51
|
Calzetta NL, González Besteiro MA, Gottifredi V. PARP Activity Fine-tunes the DNA Replication Choreography of Chk1-depleted Cells. J Mol Biol 2021; 433:166949. [PMID: 33744317 DOI: 10.1016/j.jmb.2021.166949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/18/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
Checkpoint Kinase 1 (Chk1) prevents DNA damage by adjusting the replication choreography in the face of replication stress. Chk1 depletion provokes slow and asymmetrical fork movement, yet the signals governing such changes remain unclear. We sought to investigate whether poly(ADP-ribose) polymerases (PARPs), key players of the DNA damage response, intervene in the DNA replication of Chk1-depleted cells. We demonstrate that PARP inhibition selectively alleviates the reduced fork elongation rates, without relieving fork asymmetry in Chk1-depleted cells. While the contribution of PARPs to fork elongation is not unprecedented, we found that their role in Chk1-depleted cells extends beyond fork movement. PARP-dependent fork deceleration induced mild dormant origin firing upon Chk1 depletion, augmenting the global rates of DNA synthesis. Thus, we have identified PARPs as novel regulators of replication fork dynamics in Chk1-depleted cells.
Collapse
Affiliation(s)
- Nicolás Luis Calzetta
- Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo de Investigaciones Científicas y Técnicas, Avenida Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
| | - Marina Alejandra González Besteiro
- Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo de Investigaciones Científicas y Técnicas, Avenida Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina.
| | - Vanesa Gottifredi
- Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo de Investigaciones Científicas y Técnicas, Avenida Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina.
| |
Collapse
|
52
|
Abstract
The faithful and timely copying of DNA by molecular machines known as replisomes depends on a disparate suite of enzymes and scaffolding factors working together in a highly orchestrated manner. Large, dynamic protein-nucleic acid assemblies that selectively morph between distinct conformations and compositional states underpin this critical cellular process. In this article, we discuss recent progress outlining the physical basis of replisome construction and progression in eukaryotes.
Collapse
Affiliation(s)
- Ilan Attali
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA;
| | - Michael R Botchan
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA;
| |
Collapse
|
53
|
Bertoli C, de Bruin RA. Control of S phase duration: a replication capacity model with E2F transcription at its heart. Mol Cell Oncol 2021; 8:1839294. [PMID: 33855165 PMCID: PMC8018357 DOI: 10.1080/23723556.2020.1839294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 10/27/2022]
Abstract
DNA replication capacity, the maximal amount of DNA a cell can synthesize at any given time during S phase, is controlled by E2F-dependent transcription. Controlling replication capacity limits the replication rate and provides a robust mechanism to keep replication fork speed within an optimal range whilst ensuring timely completion of genome duplication.
Collapse
Affiliation(s)
- Cosetta Bertoli
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Robertus A.M. de Bruin
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
- UCL Cancer Institute, University College London, London, UK
| |
Collapse
|
54
|
Rieunier G, Wu X, Harris LE, Mills JV, Nandakumar A, Colling L, Seraia E, Hatch SB, Ebner DV, Folkes LK, Weyer-Czernilofsky U, Bogenrieder T, Ryan AJ, Macaulay VM. Targeting IGF Perturbs Global Replication through Ribonucleotide Reductase Dysfunction. Cancer Res 2021; 81:2128-2141. [PMID: 33509941 DOI: 10.1158/0008-5472.can-20-2860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/17/2020] [Accepted: 01/22/2021] [Indexed: 11/16/2022]
Abstract
Inhibition of IGF receptor (IGF1R) delays repair of radiation-induced DNA double-strand breaks (DSB), prompting us to investigate whether IGF1R influences endogenous DNA damage. Here we demonstrate that IGF1R inhibition generates endogenous DNA lesions protected by 53BP1 bodies, indicating under-replicated DNA. In cancer cells, inhibition or depletion of IGF1R delayed replication fork progression accompanied by activation of ATR-CHK1 signaling and the intra-S-phase checkpoint. This phenotype reflected unanticipated regulation of global replication by IGF1 mediated via AKT, MEK/ERK, and JUN to influence expression of ribonucleotide reductase (RNR) subunit RRM2. Consequently, inhibition or depletion of IGF1R downregulated RRM2, compromising RNR function and perturbing dNTP supply. The resulting delay in fork progression and hallmarks of replication stress were rescued by RRM2 overexpression, confirming RRM2 as the critical factor through which IGF1 regulates replication. Suspecting existence of a backup pathway protecting from toxic sequelae of replication stress, targeted compound screens in breast cancer cells identified synergy between IGF inhibition and ATM loss. Reciprocal screens of ATM-proficient/deficient fibroblasts identified an IGF1R inhibitor as the top hit. IGF inhibition selectively compromised growth of ATM-null cells and spheroids and caused regression of ATM-null xenografts. This synthetic-lethal effect reflected conversion of single-stranded lesions in IGF-inhibited cells into toxic DSBs upon ATM inhibition. Overall, these data implicate IGF1R in alleviating replication stress, and the reciprocal IGF:ATM codependence we identify provides an approach to exploit this effect in ATM-deficient cancers. SIGNIFICANCE: This study identifies regulation of ribonucleotide reductase function and dNTP supply by IGFs and demonstrates that IGF axis blockade induces replication stress and reciprocal codependence on ATM. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/8/2128/F1.large.jpg.
Collapse
Affiliation(s)
| | - Xiaoning Wu
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Letitia E Harris
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Jack V Mills
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Ashwin Nandakumar
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Laura Colling
- Department of Oncology, Weatherall Institute of Molecular Medicine, Oxford, United Kingdom
| | - Elena Seraia
- Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Stephanie B Hatch
- Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Daniel V Ebner
- Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Lisa K Folkes
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | | | - Thomas Bogenrieder
- AMAL Therapeutics, Geneva, Switzerland
- Department of Urology, University Hospital Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | - Anderson J Ryan
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Valentine M Macaulay
- Department of Oncology, University of Oxford, Oxford, United Kingdom.
- Oxford Cancer and Haematology Centre, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, United Kingdom
| |
Collapse
|
55
|
Anatomy of a twin DNA replication factory. Biochem Soc Trans 2020; 48:2769-2778. [PMID: 33300972 PMCID: PMC7752080 DOI: 10.1042/bst20200640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 11/30/2022]
Abstract
The replication of DNA in chromosomes is initiated at sequences called origins at which two replisome machines are assembled at replication forks that move in opposite directions. Interestingly, in vivo studies observe that the two replication forks remain fastened together, often referred to as a replication factory. Replication factories containing two replisomes are well documented in cellular studies of bacteria (Escherichia coli and Bacillus subtilis) and the eukaryote, Saccharomyces cerevisiae. This basic twin replisome factory architecture may also be preserved in higher eukaryotes. Despite many years of documenting the existence of replication factories, the molecular details of how the two replisome machines are tethered together has been completely unknown in any organism. Recent structural studies shed new light on the architecture of a eukaryote replisome factory, which brings with it a new twist on how a replication factory may function.
Collapse
|
56
|
Piberger AL, Bowry A, Kelly RDW, Walker AK, González-Acosta D, Bailey LJ, Doherty AJ, Méndez J, Morris JR, Bryant HE, Petermann E. PrimPol-dependent single-stranded gap formation mediates homologous recombination at bulky DNA adducts. Nat Commun 2020; 11:5863. [PMID: 33203852 PMCID: PMC7673990 DOI: 10.1038/s41467-020-19570-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 10/15/2020] [Indexed: 11/09/2022] Open
Abstract
Stalled replication forks can be restarted and repaired by RAD51-mediated homologous recombination (HR), but HR can also perform post-replicative repair after bypass of the obstacle. Bulky DNA adducts are important replication-blocking lesions, but it is unknown whether they activate HR at stalled forks or behind ongoing forks. Using mainly BPDE-DNA adducts as model lesions, we show that HR induced by bulky adducts in mammalian cells predominantly occurs at post-replicative gaps formed by the DNA/RNA primase PrimPol. RAD51 recruitment under these conditions does not result from fork stalling, but rather occurs at gaps formed by PrimPol re-priming and resection by MRE11 and EXO1. In contrast, RAD51 loading at double-strand breaks does not require PrimPol. At bulky adducts, PrimPol promotes sister chromatid exchange and genetic recombination. Our data support that HR at bulky adducts in mammalian cells involves post-replicative gap repair and define a role for PrimPol in HR-mediated DNA damage tolerance.
Collapse
Affiliation(s)
- Ann Liza Piberger
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Akhil Bowry
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Richard D W Kelly
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Alexandra K Walker
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | | | - Laura J Bailey
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| | - Aidan J Doherty
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| | - Juan Méndez
- Molecular Oncology Program, Spanish National Cancer Research Centre, Madrid, Spain
| | - Joanna R Morris
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Helen E Bryant
- Department of Oncology & Metabolism, The Medical School, University of Sheffield, Sheffield, S10 2RX, UK
| | - Eva Petermann
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
57
|
Wang L, Song K, Qu Y, Chang Y, Li Z, Dong C, Liu M, Brennan JD, Li Y. Engineering Micrometer-Sized DNA Tracks for High-Speed DNA Synthesis and Biosensing. Angew Chem Int Ed Engl 2020; 59:22947-22951. [PMID: 33007137 DOI: 10.1002/anie.202010693] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/22/2020] [Indexed: 01/07/2023]
Abstract
φ29 DNA polymerase (Polφ29) is capable of synthesizing long-chain single-stranded (ss) DNA molecules by copying the sequence of a small ss circular DNA template (ssCDT) in a process known as rolling circle amplification (RCA). The use of a ssCDT in RCA, however, comes with a key drawback: the rate of DNA synthesis is significantly reduced. We hypothesize that this issue can be overcome using a very long linear ssDNA template with a repeating sequence. To test this idea, we engineered a DNA assembly, which we denote "micrometer-sized DNA track" (μDT). This μDT, with an average length of ≈13.5 μm, is made of a long chain DNA with a primer-binding domain at its 3' end and ≈1000 repeating sequence units at its 5' end, each carrying a DNA anchor. We find that Polφ29 copies μDT at a speed ≈5-time faster than it does a related ssCDT. We use this to design a simple all-in-one printed paper device for rapid and sensitive detection of microRNA let-7. This paper sensor is capable of detecting 1 pM let-7a in 10 minutes.
Collapse
Affiliation(s)
- Liying Wang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering, (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
| | - Kaiyun Song
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering, (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
| | - Yuanyuan Qu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering, (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
| | - Yangyang Chang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering, (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
| | - Zhongping Li
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Meng Liu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering, (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
| | - John D Brennan
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S4O3, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S4K1, Canada
| |
Collapse
|
58
|
Wang L, Song K, Qu Y, Chang Y, Li Z, Dong C, Liu M, Brennan JD, Li Y. Engineering Micrometer‐Sized DNA Tracks for High‐Speed DNA Synthesis and Biosensing. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Liying Wang
- School of Environmental Science and Technology Key Laboratory of Industrial Ecology and Environmental Engineering, (Ministry of Education) Dalian University of Technology Dalian 116024 China
| | - Kaiyun Song
- School of Environmental Science and Technology Key Laboratory of Industrial Ecology and Environmental Engineering, (Ministry of Education) Dalian University of Technology Dalian 116024 China
| | - Yuanyuan Qu
- School of Environmental Science and Technology Key Laboratory of Industrial Ecology and Environmental Engineering, (Ministry of Education) Dalian University of Technology Dalian 116024 China
| | - Yangyang Chang
- School of Environmental Science and Technology Key Laboratory of Industrial Ecology and Environmental Engineering, (Ministry of Education) Dalian University of Technology Dalian 116024 China
| | - Zhongping Li
- Institute of Environmental Science Shanxi University Taiyuan 030006 China
| | - Chuan Dong
- Institute of Environmental Science Shanxi University Taiyuan 030006 China
| | - Meng Liu
- School of Environmental Science and Technology Key Laboratory of Industrial Ecology and Environmental Engineering, (Ministry of Education) Dalian University of Technology Dalian 116024 China
| | - John D. Brennan
- Biointerfaces Institute McMaster University 1280 Main Street West Hamilton Ontario L8S4O3 Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences McMaster University 1280 Main Street West Hamilton Ontario L8S4K1 Canada
| |
Collapse
|
59
|
Tamayo-Orrego L, Gallo D, Racicot F, Bemmo A, Mohan S, Ho B, Salameh S, Hoang T, Jackson AP, Brown GW, Charron F. Sonic hedgehog accelerates DNA replication to cause replication stress promoting cancer initiation in medulloblastoma. ACTA ACUST UNITED AC 2020; 1:840-854. [DOI: 10.1038/s43018-020-0094-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 06/12/2020] [Indexed: 01/02/2023]
|
60
|
Pennycook BR, Vesela E, Peripolli S, Singh T, Barr AR, Bertoli C, de Bruin RAM. E2F-dependent transcription determines replication capacity and S phase length. Nat Commun 2020; 11:3503. [PMID: 32665547 PMCID: PMC7360579 DOI: 10.1038/s41467-020-17146-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/04/2020] [Indexed: 01/06/2023] Open
Abstract
DNA replication timing is tightly regulated during S-phase. S-phase length is determined by DNA synthesis rate, which depends on the number of active replication forks and their velocity. Here, we show that E2F-dependent transcription, through E2F6, determines the replication capacity of a cell, defined as the maximal amount of DNA a cell can synthesise per unit time during S-phase. Increasing or decreasing E2F-dependent transcription during S-phase increases or decreases replication capacity, and thereby replication rates, thus shortening or lengthening S-phase, respectively. The changes in replication rate occur mainly through changes in fork speed without affecting the number of active forks. An increase in fork speed does not induce replication stress directly, but increases DNA damage over time causing cell cycle arrest. Thus, E2F-dependent transcription determines the DNA replication capacity of a cell, which affects the replication rate, controlling the time it takes to duplicate the genome and complete S-phase.
Collapse
Affiliation(s)
- Betheney R Pennycook
- MRC Laboratory for Molecular Cell Biology, University College London, Gower street, London, WC1E 6BT, UK
- MRC London Institute of Medical Science Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Eva Vesela
- MRC Laboratory for Molecular Cell Biology, University College London, Gower street, London, WC1E 6BT, UK
| | - Silvia Peripolli
- MRC Laboratory for Molecular Cell Biology, University College London, Gower street, London, WC1E 6BT, UK
| | - Tanya Singh
- MRC Laboratory for Molecular Cell Biology, University College London, Gower street, London, WC1E 6BT, UK
| | - Alexis R Barr
- MRC London Institute of Medical Science Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Imperial College London, London, W12 0NN, UK
| | - Cosetta Bertoli
- MRC Laboratory for Molecular Cell Biology, University College London, Gower street, London, WC1E 6BT, UK.
| | - Robertus A M de Bruin
- MRC Laboratory for Molecular Cell Biology, University College London, Gower street, London, WC1E 6BT, UK.
- UCL Cancer Institute, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
61
|
Rainey MD, Quinlan A, Cazzaniga C, Mijic S, Martella O, Krietsch J, Göder A, Lopes M, Santocanale C. CDC7 kinase promotes MRE11 fork processing, modulating fork speed and chromosomal breakage. EMBO Rep 2020; 21:e48920. [PMID: 32496651 PMCID: PMC7403700 DOI: 10.15252/embr.201948920] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 11/24/2022] Open
Abstract
The CDC7 kinase is essential for the activation of DNA replication origins and has been implicated in the replication stress response. Using a highly specific chemical inhibitor and a chemical genetic approach, we now show that CDC7 activity is required to coordinate multiple MRE11‐dependent processes occurring at replication forks, independently from its role in origin firing. CDC7 localizes at replication forks and, similarly to MRE11, mediates active slowing of fork progression upon mild topoisomerase inhibition. Both proteins are also retained on stalled forks, where they promote fork processing and restart. Moreover, MRE11 phosphorylation and localization at replication factories are progressively lost upon CDC7 inhibition. Finally, CDC7 activity at reversed forks is required for their pathological MRE11‐dependent degradation in BRCA2‐deficient cells. Thus, upon replication interference CDC7 is a key regulator of fork progression, processing and integrity. These results highlight a dual role for CDC7 in replication, modulating both initiation and elongation steps of DNA synthesis, and identify a key intervention point for anticancer therapies exploiting replication interference.
Collapse
Affiliation(s)
- Michael D Rainey
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Aisling Quinlan
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Chiara Cazzaniga
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Sofija Mijic
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Oliviano Martella
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Jana Krietsch
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Anja Göder
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Corrado Santocanale
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
62
|
Liptay M, Barbosa JS, Rottenberg S. Replication Fork Remodeling and Therapy Escape in DNA Damage Response-Deficient Cancers. Front Oncol 2020; 10:670. [PMID: 32432041 PMCID: PMC7214843 DOI: 10.3389/fonc.2020.00670] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/09/2020] [Indexed: 12/27/2022] Open
Abstract
Most cancers have lost a critical DNA damage response (DDR) pathway during tumor evolution. These alterations provide a useful explanation for the initial sensitivity of tumors to DNA-targeting chemotherapy. A striking example is dysfunctional homology-directed repair (HDR), e.g., due to inactivating mutations in BRCA1 and BRCA2 genes. Extensive efforts are being made to develop novel targeted therapies exploiting such an HDR defect. Inhibitors of poly(ADP-ribose) polymerase (PARP) are an instructive example of this approach. Despite the success of PARP inhibitors, the presence of primary or acquired therapy resistance remains a major challenge in clinical oncology. To move the field of precision medicine forward, we need to understand the precise mechanisms causing therapy resistance. Using preclinical models, various mechanisms underlying chemotherapy resistance have been identified. Restoration of HDR seems to be a prevalent mechanism but this does not explain resistance in all cases. Interestingly, some factors involved in DNA damage response (DDR) have independent functions in replication fork (RF) biology and their loss causes RF instability and therapy sensitivity. However, in BRCA-deficient tumors, loss of these factors leads to restored stability of RFs and acquired drug resistance. In this review we discuss the recent advances in the field of RF biology and its potential implications for chemotherapy response in DDR-defective cancers. Additionally, we review the role of DNA damage tolerance (DDT) pathways in maintenance of genome integrity and their alterations in cancer. Furthermore, we refer to novel tools that, combined with a better understanding of drug resistance mechanisms, may constitute a great advance in personalized diagnosis and therapeutic strategies for patients with HDR-deficient tumors.
Collapse
Affiliation(s)
- Martin Liptay
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Joana S. Barbosa
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Sven Rottenberg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Bern Center for Precision Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
63
|
Zhao PA, Sasaki T, Gilbert DM. High-resolution Repli-Seq defines the temporal choreography of initiation, elongation and termination of replication in mammalian cells. Genome Biol 2020; 21:76. [PMID: 32209126 PMCID: PMC7092589 DOI: 10.1186/s13059-020-01983-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/04/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND DNA replication in mammalian cells occurs in a defined temporal order during S phase, known as the replication timing (RT) programme. Replication timing is developmentally regulated and correlated with chromatin conformation and local transcriptional potential. Here, we present RT profiles of unprecedented temporal resolution in two human embryonic stem cell lines, human colon carcinoma line HCT116, and mouse embryonic stem cells and their neural progenitor derivatives. RESULTS Fine temporal windows revealed a remarkable degree of cell-to-cell conservation in RT, particularly at the very beginning and ends of S phase, and identified 5 temporal patterns of replication in all cell types, consistent with varying degrees of initiation efficiency. Zones of replication initiation (IZs) were detected throughout S phase and interacted in 3D space preferentially with other IZs of similar firing time. Temporal transition regions were resolved into segments of uni-directional replication punctuated at specific sites by small, inefficient IZs. Sites of convergent replication were divided into sites of termination or large constant timing regions consisting of many synchronous IZs in tandem. Developmental transitions in RT occured mainly by activating or inactivating individual IZs or occasionally by altering IZ firing time, demonstrating that IZs, rather than individual origins, are the units of developmental regulation. Finally, haplotype phasing revealed numerous regions of allele-specific and allele-independent asynchronous replication. Allele-independent asynchronous replication was correlated with the presence of previously mapped common fragile sites. CONCLUSIONS Altogether, these data provide a detailed temporal choreography of DNA replication in mammalian cells.
Collapse
Affiliation(s)
- Peiyao A Zhao
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL, 32306, USA
| | - Takayo Sasaki
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL, 32306, USA
| | - David M Gilbert
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL, 32306, USA.
| |
Collapse
|
64
|
Chong SY, Cutler S, Lin JJ, Tsai CH, Tsai HK, Biggins S, Tsukiyama T, Lo YC, Kao CF. H3K4 methylation at active genes mitigates transcription-replication conflicts during replication stress. Nat Commun 2020; 11:809. [PMID: 32041946 PMCID: PMC7010754 DOI: 10.1038/s41467-020-14595-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
Transcription-replication conflicts (TRCs) occur when intensive transcriptional activity compromises replication fork stability, potentially leading to gene mutations. Transcription-deposited H3K4 methylation (H3K4me) is associated with regions that are susceptible to TRCs; however, the interplay between H3K4me and TRCs is unknown. Here we show that H3K4me aggravates TRC-induced replication failure in checkpoint-defective cells, and the presence of methylated H3K4 slows down ongoing replication. Both S-phase checkpoint activity and H3K4me are crucial for faithful DNA synthesis under replication stress, especially in highly transcribed regions where the presence of H3K4me is highest and TRCs most often occur. H3K4me mitigates TRCs by decelerating ongoing replication, analogous to how speed bumps slow down cars. These findings establish the concept that H3K4me defines the transcriptional status of a genomic region and defends the genome from TRC-mediated replication stress and instability. Transcription-replication conflicts (TRC) can contribute to genome instability. Here the authors reveal that under replication stress H3K4 methylation can play a role in TRC prevention.
Collapse
Affiliation(s)
- Shin Yen Chong
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, 11529, Taiwan.,Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Sam Cutler
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Jing-Jer Lin
- Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei, 10051, Taiwan
| | - Cheng-Hung Tsai
- Institute of Information Science, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Huai-Kuang Tsai
- Institute of Information Science, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Sue Biggins
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.,Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Toshio Tsukiyama
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Yi-Chen Lo
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan.
| | - Cheng-Fu Kao
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, 11529, Taiwan.
| |
Collapse
|
65
|
Yousefi R, Rowicka M. Stochasticity of replication forks' speeds plays a key role in the dynamics of DNA replication. PLoS Comput Biol 2019; 15:e1007519. [PMID: 31869320 PMCID: PMC6975548 DOI: 10.1371/journal.pcbi.1007519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 01/22/2020] [Accepted: 10/29/2019] [Indexed: 11/26/2022] Open
Abstract
Eukaryotic DNA replication is elaborately orchestrated to duplicate the genome timely and faithfully. Replication initiates at multiple origins from which replication forks emanate and travel bi-directionally. The complex spatio-temporal regulation of DNA replication remains incompletely understood. To study it, computational models of DNA replication have been developed in S. cerevisiae. However, in spite of the experimental evidence of forks’ speed stochasticity, all models assumed that forks’ speeds are the same. Here, we present the first model of DNA replication assuming that speeds vary stochastically between forks. Utilizing data from both wild-type and hydroxyurea-treated yeast cells, we show that our model is more accurate than models assuming constant forks’ speed and reconstructs dynamics of DNA replication faithfully starting both from population-wide data and data reflecting fork movement in individual cells. Completion of replication in a timely manner is a challenge due to its stochasticity; we propose an empirically derived modification to replication speed based on the distance to the approaching fork, which promotes timely completion of replication. In summary, our work discovers a key role that stochasticity of the forks’ speed plays in the dynamics of DNA replication. We show that without including stochasticity of forks’ speed it is not possible to accurately reconstruct movement of individual replication forks, measured by DNA combing. DNA replication in eukaryotes starts from multiple sites termed replication origins. Replication timing at individual sites is stochastic, but reproducible population-wide. Complex and not yet completely understood mechanisms ensure that genome is replicated exactly once and that replication is finished in time. This complex spatio-temporal organization of DNA replication makes computational modeling a useful tool to study replication mechanisms. For simplicity, all previous models assumed constant replication forks’ speed. Here, we show that such models are incapable of accurately reconstructing distances travelled by individual replication forks. Therefore, we propose a model assuming that replication speed varies stochastically between forks. We show that such model reproduces faithfully distances travelled by individual replication forks. Moreover, our model is simpler than previous model and thus avoids over-learning (fitting noise). We also discover how replication speed may be attuned to timely complete replication. We propose that forks’ speed increases with diminishing distance to the approaching fork, which we show promotes timely completion of replication. Such speed up can be e.g. explained by a synergy effect of chromatin unwinding by both forks. Our model can be used to simulate phenomena beyond replication, e.g. DNA double-strand breaks resulting from broken replication forks.
Collapse
Affiliation(s)
- Razie Yousefi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Maga Rowicka
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- Institute of Translational Sciences, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
66
|
Irony-Tur Sinai M, Salamon A, Stanleigh N, Goldberg T, Weiss A, Wang YH, Kerem B. AT-dinucleotide rich sequences drive fragile site formation. Nucleic Acids Res 2019; 47:9685-9695. [PMID: 31410468 PMCID: PMC6765107 DOI: 10.1093/nar/gkz689] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/18/2019] [Accepted: 08/04/2019] [Indexed: 12/29/2022] Open
Abstract
Common fragile sites (CFSs) are genomic regions prone to breakage under replication stress conditions recurrently rearranged in cancer. Many CFSs are enriched with AT-dinucleotide rich sequences (AT-DRSs) which have the potential to form stable secondary structures upon unwinding the double helix during DNA replication. These stable structures can potentially perturb DNA replication progression, leading to genomic instability. Using site-specific targeting system, we show that targeted integration of a 3.4 kb AT-DRS derived from the human CFS FRA16C into a chromosomally stable region within the human genome is able to drive fragile site formation under conditions of replication stress. Analysis of >1300 X chromosomes integrated with the 3.4 kb AT-DRS revealed recurrent gaps and breaks at the integration site. DNA sequences derived from the integrated AT-DRS showed in vitro a significantly increased tendency to fold into branched secondary structures, supporting the predicted mechanism of instability. Our findings clearly indicate that intrinsic DNA features, such as complexed repeated sequence motifs, predispose the human genome to chromosomal instability.
Collapse
Affiliation(s)
- Michal Irony-Tur Sinai
- Department of Genetics, The Life Sciences Institute, The Hebrew University of Jerusalem, 9190401, Israel
| | - Anita Salamon
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, 229080733, USA
| | - Noemie Stanleigh
- Department of Genetics, The Life Sciences Institute, The Hebrew University of Jerusalem, 9190401, Israel
| | - Tchelet Goldberg
- Department of Genetics, The Life Sciences Institute, The Hebrew University of Jerusalem, 9190401, Israel
| | - Aryeh Weiss
- Faculty of Engineering, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, 229080733, USA
| | - Batsheva Kerem
- Department of Genetics, The Life Sciences Institute, The Hebrew University of Jerusalem, 9190401, Israel
| |
Collapse
|
67
|
Franzolin E, Coletta S, Ferraro P, Pontarin G, D'Aronco G, Stevanoni M, Palumbo E, Cagnin S, Bertoldi L, Feltrin E, Valle G, Russo A, Bianchi V, Rampazzo C. SAMHD1‐deficient fibroblasts from Aicardi‐Goutières Syndrome patients can escape senescence and accumulate mutations. FASEB J 2019; 34:631-647. [DOI: 10.1096/fj.201902508r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 01/16/2023]
Affiliation(s)
| | - Sara Coletta
- Department of Biology University of Padova Padova Italy
| | - Paola Ferraro
- Department of Biology University of Padova Padova Italy
| | | | | | | | - Elisa Palumbo
- Department of Molecular Medicine University of Padova Padova Italy
| | - Stefano Cagnin
- Department of Biology University of Padova Padova Italy
- CRIBI Biotechnology Center University of Padova Padova Italy
- CIR‐Myo Myology Center University of Padova Padova Italy
| | | | - Erika Feltrin
- Department of Biology University of Padova Padova Italy
| | - Giorgio Valle
- Department of Biology University of Padova Padova Italy
| | - Antonella Russo
- Department of Molecular Medicine University of Padova Padova Italy
| | - Vera Bianchi
- Department of Biology University of Padova Padova Italy
| | | |
Collapse
|
68
|
Lewis JS, Spenkelink LM, Schauer GD, Yurieva O, Mueller SH, Natarajan V, Kaur G, Maher C, Kay C, O'Donnell ME, van Oijen AM. Tunability of DNA Polymerase Stability during Eukaryotic DNA Replication. Mol Cell 2019; 77:17-25.e5. [PMID: 31704183 DOI: 10.1016/j.molcel.2019.10.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/25/2019] [Accepted: 10/01/2019] [Indexed: 12/29/2022]
Abstract
Structural and biochemical studies have revealed the basic principles of how the replisome duplicates genomic DNA, but little is known about its dynamics during DNA replication. We reconstitute the 34 proteins needed to form the S. cerevisiae replisome and show how changing local concentrations of the key DNA polymerases tunes the ability of the complex to efficiently recycle these proteins or to dynamically exchange them. Particularly, we demonstrate redundancy of the Pol α-primase DNA polymerase activity in replication and show that Pol α-primase and the lagging-strand Pol δ can be re-used within the replisome to support the synthesis of large numbers of Okazaki fragments. This unexpected malleability of the replisome might allow it to deal with barriers and resource challenges during replication of large genomes.
Collapse
Affiliation(s)
- Jacob S Lewis
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Lisanne M Spenkelink
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Grant D Schauer
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Olga Yurieva
- Laboratory of DNA Replication, Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, Cambridge, MA 02138, USA
| | - Stefan H Mueller
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Varsha Natarajan
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Gurleen Kaur
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Claire Maher
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Callum Kay
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Michael E O'Donnell
- Laboratory of DNA Replication, Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, Cambridge, MA 02138, USA.
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia.
| |
Collapse
|
69
|
Yuan Z, Georgescu R, Santos RDLA, Zhang D, Bai L, Yao NY, Zhao G, O'Donnell ME, Li H. Ctf4 organizes sister replisomes and Pol α into a replication factory. eLife 2019; 8:47405. [PMID: 31589141 PMCID: PMC6800005 DOI: 10.7554/elife.47405] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 10/04/2019] [Indexed: 12/14/2022] Open
Abstract
The current view is that eukaryotic replisomes are independent. Here we show that Ctf4 tightly dimerizes CMG helicase, with an extensive interface involving Psf2, Cdc45, and Sld5. Interestingly, Ctf4 binds only one Pol α-primase. Thus, Ctf4 may have evolved as a trimer to organize two helicases and one Pol α-primase into a replication factory. In the 2CMG–Ctf43–1Pol α-primase factory model, the two CMGs nearly face each other, placing the two lagging strands toward the center and two leading strands out the sides. The single Pol α-primase is centrally located and may prime both sister replisomes. The Ctf4-coupled-sister replisome model is consistent with cellular microscopy studies revealing two sister forks of an origin remain attached and are pushed forward from a protein platform. The replication factory model may facilitate parental nucleosome transfer during replication.
Collapse
Affiliation(s)
- Zuanning Yuan
- Structural Biology Program, Van Andel Institute, Grand Rapids, United States
| | - Roxana Georgescu
- Howard Hughes Medical Institute, Chevy Chase, United States.,DNA Replication Laboratory, The Rockefeller University, New York, United States
| | | | - Daniel Zhang
- DNA Replication Laboratory, The Rockefeller University, New York, United States
| | - Lin Bai
- Structural Biology Program, Van Andel Institute, Grand Rapids, United States
| | - Nina Y Yao
- DNA Replication Laboratory, The Rockefeller University, New York, United States
| | - Gongpu Zhao
- David Van Andel Advanced Cryo-EM Suite, Van Andel Institute, Grand Rapids, United States
| | - Michael E O'Donnell
- Howard Hughes Medical Institute, Chevy Chase, United States.,DNA Replication Laboratory, The Rockefeller University, New York, United States
| | - Huilin Li
- Structural Biology Program, Van Andel Institute, Grand Rapids, United States
| |
Collapse
|
70
|
González Besteiro MA, Calzetta NL, Loureiro SM, Habif M, Bétous R, Pillaire MJ, Maffia A, Sabbioneda S, Hoffmann JS, Gottifredi V. Chk1 loss creates replication barriers that compromise cell survival independently of excess origin firing. EMBO J 2019; 38:e101284. [PMID: 31294866 DOI: 10.15252/embj.2018101284] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 06/11/2019] [Accepted: 06/19/2019] [Indexed: 01/18/2023] Open
Abstract
The effectiveness of checkpoint kinase 1 (Chk1) inhibitors at killing cancer cells is considered to be fully dependent on their effect on DNA replication initiation. Chk1 inhibition boosts origin firing, presumably limiting the availability of nucleotides and in turn provoking the slowdown and subsequent collapse of forks, thus decreasing cell viability. Here we show that slow fork progression in Chk1-inhibited cells is not an indirect effect of excess new origin firing. Instead, fork slowdown results from the accumulation of replication barriers, whose bypass is impeded by CDK-dependent phosphorylation of the specialized DNA polymerase eta (Polη). Also in contrast to the linear model, the accumulation of DNA damage in Chk1-deficient cells depends on origin density but is largely independent of fork speed. Notwithstanding this, origin dysregulation contributes only mildly to the poor proliferation rates of Chk1-depleted cells. Moreover, elimination of replication barriers by downregulation of helicase components, but not their bypass by Polη, improves cell survival. Our results thus shed light on the molecular basis of the sensitivity of tumors to Chk1 inhibition.
Collapse
Affiliation(s)
- Marina A González Besteiro
- Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Nicolás L Calzetta
- Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Sofía M Loureiro
- Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Martín Habif
- Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Rémy Bétous
- Equipe «Labellisée LA LIGUE CONTRE LE CANCER», Laboratoire d'Excellence Toulouse Cancer LABEX TOUCAN - Cancer Research Center of Toulouse, Inserm U1037, CNRS ERL5294, University Paul Sabatier, Toulouse, France
| | - Marie-Jeanne Pillaire
- Equipe «Labellisée LA LIGUE CONTRE LE CANCER», Laboratoire d'Excellence Toulouse Cancer LABEX TOUCAN - Cancer Research Center of Toulouse, Inserm U1037, CNRS ERL5294, University Paul Sabatier, Toulouse, France
| | - Antonio Maffia
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza" - CNR, Pavia, Italy
| | - Simone Sabbioneda
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza" - CNR, Pavia, Italy
| | - Jean-Sébastien Hoffmann
- Equipe «Labellisée LA LIGUE CONTRE LE CANCER», Laboratoire d'Excellence Toulouse Cancer LABEX TOUCAN - Cancer Research Center of Toulouse, Inserm U1037, CNRS ERL5294, University Paul Sabatier, Toulouse, France
| | - Vanesa Gottifredi
- Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
71
|
Merchut-Maya JM, Bartek J, Maya-Mendoza A. Regulation of replication fork speed: Mechanisms and impact on genomic stability. DNA Repair (Amst) 2019; 81:102654. [PMID: 31320249 DOI: 10.1016/j.dnarep.2019.102654] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Replication of DNA is a fundamental biological process that ensures precise duplication of the genome and thus safeguards inheritance. Any errors occurring during this process must be repaired before the cell divides, by activating the DNA damage response (DDR) machinery that detects and corrects the DNA lesions. Consistent with its significance, DNA replication is under stringent control, both spatial and temporal. Defined regions of the genome are replicated at specific times during S phase and the speed of replication fork progression is adjusted to fully replicate DNA in pace with the cell cycle. Insults that impair DNA replication cause replication stress (RS), which can lead to genomic instability and, potentially, to cell transformation. In this perspective, we review the current concept of replication stress, including the recent findings on the effects of accelerated fork speed and their impact on genomic (in)stability. We discuss in detail the Fork Speed Regulatory Network (FSRN), an integrated molecular machinery that regulates the velocity of DNA replication forks. Finally, we explore the potential for targeting FSRN components as an avenue to treat cancer.
Collapse
Affiliation(s)
- Joanna Maria Merchut-Maya
- DNA Replication and Cancer Group, Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Jiri Bartek
- Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark; Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden.
| | - Apolinar Maya-Mendoza
- DNA Replication and Cancer Group, Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark.
| |
Collapse
|
72
|
Young LA, O'Connor LO, de Renty C, Veldman-Jones MH, Dorval T, Wilson Z, Jones DR, Lawson D, Odedra R, Maya-Mendoza A, Reimer C, Bartek J, Lau A, O'Connor MJ. Differential Activity of ATR and WEE1 Inhibitors in a Highly Sensitive Subpopulation of DLBCL Linked to Replication Stress. Cancer Res 2019; 79:3762-3775. [DOI: 10.1158/0008-5472.can-18-2480] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 12/23/2018] [Accepted: 05/20/2019] [Indexed: 11/16/2022]
|
73
|
Müller CA, Boemo MA, Spingardi P, Kessler BM, Kriaucionis S, Simpson JT, Nieduszynski CA. Capturing the dynamics of genome replication on individual ultra-long nanopore sequence reads. Nat Methods 2019; 16:429-436. [PMID: 31011185 PMCID: PMC7617212 DOI: 10.1038/s41592-019-0394-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/18/2019] [Indexed: 12/19/2022]
Abstract
Replication of eukaryotic genomes is highly stochastic, making it difficult to determine the replication dynamics of individual molecules with existing methods. We report a sequencing method for the measurement of replication fork movement on single molecules by detecting nucleotide analog signal currents on extremely long nanopore traces (D-NAscent). Using this method, we detect 5-bromodeoxyuridine (BrdU) incorporated by Saccharomyces cerevisiae to reveal, at a genomic scale and on single molecules, the DNA sequences replicated during a pulse-labeling period. Under conditions of limiting BrdU concentration, D-NAscent detects the differences in BrdU incorporation frequency across individual molecules to reveal the location of active replication origins, fork direction, termination sites, and fork pausing/stalling events. We used sequencing reads of 20-160 kilobases to generate a whole-genome single-molecule map of DNA replication dynamics and discover a class of low-frequency stochastic origins in budding yeast. The D-NAscent software is available at https://github.com/MBoemo/DNAscent.git .
Collapse
Affiliation(s)
- Carolin A Müller
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| | - Michael A Boemo
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Paolo Spingardi
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Skirmantas Kriaucionis
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jared T Simpson
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
74
|
Bazarova A, Nieduszynski CA, Akerman I, Burroughs NJ. Bayesian inference of origin firing time distributions, origin interference and licencing probabilities from Next Generation Sequencing data. Nucleic Acids Res 2019; 47:2229-2243. [PMID: 30859196 PMCID: PMC6412128 DOI: 10.1093/nar/gkz094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/27/2019] [Accepted: 02/05/2019] [Indexed: 12/21/2022] Open
Abstract
DNA replication is a stochastic process with replication forks emanating from multiple replication origins. The origins must be licenced in G1, and the replisome activated at licenced origins in order to generate bi-directional replication forks in S-phase. Differential firing times lead to origin interference, where a replication fork from an origin can replicate through and inactivate neighbouring origins (origin obscuring). We developed a Bayesian algorithm to characterize origin firing statistics from Okazaki fragment (OF) sequencing data. Our algorithm infers the distributions of firing times and the licencing probabilities for three consecutive origins. We demonstrate that our algorithm can distinguish partial origin licencing and origin obscuring in OF sequencing data from Saccharomyces cerevisiae and human cell types. We used our method to analyse the decreased origin efficiency under loss of Rat1 activity in S. cerevisiae, demonstrating that both reduced licencing and increased obscuring contribute. Moreover, we show that robust analysis is possible using only local data (across three neighbouring origins), and analysis of the whole chromosome is not required. Our algorithm utilizes an approximate likelihood and a reversible jump sampling technique, a methodology that can be extended to analysis of other mechanistic processes measurable through Next Generation Sequencing data.
Collapse
Affiliation(s)
- Alina Bazarova
- Centre for Computational Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | - Ildem Akerman
- Institute of Metabolism and Systems Research, Institute of Biomedical Research, University of Birmingham, Birmingham B15 2TT, UK
| | - Nigel J Burroughs
- Mathematics Institute and Zeeman Institute (SBIDER), University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
75
|
Kose HB, Larsen NB, Duxin JP, Yardimci H. Dynamics of the Eukaryotic Replicative Helicase at Lagging-Strand Protein Barriers Support the Steric Exclusion Model. Cell Rep 2019; 26:2113-2125.e6. [PMID: 30784593 PMCID: PMC6381796 DOI: 10.1016/j.celrep.2019.01.086] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 12/19/2018] [Accepted: 01/24/2019] [Indexed: 12/01/2022] Open
Abstract
Progression of DNA replication depends on the ability of the replisome complex to overcome nucleoprotein barriers. During eukaryotic replication, the CMG helicase translocates along the leading-strand template and unwinds the DNA double helix. While proteins bound to the leading-strand template efficiently block the helicase, the impact of lagging-strand protein obstacles on helicase translocation and replisome progression remains controversial. Here, we show that CMG and replisome progressions are impaired when proteins crosslinked to the lagging-strand template enhance the stability of duplex DNA. In contrast, proteins that exclusively interact with the lagging-strand template influence neither the translocation of isolated CMG nor replisome progression in Xenopus egg extracts. Our data imply that CMG completely excludes the lagging-strand template from the helicase central channel while unwinding DNA at the replication fork, which clarifies how two CMG helicases could freely cross one another during replication initiation and termination.
Collapse
Affiliation(s)
- Hazal B Kose
- Single Molecule Imaging of Genome Duplication and Maintenance Laboratory, The Francis Crick Institute, NW1 1AT London, UK
| | - Nicolai B Larsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Julien P Duxin
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Hasan Yardimci
- Single Molecule Imaging of Genome Duplication and Maintenance Laboratory, The Francis Crick Institute, NW1 1AT London, UK.
| |
Collapse
|
76
|
Courtot L, Hoffmann JS, Bergoglio V. The Protective Role of Dormant Origins in Response to Replicative Stress. Int J Mol Sci 2018; 19:ijms19113569. [PMID: 30424570 PMCID: PMC6274952 DOI: 10.3390/ijms19113569] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023] Open
Abstract
Genome stability requires tight regulation of DNA replication to ensure that the entire genome of the cell is duplicated once and only once per cell cycle. In mammalian cells, origin activation is controlled in space and time by a cell-specific and robust program called replication timing. About 100,000 potential replication origins form on the chromatin in the gap 1 (G1) phase but only 20⁻30% of them are active during the DNA replication of a given cell in the synthesis (S) phase. When the progress of replication forks is slowed by exogenous or endogenous impediments, the cell must activate some of the inactive or "dormant" origins to complete replication on time. Thus, the many origins that may be activated are probably key to protect the genome against replication stress. This review aims to discuss the role of these dormant origins as safeguards of the human genome during replicative stress.
Collapse
Affiliation(s)
- Lilas Courtot
- CRCT, Université de Toulouse, Inserm, CNRS, UPS; Equipe labellisée Ligue Contre le Cancer, Laboratoire d'excellence Toulouse Cancer, 2 Avenue Hubert Curien, 31037 Toulouse, France.
| | - Jean-Sébastien Hoffmann
- CRCT, Université de Toulouse, Inserm, CNRS, UPS; Equipe labellisée Ligue Contre le Cancer, Laboratoire d'excellence Toulouse Cancer, 2 Avenue Hubert Curien, 31037 Toulouse, France.
| | - Valérie Bergoglio
- CRCT, Université de Toulouse, Inserm, CNRS, UPS; Equipe labellisée Ligue Contre le Cancer, Laboratoire d'excellence Toulouse Cancer, 2 Avenue Hubert Curien, 31037 Toulouse, France.
| |
Collapse
|
77
|
de Araujo CB, Calderano SG, Elias MC. The Dynamics of Replication in Trypanosoma cruzi Parasites by Single-Molecule Analysis. J Eukaryot Microbiol 2018; 66:514-518. [PMID: 30076751 DOI: 10.1111/jeu.12676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/03/2018] [Accepted: 07/20/2018] [Indexed: 12/12/2022]
Abstract
Here, we investigated the features of replication in Trypanosoma cruzi epimastigotes based on fork speed progression, which is influenced by distinct features such as DNA polymerase rate, susceptibility to DNA damage and repair, secondary structures, transcription and chromatin state. Although T. cruzi exhibits a mean fork speed (2.05 ± 0.10 kb/min) very similar to other trypanosomatids, we found that the majority of DNA molecules replicated more slowly, with a frequency distribution approximately 1 kb/min. This frequency distribution analysis provides more information about the replication profile of this organism.
Collapse
Affiliation(s)
- Christiane B de Araujo
- Laboratorio Especial de Ciclo celular, Instituto Butantan, Av Vital Brasil, 1500, São Paulo, 05503-900, Brazil.,Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, Av Vital Brasil, 1500, São Paulo, 05503-900, Brazil
| | - Simone G Calderano
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, Av Vital Brasil, 1500, São Paulo, 05503-900, Brazil.,Laboratório de Parasitologia, Instituto Butantan, Av Vital Brasil, 1500, São Paulo, 05503-900, Brazil
| | - Maria Carolina Elias
- Laboratorio Especial de Ciclo celular, Instituto Butantan, Av Vital Brasil, 1500, São Paulo, 05503-900, Brazil.,Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, Av Vital Brasil, 1500, São Paulo, 05503-900, Brazil
| |
Collapse
|
78
|
High speed of fork progression induces DNA replication stress and genomic instability. Nature 2018; 559:279-284. [DOI: 10.1038/s41586-018-0261-5] [Citation(s) in RCA: 275] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 05/22/2018] [Indexed: 12/27/2022]
|
79
|
Arbona JM, Goldar A, Hyrien O, Arneodo A, Audit B. The eukaryotic bell-shaped temporal rate of DNA replication origin firing emanates from a balance between origin activation and passivation. eLife 2018; 7:35192. [PMID: 29856315 PMCID: PMC6033540 DOI: 10.7554/elife.35192] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/31/2018] [Indexed: 01/22/2023] Open
Abstract
The time-dependent rate I(t) of origin firing per length of unreplicated DNA presents a universal bell shape in eukaryotes that has been interpreted as the result of a complex time-evolving interaction between origins and limiting firing factors. Here, we show that a normal diffusion of replication fork components towards localized potential replication origins (p-oris) can more simply account for the I(t) universal bell shape, as a consequence of a competition between the origin firing time and the time needed to replicate DNA separating two neighboring p-oris. We predict the I(t) maximal value to be the product of the replication fork speed with the squared p-ori density. We show that this relation is robustly observed in simulations and in experimental data for several eukaryotes. Our work underlines that fork-component recycling and potential origins localization are sufficient spatial ingredients to explain the universality of DNA replication kinetics. Before a cell can divide, it must duplicate its DNA. In eukaryotes – organisms such as animals and fungi, which store their DNA in the cell’s nucleus – DNA replication starts at specific sites in the genome called replication origins. At each origin sits a protein complex that will activate when it randomly captures an activating protein that diffuses within the nucleus. Once a replication origin activates or “fires”, the complex then splits into two new complexes that move away from each other as they duplicate the DNA. If an active complex collides with an inactive one at another origin, the latter is inactivated – a phenomenon known as origin passivation. When two active complexes meet, they release the activating proteins, which diffuse away and eventually activate other origins in unreplicated DNA. The number of origins that activate each minute divided by the length of unreplicated DNA is referred to as the “rate of origin firing”. In all eukaryotes, this rate – also known as I(t) – follows the same pattern. First, it increases until more than half of the DNA is duplicated. Then it decreases until everything is duplicated. This means that, if plotted out, the graph of origin firing rate would always be a bell-shaped curve, even for organisms with genomes of different sizes that have different numbers of origins. The reason for this universal shape remained unclear. Scientists had tried to create numerical simulations that model the rate of origin firing. However, for these simulations to reproduce the bell-shape curve, a number of untested assumptions had to be made about how DNA replication takes place. In addition, these models ignored the fact that it takes time to replicate the DNA between origins. To take this time into account, Arbona et al. instead decided to model the replication origins as discrete and distinct entities. This way of building the mathematical model succeeded in reproducing the universal bell curve shape without additional assumptions. With this simulation, the balance between origin activation and passivation is enough to achieve the observed pattern. The new model also predicts that the maximum rate of origin firing is determined by the speed of DNA replication and the density of origins in the genome. Arbona et al. verified this prediction in yeast, fly, frog and human cells – organisms with different sized genomes that take between 20 minutes and 8 hours to replicate their DNA. Lastly, the prediction also held true in yeast treated with hydroxyurea, an anticancer drug that slows DNA replication. A better understanding of DNA replication can help scientists to understand how this process is perturbed in cancers and how drugs that target DNA replication can treat these diseases. Future work will explore how the 3D organization of the genome affects the diffusion of activating proteins within the cell nucleus.
Collapse
Affiliation(s)
- Jean-Michel Arbona
- Laboratoire de Physique, Université de Lyon, Ens de Lyon, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | | | - Olivier Hyrien
- Institut de Biologie de l'Ecole Normale Supérieure, Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Alain Arneodo
- LOMA, Univ de Bordeaux, CNRS, UMR 5798, Talence, France
| | - Benjamin Audit
- Laboratoire de Physique, Université de Lyon, Ens de Lyon, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| |
Collapse
|
80
|
Wakida T, Ikura M, Kuriya K, Ito S, Shiroiwa Y, Habu T, Kawamoto T, Okumura K, Ikura T, Furuya K. The CDK-PLK1 axis targets the DNA damage checkpoint sensor protein RAD9 to promote cell proliferation and tolerance to genotoxic stress. eLife 2017; 6:e29953. [PMID: 29254517 PMCID: PMC5736350 DOI: 10.7554/elife.29953] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 12/02/2017] [Indexed: 01/08/2023] Open
Abstract
Genotoxic stress causes proliferating cells to activate the DNA damage checkpoint, to assist DNA damage recovery by slowing cell cycle progression. Thus, to drive proliferation, cells must tolerate DNA damage and suppress the checkpoint response. However, the mechanism underlying this negative regulation of checkpoint activation is still elusive. We show that human Cyclin-Dependent-Kinases (CDKs) target the RAD9 subunit of the 9-1-1 checkpoint clamp on Thr292, to modulate DNA damage checkpoint activation. Thr292 phosphorylation on RAD9 creates a binding site for Polo-Like-Kinase1 (PLK1), which phosphorylates RAD9 on Thr313. These CDK-PLK1-dependent phosphorylations of RAD9 suppress checkpoint activation, therefore maintaining high DNA synthesis rates during DNA replication stress. Our results suggest that CDK locally initiates a PLK1-dependent signaling response that antagonizes the ability of the DNA damage checkpoint to detect DNA damage. These findings provide a mechanism for the suppression of DNA damage checkpoint signaling, to promote cell proliferation under genotoxic stress conditions.
Collapse
Affiliation(s)
- Takeshi Wakida
- Department of Radiation SystemsRadiation Biology Center, Kyoto UniversityKyotoJapan
- Laboratory of Chromatin Regulatory Network, Department of MutagenesisRadiation Biology Center, Kyoto UniversityKyotoJapan
| | - Masae Ikura
- Laboratory of Chromatin Regulatory Network, Department of MutagenesisRadiation Biology Center, Kyoto UniversityKyotoJapan
| | - Kenji Kuriya
- Laboratory of Nutritional Chemistry, Department of Life SciencesGraduate School of Bioresources, Mie UniversityTsuJapan
| | - Shinji Ito
- Medical Research Support CenterGraduate School of Medicine, Kyoto UniversitySakyo-kuJapan
| | - Yoshiharu Shiroiwa
- Department of Radiation SystemsRadiation Biology Center, Kyoto UniversityKyotoJapan
| | - Toshiyuki Habu
- Department of Radiation SystemsRadiation Biology Center, Kyoto UniversityKyotoJapan
- Department of Food Science and NutritionMukogawa Women’s UniversityNishinomiyaJapan
| | | | - Katsuzumi Okumura
- Laboratory of Molecular and Cellular Biology, Department of Life SciencesMie UniversityTsuJapan
| | - Tsuyoshi Ikura
- Laboratory of Chromatin Regulatory Network, Department of MutagenesisRadiation Biology Center, Kyoto UniversityKyotoJapan
- Laboratory of Chromatin Regulatory NetworkGraduate School of Biostudies, Kyoto UniversityKyotoJapan
| | - Kanji Furuya
- Department of Radiation SystemsRadiation Biology Center, Kyoto UniversityKyotoJapan
- Laboratory of Genome MaintenanceGraduate School of Biostudies, Kyoto UniversityKyotoJapan
| |
Collapse
|
81
|
Klusmann I, Rodewald S, Müller L, Friedrich M, Wienken M, Li Y, Schulz-Heddergott R, Dobbelstein M. p53 Activity Results in DNA Replication Fork Processivity. Cell Rep 2017; 17:1845-1857. [PMID: 27829155 DOI: 10.1016/j.celrep.2016.10.036] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 09/03/2016] [Accepted: 10/12/2016] [Indexed: 12/18/2022] Open
Abstract
p53 induces cell death upon DNA damage, but this may not confer all of its tumor suppressor activity. We report that p53 activation enhances the processivity of DNA replication, as monitored by multi-label fiber assays, whereas removal of p53 reduces fork progression. This is observed in tumor-derived U2OS cells but also in murine embryonic fibroblasts with heterozygous or homozygous p53 deletion and in freshly isolated thymocytes from mice with differential p53 status. Mdm2, a p53-inducible gene product, similarly supports DNA replication even in p53-deficient cells, suggesting that sustained Mdm2-expression is at least one of the mechanisms allowing p53 to prevent replicative stress. Thus, p53 helps to protect the genome during S phase, by preventing the occurrence of stalled or collapsed replication forks. These results expand p53's tumor-suppressive functions, adding to the ex-post model (elimination of damaged cells) an ex-ante activity; i.e., the prevention of DNA damage during replication.
Collapse
Affiliation(s)
- Ina Klusmann
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Sabrina Rodewald
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Leonie Müller
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Mascha Friedrich
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Magdalena Wienken
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Yizhu Li
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Ramona Schulz-Heddergott
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Matthias Dobbelstein
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, 37077 Göttingen, Germany.
| |
Collapse
|
82
|
Single-molecule visualization of Saccharomyces cerevisiae leading-strand synthesis reveals dynamic interaction between MTC and the replisome. Proc Natl Acad Sci U S A 2017; 114:10630-10635. [PMID: 28923950 DOI: 10.1073/pnas.1711291114] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The replisome, the multiprotein system responsible for genome duplication, is a highly dynamic complex displaying a large number of different enzyme activities. Recently, the Saccharomyces cerevisiae minimal replication reaction has been successfully reconstituted in vitro. This provided an opportunity to uncover the enzymatic activities of many of the components in a eukaryotic system. Their dynamic behavior and interactions in the context of the replisome, however, remain unclear. We use a tethered-bead assay to provide real-time visualization of leading-strand synthesis by the S. cerevisiae replisome at the single-molecule level. The minimal reconstituted leading-strand replisome requires 24 proteins, forming the CMG helicase, the Pol ε DNA polymerase, the RFC clamp loader, the PCNA sliding clamp, and the RPA single-stranded DNA binding protein. We observe rates and product lengths similar to those obtained from ensemble biochemical experiments. At the single-molecule level, we probe the behavior of two components of the replication progression complex and characterize their interaction with active leading-strand replisomes. The Minichromosome maintenance protein 10 (Mcm10), an important player in CMG activation, increases the number of productive replication events in our assay. Furthermore, we show that the fork protection complex Mrc1-Tof1-Csm3 (MTC) enhances the rate of the leading-strand replisome threefold. The introduction of periods of fast replication by MTC leads to an average rate enhancement of a factor of 2, similar to observations in cellular studies. We observe that the MTC complex acts in a dynamic fashion with the moving replisome, leading to alternating phases of slow and fast replication.
Collapse
|
83
|
Langston LD, Mayle R, Schauer GD, Yurieva O, Zhang D, Yao NY, Georgescu RE, O'Donnell ME. Mcm10 promotes rapid isomerization of CMG-DNA for replisome bypass of lagging strand DNA blocks. eLife 2017; 6:e29118. [PMID: 28869037 PMCID: PMC5599239 DOI: 10.7554/elife.29118] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/03/2017] [Indexed: 12/18/2022] Open
Abstract
Replicative helicases in all cell types are hexameric rings that unwind DNA by steric exclusion in which the helicase encircles the tracking strand only and excludes the other strand from the ring. This mode of translocation allows helicases to bypass blocks on the strand that is excluded from the central channel. Unlike other replicative helicases, eukaryotic CMG helicase partially encircles duplex DNA at a forked junction and is stopped by a block on the non-tracking (lagging) strand. This report demonstrates that Mcm10, an essential replication protein unique to eukaryotes, binds CMG and greatly stimulates its helicase activity in vitro. Most significantly, Mcm10 enables CMG and the replisome to bypass blocks on the non-tracking DNA strand. We demonstrate that bypass occurs without displacement of the blocks and therefore Mcm10 must isomerize the CMG-DNA complex to achieve the bypass function.
Collapse
Affiliation(s)
- Lance D Langston
- The Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical InstituteNew YorkUnited States
| | - Ryan Mayle
- The Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical InstituteNew YorkUnited States
| | | | - Olga Yurieva
- The Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical InstituteNew YorkUnited States
| | | | - Nina Y Yao
- The Rockefeller UniversityNew YorkUnited States
| | - Roxana E Georgescu
- The Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical InstituteNew YorkUnited States
| | - Mike E O'Donnell
- The Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical InstituteNew YorkUnited States
| |
Collapse
|
84
|
Nuclear DNA Replication in Trypanosomatids: There Are No Easy Methods for Solving Difficult Problems. Trends Parasitol 2017; 33:858-874. [PMID: 28844718 PMCID: PMC5662062 DOI: 10.1016/j.pt.2017.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 01/09/2023]
Abstract
In trypanosomatids, etiological agents of devastating diseases, replication is robust and finely controlled to maintain genome stability and function in stressful environments. However, these parasites encode several replication protein components and complexes that show potentially variant composition compared with model eukaryotes. This review focuses on the advances made in recent years regarding the differences and peculiarities of the replication machinery in trypanosomatids, including how such divergence might affect DNA replication dynamics and the replication stress response. Comparing the DNA replication machinery and processes of parasites and their hosts may provide a foundation for the identification of targets that can be used in the development of chemotherapies to assist in the eradication of diseases caused by these pathogens. In trypanosomatids, DNA replication is tightly controlled by protein complexes that diverge from those of model eukaryotes. There is no consensus for the number of replication origins used by trypanosomatids; how their replication dynamics compares with that of model organisms is the subject of debate. The DNA replication rate in trypanosomatids is similar to, but slightly higher than, that of model eukaryotes, which may be related to chromatin structure and function. Recent data suggest that the origin recognition complex in trypanosomatids closely resembles the multisubunit eukaryotic model. The absence of fundamental replication-associated proteins in trypanosomatids suggests that new signaling pathways may be present in these parasites to direct DNA replication and the replicative stress response.
Collapse
|
85
|
Hoory E, Budassi J, Pfeffer E, Cho N, Thalappillil J, Andersen J, Rafailovich M, Sokolov J. Discrimination of Adsorbed Double-Stranded and Single-Stranded DNA Molecules on Surfaces by Fluorescence Emission Spectroscopy Using Acridine Orange Dye. J Fluoresc 2017; 27:2153-2158. [DOI: 10.1007/s10895-017-2154-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/31/2017] [Indexed: 10/19/2022]
|
86
|
Rainey MD, Quachthithu H, Gaboriau D, Santocanale C. DNA Replication Dynamics and Cellular Responses to ATP Competitive CDC7 Kinase Inhibitors. ACS Chem Biol 2017; 12:1893-1902. [PMID: 28560864 DOI: 10.1021/acschembio.7b00117] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The CDC7 kinase, by phosphorylating the MCM DNA helicase, is a key switch for DNA replication initiation. ATP competitive CDC7 inhibitors are being developed as potential anticancer agents; however how human cells respond to the selective pharmacological inhibition of this kinase is controversial and not understood. Here we have characterized the mode of action of the two widely used CDC7 inhibitors, PHA-767491 and XL-413, which have become important tool compounds to explore the kinase's cellular functions. We have used a chemical genetics approach to further characterize pharmacological CDC7 inhibition and CRISPR/CAS9 technology to assess the requirement for kinase activity for cell proliferation. We show that, in human breast cells, CDC7 is essential and that CDC7 kinase activity is formally required for proliferation. However, full and sustained inhibition of the kinase, which is required to block the cell-cycle progression with ATP competitor compounds, is problematic to achieve. We establish that MCM2 phosphorylation is highly sensitive to CDC7 inhibition and, as a biomarker, it lacks in dynamic range since it is easily lost at concentrations of inhibitors that only mildly affect DNA synthesis. Furthermore, we find that the cellular effects of selective CDC7 inhibitors can be altered by the concomitant inhibition of cell-cycle and transcriptional CDKs. This work shows that DNA replication and cell proliferation can occur with reduced CDC7 activity for at least 5 days and that the bulk of DNA synthesis is not tightly coupled to MCM2 phosphorylation and provides guidance for the development of next generation CDC7 inhibitors.
Collapse
Affiliation(s)
- Michael D. Rainey
- Centre for Chromosome Biology,
School of Natural Sciences, National University of Ireland Galway H91 TK33, Ireland
| | - Huong Quachthithu
- Centre for Chromosome Biology,
School of Natural Sciences, National University of Ireland Galway H91 TK33, Ireland
| | - David Gaboriau
- Centre for Chromosome Biology,
School of Natural Sciences, National University of Ireland Galway H91 TK33, Ireland
| | - Corrado Santocanale
- Centre for Chromosome Biology,
School of Natural Sciences, National University of Ireland Galway H91 TK33, Ireland
| |
Collapse
|
87
|
Hedglin M, Benkovic SJ. Eukaryotic Translesion DNA Synthesis on the Leading and Lagging Strands: Unique Detours around the Same Obstacle. Chem Rev 2017; 117:7857-7877. [PMID: 28497687 PMCID: PMC5662946 DOI: 10.1021/acs.chemrev.7b00046] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During S-phase, minor DNA damage may be overcome by DNA damage tolerance (DDT) pathways that bypass such obstacles, postponing repair of the offending damage to complete the cell cycle and maintain cell survival. In translesion DNA synthesis (TLS), specialized DNA polymerases replicate the damaged DNA, allowing stringent DNA synthesis by a replicative polymerase to resume beyond the offending damage. Dysregulation of this DDT pathway in human cells leads to increased mutation rates that may contribute to the onset of cancer. Furthermore, TLS affords human cancer cells the ability to counteract chemotherapeutic agents that elicit cell death by damaging DNA in actively replicating cells. Currently, it is unclear how this critical pathway unfolds, in particular, where and when TLS occurs on each template strand. Given the semidiscontinuous nature of DNA replication, it is likely that TLS on the leading and lagging strand templates is unique for each strand. Since the discovery of DDT in the late 1960s, most studies on TLS in eukaryotes have focused on DNA lesions resulting from ultraviolet (UV) radiation exposure. In this review, we revisit these and other related studies to dissect the step-by-step intricacies of this complex process, provide our current understanding of TLS on leading and lagging strand templates, and propose testable hypotheses to gain further insights.
Collapse
Affiliation(s)
- Mark Hedglin
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Stephen J. Benkovic
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, U.S.A
| |
Collapse
|
88
|
Single-molecule analysis reveals that DNA replication dynamics vary across the course of schizogony in the malaria parasite Plasmodium falciparum. Sci Rep 2017. [PMID: 28638076 PMCID: PMC5479783 DOI: 10.1038/s41598-017-04407-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The mechanics of DNA replication and cell cycling are well-characterized in model organisms, but less is known about these basic aspects of cell biology in early-diverging Apicomplexan parasites, which do not divide by canonical binary fission but undergo unconventional cycles. Schizogony in the malaria parasite, Plasmodium, generates ~16–24 new nuclei via independent, asynchronous rounds of genome replication prior to cytokinesis and little is known about the control of DNA replication that facilitates this. We have characterised replication dynamics in P. falciparum throughout schizogony, using DNA fibre labelling and combing to visualise replication forks at a single-molecule level. We show that origins are very closely spaced in Plasmodium compared to most model systems, and that replication dynamics vary across the course of schizogony, from faster synthesis rates and more widely-spaced origins through to slower synthesis rates and closer-spaced origins. This is the opposite of the pattern usually seen across S-phase in human cells, when a single genome is replicated. Replication forks also appear to stall at an unusually high rate throughout schizogony. Our work explores Plasmodium DNA replication in unprecedented detail and opens up tremendous scope for analysing cell cycle dynamics and developing interventions targetting this unique aspect of malaria biology.
Collapse
|
89
|
Tourrière H, Saksouk J, Lengronne A, Pasero P. Single-molecule Analysis of DNA Replication Dynamics in Budding Yeast and Human Cells by DNA Combing. Bio Protoc 2017; 7:e2305. [PMID: 34541074 DOI: 10.21769/bioprotoc.2305] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/01/2017] [Accepted: 04/24/2017] [Indexed: 11/02/2022] Open
Abstract
The DNA combing method allows the analysis of DNA replication at the level of individual DNA molecules stretched along silane-coated glass coverslips. Before DNA extraction, ongoing DNA synthesis is labeled with halogenated analogues of thymidine. Replication tracks are visualized by immunofluorescence using specific antibodies. Unlike biochemical and NGS-based methods, DNA combing provides unique information on cell-to-cell variations in DNA replication profiles, including initiation and elongation. Finally, this assay can be used to monitor the effect of DNA lesions on fork progression, arrest and restart.
Collapse
Affiliation(s)
- Hélène Tourrière
- Institute of Human Genetics, CNRS UMR 9002 and University of Montpellier, Equipe labéllisée LIGUE 2017, Montpellier, France
| | - Julie Saksouk
- Institute of Human Genetics, CNRS UMR 9002 and University of Montpellier, Equipe labéllisée LIGUE 2017, Montpellier, France
| | - Armelle Lengronne
- Institute of Human Genetics, CNRS UMR 9002 and University of Montpellier, Equipe labéllisée LIGUE 2017, Montpellier, France
| | - Philippe Pasero
- Institute of Human Genetics, CNRS UMR 9002 and University of Montpellier, Equipe labéllisée LIGUE 2017, Montpellier, France
| |
Collapse
|
90
|
Abstract
Understanding the mechanisms of replication stress response following genotoxic stress induction is rapidly emerging as a central theme in cell survival and human disease. The DNA fiber assay is one of the most powerful tools to study alterations in replication fork dynamics genome-wide at single-molecule resolution. This approach relies on the ability of many organisms to incorporate thymidine analogs into replicating DNA and is widely used to study how genotoxic agents perturb DNA replication. Here, we review different approaches available to prepare DNA fibers and discuss important limitations of each approach. We also review how DNA fiber analysis can be used to shed light upon several replication parameters including fork progression, restart, termination, and new origin firing. Next, we discuss a modified DNA fiber protocol to monitor the presence of single-stranded DNA (ssDNA) gaps on ongoing replication forks. ssDNA gaps are very common intermediates of several replication stress response mechanisms, but they cannot be detected by standard DNA fiber approaches due to the resolution limits of this technique. We discuss a novel strategy that relies on the use of an ssDNA-specific endonuclease to nick the ssDNA gaps and generate shorter DNA fibers that can be used as readout for the presence of ssDNA gaps. Finally, we describe a follow-up DNA fiber approach that can be used to study how ssDNA gaps are repaired postreplicatively.
Collapse
Affiliation(s)
- Annabel Quinet
- Saint Louis University School of Medicine, St. Louis, MO, United States
| | | | - Delphine Lemacon
- Saint Louis University School of Medicine, St. Louis, MO, United States
| | | |
Collapse
|
91
|
Köhler C, Koalick D, Fabricius A, Parplys AC, Borgmann K, Pospiech H, Grosse F. Cdc45 is limiting for replication initiation in humans. Cell Cycle 2017; 15:974-85. [PMID: 26919204 PMCID: PMC4889307 DOI: 10.1080/15384101.2016.1152424] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cdc45 is an essential protein that together with Mcm2-7 and GINS forms the eukaryotic replicative helicase CMG. Cdc45 seems to be rate limiting for the initial unwinding or firing of replication origins. In line with this view, Cdc45-overexpressing cells fired at least twice as many origins as control cells. However, these cells displayed an about 2-fold diminished fork elongation rate, a pronounced asymmetry of replication fork extension, and an early S phase arrest. This was accompanied by H2AX-phosphorylation and subsequent apoptosis. Unexpectedly, we did not observe increased ATR/Chk1 signaling but rather a mild ATM/Chk2 response. In addition, we detected accumulation of long stretches of single-stranded DNA, a hallmark of replication catastrophe. We conclude that increased origin firing by upregulated Cdc45 caused exhaustion of the single-strand binding protein RPA, which in consequence diminished the ATR/Chk1 response; the subsequently occurring fork breaks led to an ATM/Chk2 mediated phosphorylation of H2AX and eventually to apoptosis.
Collapse
Affiliation(s)
- Carsten Köhler
- a Research group Biochemistry, Leibniz Institute for Age Research - Fritz Lipmann Institute , Jena , Germany
| | - Dennis Koalick
- a Research group Biochemistry, Leibniz Institute for Age Research - Fritz Lipmann Institute , Jena , Germany
| | - Anja Fabricius
- a Research group Biochemistry, Leibniz Institute for Age Research - Fritz Lipmann Institute , Jena , Germany
| | - Ann Christin Parplys
- b Laboratory of Radiobiology and Experimental Radiation Oncology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Kerstin Borgmann
- b Laboratory of Radiobiology and Experimental Radiation Oncology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Helmut Pospiech
- a Research group Biochemistry, Leibniz Institute for Age Research - Fritz Lipmann Institute , Jena , Germany.,c Faculty of Biochemistry and Molecular Medicine, University of Oulu , Finland
| | - Frank Grosse
- a Research group Biochemistry, Leibniz Institute for Age Research - Fritz Lipmann Institute , Jena , Germany.,d Centre for Molecular Biomedicine, Friedrich-Schiller University , Jena , Germany
| |
Collapse
|
92
|
Mutations in DONSON disrupt replication fork stability and cause microcephalic dwarfism. Nat Genet 2017; 49:537-549. [PMID: 28191891 DOI: 10.1038/ng.3790] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/20/2017] [Indexed: 12/16/2022]
Abstract
To ensure efficient genome duplication, cells have evolved numerous factors that promote unperturbed DNA replication and protect, repair and restart damaged forks. Here we identify downstream neighbor of SON (DONSON) as a novel fork protection factor and report biallelic DONSON mutations in 29 individuals with microcephalic dwarfism. We demonstrate that DONSON is a replisome component that stabilizes forks during genome replication. Loss of DONSON leads to severe replication-associated DNA damage arising from nucleolytic cleavage of stalled replication forks. Furthermore, ATM- and Rad3-related (ATR)-dependent signaling in response to replication stress is impaired in DONSON-deficient cells, resulting in decreased checkpoint activity and the potentiation of chromosomal instability. Hypomorphic mutations in DONSON substantially reduce DONSON protein levels and impair fork stability in cells from patients, consistent with defective DNA replication underlying the disease phenotype. In summary, we have identified mutations in DONSON as a common cause of microcephalic dwarfism and established DONSON as a critical replication fork protein required for mammalian DNA replication and genome stability.
Collapse
|
93
|
Yeeles JTP, Janska A, Early A, Diffley JFX. How the Eukaryotic Replisome Achieves Rapid and Efficient DNA Replication. Mol Cell 2017; 65:105-116. [PMID: 27989442 PMCID: PMC5222725 DOI: 10.1016/j.molcel.2016.11.017] [Citation(s) in RCA: 271] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/17/2016] [Accepted: 11/07/2016] [Indexed: 01/15/2023]
Abstract
The eukaryotic replisome is a molecular machine that coordinates the Cdc45-MCM-GINS (CMG) replicative DNA helicase with DNA polymerases α, δ, and ε and other proteins to copy the leading- and lagging-strand templates at rates between 1 and 2 kb min-1. We have now reconstituted this sophisticated machine with purified proteins, beginning with regulated CMG assembly and activation. We show that replisome-associated factors Mrc1 and Csm3/Tof1 are crucial for in vivo rates of replisome progression. Additionally, maximal rates only occur when DNA polymerase ε catalyzes leading-strand synthesis together with its processivity factor PCNA. DNA polymerase δ can support leading-strand synthesis, but at slower rates. DNA polymerase δ is required for lagging-strand synthesis, but surprisingly also plays a role in establishing leading-strand synthesis, before DNA polymerase ε engagement. We propose that switching between these DNA polymerases also contributes to leading-strand synthesis under conditions of replicative stress.
Collapse
Affiliation(s)
- Joseph T P Yeeles
- The Francis Crick Institute, Clare Hall Laboratory, South Mimms, Potters Bar, Hertfordshire EN6 3LD, UK
| | - Agnieska Janska
- The Francis Crick Institute, Clare Hall Laboratory, South Mimms, Potters Bar, Hertfordshire EN6 3LD, UK
| | - Anne Early
- The Francis Crick Institute, Clare Hall Laboratory, South Mimms, Potters Bar, Hertfordshire EN6 3LD, UK
| | - John F X Diffley
- The Francis Crick Institute, Clare Hall Laboratory, South Mimms, Potters Bar, Hertfordshire EN6 3LD, UK.
| |
Collapse
|
94
|
Gambus A. Termination of Eukaryotic Replication Forks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:163-187. [DOI: 10.1007/978-981-10-6955-0_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
95
|
Nikolova T, Göder A, Parplys A, Borgmann K. DNA Fiber Spreading Assay to Test HDACi Effects on DNA and Its Replication. Methods Mol Biol 2017; 1510:103-113. [PMID: 27761816 DOI: 10.1007/978-1-4939-6527-4_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
DNA fiber spreading assay is an invaluable technique to visualize and follow the spatial and temporal progress of individual DNA replication forks. It provides information on the DNA replication progress and its regulation under normal conditions as well as on replication stress induced by environmental genotoxic agents or cancer drugs. The method relies on the detection of incorporated thymidine analogues during DNA synthesis in the S phase of the cell cycle by indirect immunofluorescence. Here, we describe the procedure established in our laboratories for sequential pulse labeling of human cells with 5-chloro-2'-deoxyuridine (CldU) and 5-iodo-2'-deoxyuridine (IdU), cell lysis, and DNA fiber spreading on slides and sequential immunodetection of the incorporated thymidine analogues by primary antibodies recognizing specifically CldU or IdU alone. We describe also the laser scanning imaging, classification, and measurement of the detected DNA fiber tracks. The obtained quantitative data can be evaluated statistically to reveal the immediate or long-term effects of DNA-damaging agents, DNA repair inhibitors, and epigenetic modulators like HDAC inhibitors on DNA replication in normal and tumor cells.
Collapse
Affiliation(s)
- Teodora Nikolova
- Institute of Toxicology, University Medical Center Mainz, Mainz, Germany.
| | - Anja Göder
- Institute of Toxicology, University Medical Center Mainz, Mainz, Germany
| | - Ann Parplys
- Laboratory of Radiobiology Experimental Radiooncology, Clinic of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin Borgmann
- Laboratory of Radiobiology Experimental Radiooncology, Clinic of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
96
|
Vindigni A, Lopes M. Combining electron microscopy with single molecule DNA fiber approaches to study DNA replication dynamics. Biophys Chem 2016; 225:3-9. [PMID: 27939387 DOI: 10.1016/j.bpc.2016.11.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 10/20/2022]
Abstract
Replication stress is a crucial driver of genomic instability. Understanding the mechanisms of replication stress response is instrumental to improve diagnosis and treatment of human disease. Electron microscopy (EM) is currently the technique of choice to directly visualize a high number of replication intermediates and to monitor their remodeling upon stress. At the same time, DNA fiber analysis is useful to gain mechanistic insight on how genotoxic agents perturb replication fork dynamics genome-wide at single-molecule resolution. Combining these techniques has proven invaluable to achieve a comprehensive view of the mechanisms that ensure error-free processing of damaged replication forks. Here, we review how EM and single-molecule DNA fiber approaches can be used together to shed light into the mechanisms of replication stress response and discuss important cautions to be taken into account when comparing results obtained by EM and DNA fiber.
Collapse
Affiliation(s)
- Alessandro Vindigni
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
97
|
Oestergaard VH, Lisby M. Transcription-replication conflicts at chromosomal fragile sites-consequences in M phase and beyond. Chromosoma 2016; 126:213-222. [PMID: 27796495 DOI: 10.1007/s00412-016-0617-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/10/2016] [Accepted: 10/17/2016] [Indexed: 12/29/2022]
Abstract
Collision between the molecular machineries responsible for transcription and replication is an important source of genome instability. Certain transcribed regions known as chromosomal fragile sites are particularly prone to recombine and mutate in a manner that correlates with specific transcription and replication patterns. At the same time, these chromosomal fragile sites engage in aberrant DNA structures in mitosis. Here, we discuss the mechanistic details of transcription-replication conflicts including putative scenarios for R-loop-induced replication inhibition to understand how transcription-replication conflicts transition from S phase into various aberrant DNA structures in mitosis.
Collapse
Affiliation(s)
- Vibe H Oestergaard
- Department of Biology, University of Copenhagen, Ole Maaloees Vej 5, DK-2200, Copenhagen N, Denmark.
| | - Michael Lisby
- Department of Biology, University of Copenhagen, Ole Maaloees Vej 5, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
98
|
Unreplicated DNA remaining from unperturbed S phases passes through mitosis for resolution in daughter cells. Proc Natl Acad Sci U S A 2016; 113:E5757-64. [PMID: 27516545 PMCID: PMC5047195 DOI: 10.1073/pnas.1603252113] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
To prevent rereplication of genomic segments, the eukaryotic cell cycle is divided into two nonoverlapping phases. During late mitosis and G1 replication origins are "licensed" by loading MCM2-7 double hexamers and during S phase licensed replication origins activate to initiate bidirectional replication forks. Replication forks can stall irreversibly, and if two converging forks stall with no intervening licensed origin-a "double fork stall" (DFS)-replication cannot be completed by conventional means. We previously showed how the distribution of replication origins in yeasts promotes complete genome replication even in the presence of irreversible fork stalling. This analysis predicts that DFSs are rare in yeasts but highly likely in large mammalian genomes. Here we show that complementary strand synthesis in early mitosis, ultrafine anaphase bridges, and G1-specific p53-binding protein 1 (53BP1) nuclear bodies provide a mechanism for resolving unreplicated DNA at DFSs in human cells. When origin number was experimentally altered, the number of these structures closely agreed with theoretical predictions of DFSs. The 53BP1 is preferentially bound to larger replicons, where the probability of DFSs is higher. Loss of 53BP1 caused hypersensitivity to licensing inhibition when replication origins were removed. These results provide a striking convergence of experimental and theoretical evidence that unreplicated DNA can pass through mitosis for resolution in the following cell cycle.
Collapse
|
99
|
Stevanoni M, Palumbo E, Russo A. The Replication of Frataxin Gene Is Assured by Activation of Dormant Origins in the Presence of a GAA-Repeat Expansion. PLoS Genet 2016; 12:e1006201. [PMID: 27447727 PMCID: PMC4957762 DOI: 10.1371/journal.pgen.1006201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 06/27/2016] [Indexed: 12/17/2022] Open
Abstract
It is well known that DNA replication affects the stability of several trinucleotide repeats, but whether replication profiles of human loci carrying an expanded repeat differ from those of normal alleles is poorly understood in the endogenous context. We investigated this issue using cell lines from Friedreich's ataxia patients, homozygous for a GAA-repeat expansion in intron 1 of the Frataxin gene. By interphase, FISH we found that in comparison to the normal Frataxin sequence the replication of expanded alleles is slowed or delayed. According to molecular combing, origins never fired within the normal Frataxin allele. In contrast, in mutant alleles dormant origins are recruited within the gene, causing a switch of the prevalent fork direction through the expanded repeat. Furthermore, a global modification of the replication profile, involving origin choice and a differential distribution of unidirectional forks, was observed in the surrounding 850 kb region. These data provide a wide-view of the interplay of events occurring during replication of genes carrying an expanded repeat.
Collapse
Affiliation(s)
| | - Elisa Palumbo
- Department of Biology, University of Padova, Padova, Italy
| | | |
Collapse
|
100
|
Drosopoulos WC, Kosiyatrakul ST, Schildkraut CL. BLM helicase facilitates telomere replication during leading strand synthesis of telomeres. J Cell Biol 2016. [PMID: 26195664 PMCID: PMC4508891 DOI: 10.1083/jcb.201410061] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BLM helicase facilitates telomere replication by resolving G-quadruplex structures that can form in the G-rich repeats during leading strand synthesis. Based on its in vitro unwinding activity on G-quadruplex (G4) DNA, the Bloom syndrome–associated helicase BLM is proposed to participate in telomere replication by aiding fork progression through G-rich telomeric DNA. Single molecule analysis of replicated DNA (SMARD) was used to determine the contribution of BLM helicase to telomere replication. In BLM-deficient cells, replication forks initiating from origins within the telomere, which copy the G-rich strand by leading strand synthesis, moved slower through the telomere compared with the adjacent subtelomere. Fork progression through the telomere was further slowed in the presence of a G4 stabilizer. Using a G4-specific antibody, we found that deficiency of BLM, or another G4-unwinding helicase, the Werner syndrome-associated helicase WRN, resulted in increased G4 structures in cells. Importantly, deficiency of either helicase led to greater increases in G4 DNA detected in the telomere compared with G4 seen genome-wide. Collectively, our findings are consistent with BLM helicase facilitating telomere replication by resolving G4 structures formed during copying of the G-rich strand by leading strand synthesis.
Collapse
Affiliation(s)
| | | | - Carl L Schildkraut
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY 10461
| |
Collapse
|