.713686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The opioid epidemic is a global tragedy even with current treatments, and a novel, safe, and effective treatment would be welcomed. We report here our findings from our second randomized controlled trial to evaluate unilateral transcranial photobiomodulation as a treatment for opioid use disorder. Methods: We enrolled 39 participants with active opioid cravings at 2 sites, 19 received the active treatment which consisted of a 4-min twice weekly (every 3 or 4 days) application of a light-emitting diode at 810 nm with an irradiance of 250 mW/cm2 and a fluence of 60 J/cm2 to the forehead over either the left or right dorsolateral prefrontal cortex with a fluence to the brain of 2.1 J/cm2. Twenty participants received a sham treatment with the same device with foil over the bulb. The side of the treatment was based on Dual-Brain Psychology, which posits that one hemisphere is more affected by past maltreatments and is more prone to anxiety and drug cravings that the other hemisphere. We treated the hemisphere with the more positive hemispheric emotional valence (HEV) by 2 tests for HEV. Results: Our primary outcome was changes in pre-treatment opioid craving scale (OCS) minus baseline, and we found using a mixed model that the active group had a highly significant treatment * time benefit over the sham group, p < 0.0001, effect size at the last follow-up of 1.5. The active treatment benefited those not on buprenorphine as well as those not on it. The TimeLine Follow Back measure of opioid use was significantly better in the actively treated group, p = 0.0001, with an effect size of 0.45. We observed no adverse effects. Conclusion: Active unilateral transcranial photobiomodulation to the brain hemisphere with the better HEV was better than sham in the reduction of opioid cravings and opioid use to a very significant degree in a RCT of 39 participants at 2 independent sites. In the active group those on buprenorphine and those not on it both had improvements in cravings over the study. No adverse responses were reported in either group. ClinicalTrials.gov Identifier: NCT04340622.
Collapse
Affiliation(s)
- Fredric Schiffer
- MindLight, LLC, Newton Highlands, MA, United States
- Developmental Biopsychiatry Research Program, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Alaptagin Khan
- Developmental Biopsychiatry Research Program, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Elizabeth Bolger
- Developmental Biopsychiatry Research Program, McLean Hospital, Belmont, MA, United States
| | - Edward Flynn
- MindLight, LLC, Newton Highlands, MA, United States
| | | | - Martin H. Teicher
- Developmental Biopsychiatry Research Program, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
67
|
Amaroli A, Arany P, Pasquale C, Benedicenti S, Bosco A, Ravera S. Improving Consistency of Photobiomodulation Therapy: A Novel Flat-Top Beam Hand-Piece versus Standard Gaussian Probes on Mitochondrial Activity. Int J Mol Sci 2021; 22:ijms22157788. [PMID: 34360559 PMCID: PMC8346075 DOI: 10.3390/ijms22157788] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/18/2021] [Accepted: 07/18/2021] [Indexed: 12/14/2022] Open
Abstract
The tremendous therapeutic potential of photobiomodulation therapy in different branches of medicine has been described in the literature. One of the molecular mechanisms for this treatment implicates the mitochondrial enzyme, cytochrome C oxidase. However, the efficacy and consistency of clinical outcomes with photobiomodulation treatments has been fiercely debated. This work was motivated by this need to improve photobiomodulation devices and delivery approaches. We designed a novel hand-piece with a flat-top beam profile of irradiation. We compared the beam profile versus a standard hand-piece and a fibre probe. We utilized isolated mitochondria and performed treatments at various spots within the beam, namely, the centre, left and right edge. We examined mitochondrial activity by assessing ATP synthesis with the luciferin/luciferase chemiluminescent method as a primary endpoint, while mitochondrial damage was assessed as the secondary endpoint. We observed a uniform distribution of the power density with the flat-top prototype compared to a wide Gaussian beam profile with the standard fibre and standard hand-piece. We noted increased production of ATP in the centre of all three beams with respect to the non-treated controls (p < 0.05). Both the fibre and standard hand-piece demonstrated less increase in ATP synthesis at the edges than the centre (p < 0.05). In contrast, ATP synthesis was increased homogenously in the flat-top handpiece, both in the centre and the edges of the beam. Fibre, standard hand-piece and the flat-top hand-piece prototype have discrete beam distribution characteristics. This significantly affected the mitochondrial activity with respect to their position within the treated areas. Flat-top hand-piece enhances the uniformity of photobiomodulation treatments and can improve the rigour and reproducibility of PBM clinical outcomes.
Collapse
Affiliation(s)
- Andrea Amaroli
- Department of Orthopedic Dentistry, Faculty of Dentistry, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (C.P.); (S.B.)
- Correspondence: ; Tel.: +39-010-3537309
| | - Praveen Arany
- Departments of Oral Biology, Surgery and Biomedical Engineering, University at Buffalo, Buffalo, NY 14260, USA;
| | - Claudio Pasquale
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (C.P.); (S.B.)
| | - Stefano Benedicenti
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (C.P.); (S.B.)
| | | | - Silvia Ravera
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy;
| |
Collapse
|
68
|
Bullock-Saxton J, Lehn A, Laakso EL. Exploring the Effect of Combined Transcranial and Intra-Oral Photobiomodulation Therapy Over a Four-Week Period on Physical and Cognitive Outcome Measures for People with Parkinson's Disease: A Randomized Double-Blind Placebo-Controlled Pilot Study. J Alzheimers Dis 2021; 83:1499-1512. [PMID: 34092640 DOI: 10.3233/jad-210170] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Neuroprotection against Parkinson's disease degeneration by photobiomodulation has been reported in animal models but no true placebo-controlled human studies have been published. OBJECTIVE To understand if photobiomodulation therapy can produce clinically significant differences in physical performance measures in people with Parkinson's disease; and what frequency of treatment is necessary to initiate clinical change. METHODS In a participant and assessor-blinded, randomized, placebo-controlled pilot study, 22 participants received either sham and/or active laser photobiomodulation (904 nm, 60 mW/diode, 50 Hz) for 33 s to each of 21 points at the cranium and intra-orally, on one, two or three times/week for 4 weeks. Two treatment phases were separated by a 4-week wash-out (Phase 2). Upper and lower limb physical outcome measures were assessed before and after each treatment phase. The Montreal Cognitive Assessment was evaluated prior to treatment Phase 1, and at the end of treatment Phase 3. RESULTS Montreal Cognitive Assessment remained stable between start and end of study. No measures demonstrated statistically significant changes. With regular treatment, the spiral (writing) test and the dynamic step test were most sensitive to change in a positive direction; and the 9-hole peg test demonstrated a minimum clinically important difference worthy of further investigation in a larger, adequately powered clinical trial. A placebo effect was noted. CONCLUSION The results support the notion that combined transcranial and intra-oral photobiomodulation therapy needs to be applied at least 2 to 3 times per week for at least four weeks before some improvement in outcome measures becomes evident. Longer courses of treatment may be required.
Collapse
Affiliation(s)
| | - Alexander Lehn
- Department of Neurology, Princess Alexandra Hospital, Brisbane, Australia.,The University of Queensland Princess Alexandra Hospital Clinical School, Queensland, Australia
| | - E-Liisa Laakso
- Mater Research Institute, Brisbane and Menzies Health Institute, Queensland, Australia
| |
Collapse
|
69
|
Zhang M, Wang W, Mohammadniaei M, Zheng T, Zhang Q, Ashley J, Liu S, Sun Y, Tang BZ. Upregulating Aggregation-Induced-Emission Nanoparticles with Blood-Tumor-Barrier Permeability for Precise Photothermal Eradication of Brain Tumors and Induction of Local Immune Responses. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008802. [PMID: 33893670 DOI: 10.1002/adma.202008802] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Compared to other tumors, glioblastoma (GBM) is extremely difficult to treat. Recently, photothermal therapy (PTT) has demonstrated advanced therapeutic efficacy; however, because of the relatively low tissue-penetration efficiency of laser light, its application in deep-seated tumors remains challenging. Herein, bradykinin (BK) aggregation-induced-emission nanoparticles (BK@AIE NPs) are synthesized; these offer selective penetration through the blood-tumor barrier (BTB) and strong absorbance in the near-infrared region (NIR). The BK ligand can prompt BTB adenosine receptor activation, which enhances transportation and accumulation inside tumors, as confirmed by T1 -weighted magnetic resonance and fluorescence imaging. The BK@AIE NPs exhibit high photothermal conversion efficiency under 980 nm NIR laser irradiation, facilitating the treatment of deep-seated tumors. Tumor progression can be effectively inhibited to extend the survival span of mice after spatiotemporal PTT. NIR irradiation can eradicate tumor tissues and release tumor-associated antigens. It is observed that the PTT treatment of GBM-bearing mice activates natural killer cells, CD3+ T cells, CD8+ T cells, and M1 macrophages in the GBM area, increasing the therapeutic efficacy. This study demonstrates that NIR-assisted BK@AIE NPs represent a promising strategy for the improved systematic elimination of GBMs and the activation of local brain immune privilege.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, DK-2800, Denmark
| | - Wentao Wang
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, DK-2800, Denmark
| | - Mohsen Mohammadniaei
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, DK-2800, Denmark
| | - Tao Zheng
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, DK-2800, Denmark
| | - Qicheng Zhang
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Jon Ashley
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, DK-2800, Denmark
| | - Shunjie Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yi Sun
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, DK-2800, Denmark
| | - Ben Zhong Tang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
70
|
Austin E, Geisler AN, Nguyen J, Kohli I, Hamzavi I, Lim HW, Jagdeo J. Visible light. Part I: Properties and cutaneous effects of visible light. J Am Acad Dermatol 2021; 84:1219-1231. [PMID: 33640508 PMCID: PMC8887026 DOI: 10.1016/j.jaad.2021.02.048] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/22/2022]
Abstract
Approximately 50% of the sunlight reaching the Earth's surface is visible light (400-700 nm). Other sources of visible light include lasers, light-emitting diodes, and flash lamps. Photons from visible light are absorbed by photoreceptive chromophores (e.g., melanin, heme, and opsins), altering skin function by activating and imparting energy to chromophores. Additionally, visible light can penetrate the full thickness of the skin and induce pigmentation and erythema. Clinically, lasers and light devices are used to treat skin conditions by utilizing specific wavelengths and treatment parameters. Red and blue light from light-emitting diodes and intense pulsed light have been studied as antimicrobial and anti-inflammatory treatments for acne. Pulsed dye lasers are used to treat vascular lesions in adults and infants. Further research is necessary to determine the functional significance of visible light on skin health without confounding the influence of ultraviolet and infrared wavelengths.
Collapse
Affiliation(s)
- Evan Austin
- Department of Dermatology, SUNY Downstate Medical Center, Brooklyn, New York; Dermatology Service, VA New York Harbor Healthcare System, Brooklyn Campus, Brooklyn, New York
| | | | - Julie Nguyen
- Department of Dermatology, SUNY Downstate Medical Center, Brooklyn, New York; Dermatology Service, VA New York Harbor Healthcare System, Brooklyn Campus, Brooklyn, New York
| | - Indermeet Kohli
- Department of Dermatology, Photomedicine and Photobiology Unit, Henry Ford Health System, Detroit, Michigan
| | - Iltefat Hamzavi
- Department of Dermatology, Photomedicine and Photobiology Unit, Henry Ford Health System, Detroit, Michigan
| | - Henry W Lim
- Department of Dermatology, Photomedicine and Photobiology Unit, Henry Ford Health System, Detroit, Michigan
| | - Jared Jagdeo
- Department of Dermatology, SUNY Downstate Medical Center, Brooklyn, New York; Dermatology Service, VA New York Harbor Healthcare System, Brooklyn Campus, Brooklyn, New York.
| |
Collapse
|
71
|
Johnstone DM, Hamilton C, Gordon LC, Moro C, Torres N, Nicklason F, Stone J, Benabid AL, Mitrofanis J. Exploring the Use of Intracranial and Extracranial (Remote) Photobiomodulation Devices in Parkinson's Disease: A Comparison of Direct and Indirect Systemic Stimulations. J Alzheimers Dis 2021; 83:1399-1413. [PMID: 33843683 DOI: 10.3233/jad-210052] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In recent times, photobiomodulation has been shown to be beneficial in animal models of Parkinson's disease, improving locomotive behavior and being neuroprotective. Early observations in people with Parkinson's disease have been positive also, with improvements in the non-motor symptoms of the disease being evident most consistently. Although the precise mechanisms behind these improvements are not clear, two have been proposed: direct stimulation, where light reaches and acts directly on the distressed neurons, and remote stimulation, where light influences cells and/or molecules that provide systemic protection, thereby acting indirectly on distressed neurons. In relation to Parkinson's disease, given that the major zone of pathology lies deep in the brain and that light from an extracranial or external photobiomodulation device would not reach these vulnerable regions, stimulating the distressed neurons directly would require intracranial delivery of light using a device implanted close to the vulnerable regions. For indirect systemic stimulation, photobiomodulation could be applied to either the head and scalp, using a transcranial helmet, or to a more remote body part (e.g., abdomen, leg). In this review, we discuss the evidence for both the direct and indirect neuroprotective effects of photobiomodulation in Parkinson's disease and propose that both types of treatment modality, when working together using both intracranial and extracranial devices, provide the best therapeutic option.
Collapse
Affiliation(s)
| | | | - Luke C Gordon
- Department of Physiology, University of Sydney, Australia
| | - Cecile Moro
- University Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, Grenoble, France
| | - Napoleon Torres
- University Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, Grenoble, France
| | - Frank Nicklason
- Department of Anatomy, University of Sydney, Australia.,Geriatric Medicine, Royal Hobart Hospital, Hobart, Australia
| | - Jonathan Stone
- Department of Physiology, University of Sydney, Australia
| | - Alim-Louis Benabid
- University Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, Grenoble, France
| | - John Mitrofanis
- Department of Anatomy, University of Sydney, Australia.,University Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, Grenoble, France
| |
Collapse
|
72
|
Austin E, Koo E, Merleev A, Torre D, Marusina A, Luxardi G, Mamalis A, Isseroff RR, Ma'ayan A, Maverakis E, Jagdeo J. Transcriptome analysis of human dermal fibroblasts following red light phototherapy. Sci Rep 2021; 11:7315. [PMID: 33795767 PMCID: PMC8017006 DOI: 10.1038/s41598-021-86623-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/16/2021] [Indexed: 11/09/2022] Open
Abstract
Fibrosis occurs when collagen deposition and fibroblast proliferation replace healthy tissue. Red light (RL) may improve skin fibrosis via photobiomodulation, the process by which photosensitive chromophores in cells absorb visible or near-infrared light and undergo photophysical reactions. Our previous research demonstrated that high fluence RL reduces fibroblast proliferation, collagen deposition, and migration. Despite the identification of several cellular mechanisms underpinning RL phototherapy, little is known about the transcriptional changes that lead to anti-fibrotic cellular responses. Herein, RNA sequencing was performed on human dermal fibroblasts treated with RL phototherapy. Pathway enrichment and transcription factor analysis revealed regulation of extracellular matrices, proliferation, and cellular responses to oxygen-containing compounds following RL phototherapy. Specifically, RL phototherapy increased the expression of MMP1, which codes for matrix metalloproteinase-1 (MMP-1) and is responsible for remodeling extracellular collagen. Differential regulation of MMP1 was confirmed with RT-qPCR and ELISA. Additionally, RL upregulated PRSS35, which has not been previously associated with skin activity, but has known anti-fibrotic functions. Our results suggest that RL may benefit patients by altering fibrotic gene expression.
Collapse
Affiliation(s)
- Evan Austin
- Department of Dermatology, University of California at Davis, Sacramento, CA, USA.,Department of Dermatology, SUNY Downstate, Brooklyn, NY, USA
| | - Eugene Koo
- Department of Dermatology, University of California at Davis, Sacramento, CA, USA
| | - Alexander Merleev
- Department of Dermatology, University of California at Davis, Sacramento, CA, USA
| | - Denis Torre
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai Health, New York, NY, USA
| | - Alina Marusina
- Department of Dermatology, University of California at Davis, Sacramento, CA, USA
| | - Guillaume Luxardi
- Department of Dermatology, University of California at Davis, Sacramento, CA, USA
| | - Andrew Mamalis
- Department of Dermatology, SUNY Downstate, Brooklyn, NY, USA
| | - Roslyn Rivkah Isseroff
- Department of Dermatology, University of California at Davis, Sacramento, CA, USA.,Dermatology Service, Sacramento VA Medical Center, Mather, CA, USA
| | - Avi Ma'ayan
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai Health, New York, NY, USA
| | - Emanual Maverakis
- Department of Dermatology, University of California at Davis, Sacramento, CA, USA
| | - Jared Jagdeo
- Department of Dermatology, University of California at Davis, Sacramento, CA, USA. .,Department of Dermatology, SUNY Downstate, Brooklyn, NY, USA. .,Dermatology Service, Sacramento VA Medical Center, Mather, CA, USA.
| |
Collapse
|
73
|
Transcranial laser stimulation: Mitochondrial and cerebrovascular effects in younger and older healthy adults. Brain Stimul 2021; 14:440-449. [PMID: 33636401 DOI: 10.1016/j.brs.2021.02.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Transcranial laser stimulation is a novel method of noninvasive brain stimulation found safe and effective for improving prefrontal cortex neurocognitive functions in healthy young adults. This method is different from electric and magnetic stimulation because it causes the photonic oxidation of cytochrome-c-oxidase, the rate-limiting enzyme for oxygen consumption and the major intracellular acceptor of photons from near-infrared light. This photobiomodulation effect promotes mitochondrial respiration, cerebrovascular oxygenation and neurocognitive function. Pilot studies suggest that transcranial photobiomodulation may also induce beneficial effects in aging individuals. OBJECTIVES Randomized, sham-controlled study to test photobiomodulation effects caused by laser stimulation on cytochrome-c-oxidase oxidation and hemoglobin oxygenation in the prefrontal cortex of 68 healthy younger and older adults, ages 18-85. METHODS Broadband near-infrared spectroscopy was used for the noninvasive quantification of bilateral cortical changes in oxidized cytochrome-c-oxidase and hemoglobin oxygenation before, during and after 1064-nm wavelength laser (IR-A laser, area: 13.6 cm2, power density: 250 mW/cm2) or sham stimulation of the right anterior prefrontal cortex (Brodmann Area 10). RESULTS As compared to sham control, there was a significant laser-induced increase in oxidized cytochrome-c-oxidase during laser stimulation, followed by a significant post-stimulation increase in oxygenated hemoglobin and a decrease in deoxygenated hemoglobin. Furthermore, there was a greater laser-induced effect on cytochrome-c-oxidase with increasing age, while laser-induced effects on cerebral hemodynamics decreased with increasing age. No adverse laser effects were found. CONCLUSION The findings support the use of transcranial photobiomodulation for cerebral oxygenation and alleviation of age-related decline in mitochondrial respiration. They justify further research on its therapeutic potential in neurologic and psychiatric diseases.
Collapse
|
74
|
Ghidini G, Mori D, Pulcini S, Vescovi P, Sala R. Photobiomodulation with a 645 nm Diode Laser of Saos-2 Cells and Platelet-Rich Plasma: The Potential for a New Mechanism of Action. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2021; 39:86-93. [PMID: 33471588 DOI: 10.1089/photob.2020.4839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Objective: The main focus of this in vitro study was to highlight possible differences between outcomes of photobiomodulation performed in the presence or absence of growth factors derived from platelet-rich plasma. Background: Photobiomodulation has garnered increasing attention, thanks to a large number of controlled clinical trials that have proven its efficacy in various oral pathologies. Nevertheless, the mechanism of action is still a matter of debate. Materials and methods: The cell model used was Saos-2ATTC HTB-85, a human osteosarcoma cell line that retains an osteogenic potential matching that of osteoblastic cells. Photobiomodulation was performed with a 645 nm diode laser; we investigated three different fluence values (2, 5, and 10 J/cm2) delivered with 3 different irradiation times (1, 2, and 4 min). The design of the study included a case-control structure. Cell viability was assessed by resazurin reduction assay before laser irradiation. We assessed cell differentiation by Alizarin-red Sigma Aldrich assay 48 h after the last laser irradiation. Results: Results show that the combination of photobiomodulation and platelet-rich plasma can lead to a statistically significant increase in both proliferation and differentiation rates. Conclusions: Only a defined amount of energy, that is, a fluence of 5 J/cm2 delivered in 2 min and of 10 J/cm2 in 4 min, was proven to be the most effective in the presence of platelet-rich plasma to induce cell proliferation and calcium deposition.
Collapse
Affiliation(s)
- Giulia Ghidini
- Molecular Medicine, University of Parma, Parma, Italy.,Oral Medicine and Oral Surgery Laser Unit, Department of Medicine and Surgery, University Center of Dentistry, University of Parma, Parma, Italy
| | - Daniele Mori
- General Pathology Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Stefano Pulcini
- General Pathology Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Paolo Vescovi
- Oral Medicine and Oral Surgery Laser Unit, Department of Medicine and Surgery, University Center of Dentistry, University of Parma, Parma, Italy
| | - Roberto Sala
- General Pathology Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
75
|
You J, Bragin A, Liu H, Li L. Preclinical studies of transcranial photobiomodulation in the neurological diseases. TRANSLATIONAL BIOPHOTONICS 2021. [DOI: 10.1002/tbio.202000024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Jing You
- Department of Biomedical Engineering University of North Texas Denton Texas USA
| | - Anatol Bragin
- Department of Neurology University of California Los Angeles Los Angeles California USA
- Brain Research Institute University of California Los Angeles Los Angeles California USA
| | - Hanli Liu
- Department of Bioengineering University of Texas at Arlington Arlington Texas USA
| | - Lin Li
- Department of Biomedical Engineering University of North Texas Denton Texas USA
- Department of Neurology University of California Los Angeles Los Angeles California USA
| |
Collapse
|
76
|
Golovynska I, Golovynskyi S, Stepanov YV, Stepanova LI, Qu J, Ohulchanskyy TY. Red and near-infrared light evokes Ca 2+ influx, endoplasmic reticulum release and membrane depolarization in neurons and cancer cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 214:112088. [PMID: 33278762 DOI: 10.1016/j.jphotobiol.2020.112088] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/26/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
Low level light therapy uses light of specific wavelengths in red and near-infrared spectral range to treat various pathological conditions. This light is able to modulate biochemical cascade reactions in cells that can have important health implications. In this study, the effect of low intensity light at 650, 808 and 1064 nm on neurons and two types of cancer cells (neuroblastoma and HeLa) is reported, with focus on the photoinduced change of intracellular level of Ca2+ ions and corresponding signaling pathways. The obtained results show that 650 and 808 nm light promotes intracellular Ca2+ elevation regardless of cell type, but with different dynamics due to the specificities of Ca2+ regulation in neurons and cancer cells. Two origins responsible for Ca2+ elevation are determined to be: influx of exogenous Ca2+ ions into cells and Ca2+ release from endoplasmic reticulum. Our investigation of the related cellular processes shows that light-induced membrane depolarization is distinctly involved in the mechanism of Ca2+ influx. Ca2+ release from endoplasmic reticulum activated by reactive oxygen species generation is considered as a possible light-dependent signaling pathway. In contrast to the irradiation with 650 and 808 nm light, no effects are observed under 1064 nm irradiation. We believe that the obtained insights are of high significance and can be useful for the development of drug-free phototherapy.
Collapse
Affiliation(s)
- Iuliia Golovynska
- Center for Biomedical Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Sergii Golovynskyi
- Center for Biomedical Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Yurii V Stepanov
- Center for Biomedical Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Liudmyla I Stepanova
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv 01601, Ukraine
| | - Junle Qu
- Center for Biomedical Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China.
| | - Tymish Y Ohulchanskyy
- Center for Biomedical Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
77
|
Wan Z, Zhang P, Lv L, Zhou Y. NIR light-assisted phototherapies for bone-related diseases and bone tissue regeneration: A systematic review. Theranostics 2020; 10:11837-11861. [PMID: 33052249 PMCID: PMC7546009 DOI: 10.7150/thno.49784] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
Recently, the rapid development of biomaterials has induced great interest in the precisely targeted treatment of bone-related diseases, including bone cancers, infections, and inflammation. Realizing noninvasive therapeutic effects, as well as improving bone tissue regeneration, is essential for the success of bone‑related disease therapies. In recent years, researchers have focused on the development of stimuli-responsive strategies to treat bone-related diseases and to realize bone regeneration. Among the various external stimuli for targeted therapy, near infrared (NIR) light has attracted considerable interests due to its high tissue penetration capacity, minimal damage toward normal tissues, and easy remote control properties. The main objective of this systematic review was to reveal the current applications of NIR light-assisted phototherapy for bone-related disease treatment and bone tissue regeneration. Database collection was completed by June 1, 2020, and a total of 81 relevant studies were finally included. We outlined the various therapeutic applications of photothermal, photodynamic and photobiomodulation effects under NIR light irradiation for bone‑related disease treatment and bone regeneration, based on the retrieved literatures. In addition, the advantages and promising applications of NIR light-responsive drug delivery systems for spatiotemporal-controlled therapy were summarized. These findings have revealed that NIR light-assisted phototherapy plays an important role in bone-related disease treatment and bone tissue regeneration, with significant promise for further biomedical and clinical applications.
Collapse
|
78
|
Hamdy O, Mohammed HS. Investigating the transmission profiles of 808 nm laser through different regions of the rat's head. Lasers Med Sci 2020; 36:803-810. [PMID: 32638241 DOI: 10.1007/s10103-020-03098-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/01/2020] [Indexed: 11/30/2022]
Abstract
Studying light penetration in biological tissues became a very important concern in various medical applications. It is an essential factor required to resolve the optical dose in many diagnostic and therapeutic procedures. The absorption and scattering properties of the inspected tissue control how deep the light will travel inside the tissue. However, these optical properties are highly dependent on the wavelength of the light source. In this work, the light transmission through different regions of the rat's head was investigated and the minimum laser power required to reach different parts of the head is also determined using 808-nm semiconductor laser diode. The power variation in different regions of the head is estimated using Monte Carlo simulation. Absorption and scattering coefficients of the head layers were calculated using integrating sphere measurements and Kubelka-Munk model. The absorption coefficient of the skin was 0.19 ± 0.071 mm-1, 0.024 ± 0.11 mm-1 for skull, and 0.35 ± 0.13 mm-1 for the brain, while the scattering coefficients were 7.35 ± 1.09, 2.71 ± 0.37, and 13.04 ± 0.36 mm-1 for skin, skull, and brain, respectively. The obtained results provide a relationship between laser incident power and the depth in the rat's head showing a higher optical transmission at the frontal part of the head than the middle or back regions due to the variations in the skull thickness. Therefore, the study revealed that the transmitted power of 808 nm laser at different incident locations on the head is nonlinear and variable due to different skull's thickness.
Collapse
Affiliation(s)
- Omnia Hamdy
- Department Of Engineering Applications of Laser, The National Institute of Laser Enhanced Sciences, Cairo University, Giza, 12613, Egypt.
| | - Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
79
|
Photobiomodulation for Parkinson's Disease in Animal Models: A Systematic Review. Biomolecules 2020; 10:biom10040610. [PMID: 32326425 PMCID: PMC7225948 DOI: 10.3390/biom10040610] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/11/2022] Open
Abstract
Photobiomodulation (PBM) might be an effective treatment for Parkinson’s disease (PD) in human patients. PBM of the brain uses red or near infrared light delivered from a laser or an LED at relatively low power densities, onto the head (or other body parts) to stimulate the brain and prevent degeneration of neurons. PD is a progressive neurodegenerative disease involving the loss of dopamine-producing neurons in the substantia nigra deep within the brain. PD is a movement disorder that also shows various other symptoms affecting the brain and other organs. Treatment involves dopamine replacement therapy or electrical deep brain stimulation. The present systematic review covers reports describing the use of PBM to treat laboratory animal models of PD, in an attempt to draw conclusions about the best choice of parameters and irradiation techniques. There have already been clinical trials of PBM reported in patients, and more are expected in the coming years. PBM is particularly attractive as it is a non-pharmacological treatment, without any major adverse effects (and very few minor ones).
Collapse
|
80
|
He L, Qing F, Li M, Lan D. Paclitaxel/IR1061-Co-Loaded Protein Nanoparticle for Tumor-Targeted and pH/NIR-II-Triggered Synergistic Photothermal-Chemotherapy. Int J Nanomedicine 2020; 15:2337-2349. [PMID: 32308385 PMCID: PMC7135189 DOI: 10.2147/ijn.s240707] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/10/2020] [Indexed: 12/13/2022] Open
Abstract
PURPOSE The aim of this study was to develop an "all-in-one" nanoplatform that integrates at the second near-infrared (NIR-II) region dye IR1061 and anticancer drug paclitaxel (PTX) into an apoferritin (AFN) nanocage (IR-AFN@PTX). Simultaneously, folic acid (FA), tumor target molecule, was conjugated onto IR-AFN@PTX to be IR-AFN@PTX-FA for tumor-targeted and pH/NIR-II-triggered synergistic photothermal-chemotherapy. METHODS IR1061 was firstly reacted with PEG and then conjugated with AFN to be IR-AFN. Then, FA was conjugated onto the surface of IR-AFN to be IR-AFN-FA. At last, PTX was incorporated into IR-AFN-FA to fabricate a nanoplatform IR-AFN@PTX-FA. The NIR-II photothermal properties and pH/NIR-II triggered drug release were evaluated. The ability of IR-AFN@PTX-FA to target tumors was estimated using optical bioluminescence. In vitro and in vivo synergistic therapeutic effects of pH/NIR-II-triggered and tumor-targeted photothermal-chemotherapy were investigated in 4T1 tumor model. RESULTS IR-AFN@PTX-FA showed excellent water solubility and physiological stability, which significantly enhanced the solubility of both IR1061 and PTX. After 5 min of laser irradiation at 1064 nm, IR-AFN@PTX-FA exhibited an effective photothermal effect compared with laser irradiation at 808 nm, even when blocked with 0.6 cm thick chicken breast. Cellular uptake experiments showed IR-AFN@PTX-FA utilized clathrin-mediated and caveolae-mediated endocytosis pathways to enter 4T1 cells, and was then delivered by the endosome to the lysosome. NIR-II laser irradiation and pH could synergistically trigger PTX release, inducing significant tumor inhibition in vitro and in vivo. CONCLUSION As a novel "all-in-one" nanoplatform, IR-AFN@PTX-FA was found to selectively target tumors and showed very efficient NIR-II photothermal effects and pH/NIR-II triggered drug release effects, showing a remarkable, synergistic photothermal-chemotherapy effect.
Collapse
Affiliation(s)
- Li He
- Department of Thyroid and Breast Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital (East Hospital), Chengdu610100, Sichuan, People’s Republic of China
| | - Fangzhen Qing
- Department of Stomatology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital (East Hospital), Chengdu610100, Sichuan, People’s Republic of China
| | - Maode Li
- Department of Hepatobiliary and Pancreatic Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital (East Hospital), Chengdu610100, Sichuan, People’s Republic of China
| | - Daitian Lan
- Department of Hepatobiliary and Pancreatic Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital (East Hospital), Chengdu610100, Sichuan, People’s Republic of China
| |
Collapse
|
81
|
Yuan Y, Cassano P, Pias M, Fang Q. Transcranial photobiomodulation with near-infrared light from childhood to elderliness: simulation of dosimetry. NEUROPHOTONICS 2020; 7:015009. [PMID: 32118086 PMCID: PMC7039173 DOI: 10.1117/1.nph.7.1.015009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 02/05/2020] [Indexed: 05/15/2023]
Abstract
Significance: Major depressive disorder (MDD) affects over 40 million U.S. adults in their lifetime. Transcranial photobiomodulation (t-PBM) has been shown to be effective in treating MDD, but the current treatment dosage does not account for head and brain anatomical changes due to aging. Aim: We study effective t-PBM dosage and its variations across age groups using state-of-the-art Monte Carlo simulations and age-dependent brain atlases ranging between 5 and 85 years of age. Approach: Age-dependent brain models are derived from 18 MRI brain atlases. Two extracranial source positions, F3-F4 and Fp1-Fpz-Fp2 in the EEG 10-20 system, are simulated at five selected wavelengths and energy depositions at two MDD-relevant cortical regions-dorsolateral prefrontal cortex (dlPFC) and ventromedial prefrontal cortex (vmPFC)-are quantified. Results: An overall decrease of energy deposition was found with increasing age. A strong negative correlation between the thickness of extracerebral tissues (ECT) and energy deposition was observed, suggesting that increasing ECT thickness over age is primarily responsible for reduced energy delivery. The F3-F4 position appears to be more efficient in reaching dlPFC compared to treating vmPFC via the Fp1-Fpz-Fp2 position. Conclusions: Quantitative simulations revealed age-dependent light delivery across the lifespan of human brains, suggesting the need for personalized and age-adaptive t-PBM treatment planning.
Collapse
Affiliation(s)
- Yaoshen Yuan
- Northeastern University, Department of Electrical and Computer Engineering, Boston, Massachusetts, United States
| | - Paolo Cassano
- Massachusetts General Hospital, Depression Clinical and Research Program, Center for Anxiety and Traumatic Stress Disorders, Boston, Massachusetts, United States
- Harvard Medical School, Department of Psychiatry, Boston, Massachusetts, United States
| | - Matthew Pias
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Qianqian Fang
- Northeastern University, Department of Electrical and Computer Engineering, Boston, Massachusetts, United States
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
- Address all correspondence to Qianqian Fang, E-mail:
| |
Collapse
|