51
|
Jara KA, Loening NM, Reardon PN, Yu Z, Woonnimani P, Brooks C, Vesely CH, Barbar EJ. Multivalency, autoinhibition, and protein disorder in the regulation of interactions of dynein intermediate chain with dynactin and the nuclear distribution protein. eLife 2022; 11:e80217. [PMID: 36416224 PMCID: PMC9771362 DOI: 10.7554/elife.80217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
As the only major retrograde transporter along microtubules, cytoplasmic dynein plays crucial roles in the intracellular transport of organelles and other cargoes. Central to the function of this motor protein complex is dynein intermediate chain (IC), which binds the three dimeric dynein light chains at multivalent sites, and dynactin p150Glued and nuclear distribution protein (NudE) at overlapping sites of its intrinsically disordered N-terminal domain. The disorder in IC has hindered cryo-electron microscopy and X-ray crystallography studies of its structure and interactions. Here we use a suite of biophysical methods to reveal how multivalent binding of the three light chains regulates IC interactions with p150Glued and NudE. Using IC from Chaetomium thermophilum, a tractable species to interrogate IC interactions, we identify a significant reduction in binding affinity of IC to p150Glued and a loss of binding to NudE for constructs containing the entire N-terminal domain as well as for full-length constructs when compared to the tight binding observed with short IC constructs. We attribute this difference to autoinhibition caused by long-range intramolecular interactions between the N-terminal single α-helix of IC, the common site for p150Glued, and NudE binding, and residues closer to the end of the N-terminal domain. Reconstitution of IC subcomplexes demonstrates that autoinhibition is differentially regulated by light chains binding, underscoring their importance both in assembly and organization of IC, and in selection between multiple binding partners at the same site.
Collapse
Affiliation(s)
- Kayla A Jara
- Department of Biochemistry and Biophysics, Oregon State UniversityCorvallisUnited States
| | | | - Patrick N Reardon
- Department of Biochemistry and Biophysics, Oregon State UniversityCorvallisUnited States
- Oregon State University NMR FacilityCorvallisUnited States
| | - Zhen Yu
- Department of Biochemistry and Biophysics, Oregon State UniversityCorvallisUnited States
| | - Prajna Woonnimani
- Department of Biochemistry and Biophysics, Oregon State UniversityCorvallisUnited States
| | - Coban Brooks
- Department of Biochemistry and Biophysics, Oregon State UniversityCorvallisUnited States
| | - Cat H Vesely
- Department of Biochemistry and Biophysics, Oregon State UniversityCorvallisUnited States
| | - Elisar J Barbar
- Department of Biochemistry and Biophysics, Oregon State UniversityCorvallisUnited States
| |
Collapse
|
52
|
d'Amico EA, Ud Din Ahmad M, Cmentowski V, Girbig M, Müller F, Wohlgemuth S, Brockmeyer A, Maffini S, Janning P, Vetter IR, Carter AP, Perrakis A, Musacchio A. Conformational transitions of the Spindly adaptor underlie its interaction with Dynein and Dynactin. J Cell Biol 2022; 221:213466. [PMID: 36107127 PMCID: PMC9481740 DOI: 10.1083/jcb.202206131] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/02/2022] [Accepted: 08/17/2022] [Indexed: 11/22/2022] Open
Abstract
Cytoplasmic Dynein 1, or Dynein, is a microtubule minus end-directed motor. Dynein motility requires Dynactin and a family of activating adaptors that stabilize the Dynein-Dynactin complex and promote regulated interactions with cargo in space and time. How activating adaptors limit Dynein activation to specialized subcellular locales is unclear. Here, we reveal that Spindly, a mitotic Dynein adaptor at the kinetochore corona, exists natively in a closed conformation that occludes binding of Dynein-Dynactin to its CC1 box and Spindly motif. A structure-based analysis identified various mutations promoting an open conformation of Spindly that binds Dynein-Dynactin. A region of Spindly downstream from the Spindly motif and not required for cargo binding faces the CC1 box and stabilizes the intramolecular closed conformation. This region is also required for robust kinetochore localization of Spindly, suggesting that kinetochores promote Spindly activation to recruit Dynein. Thus, our work illustrates how specific Dynein activation at a defined cellular locale may require multiple factors.
Collapse
Affiliation(s)
- Ennio A d'Amico
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Misbha Ud Din Ahmad
- Oncode Institute and Department of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Verena Cmentowski
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany.,Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | | | - Franziska Müller
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Sabine Wohlgemuth
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Andreas Brockmeyer
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Dortmund, Germany
| | - Stefano Maffini
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Petra Janning
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Dortmund, Germany
| | - Ingrid R Vetter
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | | | - Anastassis Perrakis
- Oncode Institute and Department of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany.,Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
53
|
Khalaf-Nazzal R, Fasham J, Inskeep KA, Blizzard LE, Leslie JS, Wakeling MN, Ubeyratna N, Mitani T, Griffith JL, Baker W, Al-Hijawi F, Keough KC, Gezdirici A, Pena L, Spaeth CG, Turnpenny PD, Walsh JR, Ray R, Neilson A, Kouranova E, Cui X, Curiel DT, Pehlivan D, Akdemir ZC, Posey JE, Lupski JR, Dobyns WB, Stottmann RW, Crosby AH, Baple EL. Bi-allelic CAMSAP1 variants cause a clinically recognizable neuronal migration disorder. Am J Hum Genet 2022; 109:2068-2079. [PMID: 36283405 PMCID: PMC9674946 DOI: 10.1016/j.ajhg.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/27/2022] [Indexed: 01/26/2023] Open
Abstract
Non-centrosomal microtubules are essential cytoskeletal filaments that are important for neurite formation, axonal transport, and neuronal migration. They require stabilization by microtubule minus-end-targeting proteins including the CAMSAP family of molecules. Using exome sequencing on samples from five unrelated families, we show that bi-allelic CAMSAP1 loss-of-function variants cause a clinically recognizable, syndromic neuronal migration disorder. The cardinal clinical features of the syndrome include a characteristic craniofacial appearance, primary microcephaly, severe neurodevelopmental delay, cortical visual impairment, and seizures. The neuroradiological phenotype comprises a highly recognizable combination of classic lissencephaly with a posterior more severe than anterior gradient similar to PAFAH1B1(LIS1)-related lissencephaly and severe hypoplasia or absence of the corpus callosum; dysplasia of the basal ganglia, hippocampus, and midbrain; and cerebellar hypodysplasia, similar to the tubulinopathies, a group of monogenic tubulin-associated disorders of cortical dysgenesis. Neural cell rosette lineages derived from affected individuals displayed findings consistent with these phenotypes, including abnormal morphology, decreased cell proliferation, and neuronal differentiation. Camsap1-null mice displayed increased perinatal mortality, and RNAScope studies identified high expression levels in the brain throughout neurogenesis and in facial structures, consistent with the mouse and human neurodevelopmental and craniofacial phenotypes. Together our findings confirm a fundamental role of CAMSAP1 in neuronal migration and brain development and define bi-allelic variants as a cause of a clinically distinct neurodevelopmental disorder in humans and mice.
Collapse
Affiliation(s)
- Reham Khalaf-Nazzal
- Biomedical Sciences Department, Faculty of Medicine, Arab American University of Palestine, Jenin P227, Palestine
| | - James Fasham
- Department of Clinical and Biomedical Science, University of Exeter Faculty of Health and Life Science, RILD building, Barrack Road, Exeter EX2 5DW, UK; Peninsula Clinical Genetics Service, Royal Devon University Healthcare NHS Foundation Trust (Heavitree Hospital), Gladstone Road, Exeter EX1 2ED, UK
| | - Katherine A Inskeep
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7016, Cincinnati, OH 45229, USA; Institute for Genomic Medicine at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Lauren E Blizzard
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7016, Cincinnati, OH 45229, USA
| | - Joseph S Leslie
- Department of Clinical and Biomedical Science, University of Exeter Faculty of Health and Life Science, RILD building, Barrack Road, Exeter EX2 5DW, UK
| | - Matthew N Wakeling
- Department of Clinical and Biomedical Science, University of Exeter Faculty of Health and Life Science, RILD building, Barrack Road, Exeter EX2 5DW, UK
| | - Nishanka Ubeyratna
- Department of Clinical and Biomedical Science, University of Exeter Faculty of Health and Life Science, RILD building, Barrack Road, Exeter EX2 5DW, UK
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jennifer L Griffith
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wisam Baker
- Paediatrics Department, Dr. Khalil Suleiman Government Hospital, Jenin, Palestine
| | - Fida' Al-Hijawi
- Paediatrics Community Outpatient Clinics, Palestinian Ministry of Health, Jenin, Palestine
| | - Karen C Keough
- Department of Pediatrics, Dell Medical School, 1400 Barbara Jordan Boulevard, Austin, TX 78723, USA; Child Neurology Consultants of Austin, 7940 Shoal Creek Boulevard, Suite 100, Austin, TX 78757, USA
| | - Alper Gezdirici
- Department of Medical Genetics, Başakşehir Çam and Sakura City Hospital, 34480 Istanbul, Turkey
| | - Loren Pena
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7016, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Christine G Spaeth
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7016, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Peter D Turnpenny
- Department of Clinical and Biomedical Science, University of Exeter Faculty of Health and Life Science, RILD building, Barrack Road, Exeter EX2 5DW, UK; Peninsula Clinical Genetics Service, Royal Devon University Healthcare NHS Foundation Trust (Heavitree Hospital), Gladstone Road, Exeter EX1 2ED, UK
| | - Joseph R Walsh
- Department of Neurological Surgery, School of Medicine, Washington University in Saint Louis, St. Louis, MO 63110, USA
| | - Randall Ray
- Departments of Pediatrics and Medical Genetics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Amber Neilson
- Genome Engineering & Stem Cell Center, Department of Genetics, School of Medicine, Washington University in Saint Louis, St. Louis, MO 63110, USA
| | - Evguenia Kouranova
- Genome Engineering & Stem Cell Center, Department of Genetics, School of Medicine, Washington University in Saint Louis, St. Louis, MO 63110, USA
| | - Xiaoxia Cui
- Genome Engineering & Stem Cell Center, Department of Genetics, School of Medicine, Washington University in Saint Louis, St. Louis, MO 63110, USA
| | - David T Curiel
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in Saint Louis, St. Louis, MO 63130, USA; Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, St. Louis, MO 63110, USA; Biologic Therapeutics Center, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, St. Louis, MO 63110, USA
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - Zeynep Coban Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - William B Dobyns
- Departments of Pediatrics and Genetics, University of Minnesota, Minneapolis, MN, USA
| | - Rolf W Stottmann
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7016, Cincinnati, OH 45229, USA; Institute for Genomic Medicine at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH 43205, USA; Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7016, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Andrew H Crosby
- Department of Clinical and Biomedical Science, University of Exeter Faculty of Health and Life Science, RILD building, Barrack Road, Exeter EX2 5DW, UK
| | - Emma L Baple
- Department of Clinical and Biomedical Science, University of Exeter Faculty of Health and Life Science, RILD building, Barrack Road, Exeter EX2 5DW, UK; Peninsula Clinical Genetics Service, Royal Devon University Healthcare NHS Foundation Trust (Heavitree Hospital), Gladstone Road, Exeter EX1 2ED, UK.
| |
Collapse
|
54
|
Kawano D, Pinter K, Chlebowski M, Petralia RS, Wang YX, Nechiporuk AV, Drerup CM. NudC regulated Lis1 stability is essential for the maintenance of dynamic microtubule ends in axon terminals. iScience 2022; 25:105072. [PMID: 36147950 PMCID: PMC9485903 DOI: 10.1016/j.isci.2022.105072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/26/2022] [Accepted: 08/30/2022] [Indexed: 11/28/2022] Open
Abstract
In the axon terminal, microtubule stability is decreased relative to the axon shaft. The dynamic microtubule plus ends found in the axon terminal have many functions, including serving as a docking site for the Cytoplasmic dynein motor. Here, we report an unexplored function of dynein in microtubule regulation in axon terminals: regulation of microtubule stability. Using a forward genetic screen, we identified a mutant with an abnormal axon terminal structure owing to a loss of function mutation in NudC. We show that, in the axon terminal, NudC is a chaperone for the protein Lis1. Decreased Lis1 in nudc axon terminals causes dynein/dynactin accumulation and increased microtubule stability. Microtubule dynamics can be restored by pharmacologically inhibiting dynein, implicating excess dynein motor function in microtubule stabilization. Together, our data support a model in which local NudC-Lis1 modulation of the dynein motor is critical for the regulation of microtubule stability in the axon terminal. NudC, a dynein regulator, is crucial for axon terminal structure NudC mutation leads to a near complete loss of Lis1 protein in axon terminals Lis1 deficits cause accumulation of dynein and cargo in axon terminals Local elevation of dynein increases axon terminal microtubule stability
Collapse
Affiliation(s)
- Dane Kawano
- Unit on Neuronal Cell Biology, National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katherine Pinter
- Unit on Neuronal Cell Biology, National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Madison Chlebowski
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ronald S Petralia
- Advanced Imaging Core, National Institute of Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ya-Xian Wang
- Advanced Imaging Core, National Institute of Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alex V Nechiporuk
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Catherine M Drerup
- Unit on Neuronal Cell Biology, National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892, USA.,Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
55
|
Chaaban S, Carter AP. Structure of dynein-dynactin on microtubules shows tandem adaptor binding. Nature 2022; 610:212-216. [PMID: 36071160 PMCID: PMC7613678 DOI: 10.1038/s41586-022-05186-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/03/2022] [Indexed: 12/14/2022]
Abstract
Cytoplasmic dynein is a microtubule motor that is activated by its cofactor dynactin and a coiled-coil cargo adaptor1-3. Up to two dynein dimers can be recruited per dynactin, and interactions between them affect their combined motile behaviour4-6. Different coiled-coil adaptors are linked to different cargos7,8, and some share motifs known to contact sites on dynein and dynactin4,9-13. There is limited structural information on how the resulting complex interacts with microtubules and how adaptors are recruited. Here we develop a cryo-electron microscopy processing pipeline to solve the high-resolution structure of dynein-dynactin and the adaptor BICDR1 bound to microtubules. This reveals the asymmetric interactions between neighbouring dynein motor domains and how they relate to motile behaviour. We found that two adaptors occupy the complex. Both adaptors make similar interactions with the dyneins but diverge in their contacts with each other and dynactin. Our structure has implications for the stability and stoichiometry of motor recruitment by cargos.
Collapse
Affiliation(s)
- Sami Chaaban
- Division of Structural Studies, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Andrew P Carter
- Division of Structural Studies, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
56
|
Brault J, Bardin S, Lampic M, Carpentieri JA, Coquand L, Penisson M, Lachuer H, Victoria GS, Baloul S, El Marjou F, Boncompain G, Miserey‐Lenkei S, Belvindrah R, Fraisier V, Francis F, Perez F, Goud B, Baffet AD. RAB6
and dynein drive
post‐Golgi
apical transport to prevent neuronal progenitor delamination. EMBO Rep 2022; 23:e54605. [PMID: 35979738 PMCID: PMC9535803 DOI: 10.15252/embr.202254605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 12/03/2022] Open
Abstract
Radial glial (RG) cells are the neural stem cells of the developing neocortex. Apical RG (aRG) cells can delaminate to generate basal RG (bRG) cells, a cell type associated with human brain expansion. Here, we report that aRG delamination is regulated by the post‐Golgi secretory pathway. Using in situ subcellular live imaging, we show that post‐Golgi transport of RAB6+ vesicles occurs toward the minus ends of microtubules and depends on dynein. We demonstrate that the apical determinant Crumbs3 (CRB3) is also transported by dynein. Double knockout of RAB6A/A' and RAB6B impairs apical localization of CRB3 and induces a retraction of aRG cell apical process, leading to delamination and ectopic division. These defects are phenocopied by knockout of the dynein activator LIS1. Overall, our results identify a RAB6‐dynein‐LIS1 complex for Golgi to apical surface transport in aRG cells, and highlights the role of this pathway in the maintenance of neuroepithelial integrity.
Collapse
Affiliation(s)
| | - Sabine Bardin
- Institut Curie PSL Research University, CNRS UMR144 Paris France
| | - Marusa Lampic
- Institut Curie PSL Research University, CNRS UMR144 Paris France
| | | | - Laure Coquand
- Institut Curie PSL Research University, CNRS UMR144 Paris France
- Sorbonne University Paris France
| | - Maxime Penisson
- Sorbonne University Paris France
- INSERM UMR‐S 1270 Paris France
- Institut du Fer à Moulin Paris France
| | - Hugo Lachuer
- Institut Curie PSL Research University, CNRS UMR144 Paris France
| | | | - Sarah Baloul
- Institut Curie PSL Research University, CNRS UMR144 Paris France
| | - Fatima El Marjou
- Institut Curie PSL Research University, CNRS UMR144 Paris France
| | | | | | - Richard Belvindrah
- Sorbonne University Paris France
- INSERM UMR‐S 1270 Paris France
- Institut du Fer à Moulin Paris France
| | - Vincent Fraisier
- UMR 144‐Cell and Tissue Imaging Facility (PICT‐IBiSA) CNRS‐Institut Curie Paris France
| | - Fiona Francis
- Sorbonne University Paris France
- INSERM UMR‐S 1270 Paris France
- Institut du Fer à Moulin Paris France
| | - Franck Perez
- Institut Curie PSL Research University, CNRS UMR144 Paris France
| | - Bruno Goud
- Institut Curie PSL Research University, CNRS UMR144 Paris France
| | - Alexandre D Baffet
- Institut Curie PSL Research University, CNRS UMR144 Paris France
- Institut National de la Santé et de la Recherche Médicale (INSERM) Paris France
| |
Collapse
|
57
|
Villari G, Gioelli N, Valdembri D, Serini G. Vesicle choreographies keep up cell-to-extracellular matrix adhesion dynamics in polarized epithelial and endothelial cells. Matrix Biol 2022; 112:62-71. [PMID: 35961423 DOI: 10.1016/j.matbio.2022.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/21/2022] [Accepted: 08/08/2022] [Indexed: 12/19/2022]
Abstract
In metazoans, cell adhesion to the extracellular matrix (ECM) drives the development, functioning, and repair of different tissues, organs, and systems. Disruption or dysregulation of cell-to-ECM adhesion promote the initiation and progression of several diseases, such as bleeding, immune disorders and cancer. Integrins are major ECM transmembrane receptors, whose function depends on both allosteric changes and exo-endocytic traffic, which carries them to and from the plasma membrane. In apico-basally polarized cells, asymmetric adhesion to the ECM is maintained by continuous targeting of the plasma membrane by vesicles coming from the trans Golgi network and carrying ECM proteins. Active integrin-bound ECM is indeed endocytosed and replaced by the exocytosis of fresh ECM. Such vesicular traffic is finely driven by the teamwork of microtubules (MTs) and their associated kinesin and dynein motors. Here, we review the main cytoskeletal actors involved in the control of the spatiotemporal distribution of active integrins and their ECM ligands, highlighting the key role of the synchronous (ant)agonistic cooperation between MT motors transporting vesicular cargoes, in the same or in opposite direction, in the regulation of traffic logistics, and the establishment of epithelial and endothelial cell polarity.
Collapse
Affiliation(s)
- Giulia Villari
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 10060, Candiolo, Torino, Italy; Department of Oncology, University of Torino School of Medicine, 10060, Candiolo, Torino, Italy
| | - Noemi Gioelli
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 10060, Candiolo, Torino, Italy; Department of Oncology, University of Torino School of Medicine, 10060, Candiolo, Torino, Italy
| | - Donatella Valdembri
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 10060, Candiolo, Torino, Italy; Department of Oncology, University of Torino School of Medicine, 10060, Candiolo, Torino, Italy.
| | - Guido Serini
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 10060, Candiolo, Torino, Italy; Department of Oncology, University of Torino School of Medicine, 10060, Candiolo, Torino, Italy.
| |
Collapse
|
58
|
A homozygous loss-of-function variant in BICD2 is associated with lissencephaly and cerebellar hypoplasia. J Hum Genet 2022; 67:669-673. [PMID: 35896821 PMCID: PMC9592554 DOI: 10.1038/s10038-022-01060-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/15/2022]
Abstract
Developmental brain malformations are rare but are increasingly reported features of BICD2-related disorders. Here, we report a 2-year old boy with microcephaly, profound delay and partial seizures. His brain MRI showed lissencephaly, hypogenesis of corpus callosum, dysplastic hipocampus and cerebellar hypoplasia. Whole-exome sequencing identified a novel homozygous likely pathogenic variant in the BICD2 gene, c.229 C > T p.(Gln77Ter). This is the first report of lissencephaly and cerebellar hypoplasia seen in a patient with homozygous loss-of-function variant in BICD2 that recapitulated the animal model. Our report supports that BICD2 should be considered in the differential diagnosis for patients with lissencephaly and cerebellar hypoplasia Additional clinical features of BICD2 are likely to emerge with the identification of additional patients.
Collapse
|
59
|
Vazquez-Pianzola P, Beuchle D, Saro G, Hernández G, Maldonado G, Brunßen D, Meister P, Suter B. Female meiosis II and pronuclear fusion require the microtubule transport factor Bicaudal D. Development 2022; 149:275749. [DOI: 10.1242/dev.199944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 05/25/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Bicaudal D (BicD) is a dynein adaptor that transports different cargoes along microtubules. Reducing the activity of BicD specifically in freshly laid Drosophila eggs by acute protein degradation revealed that BicD is needed to produce normal female meiosis II products, to prevent female meiotic products from re-entering the cell cycle, and for pronuclear fusion. Given that BicD is required to localize the spindle assembly checkpoint (SAC) components Mad2 and BubR1 to the female meiotic products, it appears that BicD functions to localize these components to control metaphase arrest of polar bodies. BicD interacts with Clathrin heavy chain (Chc), and both proteins localize to centrosomes, mitotic spindles and the tandem spindles during female meiosis II. Furthermore, BicD is required to localize clathrin and the microtubule-stabilizing factors transforming acidic coiled-coil protein (D-TACC/Tacc) and Mini spindles (Msps) correctly to the meiosis II spindles, suggesting that failure to localize these proteins may perturb SAC function. Furthermore, immediately after the establishment of the female pronucleus, D-TACC and Caenorhabditis elegans BicD, tacc and Chc are also needed for pronuclear fusion, suggesting that the underlying mechanism might be more widely used across species.
Collapse
Affiliation(s)
| | - Dirk Beuchle
- Institute of Cell Biology, University of Bern 1 , 3012 Berne , Switzerland
| | - Gabriella Saro
- Institute of Cell Biology, University of Bern 1 , 3012 Berne , Switzerland
| | - Greco Hernández
- Instituto Nacional de Cancerología (INCan) 2 Laboratory of Translation and Cancer, Unit of Biomedical Research on Cancer , , 14080-Tlalpan, Mexico City , Mexico
| | - Giovanna Maldonado
- Instituto Nacional de Cancerología (INCan) 2 Laboratory of Translation and Cancer, Unit of Biomedical Research on Cancer , , 14080-Tlalpan, Mexico City , Mexico
| | - Dominique Brunßen
- Institute of Cell Biology, University of Bern 1 , 3012 Berne , Switzerland
| | - Peter Meister
- Institute of Cell Biology, University of Bern 1 , 3012 Berne , Switzerland
| | - Beat Suter
- Institute of Cell Biology, University of Bern 1 , 3012 Berne , Switzerland
| |
Collapse
|
60
|
Agrawal R, Gillies JP, Zang JL, Zhang J, Garrott SR, Shibuya H, Nandakumar J, DeSantis ME. The KASH5 protein involved in meiotic chromosomal movements is a novel dynein activating adaptor. eLife 2022; 11:e78201. [PMID: 35703493 PMCID: PMC9242646 DOI: 10.7554/elife.78201] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022] Open
Abstract
Dynein harnesses ATP hydrolysis to move cargo on microtubules in multiple biological contexts. Dynein meets a unique challenge in meiosis by moving chromosomes tethered to the nuclear envelope to facilitate homolog pairing essential for gametogenesis. Though processive dynein motility requires binding to an activating adaptor, the identity of the activating adaptor required for dynein to move meiotic chromosomes is unknown. We show that the meiosis-specific nuclear-envelope protein KASH5 is a dynein activating adaptor: KASH5 directly binds dynein using a mechanism conserved among activating adaptors and converts dynein into a processive motor. We map the dynein-binding surface of KASH5, identifying mutations that abrogate dynein binding in vitro and disrupt recruitment of the dynein machinery to the nuclear envelope in cultured cells and mouse spermatocytes in vivo. Our study identifies KASH5 as the first transmembrane dynein activating adaptor and provides molecular insights into how it activates dynein during meiosis.
Collapse
Affiliation(s)
- Ritvija Agrawal
- Department of Molecular, Cellular and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - John P Gillies
- Department of Molecular, Cellular and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Juliana L Zang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Jingjing Zhang
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Sharon R Garrott
- Department of Molecular, Cellular and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
- Biological Chemistry, University of MichiganAnn ArborUnited States
| | - Hiroki Shibuya
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Morgan E DeSantis
- Department of Molecular, Cellular and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
- Biological Chemistry, University of MichiganAnn ArborUnited States
| |
Collapse
|
61
|
Garrott SR, Gillies JP, DeSantis ME. Nde1 and Ndel1: Outstanding Mysteries in Dynein-Mediated Transport. Front Cell Dev Biol 2022; 10:871935. [PMID: 35493069 PMCID: PMC9041303 DOI: 10.3389/fcell.2022.871935] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022] Open
Abstract
Cytoplasmic dynein-1 (dynein) is the primary microtubule minus-end directed molecular motor in most eukaryotes. As such, dynein has a broad array of functions that range from driving retrograde-directed cargo trafficking to forming and focusing the mitotic spindle. Dynein does not function in isolation. Instead, a network of regulatory proteins mediate dynein’s interaction with cargo and modulate dynein’s ability to engage with and move on the microtubule track. A flurry of research over the past decade has revealed the function and mechanism of many of dynein’s regulators, including Lis1, dynactin, and a family of proteins called activating adaptors. However, the mechanistic details of two of dynein’s important binding partners, the paralogs Nde1 and Ndel1, have remained elusive. While genetic studies have firmly established Nde1/Ndel1 as players in the dynein transport pathway, the nature of how they regulate dynein activity is unknown. In this review, we will compare Ndel1 and Nde1 with a focus on discerning if the proteins are functionally redundant, outline the data that places Nde1/Ndel1 in the dynein transport pathway, and explore the literature supporting and opposing the predominant hypothesis about Nde1/Ndel1’s molecular effect on dynein activity.
Collapse
Affiliation(s)
- Sharon R. Garrott
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - John P. Gillies
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Morgan E. DeSantis
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Morgan E. DeSantis,
| |
Collapse
|
62
|
Keren-Kaplan T, Sarić A, Ghosh S, Williamson CD, Jia R, Li Y, Bonifacino JS. RUFY3 and RUFY4 are ARL8 effectors that promote coupling of endolysosomes to dynein-dynactin. Nat Commun 2022; 13:1506. [PMID: 35314674 PMCID: PMC8938451 DOI: 10.1038/s41467-022-28952-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 02/18/2022] [Indexed: 11/10/2022] Open
Abstract
The small GTPase ARL8 associates with endolysosomes, leading to the recruitment of several effectors that couple endolysosomes to kinesins for anterograde transport along microtubules, and to tethering factors for eventual fusion with other organelles. Herein we report the identification of the RUN- and FYVE-domain-containing proteins RUFY3 and RUFY4 as ARL8 effectors that promote coupling of endolysosomes to dynein-dynactin for retrograde transport along microtubules. Using various methodologies, we find that RUFY3 and RUFY4 interact with both GTP-bound ARL8 and dynein-dynactin. In addition, we show that RUFY3 and RUFY4 promote concentration of endolysosomes in the juxtanuclear area of non-neuronal cells, and drive redistribution of endolysosomes from the axon to the soma in hippocampal neurons. The function of RUFY3 in retrograde transport contributes to the juxtanuclear redistribution of endolysosomes upon cytosol alkalinization. These studies thus identify RUFY3 and RUFY4 as ARL8-dependent, dynein-dynactin adaptors or regulators, and highlight the role of ARL8 in the control of both anterograde and retrograde endolysosome transport.
Collapse
Affiliation(s)
- Tal Keren-Kaplan
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Amra Sarić
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Saikat Ghosh
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Chad D Williamson
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Rui Jia
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Yan Li
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Juan S Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
63
|
Gibson JM, Cui H, Ali MY, Zhao X, Debler EW, Zhao J, Trybus KM, Solmaz SR, Wang C. Coil-to-α-helix transition at the Nup358-BicD2 interface activates BicD2 for dynein recruitment. eLife 2022; 11:74714. [PMID: 35229716 PMCID: PMC8956292 DOI: 10.7554/elife.74714] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Nup358, a protein of the nuclear pore complex, facilitates a nuclear positioning pathway that is essential for many biological processes, including neuromuscular and brain development. Nup358 interacts with the dynein adaptor Bicaudal D2 (BicD2), which in turn recruits the dynein machinery to position the nucleus. However, the molecular mechanisms of the Nup358/BicD2 interaction and the activation of transport remain poorly understood. Here for the first time, we show that a minimal Nup358 domain activates dynein/dynactin/BicD2 for processive motility on microtubules. Using nuclear magnetic resonance titration and chemical exchange saturation transfer, mutagenesis, and circular dichroism spectroscopy, a Nup358 α-helix encompassing residues 2162–2184 was identified, which transitioned from a random coil to an α-helical conformation upon BicD2 binding and formed the core of the Nup358-BicD2 interface. Mutations in this region of Nup358 decreased the Nup358/BicD2 interaction, resulting in decreased dynein recruitment and impaired motility. BicD2 thus recognizes Nup358 through a ‘cargo recognition α-helix,’ a structural feature that may stabilize BicD2 in its activated state and promote processive dynein motility.
Collapse
Affiliation(s)
- James M Gibson
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, United States
| | - Heying Cui
- Department of Chemistry, Binghamton University, Binghamton, United States
| | - M Yusuf Ali
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, United States
| | - Xioaxin Zhao
- Department of Biological Sciences, Binghamton University, Binghamton, United States
| | - Erik W Debler
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, United States
| | - Jing Zhao
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, United States
| | - Kathleen M Trybus
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, United States
| | - Sozanne R Solmaz
- Department of Chemistry, Binghamton University, Binghamton, United States
| | - Chunyu Wang
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, United States
| |
Collapse
|
64
|
Braschi B, Omran H, Witman GB, Pazour GJ, Pfister KK, Bruford EA, King SM. Consensus nomenclature for dyneins and associated assembly factors. J Cell Biol 2022; 221:e202109014. [PMID: 35006274 PMCID: PMC8754002 DOI: 10.1083/jcb.202109014] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/10/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Dyneins are highly complex, multicomponent, microtubule-based molecular motors. These enzymes are responsible for numerous motile behaviors in cytoplasm, mediate retrograde intraflagellar transport (IFT), and power ciliary and flagellar motility. Variants in multiple genes encoding dyneins, outer dynein arm (ODA) docking complex subunits, and cytoplasmic factors involved in axonemal dynein preassembly (DNAAFs) are associated with human ciliopathies and are of clinical interest. Therefore, clear communication within this field is particularly important. Standardizing gene nomenclature, and basing it on orthology where possible, facilitates discussion and genetic comparison across species. Here, we discuss how the human gene nomenclature for dyneins, ODA docking complex subunits, and DNAAFs has been updated to be more functionally informative and consistent with that of the unicellular green alga Chlamydomonas reinhardtii, a key model organism for studying dyneins and ciliary function. We also detail additional nomenclature updates for vertebrate-specific genes that encode dynein chains and other proteins involved in dynein complex assembly.
Collapse
Affiliation(s)
- Bryony Braschi
- HUGO Gene Nomenclature Committee, European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridgeshire, UK
| | - Heymut Omran
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - George B. Witman
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| | - Gregory J. Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Worcester, MA
| | - K. Kevin Pfister
- Cell Biology Department, School of Medicine University of Virginia, Charlottesville, VA
| | - Elspeth A. Bruford
- HUGO Gene Nomenclature Committee, European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridgeshire, UK
- Department of Haematology, University of Cambridge School of Clinical Medicine, Cambridge, Cambridgeshire, UK
| | - Stephen M. King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT
| |
Collapse
|
65
|
Qiu R, Zhang J, Rotty JD, Xiang X. Dynein activation in vivo is regulated by the nucleotide states of its AAA3 domain. Curr Biol 2021; 31:4486-4498.e6. [PMID: 34428469 DOI: 10.1016/j.cub.2021.07.081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/05/2021] [Accepted: 07/29/2021] [Indexed: 01/02/2023]
Abstract
Cytoplasmic dynein is activated by the dynactin complex, cargo adapters and LIS1 (Lissencephaly 1). How this process is regulated in vivo remains unclear. The dynein motor ring contains six AAA+ (ATPases associated with diverse cellular activities) domains. Here, we used the filamentous fungus Aspergillus nidulans to examine whether ATP hydrolysis at AAA3 regulates dynein activation in the context of other regulators. In fungal hyphae, early endosomes undergo dynein-mediated movement away from the microtubule plus ends near the hyphal tip. Dynein normally accumulates at the microtubule plus ends. The early endosomal adaptor Hook protein, together with dynactin, drives dynein activation to cause its relocation to the microtubule minus ends. This activation process depends on LIS1, but LIS1 tends to dissociate from dynein after its activation. In this study, we found that dynein containing a mutation-blocking ATP hydrolysis at AAA3 can undergo LIS1-independent activation, consistent with our genetic data that the same mutation suppresses the growth defect of the A. nidulans LIS1-deletion mutant. Our data also suggest that blocking AAA3 ATP hydrolysis allows dynein activation by dynactin without the early endosomal adaptor. As a consequence, dynein accumulates at microtubule minus ends whereas early endosomes stay near the plus ends. Dynein containing a mutation-blocking ATP binding at AAA3 largely depends on LIS1 for activation, but this mutation abnormally prevents LIS1 dissociation upon dynein activation. Together, our data suggest that the AAA3 ATPase cycle regulates the coordination between dynein activation and cargo binding as well as the dynamic dynein-LIS1 interaction.
Collapse
Affiliation(s)
- Rongde Qiu
- Department of Biochemistry and Molecular Biology, the Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| | - Jun Zhang
- Department of Biochemistry and Molecular Biology, the Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| | - Jeremy D Rotty
- Department of Biochemistry and Molecular Biology, the Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, the Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA.
| |
Collapse
|
66
|
Wang Y, Qiao Y, Cheng Y, Su Y, Song L, Xu Y, Li H, Zhang L, Song J, Zhang X, Wang J, Zhu D, Tang T, Shang Q, Gao C, Wang X, Zhu C, Xing Q. TEP1 is a risk gene for sporadic cerebral palsy. J Genet Genomics 2021; 48:1134-1138. [PMID: 34543729 DOI: 10.1016/j.jgg.2021.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Yangong Wang
- Institutes of Biomedical Sciences and Children's Hospital, Fudan University, Shanghai, 201102, China
| | - Yimeng Qiao
- Institutes of Biomedical Sciences and Children's Hospital, Fudan University, Shanghai, 201102, China
| | - Ye Cheng
- Institutes of Biomedical Sciences and Children's Hospital, Fudan University, Shanghai, 201102, China
| | - Yu Su
- Institutes of Biomedical Sciences and Children's Hospital, Fudan University, Shanghai, 201102, China
| | - Lili Song
- Institutes of Biomedical Sciences and Children's Hospital, Fudan University, Shanghai, 201102, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Department of Pediatrics, The 3rd Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, 450052, China; Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou, 450052, China
| | - Hongwei Li
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Department of Pediatrics, The 3rd Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, 450052, China
| | - Lingling Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Department of Pediatrics, The 3rd Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, 450052, China
| | - Juan Song
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Department of Pediatrics, The 3rd Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaoli Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Department of Pediatrics, The 3rd Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, 450052, China
| | - Jun Wang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Department of Pediatrics, The 3rd Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, 450052, China
| | - Dengna Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Department of Pediatrics, The 3rd Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, 450052, China
| | - Tianxiang Tang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Qing Shang
- Department of Pediatrics, Children's Hospital of Zhengzhou University and Henan Children's Hospital, Zhengzhou, 450053, China
| | - Chao Gao
- Department of Pediatrics, Children's Hospital of Zhengzhou University and Henan Children's Hospital, Zhengzhou, 450053, China
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Department of Pediatrics, The 3rd Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, 450052, China; Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Department of Pediatrics, The 3rd Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, 450052, China; Department of Women's and Children's Health, Karolinska Institutet, Stockholm, 17177, Sweden; Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden.
| | - Qinghe Xing
- Institutes of Biomedical Sciences and Children's Hospital, Fudan University, Shanghai, 201102, China; Shanghai Center for Women and Children's Health, Shanghai, 200062, China.
| |
Collapse
|
67
|
Fenton AR, Jongens TA, Holzbaur ELF. Mitochondrial adaptor TRAK2 activates and functionally links opposing kinesin and dynein motors. Nat Commun 2021; 12:4578. [PMID: 34321481 PMCID: PMC8319186 DOI: 10.1038/s41467-021-24862-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 07/01/2021] [Indexed: 02/03/2023] Open
Abstract
Mitochondria are transported along microtubules by opposing kinesin and dynein motors. Kinesin-1 and dynein-dynactin are linked to mitochondria by TRAK proteins, but it is unclear how TRAKs coordinate these motors. We used single-molecule imaging of cell lysates to show that TRAK2 robustly activates kinesin-1 for transport toward the microtubule plus-end. TRAK2 is also a novel dynein activating adaptor that utilizes a conserved coiled-coil motif to interact with dynein to promote motility toward the microtubule minus-end. However, dynein-mediated TRAK2 transport is minimal unless the dynein-binding protein LIS1 is present at a sufficient level. Using co-immunoprecipitation and co-localization experiments, we demonstrate that TRAK2 forms a complex containing both kinesin-1 and dynein-dynactin. These motors are functionally linked by TRAK2 as knockdown of either kinesin-1 or dynein-dynactin reduces the initiation of TRAK2 transport toward either microtubule end. We propose that TRAK2 coordinates kinesin-1 and dynein-dynactin as an interdependent motor complex, providing integrated control of opposing motors for the proper transport of mitochondria.
Collapse
Affiliation(s)
- Adam R Fenton
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Thomas A Jongens
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Erika L F Holzbaur
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
68
|
Abstract
Dyneins make up a family of AAA+ motors that move toward the minus end of microtubules. Cytoplasmic dynein is responsible for transporting intracellular cargos in interphase cells and mediating spindle assembly and chromosome positioning during cell division. Other dynein isoforms transport cargos in cilia and power ciliary beating. Dyneins were the least studied of the cytoskeletal motors due to challenges in the reconstitution of active dynein complexes in vitro and the scarcity of high-resolution methods for in-depth structural and biophysical characterization of these motors. These challenges have been recently addressed, and there have been major advances in our understanding of the activation, mechanism, and regulation of dyneins. This review synthesizes the results of structural and biophysical studies for each class of dynein motors. We highlight several outstanding questions about the regulation of bidirectional transport along microtubules and the mechanisms that sustain self-coordinated oscillations within motile cilia.
Collapse
Affiliation(s)
- John T Canty
- Biophysics Graduate Group, University of California, Berkeley, California 94720, USA;
| | - Ruensern Tan
- Department of Molecular and Cellular Biology, University of California, Berkeley, California 94720, USA
| | - Emre Kusakci
- Biophysics Graduate Group, University of California, Berkeley, California 94720, USA;
| | - Jonathan Fernandes
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Ahmet Yildiz
- Biophysics Graduate Group, University of California, Berkeley, California 94720, USA; .,Department of Molecular and Cellular Biology, University of California, Berkeley, California 94720, USA.,Physics Department, University of California, Berkeley, California 94720, USA
| |
Collapse
|
69
|
Tumurkhuu M, Batbuyan U, Yuzawa S, Munkhsaikhan Y, Batmunkh G, Nishimura W. A novel BICD2 mutation of a patient with Spinal Muscular Atrophy Lower Extremity Predominant 2. Intractable Rare Dis Res 2021; 10:102-108. [PMID: 33996355 PMCID: PMC8122317 DOI: 10.5582/irdr.2021.01004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The bicaudal D homolog 2 (BICD2) gene encodes a protein required for the stable complex of dynein and dynactin, which functions as a motor protein working along the microtubule cytoskeleton. Both inherited and de novo variants of BICD2 are reported with autosomal dominant spinal muscular atrophy with lower extremity predominance (SMALED2). Here, we report a male patient with a novel mutation in the BICD2 gene caused by a heterozygous substitution of arginine with cysteine at residue 162 (Arg162Cys); inherited from his asymptomatic mother. The patient showed typical clinical symptoms of SMALED2, which was genetically confirmed by sequencing. The Arg162Cys mutant clusters with four previously reported variants (c.361C>G, p.Leu121Val; c.581A>G, p.Gln194Arg; c.320C>T, p.Ser107Leu; c.565A>T, p.Ile189Phe) in a region that binds to the dynein-dynactin complex (DDC). The BICD2 domain structures were predicted and the Arg162Cys mutation was localized in the N-terminus coiled-coil segment 1 (CC1) domain. Protein modeling of BICD2's CC1 domain predicted that the Arg162Cys missense variant disrupted interactions with dynein cytoplasmic 1 heavy chain 1 within the DDC. The mutant did this by either changing the electrostatic surface potential or making a broader hydrophobic unit with the neighboring residues. This hereditary case supports the complex and broad genotype-phenotype correlation of BICD2 mutations, which could be explained by incomplete penetrance or variable expressivity in the next generation.
Collapse
Affiliation(s)
- Munkhtuya Tumurkhuu
- Department of Molecular Biology, International University of Health and Welfare, School of Medicine, Narita, Chiba, Japan
- Department of Genetics and Molecular Biology, School of Bio-Medicine, Mongolian National University of Medical Sciences, Mongolia
- Address correspondence to:Munkhtuya Tumurkhuu, Department of Molecular Biology, School of Medicine, International University of Health and Welfare, 4-3 Kozunomori, Narita, Chiba 286-8686, Japan. E-mail: , munkhtuya.tumurkhuu@ gmail.com
| | - Uranchimeg Batbuyan
- Department of Genetics and Molecular Biology, School of Bio-Medicine, Mongolian National University of Medical Sciences, Mongolia
| | - Satoru Yuzawa
- Department of Biochemistry, International University of Health and Welfare, School of Medicine, Narita, Chiba, Japan
| | - Yanjinlkham Munkhsaikhan
- Department of Genetics and Molecular Biology, School of Bio-Medicine, Mongolian National University of Medical Sciences, Mongolia
| | - Ganbayar Batmunkh
- Laboratory of Medical Genetics, National Center of Maternal and Child Health, Mongolia
| | - Wataru Nishimura
- Department of Molecular Biology, International University of Health and Welfare, School of Medicine, Narita, Chiba, Japan
| |
Collapse
|
70
|
Cui H, Ali MY, Goyal P, Zhang K, Loh JY, Trybus KM, Solmaz SR. Coiled-coil registry shifts in the F684I mutant of Bicaudal D result in cargo-independent activation of dynein motility. Traffic 2021; 21:463-478. [PMID: 32378283 DOI: 10.1111/tra.12734] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 11/28/2022]
Abstract
The dynein adaptor Drosophila Bicaudal D (BicD) is auto-inhibited and activates dynein motility only after cargo is bound, but the underlying mechanism is elusive. In contrast, we show that the full-length BicD/F684I mutant activates dynein processivity even in the absence of cargo. Our X-ray structure of the C-terminal domain of the BicD/F684I mutant reveals a coiled-coil registry shift; in the N-terminal region, the two helices of the homodimer are aligned, whereas they are vertically shifted in the wild-type. One chain is partially disordered and this structural flexibility is confirmed by computations, which reveal that the mutant transitions back and forth between the two registries. We propose that a coiled-coil registry shift upon cargo-binding activates BicD for dynein recruitment. Moreover, the human homolog BicD2/F743I exhibits diminished binding of cargo adaptor Nup358, implying that a coiled-coil registry shift may be a mechanism to modulate cargo selection for BicD2-dependent transport pathways.
Collapse
Affiliation(s)
- Heying Cui
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York, USA
| | - M Yusuf Ali
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, USA
| | - Puja Goyal
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York, USA
| | - Kaiqi Zhang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York, USA
| | - Jia Ying Loh
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York, USA
| | - Kathleen M Trybus
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, USA
| | - Sozanne R Solmaz
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York, USA
| |
Collapse
|
71
|
Opposing roles for Egalitarian and Staufen in transport, anchoring and localization of oskar mRNA in the Drosophila oocyte. PLoS Genet 2021; 17:e1009500. [PMID: 33798193 PMCID: PMC8046350 DOI: 10.1371/journal.pgen.1009500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/14/2021] [Accepted: 03/19/2021] [Indexed: 11/19/2022] Open
Abstract
Localization of oskar mRNA includes two distinct phases: transport from nurse cells to the oocyte, a process typically accompanied by cortical anchoring in the oocyte, followed by posterior localization within the oocyte. Signals within the oskar 3' UTR directing transport are individually weak, a feature previously hypothesized to facilitate exchange between the different localization machineries. We show that alteration of the SL2a stem-loop structure containing the oskar transport and anchoring signal (TAS) removes an inhibitory effect such that in vitro binding by the RNA transport factor, Egalitarian, is elevated as is in vivo transport from the nurse cells into the oocyte. Cortical anchoring within the oocyte is also enhanced, interfering with posterior localization. We also show that mutation of Staufen recognized structures (SRSs), predicted binding sites for Staufen, disrupts posterior localization of oskar mRNA just as in staufen mutants. Two SRSs in SL2a, one overlapping the Egalitarian binding site, are inferred to mediate Staufen-dependent inhibition of TAS anchoring activity, thereby promoting posterior localization. The other three SRSs in the oskar 3' UTR are also required for posterior localization, including two located distant from any known transport signal. Staufen, thus, plays multiple roles in localization of oskar mRNA.
Collapse
|
72
|
Cellular and Viral Determinants of HSV-1 Entry and Intracellular Transport towards Nucleus of Infected Cells. J Virol 2021; 95:JVI.02434-20. [PMID: 33472938 PMCID: PMC8092704 DOI: 10.1128/jvi.02434-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
HSV-1 employs cellular motor proteins and modulates kinase pathways to facilitate intracellular virion capsid transport. Previously, we and others have shown that the Akt inhibitor miltefosine inhibited virus entry. Herein, we show that the protein kinase C inhibitors staurosporine (STS) and gouml inhibited HSV-1 entry into Vero cells, and that miltefosine prevents HSV-1 capsid transport toward the nucleus. We have reported that the HSV-1 UL37 tegument protein interacts with the dynein motor complex during virus entry and virion egress, while others have shown that the UL37/UL36 protein complex binds dynein and kinesin causing a saltatory movement of capsids in neuronal axons. Co-immoprecipitation experiments confirmed previous findings from our laboratory that the UL37 protein interacted with the dynein intermediate chain (DIC) at early times post infection. This UL37-DIC interaction was concurrent with DIC phosphorylation in infected, but not mock-infected cells. Miltefosine inhibited dynein phosphorylation when added before, but not after virus entry. Inhibition of motor accessory protein dynactins (DCTN2, DCTN3), the adaptor proteins EB1 and the Bicaudal D homolog 2 (BICD2) expression using lentiviruses expressing specific shRNAs, inhibited intracellular transport of virion capsids toward the nucleus of human neuroblastoma (SK-N-SH) cells. Co-immunoprecipitation experiments revealed that the major capsid protein Vp5 interacted with dynactins (DCTN1/p150 and DCTN4/p62) and the end-binding protein (EB1) at early times post infection. These results show that Akt and kinase C are involved in virus entry and intracellular transport of virion capsids, but not in dynein activation via phosphorylation. Importantly, both the UL37 and Vp5 viral proteins are involved in dynein-dependent transport of virion capsids to the nuclei of infected cells.Importance. Herpes simplex virus type-1 enter either via fusion at the plasma membranes or endocytosis depositing the virion capsids into the cytoplasm of infected cells. The viral capsids utilize the dynein motor complex to move toward the nuclei of infected cells using the microtubular network. This work shows that inhibitors of the Akt kinase and kinase C inhibit not only viral entry into cells but also virion capsid transport toward the nucleus. In addition, the work reveals that the virion protein ICP5 (VP5) interacts with the dynein cofactor dynactin, while the UL37 protein interacts with the dynein intermediate chain (DIC). Importantly, neither Akt nor Kinase C was found to be responsible for phosphorylation/activation of dynein indicating that other cellular or viral kinases may be involved.
Collapse
|
73
|
Vallee RB, Yi J, Quintremil S, Khobrekar N. Roles of the multivalent dynein adaptors BicD2 and RILP in neurons. Neurosci Lett 2021; 752:135796. [PMID: 33667600 DOI: 10.1016/j.neulet.2021.135796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 01/18/2023]
Abstract
Cytoplasmic dynein is responsible for all forms of retrograde transport in neurons and other cells. Work over several years has led to the identification of a class of coiled-coil domain containing "adaptor" proteins that are responsible for expanding dynein's range of cargo interactions, as well as regulating dynein motor behavior. This brief review focuses first on the BicD family of adaptor proteins, which clearly serve to expand the number of dynein cargo interactions. RILP, another adaptor protein, also interacts with multiple proteins. Surprisingly, this is to mediate a series of steps within a common pathway, higher eukaryotic autophagy. These distinct features have important implications for understanding the full range of dynein adaptor functions.
Collapse
Affiliation(s)
- Richard B Vallee
- Columbia University, Department of Pathology and Cell Biology, United States
| | - Julie Yi
- Columbia University, Department of Pathology and Cell Biology, United States
| | | | - Noopur Khobrekar
- Columbia University, Department of Pathology and Cell Biology, United States.
| |
Collapse
|
74
|
Affiliation(s)
- Ahmet Yildiz
- Physics Department and Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, USA.
| |
Collapse
|
75
|
Priyanga J, Guha G, Bhakta-Guha D. Microtubule motors in centrosome homeostasis: A target for cancer therapy? Biochim Biophys Acta Rev Cancer 2021; 1875:188524. [PMID: 33582170 DOI: 10.1016/j.bbcan.2021.188524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 01/02/2023]
Abstract
Cancer is a grievous concern to human health, owing to a massive heterogeneity in its cause and impact. Dysregulation (numerical, positional and/or structural) of centrosomes is one of the notable factors among those that promote onset and progression of cancers. In a normal dividing cell, a pair of centrosomes forms two poles, thereby governing the formation of a bipolar spindle assembly. A large number of cancer cells, however, harbor supernumerary centrosomes, which mimic the bipolar arrangement in normal cells by centrosome clustering (CC) into two opposite poles, thus developing a pseudo-bipolar spindle assembly. Manipulation of centrosome homeostasis is the paramount pre-requisite for the evasive strategy of CC in cancers. Out of the varied factors that uphold centrosome integrity, microtubule motors (MiMos) play a critical role. Categorized as dyneins and kinesins, MiMos are involved in cohesion of centrosomes, and also facilitate the maintenance of the numerical, positional and structural integrity of centrosomes. Herein, we elucidate the decisive mechanisms undertaken by MiMos to mediate centrosome homeostasis, and how dysregulation of the same might lead to CC in cancer cells. Understanding the impact of MiMos on CC might open up avenues toward a credible therapeutic target against diverse cancers.
Collapse
Affiliation(s)
- J Priyanga
- Cellular Dyshomeostasis Laboratory (CDHL), School of Chemical and Bio Technology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India
| | - Gunjan Guha
- Cellular Dyshomeostasis Laboratory (CDHL), School of Chemical and Bio Technology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India.
| | - Dipita Bhakta-Guha
- Cellular Dyshomeostasis Laboratory (CDHL), School of Chemical and Bio Technology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India.
| |
Collapse
|
76
|
Shomron O, Hirschberg K, Burakov A, Kamentseva R, Kornilova E, Nadezhdina E, Brodsky I. Positioning of endoplasmic reticulum exit sites around the Golgi depends on BicaudalD2 and Rab6 activity. Traffic 2020; 22:64-77. [PMID: 33314495 DOI: 10.1111/tra.12774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 01/22/2023]
Abstract
The endoplasmic reticulum (ER) is involved in biogenesis, modification and transport of secreted and membrane proteins. The ER membranes are spread throughout the cell cytoplasm as well as the export domains known as ER exit sites (ERES). A subpopulation of ERES is centrally localized proximal to the Golgi apparatus. The significance of this subpopulation on ER-to-Golgi transport remains unclear. Transport carriers (TCs) form at the ERES via a COPII-dependent mechanism and move to Golgi on microtubule (MT) tracks. It was shown previously that ERES are distributed along MTs and undergo chaotic short-range movements and sporadic rapid long-range movements. The long-range movements of ERES are impaired by either depolymerization of MTs or inhibition of dynein, suggesting that ERES central concentration is mediated by dynein activity. We demonstrate that the processive movements of ERES are frequently coupled with the TC departure. Using the Sar1a[H79G]-induced ERES clustering at the perinuclear region, we identified BicaudalD2 (BicD2) and Rab6 as components of the dynein adaptor complex which drives perinuclear ERES concentration at the cell center. BicD2 partially colocalized with ERES and with TC. Peri-Golgi ERES localization was significantly affected by inhibition of BicD2 function with its N-terminal fragment or inhibition of Rab6 function with its dominant-negative mutant. Golgi accumulation of secretory protein was delayed by inhibition of Rab6 and BicD2. Thus, we conclude that a BicD2/Rab6 dynein adaptor is required for maintenance of Golgi-associated ERES. We propose that Golgi-associated ERES may enhance the efficiency of the ER-to-Golgi transport.
Collapse
Affiliation(s)
- Olga Shomron
- Tel-Aviv University, Sackler School of Medicine, Tel Aviv, Israel
| | - Koret Hirschberg
- Tel-Aviv University, Sackler School of Medicine, Tel Aviv, Israel
| | - Anton Burakov
- Lomonosov Moscow State University, A. N. Belozersky Institute for Physico-Chemical Biology, Moscow, Russian Federation
| | - Rimma Kamentseva
- Division of Intracellular Signaling and Transport, Institute of Cytology of Russian Academy of Science, St.Petersburg, Russian Federation
| | - Elena Kornilova
- Division of Intracellular Signaling and Transport, Institute of Cytology of Russian Academy of Science, St.Petersburg, Russian Federation
| | - Elena Nadezhdina
- Division of Cell Biology, Institute of Protein Research of Russian Academy of Science, Moscow, Russian Federation
| | - Ilya Brodsky
- Lomonosov Moscow State University, A. N. Belozersky Institute for Physico-Chemical Biology, Moscow, Russian Federation
| |
Collapse
|
77
|
Castro D, Nunes V, Lima JT, Ferreira JG, Aguiar P. Trackosome: a computational toolbox to study the spatiotemporal dynamics of centrosomes, nuclear envelope and cellular membrane. J Cell Sci 2020; 133:jcs.252254. [PMID: 33199521 DOI: 10.1242/jcs.252254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 11/02/2020] [Indexed: 11/20/2022] Open
Abstract
During the initial stages of mitosis, multiple mechanisms drive centrosome separation and positioning. How they are coordinated to promote centrosome migration to opposite sides of the nucleus remains unclear. Here, we present Trackosome, an open-source image analysis software for tracking centrosomes and reconstructing nuclear and cellular membranes, based on volumetric live-imaging data. The toolbox runs in MATLAB and provides a graphical user interface for easy access to the tracking and analysis algorithms. It provides detailed quantification of the spatiotemporal relationships between centrosomes, nuclear envelope and cellular membrane, and can also be used to measure the dynamic fluctuations of the nuclear envelope. These fluctuations are important because they are related to the mechanical forces exerted on the nucleus by its adjacent cytoskeletal structures. Unlike previous algorithms based on circular or elliptical approximations, Trackosome measures membrane movement in a model-free condition, making it viable for irregularly shaped nuclei. Using Trackosome, we demonstrate significant correlations between the movements of the centrosomes, and identify specific oscillation modes of the nuclear envelope. Overall, Trackosome is a powerful tool that can be used to help unravel new elements in the spatiotemporal dynamics of subcellular structures.
Collapse
Affiliation(s)
- Domingos Castro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Vanessa Nunes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Joana T Lima
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Jorge G Ferreira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal .,Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, 4200-450 Porto, Portugal
| | - Paulo Aguiar
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
78
|
Serra-Marques A, Martin M, Katrukha EA, Grigoriev I, Peeters CAE, Liu Q, Hooikaas PJ, Yao Y, Solianova V, Smal I, Pedersen LB, Meijering E, Kapitein LC, Akhmanova A. Concerted action of kinesins KIF5B and KIF13B promotes efficient secretory vesicle transport to microtubule plus ends. eLife 2020; 9:e61302. [PMID: 33174839 PMCID: PMC7710357 DOI: 10.7554/elife.61302] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/10/2020] [Indexed: 01/30/2023] Open
Abstract
Intracellular transport relies on multiple kinesins, but it is poorly understood which kinesins are present on particular cargos, what their contributions are and whether they act simultaneously on the same cargo. Here, we show that Rab6-positive secretory vesicles are transported from the Golgi apparatus to the cell periphery by kinesin-1 KIF5B and kinesin-3 KIF13B, which determine the location of secretion events. KIF5B plays a dominant role, whereas KIF13B helps Rab6 vesicles to reach freshly polymerized microtubule ends, to which KIF5B binds poorly, likely because its cofactors, MAP7-family proteins, are slow in populating these ends. Sub-pixel localization demonstrated that during microtubule plus-end directed transport, both kinesins localize to the vesicle front and can be engaged on the same vesicle. When vesicles reverse direction, KIF13B relocates to the middle of the vesicle, while KIF5B shifts to the back, suggesting that KIF5B but not KIF13B undergoes a tug-of-war with a minus-end directed motor.
Collapse
Affiliation(s)
- Andrea Serra-Marques
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Maud Martin
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Eugene A Katrukha
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Ilya Grigoriev
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Cathelijn AE Peeters
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Qingyang Liu
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Peter Jan Hooikaas
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Yao Yao
- Departments of Medical Informatics and Radiology, Biomedical Imaging Group Rotterdam, Erasmus University Medical CenterRotterdamNetherlands
| | - Veronika Solianova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Ihor Smal
- Departments of Medical Informatics and Radiology, Biomedical Imaging Group Rotterdam, Erasmus University Medical CenterRotterdamNetherlands
| | - Lotte B Pedersen
- Department of Biology, Section of Cell Biology and Physiology, the August Krogh Building, University of CopenhagenCopenhagenDenmark
| | - Erik Meijering
- Departments of Medical Informatics and Radiology, Biomedical Imaging Group Rotterdam, Erasmus University Medical CenterRotterdamNetherlands
| | - Lukas C Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| |
Collapse
|
79
|
Xiang X, Qiu R. Cargo-Mediated Activation of Cytoplasmic Dynein in vivo. Front Cell Dev Biol 2020; 8:598952. [PMID: 33195284 PMCID: PMC7649786 DOI: 10.3389/fcell.2020.598952] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Cytoplasmic dynein-1 is a minus-end-directed microtubule motor that transports a variety of cargoes including early endosomes, late endosomes and other organelles. In many cell types, dynein accumulates at the microtubule plus end, where it interacts with its cargo to be moved toward the minus end. Dynein binds to its various cargoes via the dynactin complex and specific cargo adapters. Dynactin and some of the coiled-coil-domain-containing cargo adapters not only link dynein to cargo but also activate dynein motility, which implies that dynein is activated by its cellular cargo. Structural studies indicate that a dynein dimer switches between the autoinhibited phi state and an open state; and the binding of dynactin and a cargo adapter to the dynein tails causes the dynein motor domains to have a parallel configuration, allowing dynein to walk processively along a microtubule. Recently, the dynein regulator LIS1 has been shown to be required for dynein activation in vivo, and its mechanism of action involves preventing dynein from switching back to the autoinhibited state. In this review, we will discuss our current understanding of dynein activation and point out the gaps of knowledge on the spatial regulation of dynein in live cells. In addition, we will emphasize the importance of studying a complete set of dynein regulators for a better understanding of dynein regulation in vivo.
Collapse
Affiliation(s)
- Xin Xiang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences - F. Edward Hébert School of Medicine, Bethesda, MD, United States
| | | |
Collapse
|
80
|
Vasudevan A, Koushika SP. Molecular mechanisms governing axonal transport: a C. elegans perspective. J Neurogenet 2020; 34:282-297. [PMID: 33030066 DOI: 10.1080/01677063.2020.1823385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Axonal transport is integral for maintaining neuronal form and function, and defects in axonal transport have been correlated with several neurological diseases, making it a subject of extensive research over the past several years. The anterograde and retrograde transport machineries are crucial for the delivery and distribution of several cytoskeletal elements, growth factors, organelles and other synaptic cargo. Molecular motors and the neuronal cytoskeleton function as effectors for multiple neuronal processes such as axon outgrowth and synapse formation. This review examines the molecular mechanisms governing axonal transport, specifically highlighting the contribution of studies conducted in C. elegans, which has proved to be a tractable model system in which to identify both novel and conserved regulatory mechanisms of axonal transport.
Collapse
Affiliation(s)
- Amruta Vasudevan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Sandhya P Koushika
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
81
|
Vincent J, Preston M, Mouchet E, Laugier N, Corrigan A, Boulanger J, Brown DG, Clark R, Wigglesworth M, Carter AP, Bullock SL. A High-Throughput Cellular Screening Assay for Small-Molecule Inhibitors and Activators of Cytoplasmic Dynein-1-Based Cargo Transport. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2020; 25:985-999. [PMID: 32436764 PMCID: PMC7116108 DOI: 10.1177/2472555220920581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cytoplasmic dynein-1 (hereafter dynein) is a six-subunit motor complex that transports a variety of cellular components and pathogens along microtubules. Dynein's cellular functions are only partially understood, and potent and specific small-molecule inhibitors and activators of this motor would be valuable for addressing this issue. It has also been hypothesized that an inhibitor of dynein-based transport could be used in antiviral or antimitotic therapy, whereas an activator could alleviate age-related neurodegenerative diseases by enhancing microtubule-based transport in axons. Here, we present the first high-throughput screening (HTS) assay capable of identifying both activators and inhibitors of dynein-based transport. This project is also the first collaborative screening report from the Medical Research Council and AstraZeneca agreement to form the UK Centre for Lead Discovery. A cellular imaging assay was used, involving chemically controlled recruitment of activated dynein complexes to peroxisomes. Such a system has the potential to identify molecules that affect multiple aspects of dynein biology in vivo. Following optimization of key parameters, the assay was developed in a 384-well format with semiautomated liquid handling and image acquisition. Testing of more than 500,000 compounds identified both inhibitors and activators of dynein-based transport in multiple chemical series. Additional analysis indicated that many of the identified compounds do not affect the integrity of the microtubule cytoskeleton and are therefore candidates to directly target the transport machinery.
Collapse
Affiliation(s)
- John Vincent
- HTS, Discovery Sciences, Bio Pharmaceuticals R&D, AstraZeneca, Macclesfield, Cheshire, UK
| | - Marian Preston
- HTS, Discovery Sciences, Bio Pharmaceuticals R&D, AstraZeneca, Macclesfield, Cheshire, UK
| | - Elizabeth Mouchet
- HTS, Discovery Sciences, Bio Pharmaceuticals R&D, AstraZeneca, Macclesfield, Cheshire, UK
| | - Nicolas Laugier
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, UK
| | - Adam Corrigan
- Quantitative Biology, Discovery Sciences, Bio Pharmaceuticals R&D, AstraZeneca, Cambridge, Cambridgeshire, UK
| | - Jérôme Boulanger
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, UK
| | - Dean G Brown
- Hit Discovery, Discovery Sciences, Bio Pharmaceuticals R&D, AstraZeneca, Boston, USA
| | - Roger Clark
- Discovery Biology, Discovery Sciences, Bio Pharmaceuticals R&D, AstraZeneca, Cambridge, Cambridgeshire, UK
| | - Mark Wigglesworth
- HTS, Discovery Sciences, Bio Pharmaceuticals R&D, AstraZeneca, Macclesfield, Cheshire, UK
| | - Andrew P Carter
- Division of Structural Studies, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, UK
| | - Simon L Bullock
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, UK
| |
Collapse
|
82
|
Gonçalves JC, Quintremil S, Yi J, Vallee RB. Nesprin-2 Recruitment of BicD2 to the Nuclear Envelope Controls Dynein/Kinesin-Mediated Neuronal Migration In Vivo. Curr Biol 2020; 30:3116-3129.e4. [PMID: 32619477 PMCID: PMC9670326 DOI: 10.1016/j.cub.2020.05.091] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/29/2020] [Accepted: 05/28/2020] [Indexed: 01/06/2023]
Abstract
Vertebrate brain development depends on a complex program of cell proliferation and migration. Post-mitotic neuronal migration in the developing cerebral cortex involves Nesprin-2, which recruits cytoplasmic dynein, kinesin, and actin to the nuclear envelope (NE) in other cell types. However, the relative importance of these interactions in neurons has remained poorly understood. To address these issues, we performed in utero electroporation into the developing rat brain to interfere with Nesprin-2 function. We find that an ∼100-kDa "mini" form of the ∼800-kDa Nesprin-2 protein, which binds dynein and kinesin, is sufficient, remarkably, to support neuronal migration. In contrast to dynein's role in forward nuclear migration in these cells, we find that kinesin-1 inhibition accelerates neuronal migration, suggesting a novel role for the opposite-directed motor proteins in regulating migration velocity. In contrast to studies in fibroblasts, the actin-binding domain of Nesprin-2 was dispensable for neuronal migration. We find further that, surprisingly, the motor proteins interact with Nesprin-2 through the dynein/kinesin "adaptor" BicD2, both in neurons and in non-mitotic fibroblasts. Furthermore, mutation of the Nesprin-2 LEWD sequence, implicated in nuclear envelope kinesin recruitment in other systems, interferes with BicD2 binding. Although disruption of the Nesprin-2/BicD2 interaction severely inhibited nuclear movement, centrosome advance proceeded unimpeded, supporting an independent mechanism for centrosome advance. Our data together implicate Nesprin-2 as a novel and fundamentally important form of BicD2 cargo and help explain BicD2's role in neuronal migration and human disease.
Collapse
Affiliation(s)
- João Carlos Gonçalves
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, NY 10032, USA; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, Braga 4710-057, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal
| | - Sebastian Quintremil
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, NY 10032, USA
| | - Julie Yi
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, NY 10032, USA
| | - Richard B Vallee
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, NY 10032, USA.
| |
Collapse
|
83
|
Markus SM, Marzo MG, McKenney RJ. New insights into the mechanism of dynein motor regulation by lissencephaly-1. eLife 2020; 9:59737. [PMID: 32692650 PMCID: PMC7373426 DOI: 10.7554/elife.59737] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Lissencephaly (‘smooth brain’) is a severe brain disease associated with numerous symptoms, including cognitive impairment, and shortened lifespan. The main causative gene of this disease – lissencephaly-1 (LIS1) – has been a focus of intense scrutiny since its first identification almost 30 years ago. LIS1 is a critical regulator of the microtubule motor cytoplasmic dynein, which transports numerous cargoes throughout the cell, and is a key effector of nuclear and neuronal transport during brain development. Here, we review the role of LIS1 in cellular dynein function and discuss recent key findings that have revealed a new mechanism by which this molecule influences dynein-mediated transport. In addition to reconciling prior observations with this new model for LIS1 function, we also discuss phylogenetic data that suggest that LIS1 may have coevolved with an autoinhibitory mode of cytoplasmic dynein regulation.
Collapse
Affiliation(s)
- Steven M Markus
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Matthew G Marzo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
| |
Collapse
|
84
|
Tsai MH, Cheng HY, Nian FS, Liu C, Chao NH, Chiang KL, Chen SF, Tsai JW. Impairment in dynein-mediated nuclear translocation by BICD2 C-terminal truncation leads to neuronal migration defect and human brain malformation. Acta Neuropathol Commun 2020; 8:106. [PMID: 32665036 PMCID: PMC7362644 DOI: 10.1186/s40478-020-00971-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
During brain development, the nucleus of migrating neurons follows the centrosome and translocates into the leading process. Defects in these migratory events, which affect neuronal migration, cause lissencephaly and other neurodevelopmental disorders. However, the mechanism of nuclear translocation remains elusive. Using whole exome sequencing (WES), we identified a novel nonsense BICD2 variant p.(Lys775Ter) (K775X) from a lissencephaly patient. Interestingly, most BICD2 missense variants have been associated with human spinal muscular atrophy (SMA) without obvious brain malformations. By in utero electroporation, we showed that BicD2 knockdown in mouse embryos inhibited neuronal migration. Surprisingly, we observed severe blockage of neuronal migration in cells overexpressing K775X but not in those expressing wild-type BicD2 or SMA-associated missense variants. The centrosome of the mutant was, on average, positioned farther away from the nucleus, indicating a failure in nuclear translocation without affecting the centrosome movement. Furthermore, BicD2 localized at the nuclear envelope (NE) through its interaction with NE protein Nesprin-2. K775X variant disrupted this interaction and further interrupted the NE recruitment of BicD2 and dynein. Remarkably, fusion of BicD2-K775X with NE-localizing domain KASH resumed neuronal migration. Our results underscore impaired nuclear translocation during neuronal migration as an important pathomechanism of lissencephaly.
Collapse
|
85
|
Canty JT, Yildiz A. Activation and Regulation of Cytoplasmic Dynein. Trends Biochem Sci 2020; 45:440-453. [PMID: 32311337 PMCID: PMC7179903 DOI: 10.1016/j.tibs.2020.02.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/30/2020] [Accepted: 02/04/2020] [Indexed: 12/30/2022]
Abstract
Cytoplasmic dynein is an AAA+ motor that drives the transport of many intracellular cargoes towards the minus end of microtubules (MTs). Previous in vitro studies characterized isolated dynein as an exceptionally weak motor that moves slowly and diffuses on an MT. Recent studies altered this view by demonstrating that dynein remains in an autoinhibited conformation on its own, and processive motility is activated when it forms a ternary complex with dynactin and a cargo adaptor. This complex assembles more efficiently in the presence of Lis1, providing an explanation for why Lis1 is a required cofactor for most cytoplasmic dynein-driven processes in cells. This review describes how dynein motility is activated and regulated by cargo adaptors and accessory proteins.
Collapse
Affiliation(s)
- John T Canty
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Ahmet Yildiz
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cellular Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Physics Department, University of California at Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
86
|
Htet ZM, Gillies JP, Baker RW, Leschziner AE, DeSantis ME, Reck-Peterson SL. LIS1 promotes the formation of activated cytoplasmic dynein-1 complexes. Nat Cell Biol 2020; 22:518-525. [PMID: 32341549 PMCID: PMC7271980 DOI: 10.1038/s41556-020-0506-z] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 03/11/2020] [Indexed: 12/30/2022]
Abstract
Cytoplasmic dynein-1 is a molecular motor that drives nearly all minus-end-directed microtubule-based transport in human cells, performing functions that range from retrograde axonal transport to mitotic spindle assembly1,2. Activated dynein complexes consist of one or two dynein dimers, the dynactin complex and an 'activating adaptor', and they show faster velocity when two dynein dimers are present3-6. Little is known about the assembly process of this massive ~4 MDa complex. Here, using purified recombinant human proteins, we uncover a role for the dynein-binding protein LIS1 in promoting the formation of activated dynein-dynactin complexes that contain two dynein dimers. Complexes activated by proteins representing three families of activating adaptors-BicD2, Hook3 and Ninl-all show enhanced motile properties in the presence of LIS1. Activated dynein complexes do not require sustained LIS1 binding for fast velocity. Using cryo-electron microscopy, we show that human LIS1 binds to dynein at two sites on the motor domain of dynein. Our research suggests that LIS1 binding at these sites functions in multiple stages of assembling the motile dynein-dynactin-activating adaptor complex.
Collapse
Affiliation(s)
- Zaw Min Htet
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Biophysics Graduate Program, Harvard Medical School, Boston, MA, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - John P Gillies
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, CA, USA
| | - Richard W Baker
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Andres E Leschziner
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Division of Biological Sciences, Molecular Biology Section, University of California San Diego, La Jolla, CA, USA
| | - Morgan E DeSantis
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, CA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
87
|
Analysis of gene expression profiles of lung cancer subtypes with machine learning algorithms. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165822. [PMID: 32360590 DOI: 10.1016/j.bbadis.2020.165822] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/13/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022]
Abstract
Lung cancer is one of the most common cancer types worldwide and causes more than one million deaths annually. Lung adenocarcinoma (AC) and lung squamous cell cancer (SCC) are two major lung cancer subtypes and have different characteristics in several aspects. Identifying their differentially expressed genes and different gene expression patterns can deepen our understanding of these two subtypes at the transcriptomic level. In this work, we used several machine learning algorithms to investigate the gene expression profiles of lung AC and lung SCC samples retrieved from Gene Expression Omnibus. First, the profiles were analyzed by using a powerful feature selection method, namely, Monte Carlo feature selection. A feature list, ranking all features according to their importance, and some informative features were obtained. Then, the feature list was used in the incremental feature selection method to extract optimal features, which can allow the support vector machine (SVM) to yield the best performance for classifying lung AC and lung SCC samples. Some top genes (CSTA, TP63, SERPINB13, CLCA2, BICD2, PERP, FAT2, BNC1, ATP11B, FAM83B, KRT5, PARD6G, PKP1) were extensively analyzed to prove that they can be differentially expressed genes between lung AC and lung SCC. Meanwhile, a rule learning procedure was applied on informative features to construct the classification rules. These rules provide a clear procedure of classification and show some different gene expression patterns between lung AC and lung SCC.
Collapse
|
88
|
Lis1 activates dynein motility by modulating its pairing with dynactin. Nat Cell Biol 2020; 22:570-578. [PMID: 32341547 PMCID: PMC7212015 DOI: 10.1038/s41556-020-0501-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 03/03/2020] [Indexed: 12/18/2022]
Abstract
Lissencephaly-1 (Lis1) is a key cofactor for dynein-mediated intracellular transport towards the minus-ends of microtubules. It remains unclear whether Lis1 serves as an inhibitor or an activator of mammalian dynein motility. Here we use single-molecule imaging and optical trapping to show that Lis1 does not directly alter the stepping and force production of individual dynein motors assembled with dynactin and a cargo adaptor. Instead, Lis1 promotes the formation of an active complex with dynactin. Lis1 also favours the recruitment of two dyneins to dynactin, resulting in increased velocity, higher force production and more effective competition against kinesin in a tug-of-war. Lis1 dissociates from motile complexes, indicating that its primary role is to orchestrate the assembly of the transport machinery. We propose that Lis1 binding releases dynein from its autoinhibited state, which provides a mechanistic explanation for why Lis1 is required for efficient transport of many dynein-associated cargos in cells.
Collapse
|
89
|
Scherer J, Yi J, Vallee RB. Role of cytoplasmic dynein and kinesins in adenovirus transport. FEBS Lett 2020; 594:1838-1847. [PMID: 32215924 DOI: 10.1002/1873-3468.13777] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/12/2020] [Accepted: 03/15/2020] [Indexed: 12/30/2022]
Abstract
Following receptor-mediated uptake into endocytic vesicles and subsequent escape, adenovirus particles are transported along microtubules. The microtubule motor proteins dynein and one or more kinesins are involved in this behavior. Dynein is implicated in adenovirus transport toward the nucleus. The kinesin Kif5B has now been found to move the adenovirus (AdV) toward microtubule plus ends, though a kinesin role in adenovirus-induced nuclear pore disruption has also been reported. In undifferentiated cells, dynein-mediated transport predominates early in infection, but motility becomes bidirectional with time. The latter behavior can be modeled as a novel assisted diffusion mechanism, which may allow virus particles to explore the cytoplasm more efficiently. Cytoplasmic dynein and Kif5B have both been found to bind AdV through direct interactions with the capsid proteins hexon and penton base, respectively. We review here the roles of the microtubule motor proteins in AdV infection, the relationship between motor protein recruitment to pathogenic vs. physiological cargoes, the evolutionary origins of microtubule-mediated AdV transport, and a role for the motor proteins in a novel host-defense mechanism.
Collapse
Affiliation(s)
- Julian Scherer
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Julie Yi
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Richard B Vallee
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
90
|
Tempes A, Weslawski J, Brzozowska A, Jaworski J. Role of dynein-dynactin complex, kinesins, motor adaptors, and their phosphorylation in dendritogenesis. J Neurochem 2020; 155:10-28. [PMID: 32196676 DOI: 10.1111/jnc.15010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/24/2020] [Accepted: 03/13/2020] [Indexed: 12/21/2022]
Abstract
One of the characteristic features of different classes of neurons that is vital for their proper functioning within neuronal networks is the shape of their dendritic arbors. To properly develop dendritic trees, neurons need to accurately control the intracellular transport of various cellular cargo (e.g., mRNA, proteins, and organelles). Microtubules and motor proteins (e.g., dynein and kinesins) that move along microtubule tracks play an essential role in cargo sorting and transport to the most distal ends of neurons. Equally important are motor adaptors, which may affect motor activity and specify cargo that is transported by the motor. Such transport undergoes very dynamic fine-tuning in response to changes in the extracellular environment and synaptic transmission. Such regulation is achieved by the phosphorylation of motors, motor adaptors, and cargo, among other mechanisms. This review focuses on the contribution of the dynein-dynactin complex, kinesins, their adaptors, and the phosphorylation of these proteins in the formation of dendritic trees by maturing neurons. We primarily review the effects of the motor activity of these proteins in dendrites on dendritogenesis. We also discuss less anticipated mechanisms that contribute to dendrite growth, such as dynein-driven axonal transport and non-motor functions of kinesins.
Collapse
Affiliation(s)
- Aleksandra Tempes
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Jan Weslawski
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Agnieszka Brzozowska
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Jacek Jaworski
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| |
Collapse
|
91
|
Feng Q, Gicking AM, Hancock WO. Dynactin p150 promotes processive motility of DDB complexes by minimizing diffusional behavior of dynein. Mol Biol Cell 2020; 31:782-792. [PMID: 32023147 PMCID: PMC7185967 DOI: 10.1091/mbc.e19-09-0495] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/08/2020] [Accepted: 01/28/2020] [Indexed: 11/11/2022] Open
Abstract
Cytoplasmic dynein is activated by forming a complex with dynactin and the adaptor protein BicD2. We used interferometric scattering (iSCAT) microscopy to track dynein-dynactin-BicD2 (DDB) complexes in vitro and developed a regression-based algorithm to classify switching between processive, diffusive, and stuck motility states. We find that DDB spends 65% of its time undergoing processive stepping, 4% undergoing 1D diffusion, and the remaining time transiently stuck to the microtubule. Although the p150 subunit was previously shown to enable dynactin diffusion along microtubules, blocking p150 enhanced the proportion of time DDB diffused and reduced the time DDB processively walked. Thus, DDB diffusive behavior most likely results from dynein switching into an inactive (diffusive) state, rather than p150 tethering the complex to the microtubule. DDB-kinesin-1 complexes, formed using a DNA adapter, moved slowly and persistently, and blocking p150 led to a 70 nm/s plus-end shift in the average velocity of the complexes, in quantitative agreement with the shift of isolated DDB into the diffusive state. The data suggest a DDB activation model in which dynactin p150 enhances dynein processivity not solely by acting as a diffusive tether that maintains microtubule association, but rather by acting as an allosteric activator that promotes a conformation of dynein optimal for processive stepping. In bidirectional cargo transport driven by the opposing activities of kinesin and dynein-dynactin-BicD2, the dynactin p150 subunit promotes retrograde transport and could serve as a target for regulators of transport.
Collapse
Affiliation(s)
- Qingzhou Feng
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802
- Molecular Cellular and Integrative Biological Sciences Program, Huck Institute of Life Sciences, Pennsylvania State University, University Park, PA 16802
| | - Allison M. Gicking
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802
| | - William O. Hancock
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802
- Molecular Cellular and Integrative Biological Sciences Program, Huck Institute of Life Sciences, Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
92
|
Koboldt DC, Waldrop MA, Wilson RK, Flanigan KM. The Genotypic and Phenotypic Spectrum of
BICD2
Variants in Spinal Muscular Atrophy. Ann Neurol 2020; 87:487-496. [DOI: 10.1002/ana.25704] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Daniel C. Koboldt
- Institute for Genomic Medicine Nationwide Children's Hospital Columbus OH
- Department of Pediatrics Ohio State University Columbus OH
| | - Megan A. Waldrop
- Department of Pediatrics Ohio State University Columbus OH
- Center for Gene Therapy Nationwide Children's Hospital Columbus OH
- Department of Neurology Ohio State University Columbus OH
| | - Richard K. Wilson
- Institute for Genomic Medicine Nationwide Children's Hospital Columbus OH
- Department of Pediatrics Ohio State University Columbus OH
| | - Kevin M. Flanigan
- Department of Pediatrics Ohio State University Columbus OH
- Center for Gene Therapy Nationwide Children's Hospital Columbus OH
- Department of Neurology Ohio State University Columbus OH
| |
Collapse
|
93
|
Torisawa T, Kimura A. The Generation of Dynein Networks by Multi-Layered Regulation and Their Implication in Cell Division. Front Cell Dev Biol 2020; 8:22. [PMID: 32083077 PMCID: PMC7004958 DOI: 10.3389/fcell.2020.00022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
Cytoplasmic dynein-1 (hereafter referred to as dynein) is a major microtubule-based motor critical for cell division. Dynein is essential for the formation and positioning of the mitotic spindle as well as the transport of various cargos in the cell. A striking feature of dynein is that, despite having a wide variety of functions, the catalytic subunit is coded in a single gene. To perform various cellular activities, there seem to be different types of dynein that share a common catalytic subunit. In this review, we will refer to the different kinds of dynein as “dyneins.” This review attempts to classify the mechanisms underlying the emergence of multiple dyneins into four layers. Inside a cell, multiple dyneins generated through the multi-layered regulations interact with each other to form a network of dyneins. These dynein networks may be responsible for the accurate regulation of cellular activities, including cell division. How these networks function inside a cell, with a focus on the early embryogenesis of Caenorhabditis elegans embryos, is discussed, as well as future directions for the integration of our understanding of molecular layering to understand the totality of dynein’s function in living cells.
Collapse
Affiliation(s)
- Takayuki Torisawa
- Cell Architecture Laboratory, National Institute of Genetics, Mishima, Japan.,Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Japan
| | - Akatsuki Kimura
- Cell Architecture Laboratory, National Institute of Genetics, Mishima, Japan.,Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Japan
| |
Collapse
|
94
|
Cui H, Noell CR, Behler RP, Zahn JB, Terry LR, Russ BB, Solmaz SR. Adapter Proteins for Opposing Motors Interact Simultaneously with Nuclear Pore Protein Nup358. Biochemistry 2019; 58:5085-5097. [PMID: 31756096 DOI: 10.1021/acs.biochem.9b00907] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Nup358 is a protein subunit of the nuclear pore complex that recruits the opposing microtubule motors kinesin-1 and dynein [via the dynein adaptor Bicaudal D2 (BicD2)] to the nuclear envelope. This pathway is important for positioning of the nucleus during the early steps of mitotic spindle assembly and also essential for an important process in brain development. It is unknown whether dynein and kinesin-1 interact with Nup358 simultaneously or whether they compete. Here, we have reconstituted and characterized a minimal complex of kinesin-1 light chain 2 (KLC2) and Nup358. The proteins interact through a W-acidic motif in Nup358, which is highly conserved among vertebrates but absent in insects. While Nup358 and KLC2 form predominantly monomers, their interaction results in the formation of 2:2 complexes, and the W-acidic motif is required for the oligomerization. In active motor complexes, BicD2 and KLC2 each form dimers. Notably, we show that the dynein adaptor BicD2 and KLC2 interact simultaneously with Nup358, resulting in the formation of 2:2:2 complexes. Mutation of the W-acidic motif results in the formation of 1:1:1 complexes. On the basis of our data, we propose that Nup358 recruits simultaneously one kinesin-1 motor and one dynein motor via BicD2 to the nucleus. We hypothesize that the binding sites are close enough to promote direct interactions between these motor recognition domains, which may be important for the regulation of the motility of these opposing motors. Our data provide important insights into a nuclear positioning pathway that is crucial for brain development and faithful chromosome segregation.
Collapse
Affiliation(s)
- Heying Cui
- Department of Chemistry , Binghamton University , P.O. Box 6000, Binghamton , New York 13902 , United States
| | - Crystal R Noell
- Department of Chemistry , Binghamton University , P.O. Box 6000, Binghamton , New York 13902 , United States
| | - Rachael P Behler
- Department of Chemistry , Binghamton University , P.O. Box 6000, Binghamton , New York 13902 , United States
| | - Jacqueline B Zahn
- Department of Chemistry , Binghamton University , P.O. Box 6000, Binghamton , New York 13902 , United States
| | - Lynn R Terry
- Department of Chemistry , Binghamton University , P.O. Box 6000, Binghamton , New York 13902 , United States
| | - Blaine B Russ
- Department of Chemistry , Binghamton University , P.O. Box 6000, Binghamton , New York 13902 , United States
| | - Sozanne R Solmaz
- Department of Chemistry , Binghamton University , P.O. Box 6000, Binghamton , New York 13902 , United States
| |
Collapse
|
95
|
Qiu R, Zhang J, Xiang X. LIS1 regulates cargo-adapter-mediated activation of dynein by overcoming its autoinhibition in vivo. J Cell Biol 2019; 218:3630-3646. [PMID: 31562232 PMCID: PMC6829669 DOI: 10.1083/jcb.201905178] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/08/2019] [Accepted: 08/29/2019] [Indexed: 02/08/2023] Open
Abstract
Deficiency of the LIS1 protein causes lissencephaly, a brain developmental disorder. Although LIS1 binds the microtubule motor cytoplasmic dynein and has been linked to dynein function in many experimental systems, its mechanism of action remains unclear. Here, we revealed its function in cargo-adapter-mediated dynein activation in the model organism Aspergillus nidulans Specifically, we found that overexpressed cargo adapter HookA (Hook in A. nidulans) missing its cargo-binding domain (ΔC-HookA) causes dynein and its regulator dynactin to relocate from the microtubule plus ends to the minus ends, and this relocation requires LIS1 and its binding protein, NudE. Astonishingly, the requirement for LIS1 or NudE can be bypassed to a significant extent by mutations that prohibit dynein from forming an autoinhibited conformation in which the motor domains of the dynein dimer are held close together. Our results suggest a novel mechanism of LIS1 action that promotes the switch of dynein from the autoinhibited state to an open state to facilitate dynein activation.
Collapse
Affiliation(s)
- Rongde Qiu
- Department of Biochemistry and Molecular Biology, the Uniformed Services University F. Edward Hébert School of Medicine, Bethesda, MD
| | - Jun Zhang
- Department of Biochemistry and Molecular Biology, the Uniformed Services University F. Edward Hébert School of Medicine, Bethesda, MD
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, the Uniformed Services University F. Edward Hébert School of Medicine, Bethesda, MD
| |
Collapse
|
96
|
Elshenawy MM, Canty JT, Oster L, Ferro LS, Zhou Z, Blanchard SC, Yildiz A. Cargo adaptors regulate stepping and force generation of mammalian dynein-dynactin. Nat Chem Biol 2019; 15:1093-1101. [PMID: 31501589 PMCID: PMC6810841 DOI: 10.1038/s41589-019-0352-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/18/2019] [Indexed: 12/24/2022]
Abstract
Cytoplasmic dynein is an ATP-driven motor that transports intracellular cargos along microtubules. Dynein adopts an inactive conformation when not attached to a cargo, and motility is activated when dynein assembles with dynactin and a cargo adaptor. It was unclear how active dynein-dynactin complexes step along microtubules and transport cargos under tension. Using single-molecule imaging, we showed that dynein-dynactin advances by taking 8 to 32-nm steps toward the microtubule minus end with frequent sideways and backward steps. Multiple dyneins collectively bear a large amount of tension because the backward stepping rate of dynein is insensitive to load. Recruitment of two dyneins to dynactin increases the force generation and the likelihood of winning against kinesin in a tug-of-war but does not directly affect velocity. Instead, velocity is determined by cargo adaptors and tail-tail interactions between two closely packed dyneins. Our results show that cargo adaptors modulate dynein motility and force generation for a wide range of cellular functions.
Collapse
Affiliation(s)
- Mohamed M Elshenawy
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - John T Canty
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA, USA
| | - Liya Oster
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA, USA
| | - Luke S Ferro
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Zhou Zhou
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Scott C Blanchard
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Ahmet Yildiz
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA.
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA, USA.
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA.
| |
Collapse
|
97
|
Will L, Portegies S, van Schelt J, van Luyk M, Jaarsma D, Hoogenraad CC. Dynein activating adaptor BICD2 controls radial migration of upper-layer cortical neurons in vivo. Acta Neuropathol Commun 2019; 7:162. [PMID: 31655624 PMCID: PMC6815425 DOI: 10.1186/s40478-019-0827-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/03/2019] [Indexed: 01/19/2023] Open
Abstract
For the proper organization of the six-layered mammalian neocortex it is required that neurons migrate radially from their place of birth towards their designated destination. The molecular machinery underlying this neuronal migration is still poorly understood. The dynein-adaptor protein BICD2 is associated with a spectrum of human neurological diseases, including malformations of cortical development. Previous studies have shown that knockdown of BICD2 interferes with interkinetic nuclear migration in radial glial progenitor cells, and that Bicd2-deficient mice display an altered laminar organization of the cerebellum and the neocortex. However, the precise in vivo role of BICD2 in neocortical development remains unclear. By comparing cell-type specific conditional Bicd2 knock-out mice, we found that radial migration in the cortex predominantly depends on BICD2 function in post-mitotic neurons. Neuron-specific Bicd2 cKO mice showed severely impaired radial migration of late-born upper-layer neurons. BICD2 depletion in cortical neurons interfered with proper Golgi organization, and neuronal maturation and survival of cortical plate neurons. Single-neuron labeling revealed a specific role of BICD2 in bipolar locomotion. Rescue experiments with wildtype and disease-related mutant BICD2 constructs revealed that a point-mutation in the RAB6/RANBP2-binding-domain, associated with cortical malformation in patients, fails to restore proper cortical neuron migration. Together, these findings demonstrate a novel, cell-intrinsic role of BICD2 in cortical neuron migration in vivo and provide new insights into BICD2-dependent dynein-mediated functions during cortical development.
Collapse
|
98
|
Tirumala NA, Ananthanarayanan V. Role of Dynactin in the Intracellular Localization and Activation of Cytoplasmic Dynein. Biochemistry 2019; 59:156-162. [PMID: 31591892 DOI: 10.1021/acs.biochem.9b00772] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytoplasmic dynein, the major minus end-directed motor protein in several cell types, transports a variety of intracellular cargo upon forming a processive tripartite complex with its activator dynactin and cargo adaptors such as Hook3 and BicD2. Our current understanding of dynein regulation stems from a combination of in vivo studies of cargo movement upon perturbation of dynein activity, in vitro single-molecule experiments, and cryo-electron microscopy studies of dynein structure and its interaction with dynactin and cargo adaptors. In this Perspective, we first consolidate data from recent publications to understand how perturbations to the dynein-dynactin interaction and dynactin's in vivo localization alter the behavior of dynein-driven cargo transport in a cell type- and experimental condition-specific manner. In addition, we touch upon results from in vivo and in vitro studies to elucidate how dynein's interaction with dynactin and cargo adaptors activates dynein and enhances its processivity. Finally, we propose questions that need to be addressed in the future with appropriate experimental designs so as to improve our understanding of the spatiotemporal regulation of dynein's function in the context of the distribution and dynamics of dynactin in living cells.
Collapse
|
99
|
Spindler MC, Redolfi J, Helmprobst F, Kollmannsberger P, Stigloher C, Benavente R. Electron tomography of mouse LINC complexes at meiotic telomere attachment sites with and without microtubules. Commun Biol 2019; 2:376. [PMID: 31633067 PMCID: PMC6791847 DOI: 10.1038/s42003-019-0621-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/18/2019] [Indexed: 11/16/2022] Open
Abstract
Telomere movements during meiotic prophase I facilitate synapsis and recombination of homologous chromosomes. Hereby, chromosome movements depend on the dynamic attachment of meiotic telomeres to the nuclear envelope and generation of forces that actively move the telomeres. In most eukaryotes, forces that move telomeres are generated in the cytoplasm by microtubule-associated motor proteins and transduced into the nucleus through the LINC complexes of the nuclear envelope. Meiotic LINC complexes, in mouse comprised of SUN1/2 and KASH5, selectively localize to the attachment sites of meiotic telomeres. For a better understanding of meiotic telomere dynamics, here we provide quantitative information of telomere attachment sites that we have generated with the aid of electron microscope tomography (EM tomography). Our data on the number, length, width, distribution and relation with microtubules of the reconstructed structures indicate that an average number of 76 LINC complexes would be required to move a telomere attachment site.
Collapse
Affiliation(s)
- Marie-Christin Spindler
- Department of Cell and Developmental Biology, Biocenter, University of Wuerzburg, 97074 Wuerzburg, Germany
| | - Josef Redolfi
- Department of Cell and Developmental Biology, Biocenter, University of Wuerzburg, 97074 Wuerzburg, Germany
| | - Frederik Helmprobst
- Imaging Core Facility, Biocenter, University of Wuerzburg, 97074 Wuerzburg, Germany
| | - Philip Kollmannsberger
- Center for Computational and Theoretical Biology, University of Wuerzburg, 97074 Wuerzburg, Germany
| | - Christian Stigloher
- Imaging Core Facility, Biocenter, University of Wuerzburg, 97074 Wuerzburg, Germany
| | - Ricardo Benavente
- Department of Cell and Developmental Biology, Biocenter, University of Wuerzburg, 97074 Wuerzburg, Germany
| |
Collapse
|
100
|
Directional Stepping Model for Yeast Dynein: Longitudinal- and Side-Step Distributions. Biophys J 2019; 117:1892-1899. [PMID: 31676137 DOI: 10.1016/j.bpj.2019.09.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/08/2019] [Accepted: 09/30/2019] [Indexed: 12/19/2022] Open
Abstract
Motor proteins are biological machines that convert chemical energy stored in ATP to mechanical work. Kinesin and dynein are microtubule (MT)-associated motor proteins that, among other functions, facilitate intracellular transport. Here, we focus on dynein motility. We deduce the directional step distribution of yeast dynein motor protein on the MT surface by combing intrinsic features of the dynein and MTs. These include the probability distribution of the separation vector between the two microtubule-binding domains, the angular probability distribution of a single microtubule-binding domain translation, the existence of an MT seam defect, MT-binding sites, and theoretical extension that accounts for a load force on the motor. Our predictions are in excellent accord with the measured longitudinal step size distributions at various load forces. Moreover, we predict the side-step distribution and its dependence on longitudinal load forces, which shows a few surprising features. First, the distribution is broad. Second, in the absence of load, we find a small right-handed bias. Third, the side-step bias is susceptible to the longitudinal load force; it vanishes at a load equal to the motor stalling force and changes to a left-hand bias above that value. Fourth, our results are sensitive to the ability of the motor to explore the seam several times during its walk. Although available measurements of side-way distribution are limited, our findings are amenable to experimental check and, moreover, suggest a diversity of results depending on whether the MT seam is viable to motor sampling.
Collapse
|