51
|
Dymek EE, Lefebvre PA, Smith EF. PF15p is the chlamydomonas homologue of the Katanin p80 subunit and is required for assembly of flagellar central microtubules. EUKARYOTIC CELL 2005; 3:870-9. [PMID: 15302820 PMCID: PMC500881 DOI: 10.1128/ec.3.4.870-879.2004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Numerous studies have indicated that the central apparatus plays a significant role in regulating flagellar motility, yet little is known about how the central pair of microtubules or their associated projections assemble. Several Chlamydomonas mutants are defective in central apparatus assembly. For example, mutant pf15 cells have paralyzed flagella that completely lack the central pair of microtubules. We have cloned the wild-type PF15 gene and confirmed its identity by rescuing the motility and ultrastructural defects in two pf15 alleles, the original pf15a mutant and a mutant generated by insertional mutagenesis. Database searches using the 798-amino-acid polypeptide predicted from the complete coding sequence indicate that the PF15 gene encodes the Chlamydomonas homologue of the katanin p80 subunit. Katanin was originally identified as a heterodimeric protein with a microtubule-severing activity. These results reveal a novel role for the katanin p80 subunit in the assembly and/or stability of the central pair of flagellar microtubules.
Collapse
Affiliation(s)
- Erin E Dymek
- Department of Biological Sciences, 301 Gilman, Dartmouth College, Hanover, NH 03755, USA
| | | | | |
Collapse
|
52
|
Mitchell DR. Speculations on the evolution of 9+2 organelles and the role of central pair microtubules. Biol Cell 2005; 96:691-6. [PMID: 15567523 PMCID: PMC3321483 DOI: 10.1016/j.biolcel.2004.07.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Accepted: 07/29/2004] [Indexed: 11/19/2022]
Abstract
Motility generated by 9+2 organelles, variably called cilia or flagella, evolved before divergence from the last common ancestor of extant eukaryotes. In order to understand better how motility in these organelles is regulated, evolutionary steps that led to the present 9+2 morphology are considered. In addition, recent advances in our knowledge of flagellar assembly, together with heightened appreciation of the widespread role of cilia in sensory processes, suggest that these organelles may have served multiple roles in early eukaryotic cells. In addition to their function as undulating motility organelles, we speculate that protocilia were the primary determinants of cell polarity and directed motility in early eukaryotes, and that they provided the first defined membrane domain for localization of receptors that allowed cells to respond tactically to environmental cues. Initially, motility associated with these protocilia may have been gliding motility rather than the more complex bend propagation. Once these protocilia became functional motile organelles for beating, we believe that addition of an asymmetric central apparatus, capable of transducing signals to dynein motors and altering beat parameters, provided refined directional control in response to tactic signals. This paper presents hypothesized steps in this evolutionary process, and examples to support these hypotheses.
Collapse
Affiliation(s)
- David R Mitchell
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA.
| |
Collapse
|
53
|
Zhang Z, Jones BH, Tang W, Moss SB, Wei Z, Ho C, Pollack M, Horowitz E, Bennett J, Baker ME, Strauss JF. Dissecting the axoneme interactome: the mammalian orthologue of Chlamydomonas PF6 interacts with sperm-associated antigen 6, the mammalian orthologue of Chlamydomonas PF16. Mol Cell Proteomics 2005; 4:914-23. [PMID: 15827353 DOI: 10.1074/mcp.m400177-mcp200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The axoneme central apparatus is thought to control flagellar/ciliary waveform and maintain the structural integrity of the axoneme, but proteins involved in these processes have not been fully elucidated. Moreover the network of interactions among them that allows these events to take place in a compact space has not been defined. PF6, a component of the Chlamydomonas central apparatus, is localized to the 1a projection of the C1 microtubule. Mutations in the Chlamydomonas PF6 gene result in flagellar paralysis. We characterized human and murine orthologues of PF6. The murine Pf6 gene is expressed in a pattern consistent with a role in flagella and cilia, and the PF6 protein is indeed localized to the central apparatus of the sperm flagellar axoneme. We discovered that a portion of PF6 associates with the mammalian orthologue of Chlamydomonas PF16 (sperm-associated antigen 6 (SPAG6)), another central apparatus protein that is localized to the C1 microtubule in algae. A fragment of PF6 corresponding to the PF6 domain that interacts with SPAG6 in yeast two-hybrid assays and colocalizes with SPAG6 in transfected cells was missing from epididymal sperm of SPAG6-deficient mice. SPAG6 binds to the mammalian orthologue of PF20, which in Chlamydomonas is located in bridges connecting the C2 and C1 microtubules. Thus, PF6, SPAG6, and PF20 form a newly identified network that links together components of the axoneme central apparatus and presumably participates in its dynamic regulation of ciliary and flagellar beat.
Collapse
Affiliation(s)
- Zhibing Zhang
- Center for Research on Reproduction and Women's Health and the Department of Ophthalmology, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Abstract
Eukaryotic cilia and flagella are cytoskeletal organelles that are remarkably conserved from protists to mammals. Their basic unit is the axoneme, a well-defined cylindrical structure composed of microtubules and up to 250 associated proteins. These complex organelles are assembled by a dynamic process called intraflagellar transport. Flagella and cilia perform diverse motility and sensitivity functions in many different organisms. Trypanosomes are flagellated protozoa, responsible for various tropical diseases such as sleeping sickness and Chagas disease. In this review, we first describe general knowledge on the flagellum: its occurrence in the living world, its molecular composition, and its mode of assembly, with special emphasis on the exciting developments that followed the discovery of intraflagellar transport. We then present recent progress regarding the characteristics of the trypanosome flagellum, highlighting the original contributions brought by this organism. The most striking phenomenon is the involvement of the flagellum in several aspects of the trypanosome cell cycle, including cell morphogenesis, basal body migration, and cytokinesis.
Collapse
Affiliation(s)
- Linda Kohl
- INSERM U565, CNRS UMR5153, and MNHN USM 0503, Muséum National d'Histoire Naturelle, 75231 Paris, France
| | | |
Collapse
|
55
|
Yokoyama R, O'toole E, Ghosh S, Mitchell DR. Regulation of flagellar dynein activity by a central pair kinesin. Proc Natl Acad Sci U S A 2004; 101:17398-403. [PMID: 15572440 PMCID: PMC536025 DOI: 10.1073/pnas.0406817101] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The motility of cilia and flagella is powered by dynein ATPases associated with outer doublet microtubules. However, a flagellar kinesin-like protein that may function as a motor associates with the central pair complex. We determined that Chlamydomonas reinhardtii central pair kinesin Klp1 is a phosphoprotein and, like conventional kinesins, binds to microtubules in vitro in the presence of adenosine 5'-[beta,gamma-imido]triphosphate, but not ATP. To characterize the function of Klp1, we generated RNA interference expression constructs that reduce in vivo flagellar Klp1 levels. Klp1 knockdown cells have flagella that either beat very slowly or are paralyzed. EM image averages show disruption of two structures associated with the C2 central pair microtubule, C2b and C2c. Greatest density is lost from part of projection C2c, which is in a position to interact with doublet-associated radial spokes. Klp1 therefore retains properties of a motor protein and is essential for normal flagellar motility. We hypothesize that Klp1 acts as a conformational switch to signal spoke-dependent control of dynein activity.
Collapse
Affiliation(s)
- Ruth Yokoyama
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | | | | | | |
Collapse
|
56
|
Mitchell DR, Nakatsugawa M. Bend propagation drives central pair rotation in Chlamydomonas reinhardtii flagella. ACTA ACUST UNITED AC 2004; 166:709-15. [PMID: 15337779 PMCID: PMC1361683 DOI: 10.1083/jcb.200406148] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Regulation of motile 9+2 cilia and flagella depends on interactions between radial spokes and a central pair apparatus. Although the central pair rotates during bend propagation in flagella of many organisms and rotation correlates with a twisted central pair structure, propulsive forces for central pair rotation and twist are unknown. Here we compared central pair conformation in straight, quiescent flagella to that in actively beating flagella using wild-type Chlamydomonas reinhardtii and mutants that lack radial spoke heads. Twists occur in quiescent flagella in both the presence and absence of spoke heads, indicating that spoke–central pair interactions are not needed to generate torque for twisting. Central pair orientation in propagating bends was also similar in wild type and spoke head mutant strains, thus orientation is a passive response to bend formation. These results indicate that bend propagation drives central pair rotation and suggest that dynein regulation by central pair–radial spoke interactions involves passive central pair reorientation to changes in bend plane.
Collapse
Affiliation(s)
- David R Mitchell
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA.
| | | |
Collapse
|
57
|
Smith EF, Yang P. The radial spokes and central apparatus: mechano-chemical transducers that regulate flagellar motility. ACTA ACUST UNITED AC 2004; 57:8-17. [PMID: 14648553 PMCID: PMC1950942 DOI: 10.1002/cm.10155] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Elizabeth F Smith
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA.
| | | |
Collapse
|
58
|
Zhang Z, Kostetskii I, Moss SB, Jones BH, Ho C, Wang H, Kishida T, Gerton GL, Radice GL, Strauss JF. Haploinsufficiency for the murine orthologue of Chlamydomonas PF20 disrupts spermatogenesis. Proc Natl Acad Sci U S A 2004; 101:12946-12951. [PMID: 15328412 PMCID: PMC516499 DOI: 10.1073/pnas.0404280101] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Indexed: 02/05/2023] Open
Abstract
PF20 was first identified in Chlamydomonas rheinhardtii as an essential component of the axoneme central apparatus. We discovered that the mouse Pf20 gene encodes two major transcripts (2.5 and 1.4 kb), which are expressed in different patterns during spermatogenesis, yielding proteins of 71 and 35 kDa, respectively. Both proteins contain contiguous WD repeats in their C termini. The meiotically expressed 71-kDa protein is incorporated into the central apparatus, whereas the 35-kDa protein, which accumulates in postmeiotic male germ cells, is abundant in the nucleus. We disrupted the Pf20 gene domains that encode the C-terminal WD repeats in embryonic stem cells. Highly chimeric mice carrying the mutant Pf20 allele had impaired spermatogenesis with a significant loss of germ cells at the round spermatid stage, in association with disorganization of sperm axoneme structure. The mutated Pf20 allele was never transmitted, indicating that Pf20 haploinsufficiency caused the defects in spermatogenesis. The 35-kDa PF20 protein was shown to bind to meiosis-expressed gene 1 (MEIG1), a chromosome/chromatin-binding protein initially expressed during meiosis but retained in the germ cell nucleus throughout later stages of spermatogenesis. Our findings reveal an essential role for Pf20 in mouse spermatogenesis, sustaining postmeiotic germ cell viability. The different patterns of expression of the two PF20 proteins suggest the possibility that the Pf20 gene has multiple functions during spermatogenesis.
Collapse
Affiliation(s)
- Zhibing Zhang
- Center for Research on Reproduction and Women's Health, University of Pennsylvania Medical Center, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Zhang H, Mitchell DR. Cpc1, a Chlamydomonas central pair protein with an adenylate kinase domain. J Cell Sci 2004; 117:4179-88. [PMID: 15292403 PMCID: PMC1525021 DOI: 10.1242/jcs.01297] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations at CPC1 disrupt assembly of a central pair microtubule-associated complex and alter flagellar beat frequency in Chlamydomonas. Sequences of wild-type genomic clones that complement cpc1, and of corresponding cDNAs, reveal the gene product to be a 205 kDa protein with two predicted functional domains, a single EF hand motif near the C-terminus and an unusual centrally located adenylate kinase domain. Homologs are expressed in mammals (testis and tracheal cilia) as well as ciliated lower eukaryotes. Western blots confirm that Cpc1 is one of six subunits in a 16S central pair-associated complex. Motility defects associated with cpc1 alleles in vivo are partially rescued in vitro by reactivation of axonemes or cell models in saturating concentrations of ATP; thus the Cpc1 complex is essential for maintaining normal ATP concentrations in the flagellum.
Collapse
Affiliation(s)
| | - David R. Mitchell
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| |
Collapse
|
60
|
Rupp G, Porter ME. A subunit of the dynein regulatory complex in Chlamydomonas is a homologue of a growth arrest-specific gene product. J Cell Biol 2003; 162:47-57. [PMID: 12847082 PMCID: PMC2172716 DOI: 10.1083/jcb.200303019] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2003] [Revised: 05/15/2003] [Accepted: 05/21/2003] [Indexed: 11/22/2022] Open
Abstract
The dynein regulatory complex (DRC) is an important intermediate in the pathway that regulates flagellar motility. To identify subunits of the DRC, we characterized a Chlamydomonas motility mutant obtained by insertional mutagenesis. The pf2-4 mutant displays an altered waveform that results in slow swimming cells. EM analysis reveals defects in DRC structure that can be rescued by reintroduction of the wild-type PF2 gene. Immunolocalization studies show that the PF2 protein is distributed along the length of the axoneme, where it is part of a discrete complex of polypeptides. PF2 is a coiled-coil protein that shares significant homology with a mammalian growth arrest-specific gene product (Gas11/Gas8) and a trypanosome protein known as trypanin. PF2 and its homologues appear to be universal components of motile axonemes that are required for DRC assembly and the regulation of flagellar motility. The expression of Gas8/Gas11 transcripts in a wide range of tissues may also indicate a potential role for PF2-related proteins in other microtubule-based structures.
Collapse
Affiliation(s)
- Gerald Rupp
- Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, MN 55455
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL 62901
| | - Mary E. Porter
- Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, MN 55455
| |
Collapse
|
61
|
Mitchell DR. Reconstruction of the projection periodicity and surface architecture of the flagellar central pair complex. CELL MOTILITY AND THE CYTOSKELETON 2003; 55:188-99. [PMID: 12789663 DOI: 10.1002/cm.10121] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The substructure of central pair microtubule-associated components has been analyzed by comparing thin section and freeze-etch images of Chlamydomonas flagellar axonemes. The longitudinal periodicity of central pair projections that were previously described from cross-sectional image averages was determined from thin sections of axonemes isolated from either wild type or central pair assembly-defective strains. All projections directed toward one quadrant of the central pair repeat at 32 nm, while those in the other three quadrants all show 16-nm spacing. The surface architecture of these projections as seen in rapid-freeze deep-etch images of central pair complexes includes elements that form circumferentially oriented fibers around most of the central pair. This appearance changes dramatically along the lateral edge of the C1 microtubule where material is arranged in rows of separate particles that may play a unique role in spoke-mediated regulation of flagellar dynein activity.
Collapse
Affiliation(s)
- David R Mitchell
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York 13210, USA.
| |
Collapse
|
62
|
Lindemann CB. Structural-functional relationships of the dynein, spokes, and central-pair projections predicted from an analysis of the forces acting within a flagellum. Biophys J 2003; 84:4115-26. [PMID: 12770914 PMCID: PMC1302990 DOI: 10.1016/s0006-3495(03)75136-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
In the axoneme of eukaryotic flagella the dynein motor proteins form crossbridges between the outer doublet microtubules. These motor proteins generate force that accumulates as linear tension, or compression, on the doublets. When tension or compression is present on a curved microtubule, a force per unit length develops in the plane of bending and is transverse to the long axis of the microtubule. This transverse force (t-force) is evaluated here using available experimental evidence from sea urchin sperm and bull sperm. At or near the switch point for beat reversal, the t-force is in the range of 0.25-1.0 nN/ micro m, with 0.5 nN/ micro m the most likely value. This is the case in both beating and arrested bull sperm and in beating sea urchin sperm. The total force that can be generated (or resisted) by all the dyneins on one micron of outer doublet is also approximately 0.5 nN. The equivalence of the maximum dynein force/ micro m and t-force/ micro m at the switch point may have important consequences. Firstly, the t-force acting on the doublets near the switch point of the flagellar beat is sufficiently strong that it could terminate the action of the dyneins directly by strongly favoring the detached state and precipitating a cascade of detachment from the adjacent doublet. Secondly, after dynein release occurs, the radial spokes and central-pair apparatus are the structures that must carry the t-force. The spokes attached to the central-pair projections will bear most of the load. The central-pair projections are well-positioned for this role, and they are suitably configured to regulate the amount of axoneme distortion that occurs during switching. However, to fulfill this role without preventing flagellar bend formation, moveable attachments that behave like processive motor proteins must mediate the attachment between the spoke heads and the central-pair structure.
Collapse
Affiliation(s)
- Charles B Lindemann
- Department of Biological Sciences, Oakland University, Rochester, Michigan 48309-4476, USA.
| |
Collapse
|
63
|
Cibert C. Entropy and information in flagellar axoneme cybernetics: a radial spokes integrative function. CELL MOTILITY AND THE CYTOSKELETON 2003; 54:296-316. [PMID: 12601692 DOI: 10.1002/cm.10100] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Radial spokes and the consequences of their relationships with the central apparatus seem to play a very important role in the regulation of axonemal activity. We modeled their behavior and observed that it appears to differ in the cilium and the flagellum with respect to the development of bending as a function of time. Specifically, our calculation raises the question of the real function of the radial spokes in the regulation of the axoneme, because a given curvature of the flagellar axoneme may correspond to two opposite of their tilts. The stable nil/low amplitude shear points that we had characterized along the flagellum allowed us to describe their axoneme as a series of modules [Cibert, 2002: Cell Motil. Cytoskeleton 51:89-111]. We observed that a nil/low shearing point moves along each module during beating when a new bend is created at the base of the flagellum [Cibert, 2001: Cell Motil. Cytoskeleton 49:161-175]. We propose that the structural gradients of isoforms of tubulin could be basic verniers that act as structural references for the axonemal machinery during the beating. This allowed us to interpret the axonemal organization as a segmented structure, that could be analyzed according to the complexion(1) theory and Shannon's information theory, which associate entropy and probability in the creation of information. The important consequence of this interpretation is that regulation of the axonemal machinery appears to be due to the upstream and downstream cross-talk between the axonemal segments that do not involve any dedicated integrative structure but depend on the energy level of the entire length of each module.
Collapse
Affiliation(s)
- Christian Cibert
- Groupe de Morphométrie et de Modélisation Cellulaire, Département de Biologie du Développement, Institut Jacques Monod, CNRS, Universités Paris 6 and Paris 7, Paris, France.
| |
Collapse
|
64
|
Kathir P, LaVoie M, Brazelton WJ, Haas NA, Lefebvre PA, Silflow CD. Molecular map of the Chlamydomonas reinhardtii nuclear genome. EUKARYOTIC CELL 2003; 2:362-79. [PMID: 12684385 PMCID: PMC154841 DOI: 10.1128/ec.2.2.362-379.2003] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2002] [Accepted: 12/10/2002] [Indexed: 11/20/2022]
Abstract
We have prepared a molecular map of the Chlamydomonas reinhardtii genome anchored to the genetic map. The map consists of 264 markers, including sequence-tagged sites (STS), scored by use of PCR and agarose gel electrophoresis, and restriction fragment length polymorphism markers, scored by use of Southern blot hybridization. All molecular markers tested map to one of the 17 known linkage groups of C. reinhardtii. The map covers approximately 1,000 centimorgans (cM). Any position on the C. reinhardtii genetic map is, on average, within 2 cM of a mapped molecular marker. This molecular map, in combination with the ongoing mapping of bacterial artificial chromosome (BAC) clones and the forthcoming sequence of the C. reinhardtii nuclear genome, should greatly facilitate isolation of genes of interest by using positional cloning methods. In addition, the presence of easily assayed STS markers on each arm of each linkage group should be very useful in mapping new mutations in preparation for positional cloning.
Collapse
Affiliation(s)
- Pushpa Kathir
- Department of Genetics, University of Minnesota, St. Paul, Minnesota, USA
| | | | | | | | | | | |
Collapse
|
65
|
Wargo MJ, Smith EF. Asymmetry of the central apparatus defines the location of active microtubule sliding in Chlamydomonas flagella. Proc Natl Acad Sci U S A 2003; 100:137-42. [PMID: 12518061 PMCID: PMC140907 DOI: 10.1073/pnas.0135800100] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulation of ciliary and flagellar motility requires spatial control of dynein-driven microtubule sliding. However, the mechanism for regulating the location and symmetry of dynein activity is not understood. One hypothesis is that the asymmetrically organized central apparatus, through interactions with the radial spokes, transmits a signal to regulate dynein-driven microtubule sliding between subsets of doublet microtubules. Based on this model, we hypothesized that the orientation of the central apparatus defines positions of active microtubule sliding required to control bending in the axoneme. To test this, we induced microtubule sliding in axonemes isolated from wild-type and mutant Chlamydomonas cells, and then used electron microscopy to determine the orientation of the central apparatus. Transverse sections of wild-type axonemes revealed that the C1 microtubule is predominantly oriented toward the position of active microtubule sliding. In contrast, the central apparatus is randomly oriented in axonemes isolated from radial spoke deficient mutants. For outer arm dynein mutants, the C1 microtubule is oriented toward the position of active microtubule sliding in low calcium buffer, but is randomly oriented in high calcium buffer. These results provide evidence that the central apparatus defines the position of active microtubule sliding, and may regulate the size and shape of axonemal bends through interactions with the radial spokes. In addition, our results indicate that in high calcium conditions required to generate symmetric waveforms, the outer dynein arms are potential targets of the central pair-radial spoke control system.
Collapse
Affiliation(s)
- Matthew J Wargo
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | | |
Collapse
|
66
|
Fuhrmann M. Expanding the molecular toolkit for Chlamydomonas reinhardtii--from history to new frontiers. Protist 2002; 153:357-64. [PMID: 12627865 DOI: 10.1078/14344610260450082] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
67
|
Nielsen MG, Raff EC. The best of all worlds or the best possible world? Developmental constraint in the evolution of beta-tubulin and the sperm tail axoneme. Evol Dev 2002; 4:303-15. [PMID: 12168622 DOI: 10.1046/j.1525-142x.2002.02015.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Through evolutionary history, some features of the phenotype show little variation. Stabilizing selection could produce this result, but the possibility also exists that a feature is conserved because it is developmentally constrained--only one or a few developmental mechanisms can produce that feature. We present experimental data documenting developmental constraint in the assembly of the motile sperm tail axoneme. The 9+2 microtubule architecture of the eukaryotic axoneme has been deeply conserved. We argue that the quality of motility supported by axonemes with this morphology explains their long conservation, rather than a developmental necessity for the 9+2 architecture. However, our functional tests in Drosophila spermatogenesis reveal considerable constraint in the coevolution of testis-specific beta-tubulin and the sperm tail axoneme. The evolution of testis beta-tubulins used in insect sperm tail axonemes is highly punctuated, indicating some pressure acting on their evolution. We provide a mechanistic explanation for their punctuated evolution by testing structure-function relationships between testis beta-tubulin and the motile axoneme in D. melanogaster. We discovered that a highly conserved sequence feature of beta-tubulins used in motile axonemes is needed to specify central pair formation. Second, our data suggest that cooperativity in the function of internal beta-tubulin amino acids is needed to support the long axonemes characteristic of Drosophila sperm tails. Thus, central pair formation constrains the evolution of the axoneme motif, and intramolecular cooperativity makes the evolution of the internal residues path dependent, which slows their evolution. Our results explain why a highly specialized beta-tubulin is needed to construct the Drosophila sperm tail axoneme. We conclude that these constraints have fixed testis-specific beta-tubulin identity in Drosophila.
Collapse
|
68
|
Smith EF. Regulation of flagellar dynein by the axonemal central apparatus. CELL MOTILITY AND THE CYTOSKELETON 2002; 52:33-42. [PMID: 11977081 DOI: 10.1002/cm.10031] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Numerous studies indicate that the central apparatus, radial spokes, and dynein regulatory complex form a signaling pathway that regulates dynein activity in eukaryotic flagella. This regulation involves the action of several kinases and phosphatases anchored to the axoneme. To further investigate the role of the central apparatus in this signaling pathway, we have taken advantage of a microtubule-sliding assay to assess dynein activity in central apparatus defective mutants of Chlamydomonas. Axonemes isolated from both pf18 and pf15 (lacking the entire central apparatus) and from pf16 (lacking the C1 central microtubule) have reduced microtubule-sliding velocity compared with wild-type axonemes. Based on functional analyses of axonemes isolated from radial spokeless mutants, we hypothesized that inhibitors of casein kinase 1 (CK1) and cAMP dependent protein kinase (PKA) would rescue dynein activity and increase microtubule-sliding velocity in central pairless mutants. Treatment of axonemes isolated from both pf18 and pf16 with DRB, a CK1 inhibitor, but not with PKI, a PKA inhibitor, restored dynein activity to wild-type levels. The DRB-induced increase in dynein-driven microtubule sliding was inhibited if axonemes were first incubated with the phosphatase inhibitor, microcystin. Inhibiting CK1 in pf15 axonemes, which lack the central pair as well as PP2A [Yang et al., 2000: J. Cell Sci. 113:91-102], did not increase microtubule-sliding velocity. These data are consistent with a model in which the central apparatus, and specifically the C1 microtubule, regulate dynein through interactions with the radial spokes that ultimately alter the activity of CK1 and PP2A. These data are also consistent with localization of axonemal CK1 and PP2A near the dynein arms.
Collapse
Affiliation(s)
- Elizabeth F Smith
- Dartmouth College, Department of Biological Sciences, Hanover, New Hampshire 03755, USA.
| |
Collapse
|
69
|
Cibert C. Axonemal activity relative to the 2D/3D-waveform conversion of the flagellum. CELL MOTILITY AND THE CYTOSKELETON 2002; 51:89-111. [PMID: 11921166 DOI: 10.1002/cm.10016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The waveform of the flagellum of the sea urchin spermatozoon is mainly planar, but its 3D-properties were evoked for dynamic reasons and described as helical. In 1975, the apparent twisting pattern of the sea urchin axoneme was described [Gibbons I. 1975. The molecular basis of flagellar motility in sea urchin spermatozoa. In: Inoué S, Stephens R, editors. Molecular and cellular movement. New York: Raven Press, p. 207-232.] and was considered to be one of the main elements involved in axonemal behaviour. Recently, planar, quasi-planar, and helical waveforms were observed when the flagellum of sea urchin sperm cells was submitted to an increase in viscosity. The quasi-planar conformation seemed to be due to the alternating torsion of the inter-bend segments [Woolley D, Vernon G. 2001. A study of helical and planar waves on sea urchin sperm flagella, with a theory of how they are generated. J. Exp. Biol. 204:1333-1345]. These three waveforms, which are due to a change in axonemal activity, are possibly used by the sperm cells to adapt their movement to variations in the physico-chemical characteristics of the medium (seawater) in which the cells normally swim. We constructed a simple model to describe qualitatively the central shear (between the axonemal doublets and the central pair) and the tangential shear (between the doublets themselves). In this model, the 3D-bending is resolved into components in two perpendicular planes and each of the nine planes of inter-doublet interaction defines a potential bending plane that is independently regulated. These shears were calculated for the three waveforms and their inter-conversion. This allowed us to propose that axoneme is resolved in successive modules delineated by abscissas where the sliding is always nil. We discuss these data concerning the axonemal machinery, and especially the alternating activity of opposite sides of (two) neutral surface(s) that seem(s) to be responsible for this inter-conversion, and for the possible twist of the axoneme during the beating.
Collapse
Affiliation(s)
- C Cibert
- Institut Jacques Monod, Laboratoire de Biologie du Développement, CNRS, Universités Paris 6 et 7, Paris, France.
| |
Collapse
|