51
|
Kiryushko D, Bock E, Berezin V. Pharmacology of cell adhesion molecules of the nervous system. Curr Neuropharmacol 2007; 5:253-67. [PMID: 19305742 PMCID: PMC2644493 DOI: 10.2174/157015907782793658] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 04/27/2007] [Accepted: 07/17/2007] [Indexed: 12/15/2022] Open
Abstract
Cell adhesion molecules (CAMs) play a pivotal role in the development and maintenance of the nervous system under normal conditions. They also are involved in numerous pathological processes such as inflammation, degenerative disorders, and cancer, making them attractive targets for drug development. The majority of CAMs are signal transducing receptors. CAM-induced intracellular signalling is triggered via homophilic (CAM-CAM) and heterophilic (CAM - other counter-receptors) interactions, which both can be targeted pharmacologically. We here describe the progress in the CAM pharmacology focusing on cadherins and CAMs of the immunoglobulin (Ig) superfamily, such as NCAM and L1. Structural basis of CAM-mediated cell adhesion and CAM-induced signalling are outlined. Different pharmacological approaches to study functions of CAMs are presented including the use of specific antibodies, recombinant proteins, and synthetic peptides. We also discuss how unravelling of the 3D structure of CAMs provides novel pharmacological tools for dissection of CAM-induced signalling pathways and offers therapeutic opportunities for a range of neurological disorders.
Collapse
Affiliation(s)
- Darya Kiryushko
- Protein Laboratory, Department of Neuroscience and Pharmacology, Panum Institute Bld. 6.2, Blegdamsvej 3C, DK-2200, Copenhagen N, Denmark.
| | | | | |
Collapse
|
52
|
Lambert M, Thoumine O, Brevier J, Choquet D, Riveline D, Mège RM. Nucleation and growth of cadherin adhesions. Exp Cell Res 2007; 313:4025-40. [PMID: 17765222 DOI: 10.1016/j.yexcr.2007.07.035] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 07/06/2007] [Accepted: 07/19/2007] [Indexed: 01/16/2023]
Abstract
Cell-cell contact formation relies on the recruitment of cadherin molecules and their anchoring to actin. However, the precise chronology of events from initial cadherin trans-interactions to adhesion strengthening is unclear, in part due to the lack of access to the distribution of cadherins within adhesion zones. Using N-cadherin expressing cells interacting with N-cadherin coated surfaces, we characterized the formation of cadherin adhesions at the ventral cell surface. TIRF and RIC microscopies revealed streak-like accumulations of cadherin along actin fibers. FRAP analysis indicated that engaged cadherins display a slow turnover at equilibrium, compatible with a continuous addition and removal of cadherin molecules within the adhesive contact. Association of cadherin cytoplasmic tail to actin as well as actin cables and myosin II activity are required for the formation and maintenance of cadherin adhesions. Using time lapse microscopy we deciphered how cadherin adhesions form and grow. As lamellipodia protrude, cadherin foci stochastically formed a few microns away from the cell margin. Neo-formed foci coalesced aligned and coalesced with preformed foci either by rearward sliding or gap filling to form cadherin adhesions. Foci experienced collapse at the rear of cadherin adhesions. Based on these results, we present a model for the nucleation, directional growth and shrinkage of cadherin adhesions.
Collapse
|
53
|
Breillat C, Thoumine O, Choquet D. Characterization of SynCAM surface trafficking using a SynCAM derived ligand with high homophilic binding affinity. Biochem Biophys Res Commun 2007; 359:655-9. [PMID: 17548061 DOI: 10.1016/j.bbrc.2007.05.152] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Accepted: 05/21/2007] [Indexed: 12/24/2022]
Abstract
In order to better probe SynCAM function in neurons, we produced a fusion protein between the extracellular domain of SynCAM1 and the constant fragment of human IgG (SynCAM-Fc). Whether in soluble form or immobilized on latex microspheres, the chimera bound specifically to the surface of hippocampal neurons and recruited endogenous SynCAM molecules. SynCAM-Fc was also used in combination with Quantum Dots to follow the mobility of transfected SynCAM receptors at the neuronal surface. Both immobile and highly mobile SynCAM were found. Thus, SynCAM-Fc behaves as a high affinity ligand that can be used to study the function of SynCAM at the neuronal membrane.
Collapse
Affiliation(s)
- Christelle Breillat
- UMR CNRS 5091, Institut François Magendie, Université Bordeaux 2, 33077 Bordeaux, France
| | | | | |
Collapse
|
54
|
Dequidt C, Danglot L, Alberts P, Galli T, Choquet D, Thoumine O. Fast turnover of L1 adhesions in neuronal growth cones involving both surface diffusion and exo/endocytosis of L1 molecules. Mol Biol Cell 2007; 18:3131-43. [PMID: 17538021 PMCID: PMC1949362 DOI: 10.1091/mbc.e06-12-1101] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We investigated the interplay between surface trafficking and binding dynamics of the immunoglobulin cell adhesion molecule L1 at neuronal growth cones. Primary neurons were transfected with L1 constructs bearing thrombin-cleavable green fluorescent protein (GFP), allowing visualization of newly exocytosed L1 or labeling of membrane L1 molecules by Quantum dots. Intracellular L1-GFP vesicles showed preferential centrifugal motion, whereas surface L1-GFP diffused randomly, revealing two pathways to address L1 to adhesive sites. We triggered L1 adhesions using microspheres coated with L1-Fc protein or anti-L1 antibodies, manipulated by optical tweezers. Microspheres coupled to the actin retrograde flow at the growth cone periphery while recruiting L1-GFP molecules, of which 50% relied on exocytosis. Fluorescence recovery after photobleaching experiments revealed a rapid recycling of L1-GFP molecules at L1-Fc (but not anti-L1) bead contacts, attributed to a high lability of L1-L1 bonds at equilibrium. L1-GFP molecules truncated in the intracellular tail as well as neuronal cell adhesion molecules (NrCAMs) missing the clathrin adaptor binding sequence showed both little internalization and reduced turnover rates, indicating a role of endocytosis in the recycling of mature L1 contacts at the base of the growth cone. Thus, unlike for other molecules such as NrCAM or N-cadherin, diffusion/trapping and exo/endocytosis events cooperate to allow the fast renewal of L1 adhesions.
Collapse
Affiliation(s)
- Caroline Dequidt
- *Unité Mixte de Recherche Centre National de la Recherche Scientifique 5091, Institut François Magendie, Université Bordeaux 2, 33077 Bordeaux, France; and
| | - Lydia Danglot
- Membrane Traffic in Epithelial and Neuronal Morphogenesis, Equipe Avenir Inserm, Institut Jacques Monod, Unité Mixte de Recherche Centre National de la Recherche Scientifique 7592, Universités Paris 6 et 7, 75251 Paris, France
| | - Philipp Alberts
- Membrane Traffic in Epithelial and Neuronal Morphogenesis, Equipe Avenir Inserm, Institut Jacques Monod, Unité Mixte de Recherche Centre National de la Recherche Scientifique 7592, Universités Paris 6 et 7, 75251 Paris, France
| | - Thierry Galli
- Membrane Traffic in Epithelial and Neuronal Morphogenesis, Equipe Avenir Inserm, Institut Jacques Monod, Unité Mixte de Recherche Centre National de la Recherche Scientifique 7592, Universités Paris 6 et 7, 75251 Paris, France
| | - Daniel Choquet
- *Unité Mixte de Recherche Centre National de la Recherche Scientifique 5091, Institut François Magendie, Université Bordeaux 2, 33077 Bordeaux, France; and
| | - Olivier Thoumine
- *Unité Mixte de Recherche Centre National de la Recherche Scientifique 5091, Institut François Magendie, Université Bordeaux 2, 33077 Bordeaux, France; and
| |
Collapse
|
55
|
Huang KC, Yasruel Z, Guérin C, Holland PC, Nalbantoglu J. Interaction of the Coxsackie and adenovirus receptor (CAR) with the cytoskeleton: binding to actin. FEBS Lett 2007; 581:2702-8. [PMID: 17531226 DOI: 10.1016/j.febslet.2007.05.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 04/28/2007] [Accepted: 05/09/2007] [Indexed: 11/17/2022]
Abstract
The Coxsackie and adenovirus receptor (CAR) is a cell adhesion molecule that is highly expressed in the developing brain. CAR is enriched in growth cone particles (GCP) after subcellular fractionation. In GCP, we identified actin as an interaction partner of the cytoplasmic domain of CAR. In vivo, actin and CAR co-immunoprecipitate and co-localize. In vitro, the binding is direct, with a K(d) of approximately 2.6 microM, and leads to actin bundling. We previously demonstrated that CAR interacts with microtubules. These data suggest a role for CAR in processes requiring dynamic reorganization of the cytoskeleton such as neurite outgrowth and cell migration.
Collapse
Affiliation(s)
- Kuo-Cheng Huang
- Department of Neurology and Neurosurgery, McGill University, Montreal, Que, Canada
| | | | | | | | | |
Collapse
|
56
|
Saglietti L, Dequidt C, Kamieniarz K, Rousset MC, Valnegri P, Thoumine O, Beretta F, Fagni L, Choquet D, Sala C, Sheng M, Passafaro M. Extracellular Interactions between GluR2 and N-Cadherin in Spine Regulation. Neuron 2007; 54:461-77. [PMID: 17481398 DOI: 10.1016/j.neuron.2007.04.012] [Citation(s) in RCA: 277] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 02/13/2007] [Accepted: 04/16/2007] [Indexed: 12/16/2022]
Abstract
Via its extracellular N-terminal domain (NTD), the AMPA receptor subunit GluR2 promotes the formation and growth of dendritic spines in cultured hippocampal neurons. Here we show that the first N-terminal 92 amino acids of the extracellular domain are necessary and sufficient for GluR2's spine-promoting activity. Moreover, overexpression of this extracellular domain increases the frequency of miniature excitatory postsynaptic currents (mEPSCs). Biochemically, the NTD of GluR2 can interact directly with the cell adhesion molecule N-cadherin, in cis or in trans. N-cadherin-coated beads recruit GluR2 on the surface of hippocampal neurons, and N-cadherin immobilization decreases GluR2 lateral diffusion on the neuronal surface. RNAi knockdown of N-cadherin prevents the enhancing effect of GluR2 on spine morphogenesis and mEPSC frequency. Our data indicate that in hippocampal neurons N-cadherin and GluR2 form a synaptic complex that stimulates presynaptic development and function as well as promoting dendritic spine formation.
Collapse
Affiliation(s)
- Laura Saglietti
- DTI Dulbecco Telethon Institute, CNR Institute of Neuroscience, Cellular and Molecular Pharmacology, Department of Pharmacology, University of Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Ganz A, Lambert M, Saez A, Silberzan P, Buguin A, Mège RM, Ladoux B. Traction forces exerted through N-cadherin contacts. Biol Cell 2007; 98:721-30. [PMID: 16895521 DOI: 10.1042/bc20060039] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION Mechanical forces play an important role in the organization, growth and function of living tissues. The ability of cells to transduce mechanical signals is governed by two types of microscale structures: focal adhesions, which link cells to the extracellular matrix, and adherens junctions, which link adjacent cells through cadherins. Although many studies have examined forces induced by focal adhesions, there is little known about the role of adherens junctions in force-regulation processes. The present study focuses on the determination of force transduction through cadherins at a single cell level. RESULTS We characterized for the first time the distribution of forces developed by the cell through cadherin contacts. A N-cadherin (neural cadherin)-Fc chimaera, which mimicks the cell adhesion molecule N-cadherin, was immobilized on a muFSA (micro-force sensor array), comprising a dense array of vertical elastomer pillars, which were used both as a cell culture support for N-cadherin-expressing C2 myogenic cells and as detectors for force mapping. We coated the top of the pillars on which cells adhere and recruit adhesion complexes and F-actin. Individual pillar bending allowed the measurement of forces that mainly developed at the cell edge and directed toward their centre. Similar force distribution and amplitude were detected with an unrelated cell line of neuronal origin. Further comparison with forces applied by cells on pillars coated with fibronectin indicates that mechanical stresses transduced through both types of adhesions were comparable in distribution, orientation and amplitude. CONCLUSIONS These results present a versatile method to measure and map forces exerted by cell-cell adhesion complexes. They show that cells transduce mechanical stress through cadherin contacts which are of the same order as magnitude of those previously characterized for focal adhesions. Altogether, they emphasize the mechanotransduction role of cytoskeleton-linked adhesion receptors of the cadherin family in tissue cohesion and reshaping.
Collapse
|
58
|
Tsuriel S, Geva R, Zamorano P, Dresbach T, Boeckers T, Gundelfinger ED, Garner CC, Ziv NE. Local sharing as a predominant determinant of synaptic matrix molecular dynamics. PLoS Biol 2007; 4:e271. [PMID: 16903782 PMCID: PMC1540708 DOI: 10.1371/journal.pbio.0040271] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Accepted: 06/14/2006] [Indexed: 01/03/2023] Open
Abstract
Recent studies suggest that central nervous system synapses can persist for weeks, months, perhaps lifetimes, yet little is known as to how synapses maintain their structural and functional characteristics for so long. As a step toward a better understanding of synaptic maintenance we examined the loss, redistribution, reincorporation, and replenishment dynamics of Synapsin I and ProSAP2/Shank3, prominent presynaptic and postsynaptic matrix molecules, respectively. Fluorescence recovery after photobleaching and photoactivation experiments revealed that both molecules are continuously lost from, redistributed among, and reincorporated into synaptic structures at time-scales of minutes to hours. Exchange rates were not affected by inhibiting protein synthesis or proteasome-mediated protein degradation, were accelerated by stimulation, and greatly exceeded rates of replenishment from somatic sources. These findings indicate that the dynamics of key synaptic matrix molecules may be dominated by local protein exchange and redistribution, whereas protein synthesis and degradation serve to maintain and regulate the sizes of local, shared pools of these proteins. To understand processes involved in synaptic maintenance, the authors examine the loss, redistribution, reincorporation and replenishment dynamics of two key synaptic proteins, Synapsin I and ProSAP2/Shank3.
Collapse
Affiliation(s)
- Shlomo Tsuriel
- The Rappaport Family Institute for Research in the Medical Sciences, Technion Faculty of Medicine, Haifa, Israel
- The Department of Physiology, Technion Faculty of Medicine, Haifa, Israel
| | - Ran Geva
- The Rappaport Family Institute for Research in the Medical Sciences, Technion Faculty of Medicine, Haifa, Israel
- The Department of Physiology, Technion Faculty of Medicine, Haifa, Israel
| | - Pedro Zamorano
- Department of Psychiatry and Behavioral Science, Nancy Pritzker Laboratory, Stanford University, Palo Alto, California, United States of America
| | - Thomas Dresbach
- Institute of Anatomy and Cell Biology II, University of Heidelberg, Heidelberg, Germany
| | - Tobias Boeckers
- Institute of Anatomy and Cell Biology, University of Ulm, Ulm, Germany
| | - Eckart D Gundelfinger
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Craig C Garner
- Department of Psychiatry and Behavioral Science, Nancy Pritzker Laboratory, Stanford University, Palo Alto, California, United States of America
| | - Noam E Ziv
- The Rappaport Family Institute for Research in the Medical Sciences, Technion Faculty of Medicine, Haifa, Israel
- The Department of Physiology, Technion Faculty of Medicine, Haifa, Israel
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
59
|
Mège RM, Gavard J, Lambert M. Regulation of cell–cell junctions by the cytoskeleton. Curr Opin Cell Biol 2006; 18:541-8. [PMID: 16905303 DOI: 10.1016/j.ceb.2006.08.004] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Accepted: 08/02/2006] [Indexed: 11/29/2022]
Abstract
A major form of animal cell-cell adhesion results from the dynamic association of cadherin molecules, cytosolic catenins and actin microfilaments. Cadherins dynamically regulate the cytoskeleton. In turn, the actin cytoskeleton contributes to cadherin molecule oligomerization at cell contacts and to cell reshaping in response to environmental changes. Over the past two years, this evolutionarily conserved adhesion system has been intensively revisited in both its structural and functional aspects; this is illustrated by the remarkable progress in the determination of physical parameters of cadherin bonds (including force measurement) and the new insights into the role of alpha-catenin and the regulation of actin dynamics at cadherin contacts. Other recent studies uncover the important contribution of acto-myosin, microtubules and cell tension to adherens junction formation, cell differentiation and tissue reshaping/remodeling. An open challenge is now to integrate these new data with the diversity of cadherin adhesive complexes.
Collapse
Affiliation(s)
- René-Marc Mège
- INSERM, U 706, Institut du Fer à Moulin, 75005 Paris, France.
| | | | | |
Collapse
|
60
|
Thoumine O, Saint-Michel E, Dequidt C, Falk J, Rudge R, Galli T, Faivre-Sarrailh C, Choquet D. Weak effect of membrane diffusion on the rate of receptor accumulation at adhesive contacts. Biophys J 2005; 89:L40-2. [PMID: 16169990 PMCID: PMC1366862 DOI: 10.1529/biophysj.105.071688] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
To assess if membrane diffusion could affect the kinetics of receptor recruitment at adhesive contacts, we transfected neurons with green fluorescent protein-tagged immunoglobin cell adhesion molecules of varying length (25-180 kD), and measured the lateral mobility of single quantum dots bound to those receptors at the cell surface. The diffusion coefficient varied within a physiological range (0.1-0.5 microm(2)/s), and was inversely proportional to the size of the receptor. We then triggered adhesive contact formation by placing anti-green fluorescent protein-coated microspheres on growth cones using optical tweezers, and measured surface receptor recruitment around microspheres by time-lapse fluorescence imaging. The accumulation rate was rather insensitive to the type of receptor, suggesting that the long-range membrane diffusion of immunoglobin cell adhesion molecules is not a limiting step in the initiation of neuronal contacts.
Collapse
|