51
|
Yang S, Sun HM, Yan JH, Xue H, Wu B, Dong F, Li WS, Ji FQ, Zhou DS. Conditioned medium from human amniotic epithelial cells may induce the differentiation of human umbilical cord blood mesenchymal stem cells into dopaminergic neuron-like cells. J Neurosci Res 2013; 91:978-86. [PMID: 23633297 DOI: 10.1002/jnr.23225] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 02/05/2013] [Accepted: 02/25/2013] [Indexed: 11/07/2022]
Abstract
Dopaminergic (DA) neuron therapy has been established as a new clinical tool for treating Parkinson's disease (PD). Prior to cell transplantation, there are two primary issues that must be resolved: one is the appropriate seed cell origin, and the other is the efficient inducing technique. In the present study, human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) were used as the available seed cells, and conditioned medium from human amniotic epithelial cells (ACM) was used as the inducing reagent. Results showed that the proportion of DA neuron-like cells from hUCB-MSCs was significantly increased after cultured in ACM, suggested by the upregulation of DAT, TH, Nurr1, and Pitx3. To identify the process by which ACM induces DA neuron differentiation, we pretreated hUCB-MSCs with k252a, the Trk receptor inhibitor of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), and found that the proportion of DA neuron-like cells was significantly decreased compared with ACM-treated hUCB-MSCs, suggesting that NGF and BDNF in ACM were involved in the differentiation process. However, we could not rule out the involvement of other unidentified factors in the ACM, because ACM + k252a treatment does not fully block DA neuron-like cell differentiation compared with control. The transplantation of ACM-induced hUCB-MSCs could ameliorate behavioral deficits in PD rats, which may be associated with the survival of engrafted DA neuron-like cells. In conclusion, we propose that hUCB-MSCs are a good source of DA neuron-like cells and that ACM is a potential inducer to obtain DA neuron-like cells from hUCB-MSCs in vitro for an ethical and legal cell therapy for PD.
Collapse
MESH Headings
- Amnion/cytology
- Analysis of Variance
- Animals
- Apomorphine
- Brain-Derived Neurotrophic Factor/pharmacology
- Cell Differentiation/drug effects
- Culture Media, Conditioned/pharmacology
- Disease Models, Animal
- Dopamine Plasma Membrane Transport Proteins/genetics
- Dopamine Plasma Membrane Transport Proteins/metabolism
- Dopaminergic Neurons/drug effects
- Enzyme-Linked Immunosorbent Assay
- Epithelial Cells/chemistry
- Fetal Blood/cytology
- Fetus
- Flow Cytometry
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Mesenchymal Stem Cell Transplantation/methods
- Mesenchymal Stem Cells/drug effects
- Nuclear Receptor Subfamily 4, Group A, Member 2/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism
- Oxidopamine/toxicity
- Parkinson Disease/etiology
- Parkinson Disease/physiopathology
- Parkinson Disease/surgery
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, trkA/genetics
- Receptor, trkA/metabolism
- Receptor, trkB/metabolism
- Stereotyped Behavior/drug effects
- Stereotyped Behavior/physiology
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tyrosine 3-Monooxygenase/genetics
- Tyrosine 3-Monooxygenase/metabolism
Collapse
Affiliation(s)
- Shu Yang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Laroni A, Novi G, Kerlero de Rosbo N, Uccelli A. Towards clinical application of mesenchymal stem cells for treatment of neurological diseases of the central nervous system. J Neuroimmune Pharmacol 2013; 8:1062-76. [PMID: 23579931 DOI: 10.1007/s11481-013-9456-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 03/31/2013] [Indexed: 12/13/2022]
Abstract
The diagnosis of a neurological disease of the central nervous system (CNS) is often associated with the anticipation of an irreversible and untreatable disability. This is the case also of multiple sclerosis (MS) where approved treatments effectively modulate the autoimmune attack to myelin antigens, but poorly affect neurodegeneration and do not promote tissue repair. Thus, stem cell-based therapies are increasingly being considered a possible strategy for diseases of the CNS. Mesenchymal stem cells (MSC), the safety of which has been demonstrated in the last 20 years through clinical trials and case studies, are of particular interest in view not only of their neuroprotective, but also of their immunomodulatory properties. Here, we review the therapeutic features of MSC that make them relevant in the treatment of CNS illnesses and discuss the pioneer clinical experience with MSC-based therapy in neurological diseases.
Collapse
Affiliation(s)
- Alice Laroni
- Department of Neurosciences Ophthalmology, Genetics, Rehabilitation and Child Health, University of Genoa, Genoa, Italy
| | | | | | | |
Collapse
|
53
|
Wang Y, Yang J, Li H, Wang X, Zhu L, Fan M, Wang X. Hypoxia promotes dopaminergic differentiation of mesenchymal stem cells and shows benefits for transplantation in a rat model of Parkinson's disease. PLoS One 2013; 8:e54296. [PMID: 23342124 PMCID: PMC3546985 DOI: 10.1371/journal.pone.0054296] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 12/10/2012] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells capable of differentiating into dopaminergic (DAergic) neurons, which is one of the major cell types damaged in Parkinson’s disease (PD). For this reason, MSCs are considered a potential cell source for PD therapy. It has been proved that hypoxia is involved in the proliferation and differentiation of stem cells. In this study, we investigated the effect of hypoxia on MSC proliferation and DAergic neuronal differentiation. Our results demonstrate that 3% O2 treatment can enhance rat MSC proliferation by upregulation of phosphorylated p38 MAPK and subsequent nuclear translocation of hypoxia inducible factor (HIF)-1α. During neural differentiation, 3% O2 treatment increases the expression of HIF-1α, phosphorylated ERK and p38 MAPK. These changes are followed by promotion of neurosphere formation and further DAergic neuronal differentiation. Furthermore, we explored the physiological function of hypoxia-induced DAergic neurons from human fetal MSCs by transplanting them into parkinsonian rats. Grafts induced with hypoxia display more survival of DAergic neurons and greater amelioration of behavioral impairments. Altogether, these results suggest that hypoxia can promote MSC proliferation and DAergic neuronal differentiation, and benefit for intrastriatal transplantation. Therefore, this study may provide new perspectives in application of MSCs to clinical PD therapy.
Collapse
Affiliation(s)
- Yue Wang
- Neuroscience Research Institute, Peking University, Key Laboratory of Neuroscience (PKU), Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Jian Yang
- Department of Physiology and Neurobiology, Capital Medical University, Key Laboratory for Neurodegenerative Disease of Education Ministry, Youanmen, Beijing, China
- Beijing An Ding Hospital, Beijing, China
| | - Haisheng Li
- Department of Brain Protection, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xuan Wang
- Department of Physiology and Neurobiology, Capital Medical University, Key Laboratory for Neurodegenerative Disease of Education Ministry, Youanmen, Beijing, China
| | - Lingling Zhu
- Department of Brain Protection, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Ming Fan
- Department of Brain Protection, Beijing Institute of Basic Medical Sciences, Beijing, China
- * E-mail: (XMW); (MF)
| | - Xiaomin Wang
- Department of Physiology and Neurobiology, Capital Medical University, Key Laboratory for Neurodegenerative Disease of Education Ministry, Youanmen, Beijing, China
- * E-mail: (XMW); (MF)
| |
Collapse
|
54
|
Alwin Prem Anand A, Gowri Sankar S, Kokila Vani V. Immortalization of neuronal progenitors using SV40 large T antigen and differentiation towards dopaminergic neurons. J Cell Mol Med 2012; 16:2592-610. [PMID: 22863662 PMCID: PMC4118228 DOI: 10.1111/j.1582-4934.2012.01607.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 07/16/2012] [Indexed: 01/19/2023] Open
Abstract
Transplantation is common in clinical practice where there is availability of the tissue and organ. In the case of neurodegenerative disease such as Parkinson's disease (PD), transplantation is not possible as a result of the non-availability of tissue or organ and therefore, cell therapy is an innovation in clinical practice. However, the availability of neuronal cells for transplantation is very limited. Alternatively, immortalized neuronal progenitors could be used in treating PD. The neuronal progenitor cells can be differentiated into dopaminergic phenotype. Here in this article, the current understanding of the molecular mechanisms involved in the differentiation of dopaminergic phenotype from the neuronal progenitors immortalized with SV40 LT antigen is discussed. In addition, the methods of generating dopaminergic neurons from progenitor cells and the factors that govern their differentiation are elaborated. Recent advances in cell-therapy based transplantation in PD patients and future prospects are discussed.
Collapse
|
55
|
Human placental decidua basalis-derived mesenchymal stem cells differentiate into dopamine neuron-like cells with no response to long-term culture in vitro. Neuroreport 2012; 23:513-8. [PMID: 22525837 DOI: 10.1097/wnr.0b013e328353fbb4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human placental decidua basalis-derived mesenchymal stem cells (DBMSCs) have been identified as valuable sources for cell transplantation. In this study, we found that DBMSCs could be induced to form neural stem cells in the form of neurospheres. These neurospheres were further differentiated into dopamine neuron-like cells with a cocktail of cytokines. The differentiated DBMSCs were verified through the presence of a neuron-like morphology, the expression of specific dopamine neuron makers, and the production of dopamine. In addition, this differentiation capacity of DBMSCs was not affected by long-term culture, and the cells maintained a normal karyotype in vitro. The dopamine neuronal differentiation and the relative safety transplantation potential of DBMSCs may facilitate stem cell therapeutic approaches to Parkinson's disease.
Collapse
|
56
|
Yang J, Wang X, Wang Y, Guo ZX, Luo DZ, Jia J, Wang XM. Dopaminergic neuronal conversion from adult rat skeletal muscle-derived stem cells in vitro. Neurochem Res 2012; 37:1982-92. [PMID: 22723079 DOI: 10.1007/s11064-012-0819-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 05/09/2012] [Accepted: 05/28/2012] [Indexed: 11/26/2022]
Abstract
Muscle-derived stem cells reside in the skeletal muscle tissues and are known for their multipotency to differentiate toward the mesodermal lineage. Recent studies have demonstrated their capacity of neuroectodermal differentiation, including neurons and astrocytes. In this study, we investigated the possibility of dopaminergic neuronal conversion from adult rat skeletal muscle-derived stem cells. Using a neurosphere protocol, muscle-derived stem cells form neurosphere-like cell clusters after cultivation as a suspension, displaying an obvious expression of nestin and a remarkable down-regulation of myogenic associated factors desmin, MyoD, Myf5 and myogenin. Subsequently, these neurosphere-like cell clusters were further directed to dopaminergic differentiation through two major induction steps, patterning to midbrain progenitors with sonic hedgehog and fibroblast growth factor 8, followed by the differentiation to dopaminergic neurons with neurotrophic factors (glial cell line-derived neurotrophic factor) and chemicals (ascorbic acid, forskolin). After the differentiation, these cells expressed tyrosine hydroxylase, dopamine transporter, dopamine D1 receptor and synapse-associated protein synapsin I. Several genes, Nurr1, Lmx1b, and En1, which are critically related with the development of dopaminergic neurons, were also significantly up-regulated. The present results indicate that adult skeletal muscle-derived stem cells could provide a promising cell source for autologous transplantation for neurodegenerative diseases in the future, especially the Parkinson's disease.
Collapse
Affiliation(s)
- Jian Yang
- Key Laboratory for Neurodegenerative Disease of Education Ministry, Department of Physiology and Neurobiology, Capital Medical University, 10# Youanmen, Beijing 100069, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
57
|
Evaluation of distinct freezing methods and cryoprotectants for human amniotic fluid stem cells cryopreservation. J Biomed Biotechnol 2012; 2012:649353. [PMID: 22665987 PMCID: PMC3361720 DOI: 10.1155/2012/649353] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 03/06/2012] [Indexed: 12/12/2022] Open
Abstract
Amniotic fluid (AF) was described as a potential source of mesenchymal stem cells (MSCs) for biomedicine purposes. Therefore, evaluation of alternative cryoprotectants and freezing protocols capable to maintain the viability and stemness of these cells after cooling is still needed. AF stem cells (AFSCs) were tested for different freezing methods and cryoprotectants. Cell viability, gene expression, surface markers, and plasticity were evaluated after thawing. AFSCs expressed undifferentiated genes Oct4 and Nanog; presented typical markers (CD29, CD44, CD90, and CD105) and were able to differentiate into mesenchymal lineages. All tested cryoprotectants preserved the features of AFSCs however, variations in cell viability were observed. In this concern, dimethyl sulfoxide (Me2SO) showed the best results. The freezing protocols tested did not promote significant changes in the AFSCs viability. Time programmed and nonprogrammed freezing methods could be used for successful AFSCs cryopreservation for 6 months. Although tested cryoprotectants maintained undifferentiated gene expression, typical markers, and plasticity of AFSCs, only Me2SO and glycerol presented workable viability ratios.
Collapse
|
58
|
Maia L, Landim-Alvarenga FC, Golim MDA, Sudano MJ, Taffarel MO, De Vita B, Freitas NPP, Amorim RM. Potencial de transdiferenciação neural das células-tronco mesenquimais da medula óssea de equino. PESQUISA VETERINARIA BRASILEIRA 2012. [DOI: 10.1590/s0100-736x2012000500013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Os primeiros estudos demonstrando o potencial de trandiferenciação neural das células-tronco mesenquimais (CTMs) provenientes da medula óssea (MO) foram conduzidos em camundogos e humanos no início da década de 2000. Após esse período, o número de pesquisas e publicações com o mesmo propósito tem aumentado, mas com raros ou escassos estudos na espécie equina. Nesse sentindo, o objetivo desse trabalho foi avaliar o potencial in vitro da transdiferenciação neural das CTMs provenientes da MO de equinos utilizando-se dois protocolos: P1 (forksolin e ácido retinóico) e P2 (2-βmecarptoetanol). Após a confirmação das linhagens mesenquimais, pela positividade para o marcador CD90 (X=97,94%), negatividade para o marcador CD34 e resposta positiva a diferenciação osteogênica, as CTMs foram submetidas a transdiferenciação neural (P1 e P2) para avaliação morfológica e expressão dos marcadores neurais GFAP e β3 tubulina por citometria de fluxo. Os resultados revelaram mudanças morfológicas em graus variados entre os protocolos testados. No protocolo 1, vinte quatro horas após a incubação com o meio de diferenciação neural, grande proporção de células (>80%) apresentaram morfologia semelhante a células neurais, caracterizadas por retração do corpo celular e grande número de projeções protoplasmáticas (filopodia). Por outro lado, de forma comparativa, já nos primeiros 30 minutos após a exposição ao antioxidante β-mercaptoetanol (P2) as CTMs apresentaram rápida mudança morfológica caracterizada principalmente por retração do corpo celular e menor número de projeções protoplasmáticas. Também ficou evidenciado com o uso deste protocolo, menor aderência das células após tempo de exposição ao meio de diferenciação, quando comparado ao P1. Com relação a análise imunofenotípica foi observado uma maior (P<0,001) expressão dos marcadores GFAP e β3 tubulina ao término do P2 quando comparado ao P1. A habilidade das CTMs em gerar tipos celulares relacionados a linhagem neural é complexa e multifatorial, dependendo não só dos agentes indutores, mas também do ambiente no qual estas células são cultivadas. Desta forma um maior número de estudos é necessário para o melhor entendimento do processo de transdiferenciação neural a partir de CTMs de equinos.
Collapse
|
59
|
Park HW, Cho JS, Park CK, Jung SJ, Park CH, Lee SJ, Oh SB, Park YS, Chang MS. Directed induction of functional motor neuron-like cells from genetically engineered human mesenchymal stem cells. PLoS One 2012; 7:e35244. [PMID: 22496912 PMCID: PMC3320649 DOI: 10.1371/journal.pone.0035244] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 03/11/2012] [Indexed: 01/08/2023] Open
Abstract
Cell replacement using stem cells is a promising therapeutic approach to treat degenerative motor neuron (MN) disorders, such as amyotrophic lateral sclerosis and spinal cord injury. Human bone marrow-derived mesenchymal stem cells (hMSCs) are a desirable cell source for autologous cell replacement therapy to treat nervous system injury due to their plasticity, low immunogenicity, and a lower risk of tumor formation than embryonic stem cells. However, hMSCs are inefficient with regards to differentiating into MN-like cells. To solve this limitation, we genetically engineered hMSCs to express MN-associated transcription factors, Olig2 and Hb9, and then treat the hMSCs expressing Olig2 and Hb9 with optimal MN induction medium (MNIM). This method of induction led to higher expression (>30% of total cells) of MN markers. Electrophysiological data revealed that the induced hMSCs had the excitable properties of neurons and were able to form functional connections with muscle fibers in vitro. Furthermore, when the induced hMSCs were transplanted into an injured organotypic rat spinal cord slice culture, an ex vivo model of spinal cord injury, they exhibited characteristics of MNs. The data strongly suggest that induced Olig2/Hb9-expressing hMSCs were clearly reprogrammed and directed toward a MN-like lineage. We propose that methods to induce Olig2 and Hb9, followed by further induction with MNIM have therapeutic potential for autologous cell replacement therapy to treat degenerative MN disorders.
Collapse
Affiliation(s)
- Hwan-Woo Park
- Department of Oral Anatomy, Dental Research Institute and School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Jung-Sun Cho
- Department of Oral Anatomy, Dental Research Institute and School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Chul-Kyu Park
- Department of Physiology, Dental Research Institute and School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Sung Jun Jung
- Department of Physiology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Chang-Hwan Park
- Graduate School of Biomedical Science and Engineering, College of Medicine, Hanyang University, Seoul, Korea
- Department of Microbiology, College of Medicine, Hanyang University, Seoul, Korea
| | - Shin-Jae Lee
- Department of Orthodontics, Dental Research Institute and School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Seog Bae Oh
- Department of Physiology, Dental Research Institute and School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Young-Seok Park
- Department of Oral Anatomy, Dental Research Institute and School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Mi-Sook Chang
- Department of Oral Anatomy, Dental Research Institute and School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Neuroscience Research Institute, Seoul National University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
60
|
Ganz J, Lev N, Melamed E, Offen D. Cell replacement therapy for Parkinson's disease: how close are we to the clinic? Expert Rev Neurother 2012; 11:1325-39. [PMID: 21864078 DOI: 10.1586/ern.11.74] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cell replacement therapy (CRT) offers great promise as the future of regenerative medicine in Parkinson´s disease (PD). Three decades of experiments have accumulated a wealth of knowledge regarding the replacement of dying neurons by new and healthy dopaminergic neurons transplanted into the brains of animal models and affected patients. The first clinical trials provided the proof of principle for CRT in PD. In these experiments, intrastriatal transplantation of human embryonic mesencephalic tissue reinnervated the striatum, restored dopamine levels and showed motor improvements. Sequential controlled studies highlighted several problems that should be addressed prior to the wide application of CRT for PD patients. Moreover, owing to ethical and practical problems, embryonic stem cells require replacement by better-suited stem cells. Several obstacles remain to be surpassed, including identifying the best source of stem cells for A9 dopaminergic neuron generation, eliminating the risk of tumor formation and the development of graft-induced dyskinesias, and standardizing dopaminergic cell production in order to enable clinical application. In this article, we present an update on CRT for PD, reviewing the research milestones, various stem cells used and tailored differentiation methods, and analyze the information gained from the clinical trials.
Collapse
Affiliation(s)
- Javier Ganz
- Laboratory of Neuroscience, Felsenstein Medical Research Center, Rabin Medical Center, Tel Aviv University, Israel
| | | | | | | |
Collapse
|
61
|
Whone AL, Kemp K, Sun M, Wilkins A, Scolding NJ. Human bone marrow mesenchymal stem cells protect catecholaminergic and serotonergic neuronal perikarya and transporter function from oxidative stress by the secretion of glial-derived neurotrophic factor. Brain Res 2012; 1431:86-96. [DOI: 10.1016/j.brainres.2011.10.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 10/18/2011] [Accepted: 10/20/2011] [Indexed: 12/29/2022]
|
62
|
Cheng NC, Wang S, Young TH. The influence of spheroid formation of human adipose-derived stem cells on chitosan films on stemness and differentiation capabilities. Biomaterials 2011; 33:1748-58. [PMID: 22153870 DOI: 10.1016/j.biomaterials.2011.11.049] [Citation(s) in RCA: 276] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 11/20/2011] [Indexed: 02/08/2023]
Abstract
Adipose-derived stem cells (ASCs) have valuable applications in regenerative medicine, but maintaining the stemness of ASCs during in vitro culture is still a challenging issue. In this study, human ASCs spontaneously formed three-dimensional spheroids on chitosan films. Most ASCs within the spheroid were viable, and the cells produced more extracellular molecules, like laminin and fibronectin. Comparing to monolayer culture, ASC spheroids also exhibited enhanced cell survival in serum deprivation condition. Although cell proliferation was inhibited in spheroids, ASCs readily migrated out and proliferated upon transferring spheroids to another adherent growth surface. Moreover, spheroid-derived ASCs exhibited higher expansion efficiency and colony-forming activity. Importantly, we demonstrated that spheroid formation of human ASCs on chitosan films induced significant upregulation of pluripotency marker genes (Sox-2, Oct-4 and Nanog). By culturing the ASC spheroids in proper induction media, we found that ASC differentiation capabilities were significantly enhanced after spheroid formation, including increased transdifferentiation efficiency into neuron and hepatocyte-like cells. In a nude mice model, we further showed a significantly higher cellular retention ratio of ASC spheroids after intramuscular injection of spheroids and dissociated ASCs. These results suggested that ASCs cultured as spheroids on chitosan films can increase their therapeutic potentials.
Collapse
Affiliation(s)
- Nai-Chen Cheng
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 100, Taiwan
| | | | | |
Collapse
|
63
|
Xu W, Xu GX. Mesenchymal stem cells for retinal diseases. Int J Ophthalmol 2011; 4:413-21. [PMID: 22553693 DOI: 10.3980/j.issn.2222-3959.2011.04.19] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 07/03/2011] [Indexed: 12/13/2022] Open
Abstract
Retinal diseases are featured with the common result of retinal cell apoptosis that will cause irreversible vision loss. Various attempts have been made for the solution against cell death. However, few approaches turn out to be effective. With the progress in mesenchymal stem cells (MSCs) research, MSCs were considered as a promising source for cell replacement or neuroprotection in retinal disorders. MSCs have the property of self-renewal and are multipotent cells derived from various mesenchymal tissues, which were demonstrated being capable of differentiating into multilineage tissue cells. Some works were also done to differentiate MSCs into retinal cells. MSCs could be induced to express retinal cell markers under certain stimuli. Recent studies also suggest that MSCs should be an ideal source for neuroprotection via the secretion of a variety of neurotrophins. Engineered MSCs were also used as vehicles for continuous delivery of neurotrophins against retinal degeneration with encouraging results. Since there are still barriers on the differentiation of MSCs into functional retinal cells, the use of MSCs for neuroprotection in retinal diseases seems to be a more practicable approach and worthy of further investigations.
Collapse
Affiliation(s)
- Wei Xu
- Fujian Institute of Ophthalmology, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China
| | | |
Collapse
|
64
|
Role of mesenchymal stem cells in neurogenesis and nervous system repair. Neurochem Int 2011; 59:347-56. [PMID: 21718735 DOI: 10.1016/j.neuint.2011.06.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 05/27/2011] [Accepted: 06/09/2011] [Indexed: 02/08/2023]
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) are attractive candidates for use in regenerative medicine since they are easily accessible and can be readily expanded in vivo, and possess unique immunogenic properties. Moreover, these multipotent cells display intriguing environmental adaptability and secretory capacity. The ability of MSCs to migrate and engraft in a range of tissues has received significant attention. Evidence indicating that MSC transplantation results in functional improvement in animal models of neurological disorders has highlighted exciting potential for their use in neurological cell-based therapies. The manner in which MSCs elicit positive effects in the damaged nervous system remains unclear. Cell fusion and/or 'transdifferentiation' phenomena, by which MSCs have been proposed to adopt neural cell phenotypes, occur at very low frequency and are unlikely to fully account for observed neurological improvement. Alternatively, MSC-mediated neural recovery may result from the release of soluble molecules, with MSC-derived growth factors and extracellular matrix components influencing the activity of endogenous neural cells. This review discusses the potential of MSCs as candidates for use in therapies to treat neurological disorders and the molecular and cellular mechanisms by which they are understood to act.
Collapse
|
65
|
Khoo MLM, Tao H, Meedeniya ACB, Mackay-Sim A, Ma DDF. Transplantation of neuronal-primed human bone marrow mesenchymal stem cells in hemiparkinsonian rodents. PLoS One 2011; 6:e19025. [PMID: 21625433 PMCID: PMC3100305 DOI: 10.1371/journal.pone.0019025] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 03/15/2011] [Indexed: 01/03/2023] Open
Abstract
Bone marrow-derived human mesenchymal stem cells (hMSCs) have shown promise in in vitro neuronal differentiation and in cellular therapy for neurodegenerative disorders, including Parkinson' disease. However, the effects of intracerebral transplantation are not well defined, and studies do not agreed on the optimal neuronal differentiation method. Here, we investigated three growth factor-based neuronal differentiation procedures (using FGF-2/EGF/PDGF/SHH/FGF-8/GDNF), and found all to be capable of eliciting an immature neural phenotype, in terms of cell morphology and gene/protein expression. The neuronal-priming (FGF-2/EGF) method induced neurosphere-like formation and the highest NES and NR4A2 expression by hMSCs. Transplantation of undifferentiated and neuronal-primed hMSCs into the striatum and substantia nigra of 6-OHDA-lesioned hemiparkinsonian rats revealed transient graft survival of 7 days, despite the reported immunosuppressive properties of MSCs and cyclosporine-immunosuppression of rats. Neither differentiation of hMSCs nor induction of host neurogenesis was observed at injection sites, and hMSCs continued producing mesodermal fibronectin. Strategies for improving engraftment and differentiation post-transplantation, such as prior in vitro neuronal-priming, nigral and striatal grafting, and co-transplantation of olfactory ensheathing cells that promote neural regeneration, were unable to provide advantages. Innate inflammatory responses (Iba-1-positive microglia/macrophage and GFAP-positive astrocyte activation and accumulation) were detected around grafts within 7 days. Our findings indicate that growth factor-based methods allow hMSC differentiation toward immature neuronal-like cells, and contrary to previous reports, only transient survival and engraftment of hMSCs occurs following transplantation in immunosuppressed hemiparkinsonian rats. In addition, suppression of host innate inflammatory responses may be a key factor for improving hMSC survival and engraftment.
Collapse
Affiliation(s)
- Melissa L. M. Khoo
- Blood Stem Cells and Cancer Research, St Vincent's Centre for Applied Medical Research, Sydney, New South Wales, Australia, and The University of New South Wales, Sydney, New South Wales, Australia
| | - Helen Tao
- Blood Stem Cells and Cancer Research, St Vincent's Centre for Applied Medical Research, Sydney, New South Wales, Australia, and The University of New South Wales, Sydney, New South Wales, Australia
| | - Adrian C. B. Meedeniya
- National Centre for Adult Stem Cell Research, Eskitis Institute for Cell and Molecular Therapies, Griffith University, Brisbane, Queensland, Australia
| | - Alan Mackay-Sim
- National Centre for Adult Stem Cell Research, Eskitis Institute for Cell and Molecular Therapies, Griffith University, Brisbane, Queensland, Australia
| | - David D. F. Ma
- Blood Stem Cells and Cancer Research, St Vincent's Centre for Applied Medical Research, Sydney, New South Wales, Australia, and The University of New South Wales, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
66
|
Hydrogel for Cell Housing in the Brain and in the Spinal Cord. Int J Artif Organs 2011; 34:295-303. [DOI: 10.5301/ijao.2011.6488] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2010] [Indexed: 01/08/2023]
Abstract
Purpose Neurons in the adult mammalian central nervous system do not proliferate or renew themselves and consequently strong interest in cell replacement therapies to repair brain and spinal cord damages has emerged in the last decade. Methods An injectable resorbable hydrogel with a controlled nanostructure, specifically designed for neural cell housing, was developed together with a new protocol for building three-dimensional (3D) biohybrid cell/hydrogel constructs: cells are housed within the polymeric matrix which is directly built with a specific cell culture media. This matrix was tested with standard glial populations, primary astrocytes and mesenchymal stem cells. Results Physico-chemical characterization of the hydrogel matrix confirmed a 2- week (+ 2 days) stability before massive degradation; mean mesh size of about 5 nm and thixotropic behavior with transition yield stress at 60+5 Pa. Cell survival within the hydrogel resulted in about 55±5% (minimum value) survivals, data also confirmed by optical assessments. Cell viability also remained high after extraction from the gel, indicating survival to inclusion latency period. Conclusions Since the intimate structure of the gel mimics extracellular matrix cells as would be expected to be found in an in vivo context, this polymeric formulation is a promising base for building 3D constructs for neural cell housing, in which cells are embedded and kept alive directly from the time of polycondensation.
Collapse
|
67
|
Glavaski-Joksimovic A, Virag T, Mangatu TA, McGrogan M, Wang XS, Bohn MC. Glial cell line-derived neurotrophic factor-secreting genetically modified human bone marrow-derived mesenchymal stem cells promote recovery in a rat model of Parkinson's disease. J Neurosci Res 2011; 88:2669-81. [PMID: 20544825 DOI: 10.1002/jnr.22435] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by progressive degeneration of nigrostriatal dopaminergic (DA) neurons. The therapeutic potential of glial cell line-derived neurotrophic factor (GDNF), the most potent neurotrophic factor for DA neurons, has been demonstrated in many experimental models of PD. However, chronic delivery of GDNF to DA neurons in the brain remains an unmet challenge. Here, we report the effects of GDNF-releasing Notch-induced human bone marrow-derived mesenchymal stem cells (MSC) grafted into striatum of the 6-hydroxydopamine (6-OHDA) progressively lesioned rat model of PD. Human MSC, obtained from bone marrow aspirates of young, healthy adult volunteers, were transiently transfected with the intracellular domain of the Notch1 gene (NICD) to generate SB623 cells. SB623 cells expressing GDNF and/or humanized Renilla green fluorescent protein (hrGFP) following lentiviral transduction or nontransduced cells were stereotaxically placed into rat striatum 1 week after a unilateral partial 6-OHDA striatal lesion. At 4 weeks, rats that had received GDNF-transduced SB623 cells had significantly decreased amphetamine-induced rotation compared with control rats, although this effect was not observed in rats that received GFP-transduced or nontransduced SB623 cells. At 5 weeks, rejuvenated tyrosine hydroxylase-immunoreactive (TH-IR) fibers that appeared to be host DA axons were observed in and around grafts. This effect was more prominent in rats that received GDNF-secreting cells and was not observed in controls. These observations suggest that human bone-marrow derived MSC, genetically modified to secrete GDNF, hold potential as an allogeneic or autologous stem cell therapy for PD.
Collapse
Affiliation(s)
- Aleksandra Glavaski-Joksimovic
- Department of Pediatrics, Neurobiology Program, Children's Memorial Research Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60614, USA
| | | | | | | | | | | |
Collapse
|
68
|
Delcroix GJR, Curtis KM, Schiller PC, Montero-Menei CN. EGF and bFGF pre-treatment enhances neural specification and the response to neuronal commitment of MIAMI cells. Differentiation 2010; 80:213-27. [PMID: 20813449 DOI: 10.1016/j.diff.2010.07.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 06/28/2010] [Accepted: 07/12/2010] [Indexed: 02/06/2023]
Abstract
AIMS Multipotent mesenchymal stromal cells raise great interest for regenerative medicine studies. Some MSC subpopulations have the potential to undergo neural differentiation, including marrow isolated adult multilineage inducible (MIAMI) cells, which differentiate into neuron-like cells in a multi-step neurotrophin 3-dependent manner. Epidermal and basic fibroblast growth factors are often used in neuronal differentiation protocols for MSCs, but with a limited understanding of their role. In this study, we thoroughly assessed for the first time the capacity of these factors to enhance the neuronal differentiation of MSCs. MATERIALS AND METHODS We have characterized MIAMI cell neuronal differentiation program in terms of stem cell molecule expression, cell cycle modifications, acquisition of a neuronal morphology and expression of neural and neuronal molecules in the absence and presence of an EGF-bFGF pre-treatment. RESULTS EGF-bFGF pre-treatment down-regulated the expression of stemness markers Oct4A, Notch1 and Hes5, whereas neural/neuronal molecules Nestin, Pax6, Ngn2 and the neurotrophin receptor tyrosine kinase 1 and 3 were up-regulated. During differentiation, a sustained Erk phosphorylation in response to NT3 was observed, cells began to exit from the cell cycle and exhibit increased neurite-like extensions. In addition, neuronal β3-tubulin and neurofilament expression was increased; an effect mediated via the Erk pathway. A slight pre-oligodendrocyte engagement was noted, and no default neurotransmitter phenotype was observed. Overall, mesodermal markers were unaffected or decreased, while neurogenic/adipogenic PPARγ2 was increased. CONCLUSION EGF and bFGF pre-treatment enhances neural specification and the response to neuronal commitment of MIAMI cells, further increasing their potential use in adult cell therapy of the nervous system.
Collapse
|
69
|
Roles of db-cAMP, IBMX and RA in aspects of neural differentiation of cord blood derived mesenchymal-like stem cells. PLoS One 2010; 5:e9398. [PMID: 20195526 PMCID: PMC2827567 DOI: 10.1371/journal.pone.0009398] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 02/04/2010] [Indexed: 02/01/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have multilineage differentiation potential which includes cell lineages of the central nervous system; hence MSCs might be useful in the treatment of neurodegenerative diseases such as Parkinson's disease. Although mesenchymal stem cells have been shown to differentiate into the neural lineage, there is still little knowledge about the underlying mechanisms of differentiation particularly towards specialized neurons such as dopaminergic neurons. Here, we show that MSCs derived from human umbilical cord blood (MSChUCBs) are capable of expressing tyrosine hydroxylase (TH) and Nurr1, markers typically associated with DA neurons. We also found differential phosphorylation of TH isoforms indicating the presence of post-translational mechanisms possibly activating and modifying TH in MSChUCB. Furthermore, functional dissection of components in the differentiation medium revealed that dibutyryl-cAMP (db-cAMP), 3-isobutyl-1-methylxanthine (IBMX) and retinoic acid (RA) are involved in the regulation of Nurr1 and Neurofilament-L expression as well as in the differential phosphorylation of TH. We also demonstrate a possible inhibitory role of the protein kinase A signaling pathway in the phosphorylation of specific TH isoforms.
Collapse
|
70
|
Sadan O, Melamed E, Offen D. Bone-marrow-derived mesenchymal stem cell therapy for neurodegenerative diseases. Expert Opin Biol Ther 2010; 9:1487-97. [PMID: 19821796 DOI: 10.1517/14712590903321439] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Stem-cell-based therapy is a promising new approach to handling neurodegenerative diseases. One of the most promising cellular sources is bone-marrow-derived mesenchymal stem cells (MSCs) also termed multipotent stromal cells. MSCs represent an autologous source and are abundant and non-tumorigenic. Additionally, MSCs possess the useful characteristics of homing and chemokine secretion. OBJECTIVE/METHODS Since neurodegenerative diseases have many pathological processes in common, a specific therapeutic agent could potentially ameliorate the symptoms of several distinct neurodegenerative diseases. In this review we demonstrate the wide variety of mechanisms by which MSCs can influence neurodegenerative processes. RESULTS/CONCLUSIONS The mechanisms by which transplanted MSCs influence neurodegenerative diseases can be broadly classified as cellular replacement or paracrine secretion, with the latter subdivided into trophic factor secretion or immunomodulation by cytokines. Emerging research suggests that genetic manipulations before transplantation could enhance the therapeutic potential of MSCs. Such manipulation could turn the cells into a 'Trojan horse', to deliver specific proteins, or promote reprogramming of the MSCs into the neural lineage. Clinical trials testing MSC-based therapies for familial amyotrophic lateral sclerosis and multiple sclerosis are in progress.
Collapse
Affiliation(s)
- Ofer Sadan
- Neurosciences Laboratory, Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
| | | | | |
Collapse
|
71
|
Sadan O, Bahat-Stromza M, Barhum Y, Levy YS, Pisnevsky A, Peretz H, Ilan AB, Bulvik S, Shemesh N, Krepel D, Cohen Y, Melamed E, Offen D. Protective effects of neurotrophic factor-secreting cells in a 6-OHDA rat model of Parkinson disease. Stem Cells Dev 2009; 18:1179-90. [PMID: 19243240 DOI: 10.1089/scd.2008.0411] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Stem cell-based therapy is a promising treatment for neurodegenerative diseases. In our laboratory, a novel protocol has been developed to induce bone marrow-derived mesenchymal stem cells (MSC) into neurotrophic factors- secreting cells (NTF-SC), thus combining stem cell-based therapy with the NTF-based neuroprotection. These cells produce and secrete factors such as brain-derived neurotrophic factor (BDNF) and glial cell-derived neurotrophic factor. Conditioned medium of the NTF-SC that was applied to a neuroblastoma cell line (SH-SY5Y) 1 h before exposure to the neurotoxin 6-hydroxydopamine (6-OHDA) demonstrated marked protection. An efficacy study was conducted on the 6-OHDA-induced lesion, a rat model of Parkinson's disease. The cells, either MSC or NTF-SC, were transplanted on the day of 6-OHDA administration and amphetamine-induced rotations were measured as a primary behavior index. We demonstrated that when transplanted posterior to the 6-OHDA lesion, the NTF-SC ameliorated amphetamine-induced rotations by 45%. HPLC analysis demonstrated that 6-OHDA induced dopamine depletion to a level of 21% compared to the untreated striatum. NTF-SC inhibited dopamine depletion to a level of 72% of the contralateral striatum. Moreover, an MRI study conducted with iron-labeled cells, followed by histological verification, revealed that the engrafted cells migrated toward the lesion. In a histological assessment, we found that the cells induced regeneration in the damaged striatal dopaminergic nerve terminal network. We therefore conclude that the induced MSC have a therapeutic potential for neurodegenerative processes and diseases, both by the NTFs secretion and by the migratory trait toward the diseased tissue.
Collapse
Affiliation(s)
- Ofer Sadan
- Laboratory of Neurosciences, Felsenstein Medical Research Center, Department of Neurology, Rabin Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Transplantation of undifferentiated human mesenchymal stem cells protects against 6-hydroxydopamine neurotoxicity in the rat. Cell Transplant 2009; 19:203-17. [PMID: 19906332 DOI: 10.3727/096368909x479839] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Stem cells have been increasingly recognized as a potential tool to replace or support cells damaged by the neurodegenerative process that underlies Parkinson's disease (PD). In this frame, human adult mesenchymal stem cells (hMSCs) have been proposed as an attractive alternative to heterologous embryonic or neural precursor cells. To address this issue, in this study we implanted undifferentiated hMSCs into the striatum of rats bearing a lesion of the nigrostriatal pathway induced by local injection of 6-hydroxydopamine (6-OHDA), a widely recognized rodent model of PD. Before grafting, cultured hMSCs expressed markers of both undifferentiated and committed neural cells, including nestin, GAP-43, NSE, beta-tubulin III, and MAP-2, as well as several cytokine mRNAs. No glial or specific neuronal markers were detected. Following transplantation, some hMSCs acquired a glial-like phenotype, as shown by immunoreactivity for glial fibrillary acid protein (GFAP), but only in animals bearing the nigrostriatal lesion. More importantly, rats that received the striatal graft showed increased survival of both cell bodies and terminals of dopaminergic, nigrostriatal neurons, coupled with a reduction of the behavioral abnormalities (apomorphine-induced turning behavior) associated with the lesion. No differentiation of the MSCs toward a neuronal (dopaminergic) phenotype was observed in vivo. In conclusion, our results suggest that grafted hMSCs exert neuroprotective effects against nigrostriatal degeneration induced by 6-OHDA. The mechanisms underlying this effect remain to be clarified, although it is likely that the acquisition of a glial phenotype by grafted hMSCs may lead to the release of prosurvival cytokines within the lesioned striatum.
Collapse
|
73
|
Kuo TK, Ho JH, Lee OK. Mesenchymal Stem Cell Therapy for Nonmusculoskeletal Diseases: Emerging Applications. Cell Transplant 2009; 18:1013-28. [DOI: 10.3727/096368909x471206] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mesenchymal stem cells are stem/progenitor cells originated from the mesoderm and can different into multiple cell types of the musculoskeletal system. The vast differentiation potential and the relative ease for culture expansion have established mesenchymal stem cells as the building blocks in cell therapy and tissue engineering applications for a variety of musculoskeletal diseases, including repair of fractures and bone defects, cartilage regeneration, treatment of osteonecrosis of the femoral head, and correction of genetic diseases such as osteogenesis imperfect. However, research in the past decade has revealed differentiation potentials of mesenchymal stem cells beyond lineages of the mesoderm, suggesting broader applications than originally perceived. In this article, we review the recent developments in mesenchymal stem cell research with respect to their emerging properties and applications in nonmusculoskeletal diseases.
Collapse
Affiliation(s)
- Tom K. Kuo
- Stem Cell Research Center, National Yang-Ming University, Taiwan
| | - Jennifer H. Ho
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taiwan
- Department of Ophthalmology, Taipei Medical University-Wan Fang Hospital, Taiwan
| | - Oscar K. Lee
- Stem Cell Research Center, National Yang-Ming University, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taiwan
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taiwan
| |
Collapse
|
74
|
Barzilay R, Ben-Zur T, Bulvik S, Melamed E, Offen D. Lentiviral delivery of LMX1a enhances dopaminergic phenotype in differentiated human bone marrow mesenchymal stem cells. Stem Cells Dev 2009; 18:591-601. [PMID: 19298173 DOI: 10.1089/scd.2008.0138] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human mesenchymal stem cells (MSCs) reside in the bone marrow and are known for their ability to differentiate along the mesenchymal lineage (fat, bone, and cartilage). Recent works have suggested the possibility that these cells are also capable of differentiating toward the neuroectodermal lineage. Using lentiviral gene delivery, we sought to reprogram the bone marrow-derived MSCs toward dopaminergic differentiation through delivery of LMX1a, which was reported to be a key player in dopaminergic differentiation in both developmental animal models and embryonic stem cells. Transduction of cells with fluorescent reporter genes confirmed efficiency of gene delivery. On incubation of the LMX1a transduced cells in differentiation medium, the LMX1a protein was concentrated in the cells' nuclei and specific dopaminergic developmental genes were upregulated. Moreover, the transduced cells expressed higher levels of tyrosine hydroxylase, the rate limiting enzyme in dopamine synthesis, and secreted significantly higher level of dopamine in comparison to nontransduced cells. We hereby present a novel strategy to facilitate the dopaminergic differentiation of bone marrow-derived MSCs as a possible cell source for autologous transplantation for Parkinsonian patients in the future.
Collapse
Affiliation(s)
- Ran Barzilay
- Department of Neurology, Laboratory of Neurosciences, Felsenstein Medical Research Center, Rabin Medical Center, Tel Aviv University, Sackler School of Medicine, Petah-Tikva, Israel
| | | | | | | | | |
Collapse
|
75
|
Park DH, Eve DJ, Musso J, Klasko SK, Cruz E, Borlongan CV, Sanberg PR. Inflammation and Stem Cell Migration to the Injured Brain in Higher Organisms. Stem Cells Dev 2009; 18:693-702. [DOI: 10.1089/scd.2009.0008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Dong-Hyuk Park
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida, Tampa, Florida
- Department of Neurosurgery, Korea University Medical Center, Korea University, Seoul, Korea
| | - David J. Eve
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida, Tampa, Florida
| | - James Musso
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida, Tampa, Florida
| | | | - Eduardo Cruz
- Cryopraxis, CellPraxis, BioRio, Pólo de Biotecnologia do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cesario V. Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida, Tampa, Florida
| | - Paul R. Sanberg
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida, Tampa, Florida
| |
Collapse
|
76
|
Lee PH, Park HJ. Bone marrow-derived mesenchymal stem cell therapy as a candidate disease-modifying strategy in Parkinson's disease and multiple system atrophy. J Clin Neurol 2009; 5:1-10. [PMID: 19513327 PMCID: PMC2686892 DOI: 10.3988/jcn.2009.5.1.1] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 02/13/2009] [Accepted: 02/16/2009] [Indexed: 12/17/2022] Open
Abstract
Parkinson's disease (PD) and multiple system atrophy (MSA) are neurodegenerative diseases representative of α-synucleinopathies characterized pathologically by α-synuclein-abundant Lewy bodies and glial cytoplasmic inclusions, respectively. Embryonic stem cells, fetal mesencephalic neurons, and neural stem cells have been introduced as restorative strategies in PD animals and patients, but ethical and immunological problems as well as the serious side effects of tumorigenesis and disabling dyskinesia have limited clinical application of these stem cells. Meanwhile, cell therapy using mesenchymal stem cells (MSCs) is attractive clinically because these cells are free from ethical and immunological problems. MSCs are present in adult bone marrow and represent <0.01% of all nucleated bone marrow cells. MSCs are themselves capable of multipotency, differentiating under appropriate conditions into chondrocytes, skeletal myocytes, and neurons. According to recent studies, the neuroprotective effect of MSCs is mediated by their ability to produce various trophic factors that contribute to functional recovery, neuronal cell survival, and stimulation of endogenous regeneration and by immunoregulatory properties that not only inhibit nearly all cells participating in the immune response cell-cell-contact-dependent mechanism, but also release various soluble factors associated with immunosuppressive activity. However, the use of MSCs as neuroprotectives in PD and MSA has seldom been studied. Here we comprehensively review recent advances in the therapeutic roles of MSCs in PD and MSA, especially focusing on their neuroprotective properties and use in disease-modifying therapeutic strategies.
Collapse
Affiliation(s)
- Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | | |
Collapse
|
77
|
Park HJ, Lee PH, Bang OY, Lee G, Ahn YH. Mesenchymal stem cells therapy exerts neuroprotection in a progressive animal model of Parkinson's disease. J Neurochem 2008; 107:141-51. [PMID: 18665911 DOI: 10.1111/j.1471-4159.2008.05589.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Parkinson's disease is a common progressive neurodegenerative disorder caused by the loss of dopaminergic neurons in the substantia nigra. We investigated whether cell therapy with human mesenchymal stem cells (hMSCs) had a protective effect on progressive dopaminergic neuronal loss in vitro and in vivo. In primary mesencephalic cultures, hMSCs treatment significantly decreased MG-132-induced dopaminergic neuronal loss with a significant reduction of caspase-3 activity. In rats received systemic injection of MG-132, hMSCs treatment in MG-132-treated rats dramatically reduced the decline in the number of tyrosine hydroxylase (TH)-immunoreactive cells, showing an approximately 50% increase in the survival of TH-immunoreactive cells in the substantia nigra compared with the MG-132-treated group. Additionally, hMSC treatment significantly decreased OX-6 immunoreactivity and caspase-3 activity. Histological analysis showed that the number of NuMA-positive cells was 1.7% of total injected hMSCs and 35.7% of these cells were double-stained with NuMA and TH. Adhesive-removal test showed that hMSCs administration in MG-132-treated rats had a tendency to decrease in the mean removal time. This study demonstrates that hMSCs treatment had a protective effect on progressive loss of dopaminergic neurons induced by MG-132 in vitro and in vivo. Complex mechanisms mediated by trophic effects of hMSCs and differentiation of hMSCs into functional TH-immunoreactive neurons may work in the neuroprotective process.
Collapse
Affiliation(s)
- Hyun Jung Park
- Center for Neuroregeneration and Stem Cell Research, Ajou University School of Medicine, Suwon, South Korea
| | | | | | | | | |
Collapse
|
78
|
Migration of Neurotrophic Factors-Secreting Mesenchymal Stem Cells Toward a Quinolinic Acid Lesion as Viewed by Magnetic Resonance Imaging. Stem Cells 2008; 26:2542-51. [DOI: 10.1634/stemcells.2008-0240] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|