51
|
Abstract
Members of the Rab or ARF/Sar branches of the Ras GTPase superfamily regulate almost every step of intracellular membrane traffic. A rapidly growing body of evidence indicates that these GTPases do not act as lone agents but are networked to one another through a variety of mechanisms to coordinate the individual events of one stage of transport and to link together the different stages of an entire transport pathway. These mechanisms include guanine nucleotide exchange factor (GEF) cascades, GTPase-activating protein (GAP) cascades, effectors that bind to multiple GTPases, and positive-feedback loops generated by exchange factor-effector interactions. Together these mechanisms can lead to an ordered series of transitions from one GTPase to the next. As each GTPase recruits a unique set of effectors, these transitions help to define changes in the functionality of the membrane compartments with which they are associated.
Collapse
Affiliation(s)
- Emi Mizuno-Yamasaki
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan.
| | | | | |
Collapse
|
52
|
Takatsu H, Baba K, Shima T, Umino H, Kato U, Umeda M, Nakayama K, Shin HW. ATP9B, a P4-ATPase (a putative aminophospholipid translocase), localizes to the trans-Golgi network in a CDC50 protein-independent manner. J Biol Chem 2011; 286:38159-38167. [PMID: 21914794 DOI: 10.1074/jbc.m111.281006] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Type IV P-type ATPases (P4-ATPases) are putative phospholipid flippases that translocate phospholipids from the exoplasmic (lumenal) to the cytoplasmic leaflet of lipid bilayers and are believed to function in complex with CDC50 proteins. In Saccharomyces cerevisiae, five P4-ATPases are localized to specific cellular compartments and are required for vesicle-mediated protein transport from these compartments, suggesting a role for phospholipid translocation in vesicular transport. The human genome encodes 14 P4-ATPases and three CDC50 proteins. However, the subcellular localization of human P4-ATPases and their interactions with CDC50 proteins are poorly understood. Here, we show that class 5 (ATP10A, ATP10B, and ATP10D) and class 6 (ATP11A, ATP11B, and ATP11C) P4-ATPases require CDC50 proteins, primarily CDC50A, for their exit from the endoplasmic reticulum (ER) and final subcellular localization. In contrast, class 2 P4-ATPases (ATP9A and ATP9B) are able to exit the ER in the absence of exogenous CDC50 expression: ATP9B, but not ATP11B, was able to exit the ER despite depletion of CDC50 proteins by RNAi. Although ATP9A and ATP9B show a high overall sequence similarity, ATP9A localizes to endosomes and the trans-Golgi network (TGN), whereas ATP9B localizes exclusively to the TGN. A chimeric ATP9 protein in which the N-terminal cytoplasmic region of ATP9A was replaced with the corresponding region of ATP9B was localized exclusively to the Golgi. These results indicate that ATP9B is able to exit the ER and localize to the TGN independently of CDC50 proteins and that this protein contains a Golgi localization signal in its N-terminal cytoplasmic region.
Collapse
Affiliation(s)
- Hiroyuki Takatsu
- Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Keiko Baba
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takahiro Shima
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Umino
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Utako Kato
- Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8530, Japan
| | - Masato Umeda
- Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8530, Japan
| | - Kazuhisa Nakayama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hye-Won Shin
- Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
53
|
Kadiu I, Nowacek A, McMillan J, Gendelman HE. Macrophage endocytic trafficking of antiretroviral nanoparticles. Nanomedicine (Lond) 2011; 6:975-94. [PMID: 21417829 PMCID: PMC3184214 DOI: 10.2217/nnm.11.27] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
AIM Nanoformulated antiretroviral therapy can improve drug compliance for people infected with HIV. Additional benefits would include specific drug deliveries to viral reservoirs and reduction in systemic toxicities. METHODS In this article, we describe mechanisms of crystalline antiretroviral nanoparticle (NP) uptake, intracellular trafficking and release in human monocyte-derived macrophages. RESULTS Following clathrin-dependent endocytosis NPs bypassed lysosomal degradation by sorting from early endosomes to recycling endosome pathways. Disruption of this pathway by siRNAs or brefeldin-A impaired particle release. Proteomic and biological analysis demonstrated that particle recycling was primarily Rab11 regulated. Particles were released intact and retained complete antiretroviral efficacy. CONCLUSION These results suggest possible pathways of subcellular transport of antiretroviral nanoformulations that preserve both particle integrity and antiretroviral activities demonstrating the potential utility of this approach for targeted drug delivery.
Collapse
Affiliation(s)
- Irena Kadiu
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, 985800 Nebraska Medical Center, Omaha, NE, 68198-5880 USA
| | - Ari Nowacek
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, 985800 Nebraska Medical Center, Omaha, NE, 68198-5880 USA
| | - JoEllyn McMillan
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, 985800 Nebraska Medical Center, Omaha, NE, 68198-5880 USA
| | - Howard E Gendelman
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, 985800 Nebraska Medical Center, Omaha, NE, 68198-5880 USA
| |
Collapse
|
54
|
Fukuda M, Kobayashi H, Ishibashi K, Ohbayashi N. Genome-wide investigation of the Rab binding activity of RUN domains: development of a novel tool that specifically traps GTP-Rab35. Cell Struct Funct 2011; 36:155-70. [PMID: 21737958 DOI: 10.1247/csf.11001] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The RUN domain is a less conserved protein motif that consists of approximately 70 amino acids, and because RUN domains are often found in proteins involved in the regulation of Rab small GTPases, the RUN domain has been suggested to be involved in Rab-mediated membrane trafficking, possibly as a Rab-binding site. However, since the Rab binding activity of most RUN domains has never been investigated, in this study we performed a genome-wide analysis of the Rab binding activity of the RUN domains of 19 different RUN domain-containing proteins by yeast two-hybrid assays with 60 different Rabs as bait. The results showed that only six of them interact with specific Rab isoforms with different Rab binding specificity, i.e., DENND5A/B with Rab6A/B, PLEKHM2 with Rab1A, RUFY2/3 with Rab33, and RUSC2 with Rab1/Rab35/Rab41. We also identified the minimal functional Rab35-binding site of RUSC2 (amino acid residues 982-1199) and succeeded in developing a novel GTP-Rab35-specific trapper, which we named RBD35 (Rab-binding domain specific for Rab35). Recombinant RBD35 was found to trap GTP-Rab35 specifically both in vitro and in PC12 cells, and overexpression of fluorescently tagged RBD35 in PC12 cells strongly inhibited nerve growth factor-dependent neurite outgrowth.
Collapse
Affiliation(s)
- Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Japan.
| | | | | | | |
Collapse
|
55
|
Rossi G, Brennwald P. Yeast homologues of lethal giant larvae and type V myosin cooperate in the regulation of Rab-dependent vesicle clustering and polarized exocytosis. Mol Biol Cell 2011; 22:842-57. [PMID: 21248204 PMCID: PMC3057708 DOI: 10.1091/mbc.e10-07-0570] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Lgl family members play an important role in the regulation of cell polarity in eukaryotic cells. The yeast homologues Sro7 and Sro77 are thought to act downstream of the Rab GTPase Sec4 to promote soluble N-ethylmaleimide-sensitive factor adaptor protein receptor (SNARE) function in post-Golgi transport. In this article, we characterize the interaction between Sro7 and the type V myosin Myo2 and show that this interaction is important for two distinct aspects of Sro7 function. First, we show that this interaction plays a positive role in promoting the polarized localization of Sro7 to sites of active growth. Second, we find evidence that Myo2 negatively regulates Sro7 function in vesicle clustering. Mutants in either Myo2 or Sro7 that are defective for this interaction show hypersensitivity to Sro7 overexpression, which results in Sec4-dependent accumulation of large groups of vesicles in the cytoplasm. This suggests that Myo2 serves a dual function, to both recruit Sro7 to secretory vesicles and inhibit its Rab-dependent tethering activity until vesicles reach the plasma membrane. Thus Sro7 appears to coordinate the spatial and temporal nature of both Rab-dependent tethering and SNARE-dependent membrane fusion of exocytic vesicles with the plasma membrane.
Collapse
Affiliation(s)
- Guendalina Rossi
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7090, USA
| | | |
Collapse
|