51
|
Tenlen JR, Molk JN, London N, Page BD, Priess JR. MEX-5 asymmetry in one-cell C. elegans embryos requires PAR-4- and PAR-1-dependent phosphorylation. Development 2008; 135:3665-75. [PMID: 18842813 DOI: 10.1242/dev.027060] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Anteroposterior polarity in early C. elegans embryos is required for the specification of somatic and germline lineages, and is initiated by a sperm-induced reorganization of the cortical cytoskeleton and PAR polarity proteins. Through mechanisms that are not understood, the kinases PAR-1 and PAR-4, and other PAR proteins cause the cytoplasmic zinc finger protein MEX-5 to accumulate asymmetrically in the anterior half of the one-cell embryo. We show that MEX-5 asymmetry requires neither vectorial transport to the anterior, nor protein degradation in the posterior. MEX-5 has a restricted mobility before fertilization and in the anterior of one-cell embryos. However, MEX-5 mobility in the posterior increases as asymmetry develops, presumably allowing accumulation in the anterior. The MEX-5 zinc fingers and a small, C-terminal domain are essential for asymmetry; the zinc fingers restrict MEX-5 mobility, and the C-terminal domain is required for the increase in posterior mobility. We show that a crucial residue in the C-terminus, Ser 458, is phosphorylated in vivo. PAR-1 and PAR-4 kinase activities are required for the phosphorylation of S458, providing a link between PAR polarity proteins and the cytoplasmic asymmetry of MEX-5.
Collapse
Affiliation(s)
- Jennifer R Tenlen
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
52
|
Fraschini R, Venturetti M, Chiroli E, Piatti S. The spindle position checkpoint: how to deal with spindle misalignment during asymmetric cell division in budding yeast. Biochem Soc Trans 2008; 36:416-20. [PMID: 18481971 DOI: 10.1042/bst0360416] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
During asymmetric cell division, spindle positioning is critical to ensure the unequal segregation of polarity factors and generate daughter cells with different sizes or fates. In budding yeast the boundary between mother and daughter cell resides at the bud neck, where cytokinesis takes place at the end of the cell cycle. Since budding and bud neck formation occur much earlier than bipolar spindle formation, spindle positioning is a finely regulated process. A surveillance device called the SPOC (spindle position checkpoint) oversees this process and delays mitotic exit and cytokinesis until the spindle is properly oriented along the division axis, thus ensuring genome stability.
Collapse
Affiliation(s)
- Roberta Fraschini
- Dipartimento di Biotecnologie e Bioscienze, Universita' di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy.
| | | | | | | |
Collapse
|
53
|
Gardner MK, Haase J, Mythreye K, Molk JN, Anderson M, Joglekar AP, O'Toole ET, Winey M, Salmon ED, Odde DJ, Bloom K. The microtubule-based motor Kar3 and plus end-binding protein Bim1 provide structural support for the anaphase spindle. J Cell Biol 2008; 180:91-100. [PMID: 18180364 PMCID: PMC2213616 DOI: 10.1083/jcb.200710164] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 12/10/2007] [Indexed: 11/22/2022] Open
Abstract
In budding yeast, the mitotic spindle is comprised of 32 kinetochore microtubules (kMTs) and approximately 8 interpolar MTs (ipMTs). Upon anaphase onset, kMTs shorten to the pole, whereas ipMTs increase in length. Overlapping MTs are responsible for the maintenance of spindle integrity during anaphase. To dissect the requirements for anaphase spindle stability, we introduced a conditionally functional dicentric chromosome into yeast. When centromeres from the same sister chromatid attach to opposite poles, anaphase spindle elongation is delayed and a DNA breakage-fusion-bridge cycle ensues that is dependent on DNA repair proteins. We find that cell survival after dicentric chromosome activation requires the MT-binding proteins Kar3p, Bim1p, and Ase1p. In their absence, anaphase spindles are prone to collapse and buckle in the presence of a dicentric chromosome. Our analysis reveals the importance of Bim1p in maintaining a stable ipMT overlap zone by promoting polymerization of ipMTs during anaphase, whereas Kar3p contributes to spindle stability by cross-linking spindle MTs.
Collapse
Affiliation(s)
- Melissa K Gardner
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Bouck DC, Joglekar AP, Bloom KS. Design features of a mitotic spindle: balancing tension and compression at a single microtubule kinetochore interface in budding yeast. Annu Rev Genet 2008; 42:335-59. [PMID: 18680435 PMCID: PMC2867665 DOI: 10.1146/annurev.genet.42.110807.091620] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Accurate segregation of duplicated chromosomes ensures that daughter cells get one and only one copy of each chromosome. Errors in chromosome segregation result in aneuploidy and have severe consequences on human health. Incorrect chromosome number and chromosomal instability are hallmarks of tumor cells. Hence, segregation errors are thought to be a major cause of tumorigenesis. A study of the physical mechanical basis of chromosome segregation is essential to understand the processes that can lead to errors. Tremendous progress has been made in recent years in identifying the proteins necessary for chromosome movement and segregation, but the mechanism and structure of critical force generating components and the molecular basis of centromere stiffness remain poorly understood.
Collapse
Affiliation(s)
- David C. Bouck
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280
| | - Ajit P. Joglekar
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280
| | - Kerry S. Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280
| |
Collapse
|
55
|
Rischitor PE, May KM, Hardwick KG. Bub1 is a fission yeast kinetochore scaffold protein, and is sufficient to recruit other spindle checkpoint proteins to ectopic sites on chromosomes. PLoS One 2007; 2:e1342. [PMID: 18094750 PMCID: PMC2147072 DOI: 10.1371/journal.pone.0001342] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 11/25/2007] [Indexed: 11/18/2022] Open
Abstract
The spindle checkpoint delays anaphase onset until all chromosomes have attached in a bi-polar manner to the mitotic spindle. Mad and Bub proteins are recruited to unattached kinetochores, and generate diffusible anaphase inhibitors. Checkpoint models propose that Mad1 and Bub1 act as stable kinetochore-bound scaffolds, to enhance recruitment of Mad2 and Mad3/BubR1, but this remains untested for Bub1. Here, fission yeast FRAP experiments confirm that Bub1 stably binds kinetochores, and by tethering Bub1 to telomeres we demonstrate that it is sufficient to recruit anaphase inhibitors in a kinase-independent manner. We propose that the major checkpoint role for Bub1 is as a signalling scaffold.
Collapse
Affiliation(s)
- Patricia E. Rischitor
- The Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Karen M. May
- The Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Kevin G. Hardwick
- The Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
56
|
Nelson SA, Cooper JA. A novel pathway that coordinates mitotic exit with spindle position. Mol Biol Cell 2007; 18:3440-50. [PMID: 17615297 PMCID: PMC1951770 DOI: 10.1091/mbc.e07-03-0242] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Accepted: 06/26/2007] [Indexed: 12/25/2022] Open
Abstract
In budding yeast, the spindle position checkpoint (SPC) delays mitotic exit until the mitotic spindle moves into the neck between the mother and bud. This checkpoint works by inhibiting the mitotic exit network (MEN), a signaling cascade initiated and controlled by Tem1, a small GTPase. Tem1 is regulated by a putative guanine exchange factor, Lte1, but the function and regulation of Lte1 remains poorly understood. Here, we identify novel components of the checkpoint that operate upstream of Lte1. We present genetic evidence in agreement with existing biochemical evidence for the molecular mechanism of a pathway that links microtubule-cortex interactions with Lte1 and mitotic exit. Each component of this pathway is required for the spindle position checkpoint to delay mitotic exit until the spindle is positioned correctly.
Collapse
Affiliation(s)
- Scott A Nelson
- Department of Cell Biology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | | |
Collapse
|
57
|
Campbell EM, Dodding MP, Yap MW, Wu X, Gallois-Montbrun S, Malim MH, Stoye JP, Hope TJ. TRIM5 alpha cytoplasmic bodies are highly dynamic structures. Mol Biol Cell 2007; 18:2102-11. [PMID: 17392513 PMCID: PMC1877106 DOI: 10.1091/mbc.e06-12-1075] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 02/26/2007] [Accepted: 03/20/2007] [Indexed: 12/13/2022] Open
Abstract
Tripartite motif (TRIM)5 alpha has recently been identified as a host restriction factor that has the ability to block infection by certain retroviruses in a species-dependent manner. One interesting feature of this protein is that it is localized in distinct cytoplasmic clusters designated as cytoplasmic bodies. The potential role of these cytoplasmic bodies in TRIM5 alpha function remains to be defined. By using fluorescent fusion proteins and live cell microscopy, we studied the localization and dynamics of TRIM5 alpha cytoplasmic bodies. This analysis reveals that cytoplasmic bodies are highly mobile, exhibiting both short saltatory movements and unidirectional long-distance movements along the microtubule network. The morphology of the cytoplasmic bodies is also dynamic. Finally, photobleaching and photoactivation analysis reveals that the TRIM5 alpha protein present in the cytoplasmic bodies is very dynamic, rapidly exchanging between cytoplasmic bodies and a more diffuse cytoplasmic population. Therefore, TRIM5 alpha cytoplasmic bodies are dynamic structures more consistent with a role in function or regulation rather than protein aggregates or inclusion bodies that represent dead-end static structures.
Collapse
Affiliation(s)
- Edward M. Campbell
- *Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611-3008
| | - Mark P. Dodding
- Division of Virology, Medical Research Council National Institute for Medical Research, London, United Kingdom NW7 1AA; and
| | - Melvyn W. Yap
- Division of Virology, Medical Research Council National Institute for Medical Research, London, United Kingdom NW7 1AA; and
| | - Xiaolu Wu
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612
| | - Sarah Gallois-Montbrun
- Department of Infectious Diseases, Guy's Hospital, King's College London School of Medicine, London, United Kingdom SE1 9RT
| | - Michael H. Malim
- Department of Infectious Diseases, Guy's Hospital, King's College London School of Medicine, London, United Kingdom SE1 9RT
| | - Jonathan P. Stoye
- Division of Virology, Medical Research Council National Institute for Medical Research, London, United Kingdom NW7 1AA; and
| | - Thomas J. Hope
- *Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611-3008
| |
Collapse
|
58
|
Zhao X, Chang AY, Toh-e A, Arvan P. A role for Lte1p (a low temperature essential protein involved in mitosis) in proprotein processing in the yeast secretory pathway. J Biol Chem 2007; 282:1670-8. [PMID: 17121813 PMCID: PMC2533109 DOI: 10.1074/jbc.m610500200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously identified six single gene disruptions in Saccharomyces cerevisiae that allow enhanced immunoreactive insulin secretion primarily because of defective Kex2p-mediated endoproteolytic processing. Five eis mutants disrupted established VPS (vacuolar protein sorting) genes, The sixth, LTE1, is a Low Temperature (<15 degrees C) Essential gene encoding a large protein with potential guanine nucleotide exchange (GEF) domains. Lte1p functions as a positive regulator of the mitotic GTPase Tem1p, and overexpression of Tem1p suppresses the low temperature mitotic defect of lte1. By sequence analysis, Tem1p has highest similarity to Vps21p (yeast homolog of mammalian Rab5). Unlike TEM1, LTE1 is not restricted to mitosis but is expressed throughout the cell cycle. Lte1p function in interphase cells is largely unknown. Here we confirm the eis phenotype of lte1 mutant cells and demonstrate a defect in proalpha factor processing that is rescued by expression of full-length Lte1p but not a C-terminally truncated Lte1p lacking its GEF homology domain. Neither overexpression of Tem1p nor 13 other structurally related GTPases can suppress the secretory proprotein processing defect. However, overexpression of Vps21p selectively restores proprotein processing in a manner dependent upon the active GTP-bound form of the GTPase. By contrast, a vps21 mutant produces a synthetic defect with lte1 in proprotein processing, as well as a synthetic growth defect. Together, the data underscore a link between the mitotic regulator, Lte1p, and protein processing and trafficking in the secretory/endosomal system.
Collapse
Affiliation(s)
- Xiang Zhao
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Sue Golding Graduate Division, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Amy Y. Chang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Akio Toh-e
- Department of Biological Science, University of Tokyo, Hongo 7-3-1, Tokyo 113-0033, Japan
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, Michigan 48109
| |
Collapse
|
59
|
Krasinska L, de Bettignies G, Fisher D, Abrieu A, Fesquet D, Morin N. Regulation of multiple cell cycle events by Cdc14 homologues in vertebrates. Exp Cell Res 2007; 313:1225-39. [PMID: 17292885 DOI: 10.1016/j.yexcr.2006.12.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 12/06/2006] [Accepted: 12/20/2006] [Indexed: 11/29/2022]
Abstract
Whereas early cytokinesis events have been relatively well studied, little is known about its final stage, abscission. The Cdc14 phosphatase is involved in the regulation of multiple cell cycle events, and in all systems studied Cdc14 misexpression leads to cytokinesis defects. In this work, we have cloned two CDC14 cDNA from Xenopus, including a previously unreported CDC14B homologue. We use Xenopus and human cell lines and demonstrate that localization of Cdc14 proteins is independent of both cell-type and species specificity. Ectopically expressed XCdc14A is centrosomal in interphase and localizes to the midbody in cytokinesis. By using XCdc14A misregulation, we confirm its control over different cell cycle events and unravel new functions during abscission. XCdc14A regulates the G1/S and G2/M transitions. We show that Cdc25 is an in vitro substrate for XCdc14A and might be its target at the G2/M transition. Upregulated wild-type or phosphatase-dead XCdc14A arrest cells in a late stage of cytokinesis, connected by thin cytoplasmic bridges. It does not interfere with central spindle formation, nor with the relocalization of passenger protein and centralspindlin complexes to the midbody. We demonstrate that XCdc14A upregulation prevents targeting of exocyst and SNARE complexes to the midbody, both essential for abscission to occur.
Collapse
Affiliation(s)
- Liliana Krasinska
- Centre de Recherches de Biochimie Macromoleculaire, Université Montpellier II, CNRS UMR5237 1919, Route de Mende, 34293 Montpellier Cedex 5, France
| | | | | | | | | | | |
Collapse
|
60
|
Shimogawa MM, Graczyk B, Gardner MK, Francis SE, White EA, Ess M, Molk JN, Ruse C, Niessen S, Yates JR, Muller EG, Bloom K, Odde DJ, Davis TN. Mps1 phosphorylation of Dam1 couples kinetochores to microtubule plus ends at metaphase. Curr Biol 2006; 16:1489-501. [PMID: 16890524 PMCID: PMC1762913 DOI: 10.1016/j.cub.2006.06.063] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2005] [Revised: 06/06/2006] [Accepted: 06/22/2006] [Indexed: 10/24/2022]
Abstract
BACKGROUND Duplicated chromosomes are equally segregated to daughter cells by a bipolar mitotic spindle during cell division. By metaphase, sister chromatids are coupled to microtubule (MT) plus ends from opposite poles of the bipolar spindle via kinetochores. Here we describe a phosphorylation event that promotes the coupling of kinetochores to microtubule plus ends. RESULTS Dam1 is a kinetochore component that directly binds to microtubules. We identified DAM1-765, a dominant allele of DAM1, in a genetic screen for mutations that increase stress on the spindle pole body (SPB) in Saccharomyces cerevisiae. DAM1-765 contains the single mutation S221F. We show that S221 is one of six Dam1 serines (S13, S49, S217, S218, S221, and S232) phosphorylated by Mps1 in vitro. In cells with single mutations S221F, S218A, or S221A, kinetochores in the metaphase spindle form tight clusters that are closer to the SPBs than in a wild-type cell. Five lines of experimental evidence, including localization of spindle components by fluorescence microscopy, measurement of microtubule dynamics by fluorescence redistribution after photobleaching, and reconstructions of three-dimensional structure by electron tomography, combined with computational modeling of microtubule behavior strongly indicate that, unlike wild-type kinetochores, Dam1-765 kinetochores do not colocalize with an equal number of plus ends. Despite the uncoupling of the kinetochores from the plus ends of MTs, the DAM1-765 cells are viable, complete the cell cycle with the same kinetics as wild-type cells, and biorient their chromosomes as efficiently as wild-type cells. CONCLUSIONS We conclude that phosphorylation of Dam1 residues S218 and S221 by Mps1 is required for efficient coupling of kinetochores to MT plus ends. We find that efficient plus-end coupling is not required for (1) maintenance of chromosome biorientation, (2) maintenance of tension between sister kinetochores, or (3) chromosome segregation.
Collapse
Affiliation(s)
- Michelle M. Shimogawa
- Department of Biochemistry and
- Program in Molecular and Cellular Biology University of Washington Seattle, Washington 98195
| | | | - Melissa K. Gardner
- Department of Biomedical Engineering University of Minnesota Minneapolis, Minnesota 55455
| | | | - Erin A. White
- Boulder Laboratory for 3D Electron Microscopy of Cells University of Colorado Boulder, Colorado 80309
| | | | - Jeffrey N. Molk
- Department of Biology University of North Carolina Chapel Hill, North Carolina 27599
| | - Cristian Ruse
- Department of Cell Biology Scripps Research Institute La Jolla, California 92037
| | - Sherry Niessen
- Department of Cell Biology Scripps Research Institute La Jolla, California 92037
| | - John R. Yates
- Department of Cell Biology Scripps Research Institute La Jolla, California 92037
| | | | - Kerry Bloom
- Department of Biology University of North Carolina Chapel Hill, North Carolina 27599
| | - David J. Odde
- Department of Biomedical Engineering University of Minnesota Minneapolis, Minnesota 55455
| | - Trisha N. Davis
- Department of Biochemistry and
- Program in Molecular and Cellular Biology University of Washington Seattle, Washington 98195
- *Correspondence:
| |
Collapse
|
61
|
Fraschini R, D'Ambrosio C, Venturetti M, Lucchini G, Piatti S. Disappearance of the budding yeast Bub2-Bfa1 complex from the mother-bound spindle pole contributes to mitotic exit. ACTA ACUST UNITED AC 2006; 172:335-46. [PMID: 16449187 PMCID: PMC2063644 DOI: 10.1083/jcb.200507162] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Budding yeast spindle position checkpoint is engaged by misoriented spindles and prevents mitotic exit by inhibiting the G protein Tem1 through the GTPase-activating protein (GAP) Bub2/Bfa1. Bub2 and Bfa1 are found on both duplicated spindle pole bodies until anaphase onset, when they disappear from the mother-bound spindle pole under unperturbed conditions. In contrast, when spindles are misoriented they remain symmetrically localized at both SPBs. Thus, symmetric localization of Bub2/Bfa1 might lead to inhibition of Tem1, which is also present at SPBs. Consistent with this hypothesis, we show that a Bub2 version symmetrically localized on both SPBs throughout the cell cycle prevents mitotic exit in mutant backgrounds that partially impair it. This effect is Bfa1 dependent and can be suppressed by high Tem1 levels. Bub2 removal from the mother-bound SPB requires its GAP activity, which in contrast appears to be dispensable for Tem1 inhibition. Moreover, it correlates with the passage of one spindle pole through the bud neck because it needs septin ring formation and bud neck kinases.
Collapse
Affiliation(s)
- Roberta Fraschini
- Dipartimento di Biotecnologie e Bioscienze, Universitá di Milano-Bicocca, 20126 Milano, Italy
| | | | | | | | | |
Collapse
|
62
|
Piatti S, Venturetti M, Chiroli E, Fraschini R. The spindle position checkpoint in budding yeast: the motherly care of MEN. Cell Div 2006; 1:2. [PMID: 16759408 PMCID: PMC1459270 DOI: 10.1186/1747-1028-1-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Accepted: 04/03/2006] [Indexed: 11/10/2022] Open
Abstract
Mitotic exit and cytokinesis must be tightly coupled to nuclear division both in time and space in order to preserve genome stability and to ensure that daughter cells inherit the right set of chromosomes after cell division. This is achieved in budding yeast through control over a signal transduction cascade, the mitotic exit network (MEN), which is required for mitotic CDK inactivation in telophase and for cytokinesis. Current models of MEN activation emphasize on the bud as the place where most control is exerted. This review focuses on recent data that instead point to the mother cell as being the residence of key regulators of late mitotic events.
Collapse
Affiliation(s)
- Simonetta Piatti
- Dipartimento di Biotecnologie e Bioscienze, Universita' di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Marianna Venturetti
- Dipartimento di Biotecnologie e Bioscienze, Universita' di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Elena Chiroli
- Dipartimento di Biotecnologie e Bioscienze, Universita' di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Roberta Fraschini
- Dipartimento di Biotecnologie e Bioscienze, Universita' di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| |
Collapse
|
63
|
Abstract
When a spindle is positioned asymmetrically in a dividing cell, the resulting daughter cells are unequal in size. Asymmetric spindle positioning is driven by regulated forces that can pull or push a spindle. The physical and molecular mechanisms that can position spindles asymmetrically have been studied in several systems, and some themes have begun to emerge from recent research. Recent work in budding yeast has presented a model for how cytoskeletal motors and cortical capture molecules can function in orienting and positioning a spindle. The temporal regulation of microtubule-based pulling forces that move a spindle has been examined in one animal system. Although the spindle positioning force generators have not been identified in most animal systems, the forces have been found to be regulated by both PAR polarity proteins and G-protein signaling pathways in more than one animal system.
Collapse
Affiliation(s)
- Erin K McCarthy
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280, USA
| | | |
Collapse
|
64
|
Abstract
Cell cycle checkpoints can delay mitotic exit in budding yeast. The master controller is the small GTPase Tem1, with inputs from a proposed guanine nucleotide exchange factor (GEF), Lte1, and a GTPase-activating protein (GAP), Bub2/Bfa1. In this issue, Fraschini et al. (p. 335) show that GAP activity of Bub2/Bfa1 appears to be dispensable for inactivation of Tem1 in cells. Their results call into question the GTP/GDP switch model for Tem1 activity, as have other results in the past. The paper also focuses attention on the two spindle pole bodies as potential sites for regulation of Tem1.
Collapse
Affiliation(s)
- John A Cooper
- Department of Cell Biology, Washington University, St. Louis, MO 63110, USA.
| | | |
Collapse
|
65
|
Abstract
Centrosomes, spindle pole bodies, and related structures in other organisms are a morphologically diverse group of organelles that share a common ability to nucleate and organize microtubules and are thus referred to as microtubule organizing centers or MTOCs. Features associated with MTOCs include organization of mitotic spindles, formation of primary cilia, progression through cytokinesis, and self-duplication once per cell cycle. Centrosomes bind more than 100 regulatory proteins, whose identities suggest roles in a multitude of cellular functions. In fact, recent work has shown that MTOCs are required for several regulatory functions including cell cycle transitions, cellular responses to stress, and organization of signal transduction pathways. These new liaisons between MTOCs and cellular regulation are the focus of this review. Elucidation of these and other previously unappreciated centrosome functions promises to yield exciting scientific discovery for some time to come.
Collapse
Affiliation(s)
- Stephen Doxsey
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
| | | | | |
Collapse
|
66
|
Molk JN, Salmon ED, Bloom K. Nuclear congression is driven by cytoplasmic microtubule plus end interactions in S. cerevisiae. ACTA ACUST UNITED AC 2005; 172:27-39. [PMID: 16380440 PMCID: PMC2063526 DOI: 10.1083/jcb.200510032] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nuclear movement before karyogamy in eukaryotes is known as pronuclear migration or as nuclear congression in Saccharomyces cerevisiae. In this study, S. cerevisiae is used as a model system to study microtubule (MT)-dependent nuclear movements during mating. We find that nuclear congression occurs through the interaction of MT plus ends rather than sliding and extensive MT overlap. Furthermore, the orientation and attachment of MTs to the shmoo tip before cell wall breakdown is not required for nuclear congression. The MT plus end–binding proteins Kar3p, a class 14 COOH-terminal kinesin, and Bik1p, the CLIP-170 orthologue, localize to plus ends in the shmoo tip and initiate MT interactions and depolymerization after cell wall breakdown. These data support a model in which nuclear congression in budding yeast occurs by plus end MT capture and depolymerization, generating forces sufficient to move nuclei through the cytoplasm. This is the first evidence that MT plus end interactions from oppositely oriented organizing centers can provide the force for organelle transport in vivo.
Collapse
Affiliation(s)
- Jeffrey N Molk
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
67
|
Gromley A, Yeaman C, Rosa J, Redick S, Chen CT, Mirabelle S, Guha M, Sillibourne J, Doxsey SJ. Centriolin anchoring of exocyst and SNARE complexes at the midbody is required for secretory-vesicle-mediated abscission. Cell 2005; 123:75-87. [PMID: 16213214 DOI: 10.1016/j.cell.2005.07.027] [Citation(s) in RCA: 349] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Revised: 06/03/2005] [Accepted: 07/27/2005] [Indexed: 12/28/2022]
Abstract
The terminal step in cytokinesis, called abscission, requires resolution of the membrane connection between two prospective daughter cells. Our previous studies demonstrated that the coiled-coil protein centriolin localized to the midbody during cytokinesis and was required for abscission. Here we show that centriolin interacts with proteins of vesicle-targeting exocyst complexes and vesicle-fusion SNARE complexes. These complexes require centriolin for localization to a unique midbody-ring structure, and disruption of either complex inhibits abscission. Exocyst disruption induces accumulation of v-SNARE-containing vesicles at the midbody ring. In control cells, these v-SNARE vesicles colocalize with a GFP-tagged secreted polypeptide. The vesicles move to the midbody ring asymmetrically from one prospective daughter cell; the GFP signal is rapidly lost, suggesting membrane fusion; and subsequently the cell cleaves at the site of vesicle delivery/fusion. We propose that centriolin anchors protein complexes required for vesicle targeting and fusion and integrates membrane-vesicle fusion with abscission.
Collapse
Affiliation(s)
- Adam Gromley
- Program in Molecular Medicine, University of Massachusetts Medical Center, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Roumanie O, Wu H, Molk JN, Rossi G, Bloom K, Brennwald P. Rho GTPase regulation of exocytosis in yeast is independent of GTP hydrolysis and polarization of the exocyst complex. J Cell Biol 2005; 170:583-94. [PMID: 16103227 PMCID: PMC2171504 DOI: 10.1083/jcb.200504108] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 07/12/2005] [Indexed: 11/22/2022] Open
Abstract
Rho GTPases are important regulators of polarity in eukaryotic cells. In yeast they are involved in regulating the docking and fusion of secretory vesicles with the cell surface. Our analysis of a Rho3 mutant that is unable to interact with the Exo70 subunit of the exocyst reveals a normal polarization of the exocyst complex as well as other polarity markers. We also find that there is no redundancy between the Rho3-Exo70 and Rho1-Sec3 pathways in the localization of the exocyst. This suggests that Rho3 and Cdc42 act to polarize exocytosis by activating the exocytic machinery at the membrane without the need to first recruit it to sites of polarized growth. Consistent with this model, we find that the ability of Rho3 and Cdc42 to hydrolyze GTP is not required for their role in secretion. Moreover, our analysis of the Sec3 subunit of the exocyst suggests that polarization of the exocyst may be a consequence rather than a cause of polarized exocytosis.
Collapse
Affiliation(s)
- Olivier Roumanie
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
69
|
Tan A, Rida P, Surana U. Essential tension and constructive destruction: the spindle checkpoint and its regulatory links with mitotic exit. Biochem J 2005; 386:1-13. [PMID: 15521820 PMCID: PMC1134761 DOI: 10.1042/bj20041415] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Replicated genetic material must be partitioned equally between daughter cells during cell division. The precision with which this is accomplished depends critically on the proper functioning of the mitotic spindle. The assembly, orientation and attachment of the spindle to the kinetochores are therefore constantly monitored by a surveillance mechanism termed the SCP (spindle checkpoint). In the event of malfunction, the SCP not only prevents chromosome segregation, but also inhibits subsequent mitotic events, such as cyclin destruction (mitotic exit) and cytokinesis. This concerted action helps to maintain temporal co-ordination among mitotic events. It appears that the SCP is primarily activated by either a lack of occupancy or the absence of tension at kinetochores. Once triggered, the inhibitory circuit bifurcates, where one branch restrains the sister chromatid separation by inhibiting the E3 ligase APC(Cdc20) (anaphase-promoting complex activated by Cdc20) and the other impinges on the MEN (mitotic exit network). A large body of investigations has now led to the identification of the control elements, their targets and the functional coupling among them. Here we review the emerging regulatory network and discuss the remaining gaps in our understanding of this effective mechanochemical control system.
Collapse
Affiliation(s)
- Agnes L. C. Tan
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Padmashree C. G. Rida
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Uttam Surana
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore
- To whom correspondence should be addressed (email )
| |
Collapse
|
70
|
Li S, Oakley CE, Chen G, Han X, Oakley BR, Xiang X. Cytoplasmic dynein's mitotic spindle pole localization requires a functional anaphase-promoting complex, gamma-tubulin, and NUDF/LIS1 in Aspergillus nidulans. Mol Biol Cell 2005; 16:3591-605. [PMID: 15930134 PMCID: PMC1182300 DOI: 10.1091/mbc.e04-12-1071] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In Aspergillus nidulans, cytoplasmic dynein and NUDF/LIS1 are found at the spindle poles during mitosis, but they seem to be targeted to this location via different mechanisms. The spindle pole localization of cytoplasmic dynein requires the function of the anaphase-promoting complex (APC), whereas that of NUDF does not. Moreover, although NUDF's localization to the spindle poles does not require a fully functional dynein motor, the function of NUDF is important for cytoplasmic dynein's targeting to the spindle poles. Interestingly, a gamma-tubulin mutation, mipAR63, nearly eliminates the localization of cytoplasmic dynein to the spindle poles, but it has no apparent effect on NUDF's spindle pole localization. Live cell analysis of the mipAR63 mutant revealed a defect in chromosome separation accompanied by unscheduled spindle elongation before the completion of anaphase A, suggesting that gamma-tubulin may recruit regulatory proteins to the spindle poles for mitotic progression. In A. nidulans, dynein is not apparently required for mitotic progression. In the presence of a low amount of benomyl, a microtubule-depolymerizing agent, however, a dynein mutant diploid strain exhibits a more pronounced chromosome loss phenotype than the control, indicating that cytoplasmic dynein plays a role in chromosome segregation.
Collapse
Affiliation(s)
- Shihe Li
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | | | | | | |
Collapse
|
71
|
Sagot I, Schaeffer J, Daignan-Fornier B. Guanylic nucleotide starvation affects Saccharomyces cerevisiae mother-daughter separation and may be a signal for entry into quiescence. BMC Cell Biol 2005; 6:24. [PMID: 15869715 PMCID: PMC1274246 DOI: 10.1186/1471-2121-6-24] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Accepted: 05/04/2005] [Indexed: 11/10/2022] Open
Abstract
Background Guanylic nucleotides are both macromolecules constituents and crucial regulators for a variety of cellular processes. Therefore, their intracellular concentration must be strictly controlled. Consistently both yeast and mammalian cells tightly correlate the transcription of genes encoding enzymes critical for guanylic nucleotides biosynthesis with the proliferation state of the cell population. Results To gain insight into the molecular relationships connecting intracellular guanylic nucleotide levels and cellular proliferation, we have studied the consequences of guanylic nucleotide limitation on Saccharomyces cerevisiae cell cycle progression. We first utilized mycophenolic acid, an immunosuppressive drug that specifically inhibits inosine monophosphate dehydrogenase, the enzyme catalyzing the first committed step in de novo GMP biosynthesis. To approach this system physiologically, we next developed yeast mutants for which the intracellular guanylic nucleotide pools can be modulated through changes of growth conditions. In both the pharmacological and genetic approaches, we found that guanylic nucleotide limitation generated a mother-daughter separation defect, characterized by cells with two unseparated daughters. We then showed that this separation defect resulted from cell wall perturbations but not from impaired cytokinesis. Importantly, cells with similar separation defects were found in a wild type untreated yeast population entering quiescence upon nutrient limitation. Conclusion Our results demonstrate that guanylic nucleotide limitation slows budding yeast cell cycle progression, with a severe pause in telophase. At the cellular level, guanylic nucleotide limitation causes the emergence of cells with two unseparated daughters. By fluorescence and electron microscopy, we demonstrate that this phenotype arises from defects in cell wall partition between mother and daughter cells. Because cells with two unseparated daughters are also observed in a wild type population entering quiescence, our results reinforce the hypothesis that guanylic nucleotide intracellular pools contribute to a signal regulating both cell proliferation and entry into quiescence.
Collapse
Affiliation(s)
- Isabelle Sagot
- Institut de Biochimie et Génétique Cellulaires, UMR CNRS 5095 – Université Victor Segalen / Bordeaux II 1, rue Camille Saint Saëns – F-33077 Bordeaux Cedex – France
| | - Jacques Schaeffer
- Institut de Biochimie et Génétique Cellulaires, UMR CNRS 5095 – Université Victor Segalen / Bordeaux II 1, rue Camille Saint Saëns – F-33077 Bordeaux Cedex – France
| | - Bertrand Daignan-Fornier
- Institut de Biochimie et Génétique Cellulaires, UMR CNRS 5095 – Université Victor Segalen / Bordeaux II 1, rue Camille Saint Saëns – F-33077 Bordeaux Cedex – France
| |
Collapse
|
72
|
Abstract
The exit from mitosis is the last critical decision during a cell-division cycle. A complex regulatory system has evolved to evaluate the success of mitotic events and control this decision. Whereas outstanding genetic work in yeast has led to rapid discovery of a large number of interacting genes involved in the control of mitotic exit, it has also become increasingly difficult to comprehend the logic and mechanistic features embedded in the complex molecular network. Our view is that this difficulty stems in part from the attempt to explain mitotic-exit control using concepts from traditional top-down engineering design, and that exciting new results from evolutionary engineering design applied to networks and electronic circuits may lend better insights. We focus on four particularly intriguing features of the mitotic-exit control system and attempt to examine these features from the perspective of evolutionary design and complex system engineering.
Collapse
Affiliation(s)
- William J Bosl
- University of California, Davis Cancer Center, Sacramento, CA 95817, USA
| | | |
Collapse
|
73
|
Straube A, Weber I, Steinberg G. A novel mechanism of nuclear envelope break-down in a fungus: nuclear migration strips off the envelope. EMBO J 2005; 24:1674-85. [PMID: 15861140 PMCID: PMC1142577 DOI: 10.1038/sj.emboj.7600644] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Accepted: 03/11/2005] [Indexed: 12/18/2022] Open
Abstract
In animals, the nuclear envelope disassembles in mitosis, while budding and fission yeast form an intranuclear spindle. Ultrastructural data indicate that basidiomycetes, such as the pathogen Ustilago maydis, undergo an 'open mitosis'. Here we describe the mechanism of nuclear envelope break-down in U. maydis. In interphase, the nucleus resides in the mother cell and the spindle pole body is inactive. Prior to mitosis, it becomes activated and nucleates microtubules that reach into the daughter cell. Dynein appears at microtubule tips and exerts force on the spindle pole body, which leads to the formation of a long nuclear extension that reaches into the bud. Chromosomes migrate through this extension and together with the spindle pole bodies leave the old envelope, which remains in the mother cell until late telophase. Inhibition of nuclear migration or deletion of a Tem1p-like GTPase leads to a 'closed' mitosis, indicating that spindle pole bodies have to reach into the bud where MEN signalling participates in envelope removal. Our data indicate that dynein-mediated premitotic nuclear migration is essential for envelope removal in U. maydis.
Collapse
Affiliation(s)
- Anne Straube
- Max-Planck-Institut für terrestrische Mikrobiologie, Marburg, Germany
| | - Isabella Weber
- Max-Planck-Institut für terrestrische Mikrobiologie, Marburg, Germany
| | - Gero Steinberg
- Max-Planck-Institut für terrestrische Mikrobiologie, Marburg, Germany
- MPI für terrestrische Mikrobiologie, Karl-von-Frisch-Strasse, 35043 Marburg, Germany. Tel.: +49 6421 178530; Fax: +49 6421 178509; E-mail:
| |
Collapse
|
74
|
Abstract
Completion of the cell cycle requires the temporal and spatial coordination of chromosome segregation with mitotic spindle disassembly and cytokinesis. In budding yeast, the protein phosphatase Cdc14 is a key regulator of these late mitotic events. Here, we review the functions of Cdc14 and how this phosphatase is regulated to accomplish the coupling of mitotic processes. We also discuss the function and regulation of Cdc14 in other eukaryotes, emphasizing conserved features.
Collapse
Affiliation(s)
- Frank Stegmeier
- Center for Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
75
|
Abstract
The septation initiation network (SIN) triggers the onset of cytokinesis in the fission yeast Schizosaccharomyces pombe by promoting contraction of the medially placed F-actin ring. SIN signaling is regulated by the polo-like kinase plo1p and by cdc2p, the initiator of mitosis, and its activation is co-ordinated with other events in mitosis to ensure that cytokinesis does not begin until chromosomes have been separated. Though the SIN controls the contractile ring, the signal originates from the poles of the mitotic spindle. Recent studies suggest that the spindle pole body may act as a dynamic assembly site for active SIN signaling complexes. In the budding yeast Saccharomyces cerevisiae the counterpart of the SIN, called the MEN, mediates both mitotic exit and cytokinesis, in part through regulating activation of the phosphoprotein phosphatase Cdc14p. Flp1p, the S. pombe ortholog of Cdc14p, is not essential for mitotic exit, but may contribute to an orderly mitosis-G1 transition by regulating the destruction of the mitotic inducer cdc25p.
Collapse
Affiliation(s)
- Andrea Krapp
- Cell Cycle Control Laboratory, Swiss Institute for Experimental Cancer Research (ISREC), 1066 Epalinges, Switzerland
| | | | | |
Collapse
|
76
|
D'Amours D, Amon A. At the interface between signaling and executing anaphase--Cdc14 and the FEAR network. Genes Dev 2005; 18:2581-95. [PMID: 15520278 DOI: 10.1101/gad.1247304] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Anaphase is the stage of the cell cycle when the duplicated genome is separated to opposite poles of the cell. The irreversible nature of this event confers a unique burden on the cell and it is therefore not surprising that the regulation of this cell cycle stage is complex. In budding yeast, a signaling network known as the Cdc fourteen early anaphase release (FEAR) network and its effector, the protein phosphatase Cdc14, play a key role in the coordination of the multiple events that occur during anaphase, such as partitioning of the DNA, regulation of spindle stability, activation of microtubule forces, and initiation of mitotic exit. These functions of the FEAR network contribute to genomic stability by coordinating the completion of anaphase and the execution of mitotic exit.
Collapse
Affiliation(s)
- Damien D'Amours
- Center for Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
77
|
Pearson CG, Bloom K. Dynamic Microtubules Lead the Way for Spindle Positioning. Nat Rev Mol Cell Biol 2004; 5:481-92. [PMID: 15173827 DOI: 10.1038/nrm1402] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chad G Pearson
- Department of Biology, University of North Carolina at Chapel Hill, Fordham Hall Room 622, Chapel Hill, North Carolina 27599-3280, USA
| | | |
Collapse
|