51
|
Rahman MM, Ghosh M, Subramani J, Fong GH, Carlson ME, Shapiro LH. CD13 regulates anchorage and differentiation of the skeletal muscle satellite stem cell population in ischemic injury. Stem Cells 2015; 32:1564-77. [PMID: 24307555 DOI: 10.1002/stem.1610] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 10/16/2013] [Accepted: 10/21/2013] [Indexed: 01/03/2023]
Abstract
CD13 is a multifunctional cell surface molecule that regulates inflammatory and angiogenic mechanisms in vitro, but its contribution to these processes in vivo or potential roles in stem cell biology remains unexplored. We investigated the impact of loss of CD13 on a model of ischemic skeletal muscle injury that involves angiogenesis, inflammation, and stem cell mobilization. Consistent with its role as an inflammatory adhesion molecule, lack of CD13 altered myeloid trafficking in the injured muscle, resulting in cytokine profiles skewed toward a prohealing environment. Despite this healing-favorable context, CD13(KO) animals showed significantly impaired limb perfusion with increased necrosis, fibrosis, and lipid accumulation. Capillary density was correspondingly decreased, implicating CD13 in skeletal muscle angiogenesis. The number of CD45-/Sca1-/α7-integrin+/β1-integrin+ satellite cells was markedly diminished in injured CD13(KO) muscles and adhesion of isolated CD13(KO) satellite cells was impaired while their differentiation was accelerated. Bone marrow transplantation studies showed contributions from both host and donor cells to wound healing. Importantly, CD13 was coexpressed with Pax7 on isolated muscle-resident satellite cells. Finally, phosphorylated-focal adhesion kinase and ERK levels were reduced in injured CD13(KO) muscles, consistent with CD13 regulating satellite cell adhesion, potentially contributing to the maintenance and renewal of the satellite stem cell pool and facilitating skeletal muscle regeneration.
Collapse
Affiliation(s)
- M Mamunur Rahman
- Center for Vascular Biology and University of Connecticut Health Center, Farmington, Connecticut, USA
| | | | | | | | | | | |
Collapse
|
52
|
Müller J, Ossig C, Greiner JFW, Hauser S, Fauser M, Widera D, Kaltschmidt C, Storch A, Kaltschmidt B. Intrastriatal transplantation of adult human neural crest-derived stem cells improves functional outcome in parkinsonian rats. Stem Cells Transl Med 2014; 4:31-43. [PMID: 25479965 DOI: 10.5966/sctm.2014-0078] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Parkinson's disease (PD) is considered the second most frequent and one of the most severe neurodegenerative diseases, with dysfunctions of the motor system and with nonmotor symptoms such as depression and dementia. Compensation for the progressive loss of dopaminergic (DA) neurons during PD using current pharmacological treatment strategies is limited and remains challenging. Pluripotent stem cell-based regenerative medicine may offer a promising therapeutic alternative, although the medical application of human embryonic tissue and pluripotent stem cells is still a matter of ethical and practical debate. Addressing these challenges, the present study investigated the potential of adult human neural crest-derived stem cells derived from the inferior turbinate (ITSCs) transplanted into a parkinsonian rat model. Emphasizing their capability to give rise to nervous tissue, ITSCs isolated from the adult human nose efficiently differentiated into functional mature neurons in vitro. Additional successful dopaminergic differentiation of ITSCs was subsequently followed by their transplantation into a unilaterally lesioned 6-hydroxydopamine rat PD model. Transplantation of predifferentiated or undifferentiated ITSCs led to robust restoration of rotational behavior, accompanied by significant recovery of DA neurons within the substantia nigra. ITSCs were further shown to migrate extensively in loose streams primarily toward the posterior direction as far as to the midbrain region, at which point they were able to differentiate into DA neurons within the locus ceruleus. We demonstrate, for the first time, that adult human ITSCs are capable of functionally recovering a PD rat model.
Collapse
Affiliation(s)
- Janine Müller
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Christiana Ossig
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Johannes F W Greiner
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Stefan Hauser
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Mareike Fauser
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Darius Widera
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Christian Kaltschmidt
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Alexander Storch
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Barbara Kaltschmidt
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| |
Collapse
|
53
|
Characterization of Nestin-positive stem Leydig cells as a potential source for the treatment of testicular Leydig cell dysfunction. Cell Res 2014; 24:1466-85. [PMID: 25418539 PMCID: PMC4260348 DOI: 10.1038/cr.2014.149] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 01/19/2014] [Accepted: 09/01/2014] [Indexed: 11/23/2022] Open
Abstract
The ability to identify and isolate lineage-specific stem cells from adult tissues could facilitate cell replacement therapy. Leydig cells (LCs) are the primary source of androgen in the mammalian testis, and the prospective identification of stem Leydig cells (SLCs) may offer new opportunities for treating testosterone deficiency. Here, in a transgenic mouse model expressing GFP driven by the Nestin (Nes) promoter, we observed Nes-GFP+ cells located in the testicular interstitial compartment where SLCs normally reside. We showed that these Nes-GFP+ cells expressed LIFR and PDGFR-α, but not LC lineage markers. We further observed that these cells were capable of clonogenic self-renewal and extensive proliferation in vitro and could differentiate into neural or mesenchymal cell lineages, as well as LCs, with the ability to produce testosterone, under defined conditions. Moreover, when transplanted into the testes of LC-disrupted or aging models, the Nes-GFP+ cells colonized the interstitium and partially increased testosterone production, and then accelerated meiotic and post-meiotic germ cell recovery. In addition, we further demonstrated that CD51 might be a putative cell surface marker for SLCs, similar with Nestin. Taken together, these results suggest that Nes-GFP+ cells from the testis have the characteristics of SLCs, and our study would shed new light on developing stem cell replacement therapy for testosterone deficiency.
Collapse
|
54
|
Matsumura S, Higa K, Igarashi T, Takaichi S, Tonogi M, Shinozaki N, Shimazaki J, Yamane GY. Characterization of mesenchymal progenitor cell populations from non-epithelial oral mucosa. Oral Dis 2014; 21:361-72. [PMID: 25180458 DOI: 10.1111/odi.12288] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 12/27/2013] [Accepted: 08/26/2014] [Indexed: 12/22/2022]
Abstract
OBJECTIVES The characteristics of cell populations extracted from oral mucosal non-epithelial tissues and their ability to differentiate were evaluated in vitro as a potential source of cells for mandibular and corneal regeneration. MATERIALS AND METHODS Oral mucosal non-epithelial cells (OMNECs) were extracted from tissue samples and were studied by flow cytometry and RT-PCR. Cells differentiating into osteoblasts, adipocytes, chondrocytes, neurocytes, or keratocytes were characterized by RT-PCR and cell staining. RESULTS OMNECs expressed CD44, CD90, CD105, CD166, and STRO-1 antigens, which are markers for mesenchymal stem cells. In addition, Oct3/4, c-Myc, Nanog, KLF4, and Rex, which are expressed by embryonic or pluripotent stem cells, were detected by RT-PCR. Expression of CD49d, CD56, and PDGFRα, proteins closely associated with the neural crest, was observed in OMNECs, as was expression of Twist1, Sox9, Snail1 and Snail2, which are early neural crest and neural markers. Specific differentiation markers were expressed in OMNECs after differentiation into osteoblasts, adipocytes, chondrocytes, or keratocytes. CONCLUSIONS Populations of OMNECs may contain both mesenchymal stem cells and neural crest origin cells and are a potential cell source for autologous regeneration of mandibular or corneal stroma.
Collapse
Affiliation(s)
- S Matsumura
- Department of Oral Medicine, Oral and Maxillofacial Surgery, Tokyo Dental College, Chiba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Ichikawa Y, Watahiki J, Nampo T, Nose K, Yamamoto G, Irie T, Mishima K, Maki K. Differences in the developmental origins of the periosteum may influence bone healing. J Periodontal Res 2014; 50:468-78. [PMID: 25225160 DOI: 10.1111/jre.12229] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND OBJECTIVE The jaw bone, unlike most other bones, is derived from neural crest stem cells, so we hypothesized that it may have different characteristics to bones from other parts of the body, especially in the nature of its periosteum. The periosteum exhibits osteogenic potential and has received considerable attention as a grafting material for the repair of bone and joint defects. MATERIAL AND METHODS Gene expression profiles of jaw bone and periosteum were evaluated by DNA microarray and real-time polymerase chain reaction. Furthermore, we perforated an area 2 mm in diameter on mouse frontal and parietal bones. Bone regeneration of these calvarial defects was evaluated using microcomputed tomography and histological analysis. RESULTS The DNA microarray data revealed close homology between the gene expression profiles within the ilium and femur. The gene expression of Wnt-1, SOX10, nestin, and musashi-1 were significantly higher in the jaw bone than in other locations. Microcomputed tomography and histological analysis revealed that the jaw bone had superior bone regenerative abilities than other bones. CONCLUSION Jaw bone periosteum exhibits a unique gene expression profile that is associated with neural crest cells and has a positive influence on bone regeneration when used as a graft material to repair bone defects. A full investigation of the biological and mechanical properties of jaw bone as an alternative graft material for jaw reconstructive surgery is recommended.
Collapse
Affiliation(s)
- Y Ichikawa
- Department of Orthodontics, Showa University School of Dentistry, Ohta-ku, Tokyo, Japan
| | - J Watahiki
- Department of Orthodontics, Showa University School of Dentistry, Ohta-ku, Tokyo, Japan
| | - T Nampo
- Department of Orthodontics, Showa University School of Dentistry, Ohta-ku, Tokyo, Japan
| | - K Nose
- Department of Orthodontics, Showa University School of Dentistry, Ohta-ku, Tokyo, Japan
| | - G Yamamoto
- Department of Oral Pathology and Diagnosis, Showa University School of Dentistry, Shinagawa-ku, Tokyo, Japan
| | - T Irie
- Department of Oral Pathology and Diagnosis, Showa University School of Dentistry, Shinagawa-ku, Tokyo, Japan
| | - K Mishima
- Department of Oral Pathology and Diagnosis, Showa University School of Dentistry, Shinagawa-ku, Tokyo, Japan
| | - K Maki
- Department of Orthodontics, Showa University School of Dentistry, Ohta-ku, Tokyo, Japan
| |
Collapse
|
56
|
Zhang Z, Han Y, Song J, Luo R, Jin X, Mu D, Su S, Ji X, Ren YF, Liu H. Interferon-γ regulates the function of mesenchymal stem cells from oral lichen planus via indoleamine 2,3-dioxygenase activity. J Oral Pathol Med 2014; 44:15-27. [PMID: 25212102 DOI: 10.1111/jop.12224] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2014] [Indexed: 12/27/2022]
Abstract
BACKGROUND Little is known about mesenchymal stem cells (MSCs) in normal or inflammatory oral mucosal tissues, such as in oral lichen planus (OLP). Our objectives were to identify, isolate, and characterize MSCs from normal human oral mucosa and OLP lesions, and to evaluate indoleamine 2,3 dioxygenase (IDO) activity in mediating immunomodulation of MSCs from these tissues. METHODS Expressions of MSCs-related markers were examined in isolated cells by flow cytometry. Self-renewal and multilineage differentiations were studied to characterize these MSCs. Interferon-γ (IFN-γ), IDO, and STRO-1 were assessed by immunofluorescence. MSCs from oral mucosa and OLP or IFN-γ-pretreated MSCs were co-cultured with allogeneic mixed lymphocyte reaction assays (MLR). Proliferation and apoptosis of MLR or MSCs were detected by CCK8 and the annexin V-FITC apoptosis detection kit, respectively. IDO expression and activity were measured by real-time PCR, Western blotting, and high-performance liquid chromatography. RESULTS Isolated cells from oral mucosa and OLP expressed MSC-related markers STRO-1, CD105, and CD90 but were absent for hematopoietic stem cell markers CD34. Besides, they all showed self-renewal and multilineage differentiation capacities. MSCs in OLP presented STRO-1/IDO+ phenotype by immunofluorescence. MSCs and IFN-γ-pretreated MSCs could inhibit lymphocyte proliferation via IDO activity, but not via cell apoptosis. Long-term IFN-γ could also inhibit MSC proliferation via IDO activity. CONCLUSIONS Mesenchymal stem cells can be isolated from human oral mucosa and OLP tissues. Besides self-renewal and multilineage differentiation properties, these cells may participate in immunomodulation mediated by IFN-γ via IDO activity in human OLP.
Collapse
Affiliation(s)
- Zhihui Zhang
- School and Hospital of Stomatology, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Abstract
Radiation injury to skin results in a variety of deterministic effects including inflammatory reactions and cell depletion leading to distinct clinical symptoms following a defined time pattern. Therapeutic approaches are still limited, a complete restitution of affected areas is so far impossible. In the last few years increasing experimental knowledge about acquisition and administration of autologous stem cells also in the field of radiation injuries has been obtained. Evidence reviewed in this article shows that the beneficial effects of stem cell transplantation are not necessarily due to the replacement of damaged cells by transplanted cells but most probably due in the most part to a paracrine effect. Transplanted cells secrete bioactive factors that initiate the stimulation of the host stem cells to regenerate the damaged tissues. Transplanted stem cells produce trophic factors which aid the systemic healing of the victims. Furthermore, administration of stem cell secretomes in the form of conditioned media containing microvesicles or exosomes can be as effective as administering the stem cells. This hypothesis is supported by findings that cell-free derivatives from hMSCs were useful for wound healing purposes and could circumvent the need for intact cells. Furthermore, the beneficial effect of MSC injection on reperfusion and tissue damage in a mouse model of hind limb ischemia could be attributed to paracrine mechanisms with local release of arteriogenic cytokines. Further evaluation of the paracrine potential of autologous stem cells may open new means for treatment of acute as well as chronic sequelae of cutaneous radiation injuries.
Collapse
Affiliation(s)
- M Rezvani
- Natural Biosciences SA, Lake Garden Medical Center, Kilchberg, Zurich, Switzerland,
| |
Collapse
|
58
|
Ganz J, Arie I, Buch S, Zur TB, Barhum Y, Pour S, Araidy S, Pitaru S, Offen D. Dopaminergic-like neurons derived from oral mucosa stem cells by developmental cues improve symptoms in the hemi-parkinsonian rat model. PLoS One 2014; 9:e100445. [PMID: 24945922 PMCID: PMC4063966 DOI: 10.1371/journal.pone.0100445] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 05/28/2014] [Indexed: 11/23/2022] Open
Abstract
Achieving safe and readily accessible sources for cell replacement therapy in Parkinson’s disease (PD) is still a challenging unresolved issue. Recently, a primitive neural crest stem cell population (hOMSC) was isolated from the adult human oral mucosa and characterized in vitro and in vivo. In this study we assessed hOMSC ability to differentiate into dopamine-secreting cells with a neuronal-dopaminergic phenotype in vitro in response to dopaminergic developmental cues and tested their therapeutic potential in the hemi-Parkinsonian rat model. We found that hOMSC express constitutively a repertoire of neuronal and dopaminergic markers and pivotal transcription factors. Soluble developmental factors induced a reproducible neuronal-like morphology in the majority of hOMSC, downregulated stem cells markers, upregulated the expression of the neuronal and dopaminergic markers that resulted in dopamine release capabilities. Transplantation of these dopaminergic-induced hOMSC into the striatum of hemi-Parkinsonian rats improved their behavioral deficits as determined by amphetamine-induced rotational behavior, motor asymmetry and motor coordination tests. Human TH expressing cells and increased levels of dopamine in the transplanted hemispheres were observed 10 weeks after transplantation. These results demonstrate for the first time that soluble factors involved in the development of DA neurons, induced a DA phenotype in hOMSC in vitro that significantly improved the motor function of hemiparkinsonian rats. Based on their neural-related origin, their niche accessibility by minimal-invasive procedures and their propensity for DA differentiation, hOMSC emerge as an attractive tool for autologous cell replacement therapy in PD.
Collapse
Affiliation(s)
- Javier Ganz
- Neurosciences Laboratory, Felsenstein Medical Research Center-Rabin Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Ina Arie
- Oral Biology Dept., School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sigal Buch
- Oral Biology Dept., School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tali Ben Zur
- Neurosciences Laboratory, Felsenstein Medical Research Center-Rabin Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Yael Barhum
- Neurosciences Laboratory, Felsenstein Medical Research Center-Rabin Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Sammy Pour
- Oral & Maxillofacial Dept., Baruch Padeh Medical Center, Poria, Lower Galilee, Israel
| | - Shareef Araidy
- Oral & Maxillofacial Dept., Baruch Padeh Medical Center, Poria, Lower Galilee, Israel
| | - Sandu Pitaru
- Oral Biology Dept., School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Offen
- Neurosciences Laboratory, Felsenstein Medical Research Center-Rabin Medical Center, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
59
|
Oral mucosa stem cells alleviates spinal cord injury-induced neurogenic bladder symptoms in rats. J Biomed Sci 2014; 21:43. [PMID: 24884998 PMCID: PMC4028106 DOI: 10.1186/1423-0127-21-43] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/05/2014] [Indexed: 12/15/2022] Open
Abstract
Background Spinal cord injury (SCI) deteriorates various physical functions, in particular, bladder problems occur as a result of damage to the spinal cord. Stem cell therapy for SCI has been focused as the new strategy to treat the injuries and to restore the lost functions. The oral mucosa cells are considered as the stem cells-like progenitor cells. In the present study, we investigated the effects of oral mucosa stem cells on the SCI-induced neurogenic bladder in relation with apoptotic neuronal cell death and cell proliferation. Results The contraction pressure and the contraction time in the urinary bladder were increased after induction of SCI, in contrast, transplantation of the oral mucosa stem cells decreased the contraction pressure and the contraction time in the SCI-induced rats. Induction of SCI initiated apoptosis in the spinal cord tissues, whereas treatment with the oral mucosa stem cells suppressed the SCI-induced apoptosis. Disrupted spinal cord by SCI was improved by transplantation of the oral mucosa stem cells, and new tissues were increased around the damaged tissues. In addition, transplantation of the oral mucosa stem cells suppressed SCI-induced neuronal activation in the voiding centers. Conclusions Transplantation of oral mucosa stem cells ameliorates the SCI-induced neurogenic bladder symptoms by inhibiting apoptosis and by enhancing cell proliferation. As the results, SCI-induced neuronal activation in the neuronal voiding centers was suppressed, showing the normalization of voiding function.
Collapse
|
60
|
Ecto-Mesenchymal Stem Cells from Facial Process: Potential for Muscle Regeneration. Cell Biochem Biophys 2014; 70:615-22. [PMID: 24748180 DOI: 10.1007/s12013-014-9964-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
61
|
Greiner JFW, Grunwald LM, Müller J, Sudhoff H, Widera D, Kaltschmidt C, Kaltschmidt B. Culture bag systems for clinical applications of adult human neural crest-derived stem cells. Stem Cell Res Ther 2014; 5:34. [PMID: 24629140 PMCID: PMC4055128 DOI: 10.1186/scrt422] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 03/11/2014] [Indexed: 11/15/2022] Open
Abstract
Introduction Facing the challenging treatment of neurodegenerative diseases as well as complex craniofacial injuries such as those common after cancer therapy, the field of regenerative medicine increasingly relies on stem cell transplantation strategies. Here, neural crest-derived stem cells (NCSCs) offer many promising applications, although scale up of clinical-grade processes prior to potential transplantations is currently limiting. In this study, we aimed to establish a clinical-grade, cost-reducing cultivation system for NCSCs isolated from the adult human nose using cGMP-grade Afc-FEP bags. Methods We cultivated human neural crest-derived stem cells from inferior turbinate (ITSCs) in a cell culture bag system using Afc-FEP bags in human blood plasma-supplemented medium. Investigations of viability, proliferation and expression profile of bag-cultured ITSCs were followed by DNA-content and telomerase activity determination. Cultivated ITSCs were introduced to directed in vitro differentiation assays to assess their potential for mesodermal and ectodermal differentiation. Mesodermal differentiation was determined using an enzyme activity assay (alkaline phosphatase, ALP), respective stainings (Alizarin Red S, Von Kossa and Oil Red O), and RT-PCR, while immunocytochemistry and synaptic vesicle recycling were applied to assay neuroectodermal differentiation of ITSCs. Results When cultivated within Afc-FEP bags, ITSCs grew three-dimensionally in a human blood plasma-derived matrix, thereby showing unchanged morphology, proliferation capability, viability and expression profile in comparison to three dimensionally-cultured ITSCs growing in standard cell culture plastics. Genetic stability of bag-cultured ITSCs was further accompanied by unchanged telomerase activity. Importantly, ITSCs retained their potential to differentiate into mesodermal cell types, particularly including ALP-active, Alizarin Red S-, and Von Kossa-positive osteogenic cell types, as well as adipocytes positive in Oil Red O assays. Bag culture further did not affect the potential of ITSCs to undergo differentiation into neuroectodermal cell types coexpressing β-III-tubulin and MAP2 and exhibiting the capability for synaptic vesicle recycling. Conclusions Here, we report for the first time the successful cultivation of human NCSCs within cGMP-grade Afc-FEP bags using a human blood plasma-supplemented medium. Our findings particularly demonstrate the unchanged differentiation capability and genetic stability of the cultivated NCSCs, suggesting the great potential of this culture system for future medical applications in the field of regenerative medicine.
Collapse
|
62
|
Ganz J, Arie I, Ben-Zur T, Dadon-Nachum M, Pour S, Araidy S, Pitaru S, Offen D. Astrocyte-like cells derived from human oral mucosa stem cells provide neuroprotection in vitro and in vivo. Stem Cells Transl Med 2014; 3:375-86. [PMID: 24477074 DOI: 10.5966/sctm.2013-0074] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Human oral mucosa stem cells (hOMSC) are a recently described neural crest-derived stem cell population. Therapeutic quantities of potent hOMSC can be generated from small biopsies obtained by minimally invasive procedures. Our objective was to evaluate the potential of hOMSC to differentiate into astrocyte-like cells and provide peripheral neuroprotection. We induced hOMSC differentiation into cells showing an astrocyte-like morphology that expressed characteristic astrocyte markers as glial fibrillary acidic protein, S100β, and the excitatory amino acid transporter 1 and secreted neurotrophic factors (NTF) such as brain-derived neurotrophic factor, vascular endothelial growth factor, glial cell line-derived neurotrophic factor, and insulin-like growth factor 1. Conditioned medium of the induced cells rescued motor neurons from hypoxia or oxidative stress in vitro, suggesting a neuroprotective effect mediated by soluble factors. Given the neuronal support (NS) ability of the cells, the differentiated cells were termed hOMSC-NS. Rats subjected to sciatic nerve injury and transplanted with hOMSC-NS showed improved motor function after transplantation. At the graft site we found the transplanted cells, increased levels of NTF, and a significant preservation of functional neuromuscular junctions, as evidenced by colocalization of α-bungarotoxin and synaptophysin. Our findings show for the first time that hOMSC-NS generated from oral mucosa exhibit neuroprotective effects in vitro and in vivo and point to their future therapeutic use in neural disorders.
Collapse
Affiliation(s)
- Javier Ganz
- Neurosciences Laboratory, Felsenstein Medical Research Center-Rabin Medical Center, Sackler Faculty of Medicine, and Oral Biology Department, School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Oral and Maxillofacial Department, Baruch Padeh Medical Center, Poria, Lower Galilee, Israel
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Fournier BPJ, Larjava H, Häkkinen L. Gingiva as a source of stem cells with therapeutic potential. Stem Cells Dev 2013; 22:3157-77. [PMID: 23944935 DOI: 10.1089/scd.2013.0015] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Postnatal connective tissues contain phenotypically heterogeneous cells populations that include distinct fibroblast subpopulations, pericytes, myofibroblasts, fibrocytes, and tissue-specific mesenchymal stem cells (MSCs). These cells play key roles in tissue development, maintenance, and repair and contribute to various pathologies. Depending on the origin of tissue, connective tissue cells, including MSCs, have different phenotypes. Understanding the identity and specific functions of these distinct tissue-specific cell populations may allow researchers to develop better treatment modalities for tissue regeneration and find novel approaches to prevent pathological conditions. Interestingly, MSCs from adult oral mucosal gingiva possess distinct characteristics, including neural crest origin, multipotent differentiation capacity, fetal-like phenotype, and potent immunomodulatory properties. These characteristics and an easy, relatively noninvasive access to gingival tissue, and fast tissue regeneration after tissue biopsy make gingiva an attractive target for cell isolation for therapeutic purposes aiming to promote tissue regeneration and fast, scar-free wound healing. The purpose of this review is to discuss the identity, phenotypical heterogeneity, and function of gingival MSCs and summarize what is currently known about their properties, role in scar-free healing, and their future therapeutic potential.
Collapse
Affiliation(s)
- Benjamin P J Fournier
- 1 Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia , Vancouver, Canada
| | | | | |
Collapse
|
64
|
Hinz B. Matrix mechanics and regulation of the fibroblast phenotype. Periodontol 2000 2013; 63:14-28. [DOI: 10.1111/prd.12030] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2012] [Indexed: 01/17/2023]
|
65
|
Xu X, Chen C, Akiyama K, Chai Y, Le AD, Wang Z, Shi S. Gingivae contain neural-crest- and mesoderm-derived mesenchymal stem cells. J Dent Res 2013; 92:825-32. [PMID: 23867762 DOI: 10.1177/0022034513497961] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Gingivae represent a unique soft tissue that serves as a biological barrier to cover the oral cavity side of the maxilla and mandible. Recently, the gingivae were identified as containing mesenchymal stem cells (GMSCs). However, it is unknown whether the GMSCs are derived from cranial neural crest cells (CNCC) or the mesoderm. In this study, we show that around 90% of GMSCs are derived from CNCC and 10% from the mesoderm. In comparison with mesoderm MSCs (M-GMSCs), CNCC-derived GMSCs (N-GMSCs) show an elevated capacity to differentiate into neural cells and chondrocytes and induce activated T-cell apoptosis in vitro. When transplanted into mice with dextran sulfate sodium (DSS)-induced colitis, N-GMSCs showed superior effects in ameliorating inflammatory-related disease phenotype in comparison with the M-GMSC treatment group. Mechanistically, the increased immunomodulatory effect of N-GMSCs is associated with up-regulated expression of FAS ligand (FASL), a transmembrane protein that plays an important role in MSC-based immunomodulation. In summary, our study indicates that the gingivae contain both neural-crest- and mesoderm-derived MSCs with distinctive stem cell properties.
Collapse
Affiliation(s)
- X Xu
- Laboratory of Oral Biomedical Science and Translational Medicine, Tongji University School of Stomatology, Shanghai 200072, China
| | | | | | | | | | | | | |
Collapse
|
66
|
Kaltschmidt B, Kaltschmidt C, Widera D. Adult craniofacial stem cells: sources and relation to the neural crest. Stem Cell Rev Rep 2012; 8:658-71. [PMID: 22170630 DOI: 10.1007/s12015-011-9340-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During the process of development, neural crest cells migrate out from their niche between the newly formed ectoderm and the neural tube. Thereafter, they give rise not only to ectodermal cell types, but also to mesodermal cell types. Cell types with neural crest ancestry consequently comprise a number of specialized varieties, such as ectodermal neurons, melanocytes and Schwann cells, as well as mesodermal osteoblasts, adipocytes and smooth muscle cells. Numerous recent studies suggest that stem cells with a neural crest origin persist into adulthood, especially within the mammalian craniofacial compartment. This review discusses the sources of adult neural crest-derived stem cells (NCSCs) derived from the cranium, as well as their differentiation potential and expression of key stem cell markers. Furthermore, the expression of marker genes associated with embryonic stem cells and the issue of multi- versus pluripotency of adult NCSCs is reviewed. Stringent tests are proposed, which, if performed, are anticipated to clarify the issue of adult NCSC potency. Finally, current pre-clinical and clinical data are discussed in light of the clinical impact of adult NCSCs.
Collapse
Affiliation(s)
- Barbara Kaltschmidt
- Molecular Neurobiology, University of Bielefeld, Universitätsstr. 25, 33501 Bielefeld, Germany
| | | | | |
Collapse
|
67
|
Häkkinen L, Larjava H, Koivisto L. Granulation tissue formation and remodeling. ACTA ACUST UNITED AC 2012. [DOI: 10.1111/etp.12008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
68
|
Treves-Manusevitz S, Hoz L, Rachima H, Montoya G, Tzur E, Vardimon A, Narayanan AS, Amar S, Arzate H, Pitaru S. Stem cells of the lamina propria of human oral mucosa and gingiva develop into mineralized tissues in vivo. J Clin Periodontol 2012; 40:73-81. [PMID: 23137193 DOI: 10.1111/jcpe.12016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2012] [Indexed: 01/08/2023]
Abstract
AIMS To characterize the mineralized tissue formed constitutively in the supracalvarial region of scid mice by a primitive stem cell population (hOMSC) derived from the lamina propria of the human oral mucosa and gingiva. MATERIAL AND METHODS Fibrin-hOMSC constructs were cultured for 14 days at which time point they were analysed for the expression of osteoblastic/cementoblastic markers and implanted between the skin and calvaria bones into scid mice. After 8 weeks, the animals were sacrificed and the implantation sites analysed. RESULTS Two-week-old cultures of fibrin-hOMSC constructs expressed osteogenic/cementogenic markers at the gene level. Macroscopic and radiographic examinations revealed mineralized masses at the implantation sites of fibrin-hOMSC constructs. Histology, histochemistry and immunofluorescence showed mineralized masses consisting of avascular cellular and acellular matrices that stained positively for collagen, Ca, cementum attachment protein, cementum protein 1, bone sialoprotein, alkaline phosphatase, osteocalcin, amelogenin and ameloblastin. Positive anti-human nuclear antigen indicated the human origin of the cells. Atomic force microscopy depicted long prismatic structures organized in lamellar aggregates. CONCLUSIONS Within the limitation of this study, the results indicate for the first time that fibrin-hOMSC constructs are endowed with the constitutive capacity to develop into mineralized tissues that exhibit certain similarities to cementum and bone.
Collapse
|
69
|
Zhang QZ, Nguyen AL, Yu WH, Le AD. Human oral mucosa and gingiva: a unique reservoir for mesenchymal stem cells. J Dent Res 2012; 91:1011-8. [PMID: 22988012 DOI: 10.1177/0022034512461016] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal stem cells (MSCs) represent a heterogeneous population of progenitor cells with self-renewal and multipotent differentiation potential. Aside from their regenerative role, extensive in vitro and in vivo studies have demonstrated that MSCs are capable of potent immunomodulatory effects on a variety of innate and adaptive immune cells. In this article, we will review recent experimental studies on the characterization of a unique population of MSCs derived from human oral mucosa and gingiva, especially their immunomodulatory and anti-inflammatory functions and their application in the treatment of several in vivo models of inflammatory diseases. The ease of isolation, accessible tissue source, and rapid ex vivo expansion, with maintenance of stable stem-cell-like phenotypes, render oral mucosa- and gingiva-derived MSCs a promising alternative cell source for MSC-based therapies.
Collapse
Affiliation(s)
- Q Z Zhang
- Department of Oral and Maxillofacial Surgery and Pharmacology, Penn Dental Medicine and Penn Medicine Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
70
|
Dupin E, Coelho-Aguiar JM. Isolation and differentiation properties of neural crest stem cells. Cytometry A 2012; 83:38-47. [PMID: 22837061 DOI: 10.1002/cyto.a.22098] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 06/07/2012] [Accepted: 06/15/2012] [Indexed: 12/26/2022]
Abstract
A wide array of neural and non-neural cell types arises from the neural crest during vertebrate embryogenesis. The neural crest forms transiently in the dorsal neural primordium to yield migratory cells that will invade nearly all tissues and later, differentiate into bones and cartilages, vascular smooth muscle cells, connective tissues, neurons and glial cells of the peripheral nervous system, endocrine cells, and melanocytes. Due to the amazingly diversified array of cell types they generate, the neural crest cells represent an attractive model in the stem cell field. We review here in vivo and in vitro studies of individual cells, which led to the discovery and characterization of neural crest progenitors endowed with multipotency and stem cell properties. We also present an overview of the diverse types, marker expression, and locations of the neural crest-derived stem cells identified in the vertebrate body, with emphasis on those evidenced recently in mammalian adult tissues.
Collapse
Affiliation(s)
- Elisabeth Dupin
- Department of Developmental Biology, Institut de la Vision, Research Center UMR INSERM S968/CNRS 7210, 17 Rue Moreau, 75012 Paris, France.
| | | |
Collapse
|
71
|
Davies LC, Lönnies H, Locke M, Sundberg B, Rosendahl K, Götherström C, Le Blanc K, Stephens P. Oral mucosal progenitor cells are potently immunosuppressive in a dose-independent manner. Stem Cells Dev 2012; 21:1478-87. [PMID: 21988324 DOI: 10.1089/scd.2011.0434] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Oral mucosal lamina propria progenitor cells (OMLP-PCs) are a novel, clonally derived PC population of neural crest origin with the potential to differentiate down both mesenchymal and neuronal cell lineages. In this study we aimed to determine the immunological properties of OMLP-PCs and to establish whether they would be suitable candidates for allogeneic tissue engineering and in the treatment of immune-related diseases. OMLP-PCs demonstrated no inherent immunogenicity with insignificant expression of costimulatory molecules (CD40, CD80, CD86, CD154, and CD178) or human leukocyte antigen (HLA) class II. OMLP-PCs required 7 days of stimulation with interferon-γ (IFN-γ) to induce cell surface expression of HLA II. Mixed lymphocyte cultures and mitogen stimulation demonstrated the potent immunosuppressive capability of OMLP-PCs in a contact-independent manner. Complete inhibition of lymphocyte proliferation was seen at doses as low as 0.001% OMLP-PCs to responder lymphocytes, while annexin V staining confirmed that this immunosuppressive effect was not due to the induction of lymphocyte apoptosis. These data demonstrate, for the first time, that OMLP-PC immunomodulation, unlike that for mesenchymal stem cells, occurs via a dose- and HLA II-independent mechanism by the release of immunosuppressive soluble factors and suggests these cells may have wide ranging potential in future immune-related therapies.
Collapse
Affiliation(s)
- Lindsay C Davies
- Wound Biology Group, Cardiff Institute of Tissue Engineering and Repair, Tissue Engineering and Reparative Dentistry, School of Dentistry, Cardiff University, Cardiff, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Preferential recruitment of bone marrow-derived cells to rat palatal wounds but not to skin wounds. Arch Oral Biol 2011; 57:102-8. [PMID: 21890107 DOI: 10.1016/j.archoralbio.2011.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 08/03/2011] [Accepted: 08/08/2011] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To investigate the contribution of bone marrow-derived cells to oral mucosa wounds and skin wounds. BACKGROUND Bone marrow-derived cells are known to contribute to wound healing, and are able to differentiate in many different tissue-specific cell types. As wound healing in oral mucosa generally proceeds faster and with less scarring than in skin, we compared the bone marrow contribution in these two tissues. DESIGN Bone marrow cells from GFP-transgenic rats were transplanted to irradiated wild-type rats. After recovery, 4-mm wounds were made in the mucoperiosteum or the skin. Two weeks later, wound tissue with adjacent normal tissue was stained for GFP-positive cells, myofibroblasts (a-smooth muscle actin), activated fibroblasts (HSP47), and myeloid cells (CD68). RESULTS The fraction of GFP-positive cells in unwounded skin (19%) was larger than in unwounded mucoperiosteum (0.7%). Upon wounding, the fraction of GFP-positive cells in mucoperiosteum increased (8.1%), whilst it was unchanged in skin. About 7% of the myofibroblasts in both wounds were GFP-positive, 10% of the activated fibroblasts, and 25% of the myeloid cells. CONCLUSIONS The results indicate that bone marrow-derived cells are preferentially recruited to wounded oral mucosa but not to wounded skin. This might be related to the larger healing potential of oral mucosa.
Collapse
|
73
|
Pandit SR, Sullivan JM, Egger V, Borecki AA, Oleskevich S. Functional Effects of Adult Human Olfactory Stem Cells on Early-Onset Sensorineural Hearing Loss. Stem Cells 2011; 29:670-7. [DOI: 10.1002/stem.609] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
74
|
Patel M, Mulhall H, Al-Quatani K, Lewis M, Wall I. Muscle-derived precursor cells isolated on the basis of differential adhesion properties respond differently to capillary flow. Biotechnol Lett 2011; 33:1481-6. [PMID: 21369908 DOI: 10.1007/s10529-011-0570-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 02/15/2011] [Indexed: 10/18/2022]
Abstract
Capillary shear stress can improve osteogenic differentiation in muscle-derived precursor cells (MDPCs). This has implications for large-scale bioprocessing of cell therapies where capillary transfer is needed. The recovery, viability, and osteogenic differentiation potential of two subsets of MDPCs, early-adherent pre-plate 1 (PP1) and late-adherent PP3 populations, have been examined: PP1 MDPCs produced a greater degree of osteogenic differentiation than PP3 MDPCs, quantified by Alizarin Red S staining intensity (P < 0.05). For both cell populations, capillary flow-induced significant increases in Alizarin Red S staining (P < 0.05). However, PP1 cells were more susceptible to capillary flow-induced damage than PP3 cells and this was dependent on duration of exposure. Overall, results indicate that different cell subsets, even from within a single tissue, can respond variably to capillary shear stress, necessitating its precise monitoring and control.
Collapse
Affiliation(s)
- Minal Patel
- Regenerative Medicine Bioprocessing Unit, Department of Biochemical Engineering, University College London, Torrington Place, London, UK.
| | | | | | | | | |
Collapse
|
75
|
Ehrhart-Bornstein M, Vukicevic V, Chung KF, Ahmad M, Bornstein SR. Chromaffin progenitor cells from the adrenal medulla. Cell Mol Neurobiol 2010; 30:1417-23. [PMID: 21080061 PMCID: PMC11498770 DOI: 10.1007/s10571-010-9571-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 09/02/2010] [Indexed: 11/26/2022]
Abstract
Chromaffin cells of the adrenal medulla are neural crest-derived cells of the sympathoadrenal lineage. Different lines of evidence suggest the existence of a subpopulation of proliferation-competent progenitor cells even in the adult state. The identification of sympathoadrenal progenitors in the adrenal would greatly enhance the understanding of adrenal physiology and their potential role in adrenal pathogenesis. Isolation and differentiation of these progenitor cells in culture would provide a tool to understand their development in vitro. Furthermore, due to the close relation to sympathetic neurons, these cells might provide an expandable source of cells for cell therapy in the treatment of neurodegenerative diseases. We therefore aim to establish protocols for the efficient isolation, enrichment and differentiation of chromaffin progenitor cells to dopaminergic neurons in culture.
Collapse
|