51
|
Staiger D, Green R. RNA-based regulation in the plant circadian clock. TRENDS IN PLANT SCIENCE 2011; 16:517-523. [PMID: 21782493 DOI: 10.1016/j.tplants.2011.06.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 06/03/2011] [Accepted: 06/14/2011] [Indexed: 05/31/2023]
Abstract
The circadian clock is an endogenous, approximately 24-h timer that enables plants to anticipate daily changes in their environment and regulates a considerable fraction of the transcriptome. At the core of the circadian system is the oscillator, made up of interconnected feedback loops, involving transcriptional regulation of clock genes and post-translational modification of clock proteins. Recently, it has become clear that post-transcriptional events are also critical for shaping rhythmic mRNA and protein profiles. This review covers regulation at the RNA level of both the core clock and output genes in Arabidopsis (Arabidopsis thaliana), with comparisons with other model organisms. We discuss the role of splicing, mRNA decay and translational regulation as well as recent insights into rhythms of noncoding regulatory RNAs.
Collapse
Affiliation(s)
- Dorothee Staiger
- Molecular Cell Physiology, Bielefeld University, D-33501 Bielefeld, Germany.
| | | |
Collapse
|
52
|
Kojima S, Shingle DL, Green CB. Post-transcriptional control of circadian rhythms. J Cell Sci 2011; 124:311-20. [PMID: 21242310 DOI: 10.1242/jcs.065771] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Circadian rhythms exist in most living organisms. The general molecular mechanisms that are used to generate 24-hour rhythms are conserved among organisms, although the details vary. These core clocks consist of multiple regulatory feedback loops, and must be coordinated and orchestrated appropriately for the fine-tuning of the 24-hour period. Many levels of regulation are important for the proper functioning of the circadian clock, including transcriptional, post-transcriptional and post-translational mechanisms. In recent years, new information about post-transcriptional regulation in the circadian system has been discovered. Such regulation has been shown to alter the phase and amplitude of rhythmic mRNA and protein expression in many organisms. Therefore, this Commentary will provide an overview of current knowledge of post-transcriptional regulation of the clock genes and clock-controlled genes in dinoflagellates, plants, fungi and animals. This article will also highlight how circadian gene expression is modulated by post-transcriptional mechanisms and how this is crucial for robust circadian rhythmicity.
Collapse
Affiliation(s)
- Shihoko Kojima
- Department of Neuroscience, University of Texas Southwestern Medical Center, NB4.204G, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | |
Collapse
|
53
|
Wenden B, Kozma-Bognár L, Edwards KD, Hall AJW, Locke JCW, Millar AJ. Light inputs shape the Arabidopsis circadian system. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:480-91. [PMID: 21255161 DOI: 10.1111/j.1365-313x.2011.04505.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The circadian clock is a fundamental feature of eukaryotic gene regulation that is emerging as an exemplar genetic sub-network for systems biology. The circadian system in Arabidopsis plants is complex, in part due to its phototransduction pathways, which are themselves under circadian control. We therefore analysed two simpler experimental systems. Etiolated seedlings entrained by temperature cycles showed circadian rhythms in the expression of genes that are important for the clock mechanism, but only a restricted set of downstream target genes were rhythmic in microarray assays. Clock control of phototransduction pathways remained robust across a range of light inputs, despite the arrhythmic transcription of light-signalling genes. Circadian interactions with light signalling were then analysed using a single active photoreceptor. Phytochrome A (phyA) is expected to be the only active photoreceptor that can mediate far-red (FR) light input to the circadian clock. Surprisingly, rhythmic gene expression was profoundly altered under constant FR light, in a phyA-dependent manner, resulting in high expression of evening genes and low expression of morning genes. Dark intervals were required to allow high-amplitude rhythms across the transcriptome. Clock genes involved in this response were identified by mutant analysis, showing that the EARLY FLOWERING 4 gene is a likely target and mediator of the FR effects. Both experimental systems illustrate how profoundly the light input pathways affect the plant circadian clock, and provide strong experimental manipulations to understand critical steps in the plant clock mechanism.
Collapse
Affiliation(s)
- Bénédicte Wenden
- School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh EH93JH, UK
| | | | | | | | | | | |
Collapse
|
54
|
Zhang L, Weng W, Guo J. Posttranscriptional mechanisms in controlling eukaryotic circadian rhythms. FEBS Lett 2011; 585:1400-5. [PMID: 21414314 DOI: 10.1016/j.febslet.2011.03.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 03/08/2011] [Accepted: 03/09/2011] [Indexed: 10/18/2022]
Abstract
The circadian clock is essential in almost all living organisms to synchronise biochemical, metabolic, physiological and behavioural cycles to daily changing environmental factors. In a highly conserved fashion, the circadian clock is primarily controlled by multiple positive and negative molecular circuitries that control gene expression. More recently, research in Neurospora and other eukaryotes has uncovered the involvement of additional regulatory components that operate at the posttranslational level to fine tune the circadian system. Though it remains poorly understood, a growing body of evidence has shown that posttranscriptional regulation controls the expression of both circadian oscillator and output gene transcripts at a number of different steps. This regulation is crucial for driving and maintaining robust circadian rhythms. Here we review recent advances in circadian rhythm research at the RNA level.
Collapse
Affiliation(s)
- Lin Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | | | | |
Collapse
|
55
|
Lakin-Thomas PL, Bell-Pedersen D, Brody S. The genetics of circadian rhythms in Neurospora. ADVANCES IN GENETICS 2011; 74:55-103. [PMID: 21924975 DOI: 10.1016/b978-0-12-387690-4.00003-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This chapter describes our current understanding of the genetics of the Neurospora clock and summarizes the important findings in this area in the past decade. Neurospora is the most intensively studied clock system, and the reasons for this are listed. A discussion of the genetic interactions between clock mutants is included, highlighting the utility of dissecting complex mechanisms by genetic means. The molecular details of the Neurospora circadian clock mechanism are described, as well as the mutations that affect the key clock proteins, FRQ, WC-1, and WC-2, with an emphasis on the roles of protein phosphorylation. Studies on additional genes affecting clock properties are described and place these genes into two categories: those that affect the FRQ/WCC oscillator and those that do not. A discussion of temperature compensation and the mutants affecting this property is included. A section is devoted to the observations pertinent to the existence of other oscillators in this organism with respect to their properties, their effects, and their preliminary characterization. The output of the clock and the control of clock-controlled genes are discussed, emphasizing the phasing of these genes and the layers of control. In conclusion, the authors provide an outlook summarizing their suggestions for areas that would be fruitful for further exploration.
Collapse
|
56
|
Staiger D, Köster T. Spotlight on post-transcriptional control in the circadian system. Cell Mol Life Sci 2011; 68:71-83. [PMID: 20803230 PMCID: PMC11114774 DOI: 10.1007/s00018-010-0513-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 08/16/2010] [Accepted: 08/16/2010] [Indexed: 10/19/2022]
Abstract
An endogenous timing mechanism, the circadian clock, causes rhythmic expression of a considerable fraction of the genome of most organisms to optimally align physiology and behavior with their environment. Circadian clocks are self-sustained oscillators primarily based on transcriptional feedback loops and post-translational modification of clock proteins. It is increasingly becoming clear that regulation at the RNA level strongly impacts the cellular circadian transcriptome and proteome as well as the oscillator mechanism itself. This review focuses on posttranscriptional events, discussing RNA-binding proteins that, by influencing the timing of pre-mRNA splicing, polyadenylation and RNA decay, shape rhythmic expression profiles. Furthermore, recent findings on the contribution of microRNAs to orchestrating circadian rhythms are summarized.
Collapse
Affiliation(s)
- Dorothee Staiger
- Molecular Cell Physiology, Bielefeld University, 33501, Bielefeld, Germany.
| | | |
Collapse
|
57
|
Crosthwaite SK, Heintzen C. Detection and response of the Neurospora crassa circadian clock to light and temperature. FUNGAL BIOL REV 2010. [DOI: 10.1016/j.fbr.2010.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
58
|
Akman OE, Rand DA, Brown PE, Millar AJ. Robustness from flexibility in the fungal circadian clock. BMC SYSTEMS BIOLOGY 2010; 4:88. [PMID: 20576110 PMCID: PMC2913929 DOI: 10.1186/1752-0509-4-88] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 06/24/2010] [Indexed: 12/01/2022]
Abstract
BACKGROUND Robustness is a central property of living systems, enabling function to be maintained against environmental perturbations. A key challenge is to identify the structures in biological circuits that confer system-level properties such as robustness. Circadian clocks allow organisms to adapt to the predictable changes of the 24-hour day/night cycle by generating endogenous rhythms that can be entrained to the external cycle. In all organisms, the clock circuits typically comprise multiple interlocked feedback loops controlling the rhythmic expression of key genes. Previously, we showed that such architectures increase the flexibility of the clock's rhythmic behaviour. We now test the relationship between flexibility and robustness, using a mathematical model of the circuit controlling conidiation in the fungus Neurospora crassa. RESULTS The circuit modelled in this work consists of a central negative feedback loop, in which the frequency (frq) gene inhibits its transcriptional activator white collar-1 (wc-1), interlocked with a positive feedback loop in which FRQ protein upregulates WC-1 production. Importantly, our model reproduces the observed entrainment of this circuit under light/dark cycles with varying photoperiod and cycle duration. Our simulations show that whilst the level of frq mRNA is driven directly by the light input, the falling phase of FRQ protein, a molecular correlate of conidiation, maintains a constant phase that is uncoupled from the times of dawn and dusk. The model predicts the behaviour of mutants that uncouple WC-1 production from FRQ's positive feedback, and shows that the positive loop enhances the buffering of conidiation phase against seasonal photoperiod changes. This property is quantified using Kitano's measure for the overall robustness of a regulated system output. Further analysis demonstrates that this functional robustness is a consequence of the greater evolutionary flexibility conferred on the circuit by the interlocking loop structure. CONCLUSIONS Our model shows that the behaviour of the fungal clock in light-dark cycles can be accounted for by a transcription-translation feedback model of the central FRQ-WC oscillator. More generally, we provide an example of a biological circuit in which greater flexibility yields improved robustness, while also introducing novel sensitivity analysis techniques applicable to a broader range of cellular oscillators.
Collapse
Affiliation(s)
- Ozgur E Akman
- Centre for Systems Biology at Edinburgh, The University of Edinburgh, Edinburgh, UK
- Interdisciplinary Programme for Cellular Regulation, University of Warwick, Coventry, UK
- Systems Biology Centre, University of Warwick, Coventry, UK
- School of Engineering, Computing & Mathematics, University of Exeter, Exeter, UK
| | - David A Rand
- Interdisciplinary Programme for Cellular Regulation, University of Warwick, Coventry, UK
- Systems Biology Centre, University of Warwick, Coventry, UK
| | - Paul E Brown
- Systems Biology Centre, University of Warwick, Coventry, UK
| | - Andrew J Millar
- Centre for Systems Biology at Edinburgh, The University of Edinburgh, Edinburgh, UK
- Interdisciplinary Programme for Cellular Regulation, University of Warwick, Coventry, UK
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
59
|
Guo J, Liu Y. Molecular mechanism of the Neurospora circadian oscillator. Protein Cell 2010; 1:331-341. [PMID: 21203945 DOI: 10.1007/s13238-010-0053-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 03/31/2010] [Indexed: 11/24/2022] Open
Abstract
Circadian clocks are the internal time-keeping mechanisms for organisms to synchronize their cellular and physiological processes to the daily light/dark cycles. The molecular mechanisms underlying circadian clocks are remarkably similar in eukaryotes. Neurospora crassa, a filamentous fungus, is one of the best understood model organisms for circadian research. In recent years, accumulating data have revealed complex regulation in the Neurospora circadian clock at transcriptional, posttranscriptional, post-translational and epigenetic levels. Here we review the recent progress towards our understanding of the molecular mechanism of the Neurospora circadian oscillator. These advances have provided novel insights and furthered our understanding of the mechanism of eukaryotic circadian clocks.
Collapse
Affiliation(s)
- Jinhu Guo
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390-9040, USA
| | - Yi Liu
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390-9040, USA.
| |
Collapse
|
60
|
Kosti I, Mandel-Gutfreund Y, Glaser F, Horwitz BA. Comparative analysis of fungal protein kinases and associated domains. BMC Genomics 2010; 11:133. [PMID: 20178650 PMCID: PMC2838846 DOI: 10.1186/1471-2164-11-133] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 02/24/2010] [Indexed: 11/27/2022] Open
Abstract
Background Protein phosphorylation is responsible for a large portion of the regulatory functions of eukaryotic cells. Although the list of sequenced genomes of filamentous fungi has grown rapidly, the kinomes of recently sequenced species have not yet been studied in detail. The objective of this study is to apply a comparative analysis of the kinase distribution in different fungal phyla, and to explore its relevance to understanding the evolution of fungi and their taxonomic classification. We have analyzed in detail 12 subgroups of kinases and their distribution over 30 species, as well as their potential use as a classifier for members of the fungal kingdom. Results Our findings show that despite the similarity of the kinase distribution in all fungi, their domain distributions and kinome density can potentially be used to classify them and give insight into their evolutionary origin. In general, we found that the overall representation of kinase groups is similar across fungal genomes, the only exception being a large number of tyrosine kinase-like (TKL) kinases predicted in Laccaria bicolor. This unexpected finding underscores the need to continue to sequence fungal genomes, since many species or lineage-specific properties may remain to be discovered. Furthermore, we found that the domain organization significantly varies between the fungal species. Our results suggest that protein kinases and their functional domains strongly reflect fungal taxonomy. Conclusions Comparison of the predicted kinomes of sequenced fungi suggests essential signaling functions common to all species, but also specific adaptations of the signal transduction networks to particular species.
Collapse
Affiliation(s)
- Idit Kosti
- Department of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | |
Collapse
|
61
|
Circadian rhythms in Neurospora crassa: dynamics of the clock component frequency visualized using a fluorescent reporter. Fungal Genet Biol 2010; 47:332-41. [PMID: 20051268 DOI: 10.1016/j.fgb.2009.12.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 12/13/2009] [Accepted: 12/30/2009] [Indexed: 11/29/2022]
Abstract
The frequency (frq) gene of Neurospora crassa has long been considered essential to the function of this organism's circadian rhythm. Increasingly, deciphering the coupling of core oscillator genes such as frq to the output pathways of the circadian rhythm has become a major focus of circadian research. To address this coupling it is critical to have a reporter of circadian activity that can deliver high resolution spatial and temporal information about the dynamics of core oscillatory proteins such as FRQ. However, due to the difficulty of studying the expression of circadian rhythm genes in aerobic N. crassa cultures, little is known about the dynamics of this gene under physiologically realistic conditions. To address these issues we report a fluorescent fusion to the frq gene using a codon optimized version of the mCherry gene. To trace the expression and accumulation of FRQ-mCherryNC (FRQ-mCh) during the circadian rhythm, growing vegetative hyphae were scanned every hour under confocal microscopy (100x). Fluorescence of FRQ-mCh was detected only at the growing edge of the colony, and located in the cytoplasm and nuclei of vegetative hyphae for a distance of approximately 150-200microm from the apices of leading hyphae. When driven by the frq promoter, apparently there was also a second FRQ entrance into the nucleus during the circadian cycle; however the second entrance had a lower accumulation level than the first entrance. Thus this fluorescent fusion protein has proven useful in tracking the spatial dynamics of the frq protein and has indicated that the dynamics of the FRQ protein's nuclear trafficking may be more complex than previously realized.
Collapse
|
62
|
Hood HM, Neafsey DE, Galagan J, Sachs MS. Evolutionary roles of upstream open reading frames in mediating gene regulation in fungi. Annu Rev Microbiol 2009; 63:385-409. [PMID: 19514854 DOI: 10.1146/annurev.micro.62.081307.162835] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Upstream open reading frames (uORFs) are frequently present in the 5'-leader regions of fungal mRNAs. They can affect translation by controlling the ability of ribosomes that scan from the mRNA 5' end to reach the downstream genic reading frame. The translation of uORFs can also affect mRNA stability. For several genes, including Saccharomyces cerevisiae GCN4, S. cerevisiae CPA1, and Neurospora crassa arg-2, regulation by uORFs controls expression in response to specific physiological signals. The roles of many uORFs that are identified by genome-level approaches, as have been initiated for Saccharomyces, Aspergillus, and Cryptococcus species, remain to be determined. Some uORFs may have regulatory roles, while others may exist to insulate the genic reading frame from the negative impacts of upstream translation start sites in the mRNA 5' leader.
Collapse
Affiliation(s)
- Heather M Hood
- Department of Science and Engineering, Oregon Health & Science University, Beaverton, Oregon 97006, USA
| | | | | | | |
Collapse
|
63
|
Diernfellner ACR, Querfurth C, Salazar C, Höfer T, Brunner M. Phosphorylation modulates rapid nucleocytoplasmic shuttling and cytoplasmic accumulation of Neurospora clock protein FRQ on a circadian time scale. Genes Dev 2009; 23:2192-200. [PMID: 19759264 DOI: 10.1101/gad.538209] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Neurospora clock protein FREQUENCY (FRQ) is an essential regulator of the circadian transcription factor WHITE COLLAR COMPLEX (WCC). In the course of a circadian period, the subcellular distribution of FRQ shifts from mainly nuclear to mainly cytosolic. This shift is crucial for coordinating the negative and positive limbs of the clock. We show that the subcellular redistribution of FRQ on a circadian time scale is governed by rapid, noncircadian cycles of nuclear import and export. The rate of nuclear import of newly synthesized FRQ is progressively reduced in a phosphorylation-dependent manner, leading to an increase in the steady-state level of cytoplasmic FRQ. The long-period frq(7) mutant displays reduced kinetics of FRQ(7) protein phosphorylation and a prolonged accumulation in the nucleus. We present a mathematical model that describes the cytoplasmic accumulation of wild-type and mutant FRQ on a circadian time scale on the basis of frequency-modulated rapid nucleocytoplasmic shuttling cycles.
Collapse
|
64
|
Chen R, Pan Y, Wang Y, Zhu L, He G. Temperature-sensitive splicing is an important molecular regulation mechanism of thermosensitive genic male sterility in rice. CHINESE SCIENCE BULLETIN-CHINESE 2009. [DOI: 10.1007/s11434-009-0349-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
65
|
MEHRA A, SHI M, BAKER CL, COLOT HV, LOROS JJ, DUNLAP JC. CK2 and temperature compensation inNeurospora. Sleep Biol Rhythms 2009. [DOI: 10.1111/j.1479-8425.2009.00406.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
66
|
Evolution of alternative splicing regulation: changes in predicted exonic splicing regulators are not associated with changes in alternative splicing levels in primates. PLoS One 2009; 4:e5800. [PMID: 19495418 PMCID: PMC2686173 DOI: 10.1371/journal.pone.0005800] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 05/12/2009] [Indexed: 12/12/2022] Open
Abstract
Alternative splicing is tightly regulated in a spatio-temporal and quantitative manner. This regulation is achieved by a complex interplay between spliceosomal (trans) factors that bind to different sequence (cis) elements. cis-elements reside in both introns and exons and may either enhance or silence splicing. Differential combinations of cis-elements allows for a huge diversity of overall splicing signals, together comprising a complex ‘splicing code’. Many cis-elements have been identified, and their effects on exon inclusion levels demonstrated in reporter systems. However, the impact of interspecific differences in these elements on the evolution of alternative splicing levels has not yet been investigated at genomic level. Here we study the effect of interspecific differences in predicted exonic splicing regulators (ESRs) on exon inclusion levels in human and chimpanzee. For this purpose, we compiled and studied comprehensive datasets of predicted ESRs, identified by several computational and experimental approaches, as well as microarray data for changes in alternative splicing levels between human and chimpanzee. Surprisingly, we found no association between changes in predicted ESRs and changes in alternative splicing levels. This observation holds across different ESR exon positions, exon lengths, and 5′ splice site strengths. We suggest that this lack of association is mainly due to the great importance of context for ESR functionality: many ESR-like motifs in primates may have little or no effect on splicing, and thus interspecific changes at short-time scales may primarily occur in these effectively neutral ESRs. These results underscore the difficulties of using current computational ESR prediction algorithms to identify truly functionally important motifs, and provide a cautionary tale for studies of the effect of SNPs on splicing in human disease.
Collapse
|
67
|
Mehra A, Shi M, Baker CL, Colot HV, Loros JJ, Dunlap JC. A role for casein kinase 2 in the mechanism underlying circadian temperature compensation. Cell 2009; 137:749-60. [PMID: 19450520 PMCID: PMC2718715 DOI: 10.1016/j.cell.2009.03.019] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 01/19/2009] [Accepted: 03/12/2009] [Indexed: 11/28/2022]
Abstract
Temperature compensation of circadian clocks is an unsolved problem with relevance to the general phenomenon of biological compensation. We identify casein kinase 2 (CK2) as a key regulator of temperature compensation of the Neurospora clock by determining that two long-standing clock mutants, chrono and period-3, displaying distinctive alterations in compensation encode the beta1 and alpha subunits of CK2, respectively. Reducing the dose of these subunits, particularly beta1, significantly alters temperature compensation without altering the enzyme's Q(10). By contrast, other kinases and phosphatases implicated in clock function do not play appreciable roles in temperature compensation. CK2 exerts its effects on the clock by directly phosphorylating FREQUENCY (FRQ), and this phosphorylation is compromised in CK2 hypomorphs. Finally, mutation of certain putative CK2 phosphosites on FRQ, shown to be phosphorylated in vivo, predictably alters temperature compensation profiles effectively phenocopying CK2 mutants.
Collapse
Affiliation(s)
- Arun Mehra
- Department of Genetics, Dartmouth Medical School, Hanover NH 03755
| | - Mi Shi
- Department of Genetics, Dartmouth Medical School, Hanover NH 03755
| | | | - Hildur V. Colot
- Department of Genetics, Dartmouth Medical School, Hanover NH 03755
| | - Jennifer J. Loros
- Department of Genetics, Dartmouth Medical School, Hanover NH 03755
- Department of Biochemistry, Dartmouth Medical School, Hanover NH 03755
| | - Jay C. Dunlap
- Department of Genetics, Dartmouth Medical School, Hanover NH 03755
- Department of Biochemistry, Dartmouth Medical School, Hanover NH 03755
| |
Collapse
|
68
|
Larrondo LF, Colot HV, Baker CL, Loros JJ, Dunlap JC. Fungal functional genomics: tunable knockout-knock-in expression and tagging strategies. EUKARYOTIC CELL 2009; 8:800-4. [PMID: 19286985 PMCID: PMC2681610 DOI: 10.1128/ec.00072-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 03/06/2009] [Indexed: 11/20/2022]
Abstract
Strategies for promoting high-efficiency homologous gene replacement have been developed and adopted for many filamentous fungal species. The next generation of analysis requires the ability to manipulate gene expression and to tag genes expressed from their endogenous loci. Here we present a suite of molecular tools that provide versatile solutions for fungal high-throughput functional genomics studies based on locus-specific modification of any target gene. Additionally, case studies illustrate caveats to presumed overexpression constructs. A tunable expression system and different tagging strategies can provide valuable phenotypic information for uncharacterized genes and facilitate the analysis of essential loci, an emerging problem in systematic deletion studies of haploid organisms.
Collapse
Affiliation(s)
- Luis F Larrondo
- Department of Genetics, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | | | |
Collapse
|
69
|
Irimia M, Rukov JL, Roy SW, Vinther J, Garcia-Fernandez J. Quantitative regulation of alternative splicing in evolution and development. Bioessays 2009; 31:40-50. [DOI: 10.1002/bies.080092] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
70
|
Low KH, Lim C, Ko HW, Edery I. Natural variation in the splice site strength of a clock gene and species-specific thermal adaptation. Neuron 2008; 60:1054-67. [PMID: 19109911 PMCID: PMC2631419 DOI: 10.1016/j.neuron.2008.10.048] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 09/16/2008] [Accepted: 10/28/2008] [Indexed: 11/17/2022]
Abstract
We show that multiple suboptimal splice sites underlie the thermal-sensitive splicing of the period (per) 3'-terminal intron (dmpi8) from D. melanogaster, enabling this species to prolong its midday "siesta," a mechanism that likely diminishes the deleterious effects of heat during the longer summer days in temperate climates. In D. yakuba and D. santomea, which have a more ancestral distribution indigenous to Afro-equatorial regions wherein day length and temperature exhibit little fluctuation throughout the year, the splicing efficiencies of their per 3'-terminal introns do not exhibit thermal calibration, consistent with the little effect of temperature on the daily distribution of activity in these species. We propose that the weak splice sites on dmpi8 underlie a mechanism that facilitated the acclimation of the widely colonized D. melanogaster (and possibly D. simulans) to temperate climates and that natural selection operating at the level of splicing signals plays an important role in the thermal adaptation of life forms.
Collapse
Affiliation(s)
- Kwang Huei Low
- Department of Molecular Biology and Biochemistry, Rutgers University, Center for Advanced Biotechnology and Medicine, 679 Hoes lane, Piscataway, New Jersey, USA 08854
| | - Cecilia Lim
- Department of Molecular Biology and Biochemistry, Rutgers University, Center for Advanced Biotechnology and Medicine, 679 Hoes lane, Piscataway, New Jersey, USA 08854
| | | | - Isaac Edery
- Department of Molecular Biology and Biochemistry, Rutgers University, Center for Advanced Biotechnology and Medicine, 679 Hoes lane, Piscataway, New Jersey, USA 08854
| |
Collapse
|
71
|
Abstract
Enzyme isoforms are found in many cellular reactions, and can differ in the kind of reaction they catalyze, in their substrate affinity, or in their reaction rates. The evolutionary significance of enzyme isoforms is only partially understood. We used mathematical modeling to investigate the hypothesis that isoforms may be favored by selection because they can increase the phenotypic robustness of the system. We modify a model for circadian clock gene expression in Drosophila to incorporate the presence of isoforms in the phosphorylation pathway of the period gene. We consider the case in which different isoforms catalyze the same reaction but have different affinities for the substrate. Stability is increased if there is dynamic control of the expression of isoforms relative to each other. Thus, we show that controlling isoform proportion can be a powerful mechanism for reducing the effects of variations in the values of system parameters, increasing system robustness.
Collapse
Affiliation(s)
- Maurizio Tomaiuolo
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306, USA.
| | | | | |
Collapse
|
72
|
Chen WF, Low KH, Lim C, Edery I. Thermosensitive splicing of a clock gene and seasonal adaptation. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2008; 72:599-606. [PMID: 18419319 DOI: 10.1101/sqb.2007.72.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Similar to many diurnal animals, the daily distribution of activity in Drosophila exhibits a bimodal pattern with clock-controlled morning and evening peaks separated by a midday "siesta." In prior work, we showed that the thermosensitive splicing of a 3'-terminal intron in the RNA product from the Drosophila period (per) gene (dper) is critical for temperature-induced adjustments in the timing of evening activity. Cold temperatures enhance the splicing efficiency of this intron (termed dmpi8, Drosophila melanogaster per intron 8), an event that stimulates the daily accumulation of dper RNA and protein, leading to earlier evening activity. Conversely, warm temperatures attenuate dmpi8 splicing efficiency contributing to delayed evening activity, likely ensuring that flies avoid activity during the hot midday sun when they are at increased risk of desiccation. Here, we discuss the underlying molecular mechanisms governing the thermosensitive splicing of dmpi8 and how it contributes to seasonal changes in the daily activity patterns of Drosophila. On a broader perspective, RNA-RNA interactions likely have fundamental roles in the thermal adaptation of life forms to the daily and seasonal changes in temperature.
Collapse
Affiliation(s)
- W-F Chen
- Department of Molecular Biology and Biochemistry, Rutgers University, Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
73
|
Michael TP, Mockler TC, Breton G, McEntee C, Byer A, Trout JD, Hazen SP, Shen R, Priest HD, Sullivan CM, Givan SA, Yanovsky M, Hong F, Kay SA, Chory J. Network discovery pipeline elucidates conserved time-of-day-specific cis-regulatory modules. PLoS Genet 2008; 4:e14. [PMID: 18248097 PMCID: PMC2222925 DOI: 10.1371/journal.pgen.0040014] [Citation(s) in RCA: 399] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 12/10/2007] [Indexed: 11/18/2022] Open
Abstract
Correct daily phasing of transcription confers an adaptive advantage to almost all organisms, including higher plants. In this study, we describe a hypothesis-driven network discovery pipeline that identifies biologically relevant patterns in genome-scale data. To demonstrate its utility, we analyzed a comprehensive matrix of time courses interrogating the nuclear transcriptome of Arabidopsis thaliana plants grown under different thermocycles, photocycles, and circadian conditions. We show that 89% of Arabidopsis transcripts cycle in at least one condition and that most genes have peak expression at a particular time of day, which shifts depending on the environment. Thermocycles alone can drive at least half of all transcripts critical for synchronizing internal processes such as cell cycle and protein synthesis. We identified at least three distinct transcription modules controlling phase-specific expression, including a new midnight specific module, PBX/TBX/SBX. We validated the network discovery pipeline, as well as the midnight specific module, by demonstrating that the PBX element was sufficient to drive diurnal and circadian condition-dependent expression. Moreover, we show that the three transcription modules are conserved across Arabidopsis, poplar, and rice. These results confirm the complex interplay between thermocycles, photocycles, and the circadian clock on the daily transcription program, and provide a comprehensive view of the conserved genomic targets for a transcriptional network key to successful adaptation. As the earth rotates, environmental conditions oscillate between illuminated warm days and dark cool nights. Plants have adapted to these changes by timing physiological processes to specific times of the day or night. Light and temperature signaling and the circadian clock regulate this adaptive response. To determine the contributions of each of these factors on gene regulation, we analyzed microarray time course experiments interrogating light, temperature, and circadian conditions. We discovered that almost all Arabidopsis genes cycle in at least one condition. From a signaling perspective, this suggests that light, temperature, and circadian clock play an important role in modulating many physiological pathways. To clarify the contribution of transcriptional regulation on this process, we mined the promoters of cycling genes to identify DNA elements associated with expression at specific times of day. This confirmed the importance of several DNA motifs such as the G-box and the evening element in the regulation of gene expression by light and the circadian clock, but also facilitated the discovery of new elements linked to a novel midnight regulatory module. Identification of orthologous promoter elements in rice and poplar revealed a conserved transcriptional regulatory network that allows global adaptation to the ever-changing daily environment.
Collapse
Affiliation(s)
- Todd P Michael
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Todd C Mockler
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| | - Ghislain Breton
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | - Connor McEntee
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Amanda Byer
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Jonathan D Trout
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Samuel P Hazen
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | - Rongkun Shen
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Henry D Priest
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Christopher M Sullivan
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| | - Scott A Givan
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| | - Marcelo Yanovsky
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | - Fangxin Hong
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Steve A Kay
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | - Joanne Chory
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
74
|
Más P. Circadian clock function in Arabidopsis thaliana: time beyond transcription. Trends Cell Biol 2008; 18:273-81. [PMID: 18468438 DOI: 10.1016/j.tcb.2008.03.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 03/14/2008] [Accepted: 03/15/2008] [Indexed: 11/16/2022]
Abstract
The past decade has seen a remarkable advance in our understanding of the plant circadian system, mostly in Arabidopsis thaliana. It is now well established that Arabidopsis clock genes and their protein products operate through autoregulatory feedback loops that promote rhythmic oscillations in cellular, metabolic and physiological activities. This article reviews recent studies that have provided evidence for new mechanisms of clock organization and function. These mechanisms include protein-protein interactions and the regulation of protein stability, which, together, directly connect light signalling to the Arabidopsis circadian system. Evidence of rhythmic changes in chromatin structure has also opened new and exciting ways for regulation of clock gene expression. All of these mechanisms ensure an appropriate synchronization with the environment, which is crucial for successful plant growth and development.
Collapse
Affiliation(s)
- Paloma Más
- Consorcio Consejo Superior de Investigaciones Científicas-Institut de Recerca i Tecnologia Agroalimentàries (CSIC-IRTA), Laboratorio de Genética Molecular Vegetal, Instituto de Biología Molecular de Barcelona, Spain.
| |
Collapse
|
75
|
Abstract
Circadian clocks drive daily rhythms in physiology and behaviour, and thus allow organisms to better adapt to rhythmic changes in the environment. Circadian oscillators are cell-autonomous systems, which generate via transcriptional, post-transcriptional, translational and post-translational control mechanisms a daily activity-rhythm of a circadian transcription factor complex. According to recent models, this complex of transcription factors controls directly or indirectly expression of a large number of genes, and thus generates the potential to modulate physiological processes in a rhythmic fashion. The basic principles of the generation of circadian oscillation are similar in all eukaryotic systems. The circadian clock of the filamentous fungus Neurospora crassa is well characterized at the molecular level. Focusing on the molecular properties, interactions and post-translational modifications of the core Neurospora clock proteins WHITE COLLAR-1, WHITE COLLAR-2, FREQUENCY and VIVID, this review summarizes our knowledge of the molecular basis of circadian time keeping in Neurospora. Moreover, we discuss the mechanisms by which environmental cues like light and temperature entrain and reset this circadian system.
Collapse
Affiliation(s)
- Michael Brunner
- University of Heidelberg Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | | |
Collapse
|
76
|
Akman OE, Locke JCW, Tang S, Carré I, Millar AJ, Rand DA. Isoform switching facilitates period control in the Neurospora crassa circadian clock. Mol Syst Biol 2008; 4:164. [PMID: 18277380 PMCID: PMC2267733 DOI: 10.1038/msb.2008.5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 12/21/2007] [Indexed: 11/09/2022] Open
Abstract
A striking and defining feature of circadian clocks is the small variation in period over a physiological range of temperatures. This is referred to as temperature compensation, although recent work has suggested that the variation observed is a specific, adaptive control of period. Moreover, given that many biological rate constants have a Q(10) of around 2, it is remarkable that such clocks remain rhythmic under significant temperature changes. We introduce a new mathematical model for the Neurospora crassa circadian network incorporating experimental work showing that temperature alters the balance of translation between a short and long form of the FREQUENCY (FRQ) protein. This is used to discuss period control and functionality for the Neurospora system. The model reproduces a broad range of key experimental data on temperature dependence and rhythmicity, both in wild-type and mutant strains. We present a simple mechanism utilising the presence of the FRQ isoforms (isoform switching) by which period control could have evolved, and argue that this regulatory structure may also increase the temperature range where the clock is robustly rhythmic.
Collapse
Affiliation(s)
- Ozgur E Akman
- Interdisciplinary Programme for Cellular Regulation, University of Warwick, Coventry, UK
- Systems Biology Centre, University of Warwick, Coventry, UK
- Mathematics Institute, University of Warwick, Coventry, UK
| | - James C W Locke
- Interdisciplinary Programme for Cellular Regulation, University of Warwick, Coventry, UK
- Department of Physics, University of Warwick, Coventry, UK
| | - Sanyi Tang
- Interdisciplinary Programme for Cellular Regulation, University of Warwick, Coventry, UK
- Systems Biology Centre, University of Warwick, Coventry, UK
- Mathematics Institute, University of Warwick, Coventry, UK
| | - Isabelle Carré
- Department of Biological Sciences, University of Warwick, Coventry, UK
| | - Andrew J Millar
- Interdisciplinary Programme for Cellular Regulation, University of Warwick, Coventry, UK
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - David A Rand
- Interdisciplinary Programme for Cellular Regulation, University of Warwick, Coventry, UK
- Systems Biology Centre, University of Warwick, Coventry, UK
- Mathematics Institute, University of Warwick, Coventry, UK
| |
Collapse
|
77
|
Gooch VD, Mehra A, Larrondo LF, Fox J, Touroutoutoudis M, Loros JJ, Dunlap JC. Fully codon-optimized luciferase uncovers novel temperature characteristics of the Neurospora clock. EUKARYOTIC CELL 2008; 7:28-37. [PMID: 17766461 PMCID: PMC2224151 DOI: 10.1128/ec.00257-07] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Accepted: 08/23/2007] [Indexed: 11/20/2022]
Abstract
We report the complete reconstruction of the firefly luciferase gene, fully codon optimized for expression in Neurospora crassa. This reporter enhances light output by approximately 4 log orders over that with previously available versions, now producing light that is visible to the naked eye and sufficient for monitoring the activities of many poorly expressed genes. Time lapse photography of strains growing in race tubes, in which the frq or eas/ccg-2 promoter is used to drive luciferase, shows the highest levels of luciferase activity near the growth front and newly formed conidial bands. Further, we have established a sorbose medium colony assay that will facilitate luciferase-based screens. The signals from sorbose-grown colonies of strains in which the frq promoter drives luciferase exhibit the properties of circadian rhythms and can be tracked for many days to weeks. This reporter now makes it possible to follow the clock in real time, even in strains or under conditions in which the circadian rhythm in conidial banding is not expressed. This property has been used to discover short, ca. 15-h period rhythms at high temperatures, at which banding becomes difficult to observe in race tubes, and to generate a high-resolution temperature phase-response curve.
Collapse
Affiliation(s)
- Van D Gooch
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | | | | | | | |
Collapse
|
78
|
Diernfellner A, Colot HV, Dintsis O, Loros JJ, Dunlap JC, Brunner M. Long and short isoforms of Neurospora clock protein FRQ support temperature-compensated circadian rhythms. FEBS Lett 2007; 581:5759-64. [PMID: 18037381 PMCID: PMC2704016 DOI: 10.1016/j.febslet.2007.11.043] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 11/14/2007] [Accepted: 11/15/2007] [Indexed: 10/22/2022]
Abstract
The large (l) and small (s) isoforms of FREQUENCY (FRQ) are elements of interconnected feedback loops of the Neurospora circadian clock. The expression ratio of l-FRQ vs. s-FRQ is regulated by thermosensitive splicing of an intron containing the initiation codon for l-FRQ. We show that this splicing is dependent on light and temperature and displays a circadian rhythm. Strains expressing only l-FRQ or s-FRQ support short and long temperature-compensated circadian rhythms, respectively. The thermosensitive expression ratio of FRQ isoforms influences period length in wt. Our data indicate that differential expression of FRQ isoforms is not required for temperature compensation but rather provides a means to fine-tune period length in response to ambient temperature.
Collapse
Affiliation(s)
- Axel Diernfellner
- University of Heidelberg Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Hildur V. Colot
- Departments of Genetics and Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | - Orfeas Dintsis
- University of Heidelberg Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Jennifer J. Loros
- Departments of Genetics and Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | - Jay C. Dunlap
- Departments of Genetics and Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | - Michael Brunner
- University of Heidelberg Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| |
Collapse
|
79
|
Yakir E, Hilman D, Hassidim M, Green RM. CIRCADIAN CLOCK ASSOCIATED1 transcript stability and the entrainment of the circadian clock in Arabidopsis. PLANT PHYSIOLOGY 2007; 145:925-32. [PMID: 17873091 PMCID: PMC2048808 DOI: 10.1104/pp.107.103812] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The circadian clock is an endogenous mechanism that generates rhythms with an approximately 24-h period and enables plants to predict and adapt to daily and seasonal changes in their environment. These rhythms are generated by molecular oscillators that in Arabidopsis (Arabidopsis thaliana) have been shown to consist of interlocking feedback loops involving a number of elements. An important characteristic of circadian oscillators is that they can be entrained by daily environmental changes in light and temperature. Previous work has shown that one possible entrainment point for the Arabidopsis oscillator is the light-mediated regulation of expression of one of the oscillator genes, CIRCADIAN CLOCK ASSOCIATED1 (CCA1). In this article, we have used transgenic plants with constitutive CCA1 expression to show that light also regulates CCA1 transcript stability. Our experiments show that CCA1 messenger RNA is relatively stable in the dark and in far-red light but has a short half-life in red and blue light. Furthermore, using transgenic plants expressing chimeric CCA1 constructs, we demonstrate that the instability determinants in CCA1 transcripts are probably located in the coding region. We suggest that the combination of light regulation of CCA1 transcription and CCA1 messenger RNA degradation is important for ensuring that the Arabidopsis circadian oscillator is accurately entrained by environmental changes.
Collapse
Affiliation(s)
- Esther Yakir
- Department of Plant and Environmental Sciences, Institute for Life Sciences, Hebrew University, Givat Ram, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
80
|
Goetz M, Hooper LC, Johnson SD, Rodrigues JCM, Vivian-Smith A, Koltunow AM. Expression of aberrant forms of AUXIN RESPONSE FACTOR8 stimulates parthenocarpy in Arabidopsis and tomato. PLANT PHYSIOLOGY 2007; 145:351-66. [PMID: 17766399 PMCID: PMC2048734 DOI: 10.1104/pp.107.104174] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 08/22/2007] [Indexed: 05/17/2023]
Abstract
Fruit initiation in Arabidopsis (Arabidopsis thaliana) is generally repressed until fertilization occurs. However, mutations in AUXIN RESPONSE FACTOR8 (ARF8) uncouple fruit initiation from fertilization, resulting in the formation of seedless, parthenocarpic fruit. Here we induced parthenocarpy in wild-type Arabidopsis by introducing either the mutant genomic (g) Atarf8-4 sequence or gAtARF8:beta-glucuronidase translational fusion constructs by plant transformation. Silencing of endogenous AtARF8 transcription was not observed, indicating that the introduced, aberrant ARF8 transcripts were compromising the function of endogenous ARF8 and/or associated factors involved in suppressing fruit initiation. To analyze the role of ARF8 in tomato (Solanum lycopersicum) we initially emasculated 23 tomato cultivars to test for background parthenocarpy. Surprisingly, all had a predisposition to initiate fertilization-independent fruit growth. Expression of gAtarf8-4 in transgenic tomato ('Monalbo') resulted in a significant increase in the number and size of parthenocarpic fruit. Isolation of tomato ARF8 cDNA indicated significant sequence conservation with AtARF8. SlARF8 may therefore control tomato fruit initiation in a similar manner as AtARF8 does in Arabidopsis. Two SlARF8 cDNAs differing in size by 5 bp were found, both arising from the same gene. The smaller cDNA is a splice variant and is also present in Arabidopsis. We propose that low endogenous levels of the splice variant products might interfere with efficient formation/function of a complex repressing fruit initiation, thereby providing an explanation for the observed ovary expansion in tomato and also Arabidopsis after emasculation. Increasing the levels of aberrant Atarf8-4 transcripts may further destabilize formation/function of the complex in a dosage-dependent manner enhancing tomato parthenocarpic fruit initiation frequency and size and mimicking the parthenocarpic dehiscent silique phenotype found in homozygous Atarf8-4 mutants. Collectively these data suggest that similar mechanisms involving auxin signaling exist to inhibit parthenocarpic fruit set in tomato and Arabidopsis.
Collapse
Affiliation(s)
- Marc Goetz
- Commonwealth Scientific and Industrial Research Organization, Plant Industry, Glen Osmond, South Australia 5064, Australia
| | | | | | | | | | | |
Collapse
|
81
|
Hunt SM, Elvin M, Crosthwaite SK, Heintzen C. The PAS/LOV protein VIVID controls temperature compensation of circadian clock phase and development in Neurospora crassa. Genes Dev 2007; 21:1964-74. [PMID: 17671094 PMCID: PMC1935033 DOI: 10.1101/gad.437107] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 06/22/2007] [Indexed: 11/24/2022]
Abstract
Circadian clocks are cellular timekeepers that regulate aspects of temporal organization on daily and seasonal time scales. To allow accurate time measurement, the period lengths of clocks are conserved in a range of temperatures--a phenomenon known as temperature compensation. Temperature compensation of circadian clock period aids in maintaining a stable "target time" or phase of clock-controlled events. Here we show that the Neurospora protein VIVID (VVD) buffers the circadian system against temperature fluctuations. In vvd-null mutants, the circadian period of clock-controlled events such as asexual sporulation (conidiation) is temperature compensated, but the phase of this clock time marker is not. Consistent with delayed conidiation at lower temperatures in vvd(KO) strains, the levels of vvd gene products in the wild type increase with decreasing temperatures. Moreover, vvd(C108A) mutants that lack the light function of VVD maintain a dark activity that transiently influences the phase of conidiation, indicating that VVD influences the time of conidiation downstream from the clock. FREQUENCY (FRQ) phosphorylation is altered in a vvd(KO) strain, suggesting a mechanism by which VVD can influence the timing of clock-controlled processes in the dark. Thus, temperature compensation of clock-controlled output is a key factor in maintaining temperature compensation of the entire circadian system.
Collapse
Affiliation(s)
- Suzanne M. Hunt
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Mark Elvin
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Susan K. Crosthwaite
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Christian Heintzen
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
82
|
Ng DWK, Wang T, Chandrasekharan MB, Aramayo R, Kertbundit S, Hall TC. Plant SET domain-containing proteins: structure, function and regulation. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1769:316-29. [PMID: 17512990 PMCID: PMC2794661 DOI: 10.1016/j.bbaexp.2007.04.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 04/03/2007] [Accepted: 04/04/2007] [Indexed: 01/01/2023]
Abstract
Modification of the histone proteins that form the core around which chromosomal DNA is looped has profound epigenetic effects on the accessibility of the associated DNA for transcription, replication and repair. The SET domain is now recognized as generally having methyltransferase activity targeted to specific lysine residues of histone H3 or H4. There is considerable sequence conservation within the SET domain and within its flanking regions. Previous reviews have shown that SET proteins from Arabidopsis and maize fall into five classes according to their sequence and domain architectures. These classes generally reflect specificity for a particular substrate. SET proteins from rice were found to fall into similar groupings, strengthening the merit of the approach taken. Two additional classes, VI and VII, were established that include proteins with truncated/interrupted SET domains. Diverse mechanisms are involved in shaping the function and regulation of SET proteins. These include protein-protein interactions through both intra- and inter-molecular associations that are important in plant developmental processes, such as flowering time control and embryogenesis. Alternative splicing that can result in the generation of two to several different transcript isoforms is now known to be widespread. An exciting and tantalizing question is whether, or how, this alternative splicing affects gene function. For example, it is conceivable that one isoform may debilitate methyltransferase function whereas the other may enhance it, providing an opportunity for differential regulation. The review concludes with the speculation that modulation of SET protein function is mediated by antisense or sense-antisense RNA.
Collapse
Affiliation(s)
- Danny W-K Ng
- Institute of Developmental and Molecular Biology and Department of Biology, Texas A&M University, College Station, Texas 77843-3155
| | - Tao Wang
- Institute of Developmental and Molecular Biology and Department of Biology, Texas A&M University, College Station, Texas 77843-3155
| | | | - Rodolfo Aramayo
- Institute of Developmental and Molecular Biology and Department of Biology, Texas A&M University, College Station, Texas 77843-3155
| | | | - Timothy C. Hall
- Institute of Developmental and Molecular Biology and Department of Biology, Texas A&M University, College Station, Texas 77843-3155
| |
Collapse
|
83
|
Cheah MT, Wachter A, Sudarsan N, Breaker RR. Control of alternative RNA splicing and gene expression by eukaryotic riboswitches. Nature 2007; 447:497-500. [PMID: 17468745 DOI: 10.1038/nature05769] [Citation(s) in RCA: 315] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Accepted: 03/20/2007] [Indexed: 02/03/2023]
Abstract
Bacteria make extensive use of riboswitches to sense metabolites and control gene expression, and typically do so by modulating premature transcription termination or translation initiation. The most widespread riboswitch class known in bacteria responds to the coenzyme thiamine pyrophosphate (TPP), which is a derivative of vitamin B1. Representatives of this class have also been identified in fungi and plants, where they are predicted to control messenger RNA splicing or processing. We examined three TPP riboswitches in the filamentous fungus Neurospora crassa, and found that one activates and two repress gene expression by controlling mRNA splicing. A detailed mechanism involving riboswitch-mediated base-pairing changes and alternative splicing control was elucidated for precursor NMT1 mRNAs, which code for a protein involved in TPP metabolism. These results demonstrate that eukaryotic cells employ metabolite-binding RNAs to regulate RNA splicing events that are important for the control of key biochemical processes.
Collapse
MESH Headings
- Alternative Splicing/genetics
- Aptamers, Nucleotide/chemistry
- Aptamers, Nucleotide/genetics
- Aptamers, Nucleotide/metabolism
- Base Pairing
- Base Sequence
- Eukaryotic Cells/metabolism
- Gene Expression Regulation, Fungal/genetics
- Genes, Fungal/genetics
- Introns/genetics
- Neurospora crassa/genetics
- Open Reading Frames/genetics
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
Collapse
Affiliation(s)
- Ming T Cheah
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
84
|
Belden WJ, Loros JJ, Dunlap JC. Execution of the circadian negative feedback loop in Neurospora requires the ATP-dependent chromatin-remodeling enzyme CLOCKSWITCH. Mol Cell 2007; 25:587-600. [PMID: 17317630 DOI: 10.1016/j.molcel.2007.01.010] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 11/09/2006] [Accepted: 01/09/2007] [Indexed: 10/23/2022]
Abstract
In the Neurospora circadian system, the transcription factors White Collar-1 (WC-1) and White Collar-2 (WC-2) activate expression of frq, whose gene product inhibits its own expression. The WC proteins are thought to form an obligate complex; however, chromatin immunoprecipitation (ChIP) indicates that WC-2 binds to the frq promoter in a rhythmic fashion, whereas WC-1 is bound continuously. Small oscillations in histone acetylation are detected over the circadian cycle with a marked reduction upon light-induced activation. Nuclease accessibility experiments indicate chromatin rearrangement at the frq promoter; therefore, 19 genes with homology to ATP-dependent chromatin-remodeling enzymes were deleted and the strains examined for clock phenotypes. One gene, designated clockswitch (csw-1), is required for clock function; its product localizes to the frq promoter, is required for proper frq expression, and has an impact on chromatin structure. The data suggest that CSW-1 regulates accessibility of promoter DNA, thus generating the sharp transition from the transcriptionally active to the repressed state.
Collapse
Affiliation(s)
- William J Belden
- Department of Genetics, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | |
Collapse
|
85
|
Liu Y, Bell-Pedersen D. Circadian rhythms in Neurospora crassa and other filamentous fungi. EUKARYOTIC CELL 2007; 5:1184-93. [PMID: 16896204 PMCID: PMC1539135 DOI: 10.1128/ec.00133-06] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Yi Liu
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9040, USA.
| | | |
Collapse
|
86
|
Rukov JL, Irimia M, Mørk S, Lund VK, Vinther J, Arctander P. High qualitative and quantitative conservation of alternative splicing in Caenorhabditis elegans and Caenorhabditis briggsae. Mol Biol Evol 2007; 24:909-17. [PMID: 17272679 DOI: 10.1093/molbev/msm023] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Alternative splicing (AS) is an important contributor to proteome diversity and is regarded as an explanatory factor for the relatively low number of human genes compared with less complex animals. To assess the evolutionary conservation of AS and its developmental regulation, we have investigated the qualitative and quantitative expression of 21 orthologous alternative splice events through the development of 2 nematode species separated by 85-110 Myr of evolutionary time. We demonstrate that most of these alternative splice events present in Caenorhabditis elegans are conserved in Caenorhabditis briggsae. Moreover, we find that relative isoform expression levels vary significantly during development for 78% of the AS events and that this quantitative variation is highly conserved between the 2 species. Our results suggest that AS is generally tightly regulated through development and that the regulatory mechanisms controlling AS are to a large extent conserved during the evolution of Caenorhabditis. This strong conservation indicates that both major and minor splice forms have important functional roles and that the relative quantities in which they are expressed are crucial. Our results therefore suggest that the quantitative regulation of isoform expression levels is an intrinsic part of most AS events. Moreover, our results indicate that AS contributes little to transcript variation in Caenorhabditis genes and that gene duplication may be the major evolutionary mechanism for the origin of novel transcripts in these 2 species.
Collapse
Affiliation(s)
- Jakob Lewin Rukov
- Molecular Evolution Group, Department of Molecular Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| | | | | | | | | | | |
Collapse
|
87
|
Vitalini MW, de Paula RM, Park WD, Bell-Pedersen D. The rhythms of life: circadian output pathways in Neurospora. J Biol Rhythms 2007; 21:432-44. [PMID: 17107934 DOI: 10.1177/0748730406294396] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Research in Neurospora crassa pioneered the isolation of clock-controlled genes (ccgs), and more than 180 ccgs have been identified that function in various aspects of the fungal life cycle. Many clock-controlled genes are associated with damage repair, stress responses, intermediary metabolism, protein synthesis, and development. The expression of most of these genes peaks just before dawn and appears to prepare the cells for the desiccation, mutagenesis, and stress caused by sunlight. Progress on characterization of the output signaling pathways from the circadian oscillator mechanism to the ccgs is discussed. The authors also review evidence suggesting that, similar to other clock model organisms, a connection exists between the redox state of the cell and the Neurospora clock. The authors speculate that the clock system may sense not only light but also the redox potential of the cell through one of the PAS domains of the core clock components WC-1 or WC-2.
Collapse
Affiliation(s)
- Michael W Vitalini
- Center for Biological Clocks Research, Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | | | | | | |
Collapse
|
88
|
Loros JJ, Dunlap JC, Larrondo LF, Shi M, Belden WJ, Gooch VD, Chen CH, Baker CL, Mehra A, Colot HV, Schwerdtfeger C, Lambreghts R, Collopy PD, Gamsby JJ, Hong CI. Circadian output, input, and intracellular oscillators: insights into the circadian systems of single cells. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 72:201-14. [PMID: 18419278 PMCID: PMC3671946 DOI: 10.1101/sqb.2007.72.067] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Circadian output comprises the business end of circadian systems in terms of adaptive significance. Work on Neurospora pioneered the molecular analysis of circadian output mechanisms, and insights from this model system continue to illuminate the pathways through which clocks control metabolism and overt rhythms. In Neurospora, virtually every strain examined in the context of rhythms bears the band allele that helps to clarify the overt rhythm in asexual development. Recent cloning of band showed it to be an allele of ras-1 and to affect a wide variety of signaling pathways yielding enhanced light responses and asexual development. These can be largely phenocopied by treatments that increase levels of intracellular reactive oxygen species. Although output is often unidirectional, analysis of the prd-4 gene provided an alternative paradigm in which output feeds back to affect input. prd-4 is an allele of checkpoint kinase-2 that bypasses the requirement for DNA damage to activate this kinase; FRQ is normally a substrate of activated Chk2, so in Chk2(PRD-4), FRQ is precociously phosphorylated and the clock cycles more quickly. Finally, recent adaptation of luciferase to fully function in Neurospora now allows the core FRQ/WCC feedback loop to be followed in real time under conditions where it no longer controls the overt rhythm in development. This ability can be used to describe the hierarchical relationships among FRQ-Less Oscillators (FLOs) and to see which are connected to the circadian system. The nitrate reductase oscillator appears to be connected, but the oscillator controlling the long-period rhythm elicited upon choline starvation appears completely disconnected from the circadian system; it can be seen to run with a very long noncompensated 60-120-hour period length under conditions where the circadian FRQ/WCC oscillator continues to cycle with a fully compensated circadian 22-hour period.
Collapse
Affiliation(s)
- J J Loros
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Dunlap JC, Loros JJ, Colot HV, Mehra A, Belden WJ, Shi M, Hong CI, Larrondo LF, Baker CL, Chen CH, Schwerdtfeger C, Collopy PD, Gamsby JJ, Lambreghts R. A circadian clock in Neurospora: how genes and proteins cooperate to produce a sustained, entrainable, and compensated biological oscillator with a period of about a day. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 72:57-68. [PMID: 18522516 PMCID: PMC3683860 DOI: 10.1101/sqb.2007.72.072] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Neurospora has proven to be a tractable model system for understanding the molecular bases of circadian rhythms in eukaryotes. At the core of the circadian oscillatory system is a negative feedback loop in which two transcription factors, WC-1 and WC-2, act together to drive expression of the frq gene. WC-2 enters the promoter region of frq coincident with increases in frq expression and then exits when the cycle of transcription is over, whereas WC-1 can always be found there. FRQ promotes the phosphorylation of the WCs, thereby decreasing their activity, and phosphorylation of FRQ then leads to its turnover, allowing the cycle to reinitiate. By understanding the action of light and temperature on frq and FRQ expression, the molecular basis of circadian entrainment to environmental light and temperature cues can be understood, and recently a specific role for casein kinase 2 has been found in the mechanism underlying circadian temperature-compensation. These data promise molecular explanations for all of the canonical circadian properties of this model system, providing biochemical answers and regulatory logic that may be extended to more complex eukaryotes including humans.
Collapse
Affiliation(s)
- J C Dunlap
- Department of Genetics, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Garbarino-Pico E, Green CB. Posttranscriptional regulation of mammalian circadian clock output. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 72:145-156. [PMID: 18419272 DOI: 10.1101/sqb.2007.72.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Circadian clocks are present in many different cell types/tissues and control many aspects of physiology. This broad control is exerted, at least in part, by the circadian regulation of many genes, resulting in rhythmic expression patterns of 5-10% of the mRNAs in a given tissue. Although transcriptional regulation is certainly involved in this process, it is becoming clear that posttranscriptional mechanisms also have important roles in producing the appropriate rhythmic expression profiles. In this chapter, we review the available data about posttranscriptional regulation of circadian gene expression and highlight the potential role of Nocturnin (Noc) in such processes. NOC is a deadenylase-a ribonuclease that specifically removes poly(A) tails from mRNAs-that is expressed widely in the mouse with high-amplitude rhythmicity. Deadenylation affects the stability and translational properties of mRNAs. Mice lacking the Noc gene have metabolic defects including a resistance to diet-induced obesity, decreased fat storage, changes in lipid-related gene expression profiles in the liver, and altered glucose and insulin sensitivities. These findings suggest that NOC has a pivotal role downstream from the circadian clockwork in the post-transcriptional regulation genes involved in the circadian control of metabolism.
Collapse
Affiliation(s)
- E Garbarino-Pico
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904, USA
| | | |
Collapse
|
91
|
Dunlap JC, Borkovich KA, Henn MR, Turner GE, Sachs MS, Glass NL, McCluskey K, Plamann M, Galagan JE, Birren BW, Weiss RL, Townsend JP, Loros JJ, Nelson MA, Lambreghts R, Colot HV, Park G, Collopy P, Ringelberg C, Crew C, Litvinkova L, DeCaprio D, Hood HM, Curilla S, Shi M, Crawford M, Koerhsen M, Montgomery P, Larson L, Pearson M, Kasuga T, Tian C, Baştürkmen M, Altamirano L, Xu J. Enabling a community to dissect an organism: overview of the Neurospora functional genomics project. ADVANCES IN GENETICS 2007; 57:49-96. [PMID: 17352902 PMCID: PMC3673015 DOI: 10.1016/s0065-2660(06)57002-6] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A consortium of investigators is engaged in a functional genomics project centered on the filamentous fungus Neurospora, with an eye to opening up the functional genomic analysis of all the filamentous fungi. The overall goal of the four interdependent projects in this effort is to accomplish functional genomics, annotation, and expression analyses of Neurospora crassa, a filamentous fungus that is an established model for the assemblage of over 250,000 species of non yeast fungi. Building from the completely sequenced 43-Mb Neurospora genome, Project 1 is pursuing the systematic disruption of genes through targeted gene replacements, phenotypic analysis of mutant strains, and their distribution to the scientific community at large. Project 2, through a primary focus in Annotation and Bioinformatics, has developed a platform for electronically capturing community feedback and data about the existing annotation, while building and maintaining a database to capture and display information about phenotypes. Oligonucleotide-based microarrays created in Project 3 are being used to collect baseline expression data for the nearly 11,000 distinguishable transcripts in Neurospora under various conditions of growth and development, and eventually to begin to analyze the global effects of loss of novel genes in strains created by Project 1. cDNA libraries generated in Project 4 document the overall complexity of expressed sequences in Neurospora, including alternative splicing alternative promoters and antisense transcripts. In addition, these studies have driven the assembly of an SNP map presently populated by nearly 300 markers that will greatly accelerate the positional cloning of genes.
Collapse
Affiliation(s)
- Jay C Dunlap
- Department of Genetics, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Abstract
The filamentous fungus Neurospora crassa is one of a handful of model organisms that has proven tractable for dissecting the molecular basis of a eukaryotic circadian clock. Work on Neurospora and other eukaryotic and prokaryotic organisms has revealed that a limited set of clock genes and clock proteins are required for generating robust circadian rhythmicity. This molecular clockwork is tuned to the daily rhythms in the environment via light- and temperature-sensitive pathways that adjust its periodicity and phase. The circadian clockwork in turn transduces temporal information to a large number of clock-controlled genes that ultimately control circadian rhythms in physiology and behavior. In summarizing our current understanding of the molecular basis of the Neurospora circadian system, this chapter aims to elucidate the basic building blocks of model eukaryotic clocks as we understand them today.
Collapse
Affiliation(s)
- Christian Heintzen
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | | |
Collapse
|
93
|
Dunlap JC, Loros JJ. How fungi keep time: circadian system in Neurospora and other fungi. Curr Opin Microbiol 2006; 9:579-87. [PMID: 17064954 DOI: 10.1016/j.mib.2006.10.008] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Accepted: 10/11/2006] [Indexed: 02/07/2023]
Abstract
The circadian system in Neurospora remains a premier model system for understanding circadian rhythms, and evidence has now begun to accumulate suggesting broad conservation of rhythmicity amongst the filamentous fungi. A well-described transcription-translation-based negative feedback loop involving the FREQUENCY, WHITE COLLAR-1 and WHITE COLLAR-2 proteins is integral to the Neurospora system. Recent advances include descriptions of the surprisingly complex frequency transcription unit, an enhanced appreciation of the roles of kinases and their regulation in the generation of the circadian rhythm and their links to the cell cycle, and strong evidence for an additional WHITE COLLAR-associated feedback loop. Documentation of sequence homologs of integral circadian and photoresponsive proteins amongst the 42 available sequenced fungal genomes suggests unexpected roles for circadian timing among both pathogens and saprophytes.
Collapse
Affiliation(s)
- Jay C Dunlap
- Department of Genetics, Dartmouth Medical School, Hanover, NH 03755, USA.
| | | |
Collapse
|
94
|
Affiliation(s)
- Jay C Dunlap
- Department of Genetics, Dartmouth Medical School, Hanover, New Hampshire 03755, USA.
| |
Collapse
|
95
|
Affiliation(s)
- Matthew S Sachs
- Department of Environmental and Biomolecular Systems, Oregon Health and Science University, Beaverton, Oregon 97006, USA.
| | | |
Collapse
|
96
|
Brunner M, Schafmeier T. Transcriptional and post-transcriptional regulation of the circadian clock of cyanobacteria and Neurospora. Genes Dev 2006; 20:1061-74. [PMID: 16651653 DOI: 10.1101/gad.1410406] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Circadian clocks are self-sustained oscillators modulating rhythmic transcription of large numbers of genes. Clock-controlled gene expression manifests in circadian rhythmicity of many physiological and behavioral functions. In eukaryotes, expression of core clock components is organized in a network of interconnected positive and negative feedback loops. This network is thought to constitute the pacemaker that generates circadian rhythmicity. The network of interconnected loops is embedded in a supra-net via a large number of interacting factors that affect expression and function of core clock components on transcriptional and post-transcriptional levels. In particular, phosphorylation and dephosphorylation of clock components are critical processes ensuring robust self-sustained circadian rhythmicity and entrainment of clocks to external cues. In cyanobacteria, three clock proteins have the capacity to generate a self-sustained circadian rhythm of autophosphorylation and dephosphorylation independent of transcription and translation. This phosphorylation rhythm regulates the function of these clock components, which then facilitate rhythmic gene transcription, including negative feedback on their own genes. In this article, we briefly present the mechanism of clock function in cyanobacteria. We then discuss in detail the contribution of transcriptional feedback and protein phosphorylation to various functional aspects of the circadian clock of Neurospora crassa.
Collapse
Affiliation(s)
- Michael Brunner
- Biochemie-Zentrum der Universität Heidelberg, 69120 Heidelberg, Germany.
| | | |
Collapse
|