51
|
Castilho-Fernandes A, Fontes AM, Abraham KJ, de Freitas MCC, da Rosa NG, Picanço-Castro V, de Sousa Russo-Carbolante EM, Covas DT. Significant differences in integration sites of Moloney murine leukemia virus/Moloney murine sarcoma virus retroviral vector carrying recombinant coagulation factor IX in two human cell lines. Biotechnol Lett 2015; 37:991-1001. [PMID: 25650340 DOI: 10.1007/s10529-014-1764-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 10/24/2022]
Abstract
Ligation-mediated-PCR was performed followed by the mapping of 177 and 150 integration sites from HepG2 and Hek293 transduced with chimera vector carrying recombinant human Factor IX (rhFIX) cDNA, respectively. The sequences were analyzed for chromosome preference, CpG, transcription start site (TSS), repetitive elements, fragile sites and target genes. In HepG2, rhFIX was had an increased preference for chromosomes 6 and 17; the median distance to the nearest CpG islands was 15,240 base pairs and 37 % of the integrations occurred in RefSeq genes. In Hek293, rhFIX had an increased preference for chromosome 5; the median distance to the nearest CpG islands was 209,100 base pairs and 74 % of the integrations occurred in RefSeq genes. The integrations in both cell lines were distant from the TSS. The integration patterns associated with this vector are different in each cell line.
Collapse
Affiliation(s)
- Andrielle Castilho-Fernandes
- Faculty of Medicine of Ribeirão Preto, Center for Cell Therapy and Regional Blood Center, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Ayarpadikannan S, Lee HE, Han K, Kim HS. Transposable element-driven transcript diversification and its relevance to genetic disorders. Gene 2015; 558:187-94. [PMID: 25617522 DOI: 10.1016/j.gene.2015.01.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 01/13/2015] [Accepted: 01/20/2015] [Indexed: 12/14/2022]
Abstract
The human genome project and subsequent gene annotation projects have shown that the human genome contains 22,000-25,000 functional genes. Therefore, it is believed that the diversity of protein repertoire is achieved by the alternative splicing (AS) mechanism. Transposable elements (TEs) are mobile in nature and can therefore alter their position in the genome. The insertion of TEs into a new gene region can result in AS of a particular transcript through various mechanisms, including intron retention, and alternative donor or acceptor splice sites. TE-derived AS is thought to have played a part in primate evolution and in hominid radiation. However, TE-derived AS or genetic instability may sometimes result in genetic disorders. For the past two decades, numerous studies have been performed on TEs and their role in genomes. Accumulating evidence shows that the term 'junk DNA', previously used for TEs is a misnomer. Recent research has indicated that TEs may have clinical potential. However, to explore the feasibility of using TEs in clinical practice, additional studies are required. This review summarizes the available literature on TE-derived AS, alternative promoter, and alternative polyadenylation. The review covers the effects of TEs on coding genes and their clinical implications, and provides our perspectives and directions for future research.
Collapse
Affiliation(s)
- Selvam Ayarpadikannan
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | - Hee-Eun Lee
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | - Kyudong Han
- Department of Nanobiomedical Science, WCU Research Center, Dankook University, Cheonan 330-714, Republic of Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea.
| |
Collapse
|
53
|
Koonin EV, Krupovic M. Evolution of adaptive immunity from transposable elements combined with innate immune systems. Nat Rev Genet 2014; 16:184-92. [PMID: 25488578 DOI: 10.1038/nrg3859] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adaptive immune systems in prokaryotes and animals give rise to long-term memory through modification of specific genomic loci, such as by insertion of foreign (viral or plasmid) DNA fragments into clustered regularly interspaced short palindromic repeat (CRISPR) loci in prokaryotes and by V(D)J recombination of immunoglobulin genes in vertebrates. Strikingly, recombinases derived from unrelated mobile genetic elements have essential roles in both prokaryotic and vertebrate adaptive immune systems. Mobile elements, which are ubiquitous in cellular life forms, provide the only known, naturally evolved tools for genome engineering that are successfully adopted by both innate immune systems and genome-editing technologies. In this Opinion article, we present a general scenario for the origin of adaptive immunity from mobile elements and innate immune systems.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland 20894, USA
| | - Mart Krupovic
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, 25 rue du Docteur Roux, 75015 Paris, France
| |
Collapse
|
54
|
Distinct isoform of FABP7 revealed by screening for retroelement-activated genes in diffuse large B-cell lymphoma. Proc Natl Acad Sci U S A 2014; 111:E3534-43. [PMID: 25114248 DOI: 10.1073/pnas.1405507111] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Remnants of ancient transposable elements (TEs) are abundant in mammalian genomes. These sequences harbor multiple regulatory motifs and hence are capable of influencing expression of host genes. In response to environmental changes, TEs are known to be released from epigenetic repression and to become transcriptionally active. Such activation could also lead to lineage-inappropriate activation of oncogenes, as one study described in Hodgkin lymphoma. However, little further evidence for this mechanism in other cancers has been reported. Here, we reanalyzed whole transcriptome data from a large cohort of patients with diffuse large B-cell lymphoma (DLBCL) compared with normal B-cell centroblasts to detect genes ectopically expressed through activation of TE promoters. We have identified 98 such TE-gene chimeric transcripts that were exclusively expressed in primary DLBCL cases and confirmed several in DLBCL-derived cell lines. We further characterized a TE-gene chimeric transcript involving a fatty acid-binding protein gene (LTR2-FABP7), normally expressed in brain, that was ectopically expressed in a subset of DLBCL patients through the use of an endogenous retroviral LTR promoter of the LTR2 family. The LTR2-FABP7 chimeric transcript encodes a novel chimeric isoform of the protein with characteristics distinct from native FABP7. In vitro studies reveal a dependency for DLBCL cell line proliferation and growth on LTR2-FABP7 chimeric protein expression. Taken together, these data demonstrate the significance of TEs as regulators of aberrant gene expression in cancer and suggest that LTR2-FABP7 may contribute to the pathogenesis of DLBCL in a subgroup of patients.
Collapse
|
55
|
Grau JH, Poustka AJ, Meixner M, Plötner J. LTR retroelements are intrinsic components of transcriptional networks in frogs. BMC Genomics 2014; 15:626. [PMID: 25056159 PMCID: PMC4131045 DOI: 10.1186/1471-2164-15-626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/15/2014] [Indexed: 12/16/2022] Open
Abstract
Background LTR retroelements (LTR REs) constitute a major group of transposable elements widely distributed in eukaryotic genomes. Through their own mechanism of retrotranscription LTR REs enrich the genomic landscape by providing genetic variability, thus contributing to genome structure and organization. Nonetheless, transcriptomic activity of LTR REs still remains an obscure domain within cell, developmental, and organism biology. Results Here we present a first comparative analysis of LTR REs for anuran amphibians based on a full depth coverage transcriptome of the European pool frog, Pelophylax lessonae, the genome of the African clawed frog, Silurana tropicalis (release v7.1), and additional transcriptomes of S. tropicalis and Cyclorana alboguttata. We identified over 1000 copies of LTR REs from all four families (Bel/Pao, Ty1/Copia, Ty3/Gypsy, Retroviridae) in the genome of S. tropicalis and discovered transcripts of several of these elements in all RNA-seq datasets analyzed. Elements of the Ty3/Gypsy family were most active, especially Amn-san elements, which accounted for approximately 0.27% of the genome in Silurana. Some elements exhibited tissue specific expression patterns, for example Hydra1.1 and MuERV-like elements in Pelophylax. In S. tropicalis considerable transcription of LTR REs was observed during embryogenesis as soon as the embryonic genome became activated, i.e. at midblastula transition. In the course of embryonic development the spectrum of transcribed LTR REs changed; during gastrulation and neurulation MuERV-like and SnRV like retroviruses were abundantly transcribed while during organogenesis transcripts of the XEN1 retroviruses became much more active. Conclusions The differential expression of LTR REs during embryogenesis in concert with their tissue-specificity and the protein domains they encode are evidence for the functional roles these elements play as integrative parts of complex regulatory networks. Our results support the meanwhile widely accepted concept that retroelements are not simple “junk DNA” or “harmful genomic parasites” but essential components of the transcriptomic machinery in vertebrates. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-626) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- José Horacio Grau
- Dahlem Center for Genome Research and Medical Systems Biology, Fabeckstraße 60-62, 14195 Berlin, Germany.
| | | | | | | |
Collapse
|
56
|
Brain-specific noncoding RNAs are likely to originate in repeats and may play a role in up-regulating genes in cis. Int J Biochem Cell Biol 2014; 54:331-7. [PMID: 24993078 DOI: 10.1016/j.biocel.2014.06.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 06/01/2014] [Accepted: 06/20/2014] [Indexed: 12/21/2022]
Abstract
The mouse and human brain express a large number of noncoding RNAs (ncRNAs). Some of these are known to participate in neural progenitor cell fate determination, cell differentiation, neuronal and synaptic plasticity and transposable elements derived ncRNAs contribute to somatic variation. Dysregulation of specific long ncRNAs (lncRNAs) has been shown in neuro-developmental and neuro-degenerative diseases thus highlighting the importance of lncRNAs in brain function. Even though it is known that lncRNAs are expressed in cells at low levels in a tissue-specific manner, bioinformatics analyses of brain-specific ncRNAs has not been performed. We analyzed previously published custom microarray ncRNA expression data generated from twelve human tissues to identify tissue-specific ncRNAs. We find that among the 12 tissues studied, brain has the largest number of ncRNAs. Our analyses show that genes in the vicinity of brain-specific ncRNAs are significantly up regulated in the brain. Investigations of repeat representation show that brain-specific ncRNAs are significantly more likely to originate in repeat regions especially DNA/TcMar-Tigger compared with non-tissue-specific ncRNAs. We find SINE/Alus depleted from brain-specific dataset when compared with non-tissue-specific ncRNAs. Our data provide a bioinformatics comparison between brain-specific and non tissue-specific ncRNAs. This article is part of a Directed Issue entitled: The Non-coding RNA Revolution.
Collapse
|
57
|
Abstract
Discoveries in cytogenetics, molecular biology, and genomics have revealed that genome change is an active cell-mediated physiological process. This is distinctly at variance with the pre-DNA assumption that genetic changes arise accidentally and sporadically. The discovery that DNA changes arise as the result of regulated cell biochemistry means that the genome is best modelled as a read-write (RW) data storage system rather than a read-only memory (ROM). The evidence behind this change in thinking and a consideration of some of its implications are the subjects of this article. Specific points include the following: cells protect themselves from accidental genome change with proofreading and DNA damage repair systems; localized point mutations result from the action of specialized trans-lesion mutator DNA polymerases; cells can join broken chromosomes and generate genome rearrangements by non-homologous end-joining (NHEJ) processes in specialized subnuclear repair centres; cells have a broad variety of natural genetic engineering (NGE) functions for transporting, diversifying and reorganizing DNA sequences in ways that generate many classes of genomic novelties; natural genetic engineering functions are regulated and subject to activation by a range of challenging life history events; cells can target the action of natural genetic engineering functions to particular genome locations by a range of well-established molecular interactions, including protein binding with regulatory factors and linkage to transcription; and genome changes in cancer can usefully be considered as consequences of the loss of homeostatic control over natural genetic engineering functions.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, GCISW123B, 979 E. 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
58
|
Shapiro JA. Epigenetic control of mobile DNA as an interface between experience and genome change. Front Genet 2014; 5:87. [PMID: 24795749 PMCID: PMC4007016 DOI: 10.3389/fgene.2014.00087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/01/2014] [Indexed: 12/29/2022] Open
Abstract
Mobile DNA in the genome is subject to RNA-targeted epigenetic control. This control regulates the activity of transposons, retrotransposons and genomic proviruses. Many different life history experiences alter the activities of mobile DNA and the expression of genetic loci regulated by nearby insertions. The same experiences induce alterations in epigenetic formatting and lead to trans-generational modifications of genome expression and stability. These observations lead to the hypothesis that epigenetic formatting directed by non-coding RNA provides a molecular interface between life history events and genome alteration.
Collapse
Affiliation(s)
- James A. Shapiro
- Department of Biochemistry and Molecular Biology, University of ChicagoChicago, IL, USA
| |
Collapse
|
59
|
Kassiotis G. Endogenous retroviruses and the development of cancer. THE JOURNAL OF IMMUNOLOGY 2014; 192:1343-9. [PMID: 24511094 DOI: 10.4049/jimmunol.1302972] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mammalian genomes include a considerable number of endogenous retroviruses (ERVs), relics of ancestral infectious retroviruses, whose proviruses have invaded the germ-line. The documented ability of infectious retroviruses to cause cancer has greatly contributed to the discovery of ERVs. It also reinforced the concept that ERVs are causative agents of many cancers, a notion that historically has not always stood up to experimental scrutiny. The recent greater appreciation of the complexity of ERV biology and the identification of dedicated host mechanisms controlling ERV activity have revealed novel interactions between ERVs and their hosts, with the potential to cause or contribute to disease. In this review, the involvement of ERVs in cancer initiation and progression is discussed, as well as their contribution to our understanding of the process of transformation and to the invention of innovative preventive and therapeutic cancer treatments.
Collapse
Affiliation(s)
- George Kassiotis
- Division of Immunoregulation, Medical Research Council National Institute for Medical Research, London NW7 1AA, United Kingdom
| |
Collapse
|
60
|
Abstract
The development of rigorous molecular taxonomy pioneered by Carl Woese has freed evolution science to explore numerous cellular activities that lead to genome change in evolution. These activities include symbiogenesis, inter- and intracellular horizontal DNA transfer, incorporation of DNA from infectious agents, and natural genetic engineering, especially the activity of mobile elements. This article reviews documented examples of all these processes and proposes experiments to extend our understanding of cell-mediated genome change.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology; University of Chicago; Chicago, IL USA
| |
Collapse
|
61
|
Bellone RR, Holl H, Setaluri V, Devi S, Maddodi N, Archer S, Sandmeyer L, Ludwig A, Foerster D, Pruvost M, Reissmann M, Bortfeldt R, Adelson DL, Lim SL, Nelson J, Haase B, Engensteiner M, Leeb T, Forsyth G, Mienaltowski MJ, Mahadevan P, Hofreiter M, Paijmans JLA, Gonzalez-Fortes G, Grahn B, Brooks SA. Evidence for a retroviral insertion in TRPM1 as the cause of congenital stationary night blindness and leopard complex spotting in the horse. PLoS One 2013; 8:e78280. [PMID: 24167615 PMCID: PMC3805535 DOI: 10.1371/journal.pone.0078280] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 09/10/2013] [Indexed: 12/21/2022] Open
Abstract
Leopard complex spotting is a group of white spotting patterns in horses caused by an incompletely dominant gene (LP) where homozygotes (LP/LP) are also affected with congenital stationary night blindness. Previous studies implicated Transient Receptor Potential Cation Channel, Subfamily M, Member 1 (TRPM1) as the best candidate gene for both CSNB and LP. RNA-Seq data pinpointed a 1378 bp insertion in intron 1 of TRPM1 as the potential cause. This insertion, a long terminal repeat (LTR) of an endogenous retrovirus, was completely associated with LP, testing 511 horses (χ2=1022.00, p<<0.0005), and CSNB, testing 43 horses (χ2=43, p<<0.0005). The LTR was shown to disrupt TRPM1 transcription by premature poly-adenylation. Furthermore, while deleterious transposable element insertions should be quickly selected against the identification of this insertion in three ancient DNA samples suggests it has been maintained in the horse gene pool for at least 17,000 years. This study represents the first description of an LTR insertion being associated with both a pigmentation phenotype and an eye disorder.
Collapse
Affiliation(s)
- Rebecca R. Bellone
- Department of Biology, University of Tampa, Tampa, Florida, United States of America
- * E-mail:
| | - Heather Holl
- Department of Animal Science, Cornell University, Ithaca, New York, United States of America
| | - Vijayasaradhi Setaluri
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Sulochana Devi
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Nityanand Maddodi
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | | | - Lynne Sandmeyer
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Arne Ludwig
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Daniel Foerster
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Melanie Pruvost
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
- Epigenomic and Palaeogenomic Group, Institut Jacques Monod, Paris, France
| | - Monika Reissmann
- Department of Breeding Biology and Molecular Genetics, Humboldt University Berlin, Berlin, Germany
| | - Ralf Bortfeldt
- Department of Breeding Biology and Molecular Genetics, Humboldt University Berlin, Berlin, Germany
| | - David L. Adelson
- School of Molecular and Biomedical Science, the University of Adelaide, South Australia, Australia
| | - Sim Lin Lim
- School of Molecular and Biomedical Science, the University of Adelaide, South Australia, Australia
| | - Janelle Nelson
- Department of Biology, University of Tampa, Tampa, Florida, United States of America
| | - Bianca Haase
- Faculty of Veterinary Science, University of Sydney, Sydney, New South Wales, Australia
| | | | - Tosso Leeb
- Institute of Genetics, University of Bern, Bern, Switzerland
| | - George Forsyth
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Michael J. Mienaltowski
- Department of Molecular Pharmacology & Physiology, College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Padmanabhan Mahadevan
- Department of Biology, University of Tampa, Tampa, Florida, United States of America
| | | | | | | | - Bruce Grahn
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Samantha A. Brooks
- Department of Animal Science, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
62
|
Maliniemi P, Vincendeau M, Mayer J, Frank O, Hahtola S, Karenko L, Carlsson E, Mallet F, Seifarth W, Leib-Mösch C, Ranki A. Expression of human endogenous retrovirus-w including syncytin-1 in cutaneous T-cell lymphoma. PLoS One 2013; 8:e76281. [PMID: 24098463 PMCID: PMC3788054 DOI: 10.1371/journal.pone.0076281] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/22/2013] [Indexed: 12/03/2022] Open
Abstract
The pathomechanism of mycosis fungoides (MF), the most common type of primary cutaneous T-cell lymphomas (CTCLs) and a malignancy of non-recirculating, skin-resident T-cells, is unknown albeit underlying viral infections have been sought for. Human endogenous retroviruses (HERVs) are ancient retroviral sequences in the human genome and their transcription is often deregulated in cancers. We explored the transcriptional activity of HERV sequences in a total of 34 samples comprising MF and psoriasis skin lesions, as well as corresponding non-malignant skin using a retrovirus-specific microarray and quantitative RT-PCR. To identify active HERV-W loci, we cloned the HERV-W specific RT-PCR products, sequenced the cDNA clones and assigned the sequences to HERV-W loci. Finally, we used immunohistochemistry on MF patient and non-malignant inflammatory skin samples to confirm specific HERV-encoded protein expression. Firstly, a distinct, skin-specific transcription profile consisting of five constitutively active HERV groups was established. Although individual variability was common, HERV-W showed significantly increased transcription in MF lesions compared to clinically intact skin from the same patient. Predominantly transcribed HERV-W loci were found to be located in chromosomes 6q21 and 7q21.2, chromosomal regions typically altered in CTCL. Surprisingly, we also found the expression of 7q21.2/ERVWE1-encoded Syncytin-1 (Env) protein in MF biopsies and expression of Syncytin-1 was seen in malignant lymphocytes, especially in the epidermotropic ones, in 15 of 30 cases studied. Most importantly, no Syncytin-1 expression was detected in inflammatory dermatosis (Lichen ruber planus) with skin-homing, non-malignant T lymphocytes. The expression of ERVWE1 mRNA was further confirmed in 3/7 MF lesions analyzed. Our observations strengthen the association between activated HERVs and cancer. The study offers a new perspective into the pathogenesis of CTCL since we demonstrate that differences in HERV-W transcription levels between lesional MF and non-malignant skin are significant, and that ERVWE1-encoded Syncytin-1 is expressed in MF lymphoma cells.
Collapse
Affiliation(s)
- Pilvi Maliniemi
- Department of Dermatology and Allergology, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
- * E-mail:
| | - Michelle Vincendeau
- Institute of Virology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jens Mayer
- Department of Human Genetics, Center of Human and Molecular Biology, Medical Faculty, University of Saarland, Homburg, Germany
| | - Oliver Frank
- Department of Hematology and Oncology, Mannheim Medical Center, University of Heidelberg, Mannheim, Germany
| | - Sonja Hahtola
- Department of Dermatology and Allergology, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Leena Karenko
- Department of Dermatology and Allergology, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Emilia Carlsson
- Department of Dermatology and Allergology, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Francois Mallet
- Joint Unit Hospices Civils de Lyon-bioMérieux, Cancer Biomarkers Research Group, Centre Hospitalier Lyon Sud, Pierre Bénite, France
| | - Wolfgang Seifarth
- Department of Hematology and Oncology, Mannheim Medical Center, University of Heidelberg, Mannheim, Germany
| | - Christine Leib-Mösch
- Institute of Virology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Hematology and Oncology, Mannheim Medical Center, University of Heidelberg, Mannheim, Germany
| | - Annamari Ranki
- Department of Dermatology and Allergology, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| |
Collapse
|
63
|
Courtial N, Mücke C, Herkt S, Kolodziej S, Hussong H, Lausen J. The T-cell oncogene Tal2 Is a Target of PU.1 and upregulated during osteoclastogenesis. PLoS One 2013; 8:e76637. [PMID: 24086757 PMCID: PMC3784441 DOI: 10.1371/journal.pone.0076637] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 08/30/2013] [Indexed: 11/19/2022] Open
Abstract
Transcription factors play a crucial role in regulating differentiation processes during human life and are important in disease. The basic helix-loop-helix transcription factors Tal1 and Lyl1 play a major role in the regulation of gene expression in the hematopoietic system and are involved in human leukemia. Tal2, which belongs to the same family of transcription factors as Tal1 and Lyl1, is also involved in human leukaemia. However, little is known regarding the expression and regulation of Tal2 in hematopoietic cells. Here we show that Tal2 is expressed in hematopoietic cells of the myeloid lineage. Interestingly, we found that usage of the Tal2 promoter is different in human and mouse cells. Two promoters, hP1 and hP2 drive Tal2 expression in human erythroleukemia K562 cells, however in mouse RAW cells only the mP1 promoter is used. Furthermore, we found that Tal2 expression is upregulated during oesteoclastogenesis. We show that Tal2 is a direct target gene of the myeloid transcription factor PU.1, which is a key transcription factor for osteoclast gene expression. Strikingly, PU.1 binding to the P1 promoter is conserved between mouse and human, but PU.1 binding to P2 was only detected in human K562 cells. Additionally, we provide evidence that Tal2 influences the expression of the osteoclastic differentiation gene TRACP. These findings provide novel insight into the expression control of Tal2 in hematopoietic cells and reveal a function of Tal2 as a regulator of gene expression during osteoclast differentiation.
Collapse
Affiliation(s)
- Nadine Courtial
- Georg-Speyer-Haus, Institute for Biomedical Research, Frankfurt, Germany
| | - Christian Mücke
- Georg-Speyer-Haus, Institute for Biomedical Research, Frankfurt, Germany
| | - Stefanie Herkt
- Georg-Speyer-Haus, Institute for Biomedical Research, Frankfurt, Germany
| | - Stephan Kolodziej
- Georg-Speyer-Haus, Institute for Biomedical Research, Frankfurt, Germany
| | - Helge Hussong
- Georg-Speyer-Haus, Institute for Biomedical Research, Frankfurt, Germany
| | - Jörn Lausen
- Georg-Speyer-Haus, Institute for Biomedical Research, Frankfurt, Germany
- * E-mail:
| |
Collapse
|
64
|
Hohn O, Hanke K, Bannert N. HERV-K(HML-2), the Best Preserved Family of HERVs: Endogenization, Expression, and Implications in Health and Disease. Front Oncol 2013; 3:246. [PMID: 24066280 PMCID: PMC3778440 DOI: 10.3389/fonc.2013.00246] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 09/05/2013] [Indexed: 12/14/2022] Open
Abstract
Retroviruses that have the ability to infect germ line cells can become an integral and inherited part of the host genome. About 8% of the human chromosomal DNA consists of sequences derived from infections by retroviruses that presumably circulated 2-40 millions of years ago, and some elements are actually much older. Post-insertional recombinations, deletions, and mutations have rendered all known human endogenous retroviruses (HERVs) non-infectious. However some, particularly the most recently acquired proviruses of the HERV-K(HML-2) family, can expresses viral proteins and produce viral particles. In this review we will first discuss the major aspects of the endogenization process and peculiarities of the different HERV-K families. We will then focus on the genes and proteins encoded by HERV-K(HML-2) as well as inactivation of these proviruses by postinsertional mutations and their inhibition by antiretroviral factors. After describing the evolutionary interplay between host and endogenous retrovirus we will delve deeper into the currently limited understanding of HERV-K and its possible association with disease, particularly tumorigenesis.
Collapse
Affiliation(s)
- Oliver Hohn
- Division for HIV and Other Retroviruses, Robert Koch Institute , Berlin , Germany
| | | | | |
Collapse
|
65
|
Kapusta A, Kronenberg Z, Lynch VJ, Zhuo X, Ramsay L, Bourque G, Yandell M, Feschotte C. Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs. PLoS Genet 2013; 9:e1003470. [PMID: 23637635 PMCID: PMC3636048 DOI: 10.1371/journal.pgen.1003470] [Citation(s) in RCA: 479] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 03/07/2013] [Indexed: 12/22/2022] Open
Abstract
Advances in vertebrate genomics have uncovered thousands of loci encoding long noncoding RNAs (lncRNAs). While progress has been made in elucidating the regulatory functions of lncRNAs, little is known about their origins and evolution. Here we explore the contribution of transposable elements (TEs) to the makeup and regulation of lncRNAs in human, mouse, and zebrafish. Surprisingly, TEs occur in more than two thirds of mature lncRNA transcripts and account for a substantial portion of total lncRNA sequence (∼30% in human), whereas they seldom occur in protein-coding transcripts. While TEs contribute less to lncRNA exons than expected, several TE families are strongly enriched in lncRNAs. There is also substantial interspecific variation in the coverage and types of TEs embedded in lncRNAs, partially reflecting differences in the TE landscapes of the genomes surveyed. In human, TE sequences in lncRNAs evolve under greater evolutionary constraint than their non–TE sequences, than their intronic TEs, or than random DNA. Consistent with functional constraint, we found that TEs contribute signals essential for the biogenesis of many lncRNAs, including ∼30,000 unique sites for transcription initiation, splicing, or polyadenylation in human. In addition, we identified ∼35,000 TEs marked as open chromatin located within 10 kb upstream of lncRNA genes. The density of these marks in one cell type correlate with elevated expression of the downstream lncRNA in the same cell type, suggesting that these TEs contribute to cis-regulation. These global trends are recapitulated in several lncRNAs with established functions. Finally a subset of TEs embedded in lncRNAs are subject to RNA editing and predicted to form secondary structures likely important for function. In conclusion, TEs are nearly ubiquitous in lncRNAs and have played an important role in the lineage-specific diversification of vertebrate lncRNA repertoires. An unexpected layer of complexity in the genomes of humans and other vertebrates lies in the abundance of genes that do not appear to encode proteins but produce a variety of non-coding RNAs. In particular, the human genome is currently predicted to contain 5,000–10,000 independent gene units generating long (>200 nucleotides) noncoding RNAs (lncRNAs). While there is growing evidence that a large fraction of these lncRNAs have cellular functions, notably to regulate protein-coding gene expression, almost nothing is known on the processes underlying the evolutionary origins and diversification of lncRNA genes. Here we show that transposable elements, through their capacity to move and spread in genomes in a lineage-specific fashion, as well as their ability to introduce regulatory sequences upon chromosomal insertion, represent a major force shaping the lncRNA repertoire of humans, mice, and zebrafish. Not only do TEs make up a substantial fraction of mature lncRNA transcripts, they are also enriched in the vicinity of lncRNA genes, where they frequently contribute to their transcriptional regulation. Through specific examples we provide evidence that some TE sequences embedded in lncRNAs are critical for the biogenesis of lncRNAs and likely important for their function.
Collapse
Affiliation(s)
- Aurélie Kapusta
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Zev Kronenberg
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Vincent J. Lynch
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Xiaoyu Zhuo
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - LeeAnn Ramsay
- McGill University and Genome Quebec Innovation Center, Montréal, Canada
| | - Guillaume Bourque
- McGill University and Genome Quebec Innovation Center, Montréal, Canada
| | - Mark Yandell
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Cédric Feschotte
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
66
|
Gifford WD, Pfaff SL, Macfarlan TS. Transposable elements as genetic regulatory substrates in early development. Trends Cell Biol 2013; 23:218-26. [PMID: 23411159 DOI: 10.1016/j.tcb.2013.01.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 12/17/2012] [Accepted: 01/03/2013] [Indexed: 01/07/2023]
Abstract
The abundance and ancient origins of transposable elements (TEs) in eukaryotic genomes has spawned research into the potential symbiotic relationship between these elements and their hosts. In this review, we introduce the diversity of TEs, discuss how distinct classes are uniquely regulated in development, and describe how they appear to have been coopted for the purposes of gene regulation and the orchestration of a number of processes during early embryonic development. Although young, active TEs play an important role in somatic tissues and evolution, we focus mostly on the contributions of the older, fixed elements in mammalian genomes. We also discuss major challenges inherent in the study of TEs and contemplate future experimental approaches to further investigate how they coordinate developmental processes.
Collapse
Affiliation(s)
- Wesley D Gifford
- Gene Expression Laboratory and the Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 10010 North Torrey Pines, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
67
|
Kelley D, Rinn J. Transposable elements reveal a stem cell-specific class of long noncoding RNAs. Genome Biol 2012. [PMID: 23181609 PMCID: PMC3580499 DOI: 10.1186/gb-2012-13-11-r107] [Citation(s) in RCA: 396] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Background Numerous studies over the past decade have elucidated a large set of long intergenic noncoding RNAs (lincRNAs) in the human genome. Research since has shown that lincRNAs constitute an important layer of genome regulation across a wide spectrum of species. However, the factors governing their evolution and origins remain relatively unexplored. One possible factor driving lincRNA evolution and biological function is transposable element (TE) insertions. Here, we comprehensively characterize the TE content of lincRNAs relative to genomic averages and protein coding transcripts. Results Our analysis of the TE composition of 9,241 human lincRNAs revealed that, in sharp contrast to protein coding genes, 83% of lincRNAs contain a TE, and TEs comprise 42% of lincRNA sequence. lincRNA TE composition varies significantly from genomic averages - L1 and Alu elements are depleted and broad classes of endogenous retroviruses are enriched. TEs occur in biased positions and orientations within lincRNAs, particularly at their transcription start sites, suggesting a role in lincRNA transcriptional regulation. Accordingly, we observed a dramatic example of HERVH transcriptional regulatory signals correlating strongly with stem cell-specific expression of lincRNAs. Conversely, lincRNAs devoid of TEs are expressed at greater levels than lincRNAs with TEs in all tissues and cell lines, particularly in the testis. Conclusions TEs pervade lincRNAs, dividing them into classes, and may have shaped lincRNA evolution and function by conferring tissue-specific expression from extant transcriptional regulatory signals.
Collapse
|
68
|
HERV-E-mediated modulation of PLA2G4A transcription in urothelial carcinoma. PLoS One 2012; 7:e49341. [PMID: 23145155 PMCID: PMC3492278 DOI: 10.1371/journal.pone.0049341] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 10/09/2012] [Indexed: 12/30/2022] Open
Abstract
Human endogenous retroviruses (HERV) and related elements account for more than 8% of the human genome and significantly contribute to the human transcriptome by long terminal repeat (LTR) promoter activity. In this context, HERVs are thought to intervene in the expression of adjacent genes by providing regulatory sequences (cis-effect) or via noncoding RNA including natural antisense transcripts. To address the potential impact of HERV activity in urothelial carcinoma, we comparatively analyzed the HERV transcription profiles in paired samples of non-malignant urothelium and urothelial carcinoma derived from 13 patients with bladder cancer by means of a retrovirus-specific microarray (RetroArray). We established a characteristic HERV signature consisting of six ubiquitously active HERV subgroups (E4-1, HERV-Rb, ERV9, HERV-K-T47D, NMWV3, HERV-KC4). The transcription pattern is largely identical in human urothelial carcinoma, non-malignant urothelial tissue, four tumor-derived cell lines and in a non-malignant urothelial cell line (UROtsa). Quantitative reverse transcriptase PCR (qRT-PCR) of HERV-E4-1, HERV-K(HML-6) and HERV-T(S71-TK1) revealed a bias to lower HERV activity in carcinoma samples compared to non-malignant tissue. Determination of active HERV-E4-1 loci by cloning and sequencing revealed six HERV-E4-1 proviral loci that are differentially regulated in urothelial carcinoma cells and normal tissue. Two full-length HERV-E4-1 proviruses, HERV-Ec1 and HERV-Ec6, are located in antisense orientation in introns of the genes PLA2G4A and RNGTT, respectively. PLA2G4A encodes a cytosolic phospholipase A2 (cPLA2) that is dysregulated in many human tumors. PLA2G4A and HERV-Ec1 displayed reciprocal transcript levels in 7 of 11 urothelial carcinoma patients. Moreover, reciprocal shifts were observed after treatment of UROtsa cells with HERV-Ec1 and PLA2G4A-directed siRNAs or 5-aza-2′-deoxycytidine (aza-dC) pointing to an antagonistic regulation of PLA2G4A and HERV-Ec1 transcription in human urothelial cells. We suggest that transcription of HERV-Ec1 contributes to fine tuning of cPLA2 expression, thereby facilitating tumorigenesis.
Collapse
|
69
|
Rebollo R, Romanish MT, Mager DL. Transposable elements: an abundant and natural source of regulatory sequences for host genes. Annu Rev Genet 2012; 46:21-42. [PMID: 22905872 DOI: 10.1146/annurev-genet-110711-155621] [Citation(s) in RCA: 376] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The fact that transposable elements (TEs) can influence host gene expression was first recognized more than 50 years ago. However, since that time, TEs have been widely regarded as harmful genetic parasites-selfish elements that are rarely co-opted by the genome to serve a beneficial role. Here, we survey recent findings that relate to TE impact on host genes and remind the reader that TEs, in contrast to other noncoding parts of the genome, are uniquely suited to gene regulatory functions. We review recent studies that demonstrate the role of TEs in establishing and rewiring gene regulatory networks and discuss the overall ubiquity of exaptation. We suggest that although individuals within a population can be harmed by the deleterious effects of new TE insertions, the presence of TE sequences in a genome is of overall benefit to the population.
Collapse
Affiliation(s)
- Rita Rebollo
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada.
| | | | | |
Collapse
|
70
|
Pérot P, Mugnier N, Montgiraud C, Gimenez J, Jaillard M, Bonnaud B, Mallet F. Microarray-based sketches of the HERV transcriptome landscape. PLoS One 2012; 7:e40194. [PMID: 22761958 PMCID: PMC3386233 DOI: 10.1371/journal.pone.0040194] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 06/02/2012] [Indexed: 12/15/2022] Open
Abstract
Human endogenous retroviruses (HERVs) are spread throughout the genome and their long terminal repeats (LTRs) constitute a wide collection of putative regulatory sequences. Phylogenetic similarities and the profusion of integration sites, two inherent characteristics of transposable elements, make it difficult to study individual locus expression in a large-scale approach, and historically apart from some placental and testis-regulated elements, it was generally accepted that HERVs are silent due to epigenetic control. Herein, we have introduced a generic method aiming to optimally characterize individual loci associated with 25-mer probes by minimizing cross-hybridization risks. We therefore set up a microarray dedicated to a collection of 5,573 HERVs that can reasonably be assigned to a unique genomic position. We obtained a first view of the HERV transcriptome by using a composite panel of 40 normal and 39 tumor samples. The experiment showed that almost one third of the HERV repertoire is indeed transcribed. The HERV transcriptome follows tropism rules, is sensitive to the state of differentiation and, unexpectedly, seems not to correlate with the age of the HERV families. The probeset definition within the U3 and U5 regions was used to assign a function to some LTRs (i.e. promoter or polyA) and revealed that (i) autonomous active LTRs are broadly subjected to operational determinism (ii) the cellular gene density is substantially higher in the surrounding environment of active LTRs compared to silent LTRs and (iii) the configuration of neighboring cellular genes differs between active and silent LTRs, showing an approximately 8 kb zone upstream of promoter LTRs characterized by a drastic reduction in sense cellular genes. These gathered observations are discussed in terms of virus/host adaptive strategies, and together with the methods and tools developed for this purpose, this work paves the way for further HERV transcriptome projects.
Collapse
Affiliation(s)
- Philippe Pérot
- Joint Unit Hospices Civils de Lyon, bioMérieux, Cancer Biomarkers Research Group, Centre Hospitalier Lyon Sud, Lyon, France
| | - Nathalie Mugnier
- BioMérieux, Data and Knowledge Laboratory, Marcy l’Etoile, France
| | - Cécile Montgiraud
- Joint Unit Hospices Civils de Lyon, bioMérieux, Cancer Biomarkers Research Group, Centre Hospitalier Lyon Sud, Lyon, France
| | - Juliette Gimenez
- Joint Unit Hospices Civils de Lyon, bioMérieux, Cancer Biomarkers Research Group, Centre Hospitalier Lyon Sud, Lyon, France
| | - Magali Jaillard
- BioMérieux, Data and Knowledge Laboratory, Marcy l’Etoile, France
| | - Bertrand Bonnaud
- BioMérieux, Data and Knowledge Laboratory, Marcy l’Etoile, France
| | - François Mallet
- Joint Unit Hospices Civils de Lyon, bioMérieux, Cancer Biomarkers Research Group, Centre Hospitalier Lyon Sud, Lyon, France
- * E-mail:
| |
Collapse
|
71
|
Feschotte C, Gilbert C. Endogenous viruses: insights into viral evolution and impact on host biology. Nat Rev Genet 2012; 13:283-96. [PMID: 22421730 DOI: 10.1038/nrg3199] [Citation(s) in RCA: 524] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent studies have uncovered myriad viral sequences that are integrated or 'endogenized' in the genomes of various eukaryotes. Surprisingly, it appears that not just retroviruses but almost all types of viruses can become endogenous. We review how these genomic 'fossils' offer fresh insights into the origin, evolutionary dynamics and structural evolution of viruses, which are giving rise to the burgeoning field of palaeovirology. We also examine the multitude of ways through which endogenous viruses have influenced, for better or worse, the biology of their hosts. We argue that the conflict between hosts and viruses has led to the invention and diversification of molecular arsenals, which, in turn, promote the cellular co-option of endogenous viruses.
Collapse
Affiliation(s)
- Cédric Feschotte
- Department of Biology, University of Texas, Arlington, Texas 76016, USA.
| | | |
Collapse
|
72
|
Mey A, Acloque H, Lerat E, Gounel S, Tribollet V, Blanc S, Curton D, Birot AM, Nieto MA, Samarut J. The endogenous retrovirus ENS-1 provides active binding sites for transcription factors in embryonic stem cells that specify extra embryonic tissue. Retrovirology 2012; 9:21. [PMID: 22420414 PMCID: PMC3362752 DOI: 10.1186/1742-4690-9-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 03/15/2012] [Indexed: 01/01/2023] Open
Abstract
Background Long terminal repeats (LTR) from endogenous retroviruses (ERV) are source of binding sites for transcription factors which affect the host regulatory networks in different cell types, including pluripotent cells. The embryonic epiblast is made of pluripotent cells that are subjected to opposite transcriptional regulatory networks to give rise to distinct embryonic and extraembryonic lineages. To assess the transcriptional contribution of ERV to early developmental processes, we have characterized in vitro and in vivo the regulation of ENS-1, a host adopted and developmentally regulated ERV that is expressed in chick embryonic stem cells. Results We show that Ens-1 LTR activity is controlled by two transcriptional pathways that drive pluripotent cells to alternative developmental fates. Indeed, both Nanog that maintains pluripotency and Gata4 that induces differentiation toward extraembryonic endoderm independently activate the LTR. Ets coactivators are required to support Gata factors' activity thus preventing inappropriate activation before epigenetic silencing occurs during differentiation. Consistent with their expression patterns during chick embryonic development, Gata4, Nanog and Ets1 are recruited on the LTR in embryonic stem cells; in the epiblast the complementary expression of Nanog and Gata/Ets correlates with the Ens-1 gene expression pattern; and Ens-1 transcripts are also detected in the hypoblast, an extraembryonic tissue expressing Gata4 and Ets2, but not Nanog. Accordingly, over expression of Gata4 in embryos induces an ectopic expression of Ens-1. Conclusion Our results show that Ens-1 LTR have co-opted conditions required for the emergence of extraembryonic tissues from pluripotent epiblasts cells. By providing pluripotent cells with intact binding sites for Gata, Nanog, or both, Ens-1 LTR may promote distinct transcriptional networks in embryonic stem cells subpopulations and prime the separation between embryonic and extraembryonic fates.
Collapse
Affiliation(s)
- Anne Mey
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, CNRS, INRA, Ecole Normale Supérieure de Lyon, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Vizirianakis IS, Tezias SS, Amanatiadou EP, Tsiftsoglou AS. Possible interaction between B1 retrotransposon-containing sequences and β majorglobin gene transcriptional activation during MEL cell erythroid differentiation. Cell Biol Int 2012; 36:47-55. [DOI: 10.1042/cbi20110236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
74
|
Cohen CJ, Rebollo R, Babovic S, Dai EL, Robinson WP, Mager DL. Placenta-specific expression of the interleukin-2 (IL-2) receptor β subunit from an endogenous retroviral promoter. J Biol Chem 2011; 286:35543-35552. [PMID: 21865161 DOI: 10.1074/jbc.m111.227637] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The long terminal repeat (LTR) sequences of endogenous retroviruses and retroelements contain promoter elements and are known to form chimeric transcripts with nearby cellular genes. Here we show that an LTR of the THE1D retroelement family has been domesticated as an alternative promoter of human IL2RB, the gene encoding the β subunit of the IL-2 receptor. The LTR promoter confers expression specifically in the placental trophoblast as opposed to its native transcription in the hematopoietic system. Rather than sequence-specific determinants, DNA methylation was found to regulate transcription initiation and splicing efficiency in a tissue-specific manner. Furthermore, we detected the cytoplasmic signaling domain of the IL-2Rβ protein in the placenta, suggesting that IL-2Rβ undergoes preferential proteolytic cleavage in this tissue. These findings implicate novel functions for this cytokine receptor subunit in the villous trophoblast and reveal an intriguing example of ancient LTR exaptation to drive tissue-specific gene expression.
Collapse
Affiliation(s)
- Carla J Cohen
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia V5Z 1L3
| | - Rita Rebollo
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia V5Z 1L3
| | - Sonja Babovic
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia V5Z 1L3
| | - Elizabeth L Dai
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia V5Z 1L3
| | - Wendy P Robinson
- Department of Medical Genetics, University of British Columbia, British Columbia V6T 1Z4; Child and Family Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - Dixie L Mager
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia V5Z 1L3; Department of Medical Genetics, University of British Columbia, British Columbia V6T 1Z4.
| |
Collapse
|
75
|
Abstract
Vertebrate genomes encode large and highly variable numbers of tandem C2H2 zinc finger (tandem ZF) transcription factor proteins. In mammals, most tandem ZF genes also encode a KRAB domain (KZNF proteins). Very little is known about what forces have driven the number and diversity of tandem ZF genes. Recent studies suggest that one role of KZNF proteins is to bind and repress transcription of exogenous retroviruses and their endogenous counterpart LTR retroelements. We report a striking correlation across vertebrate genomes between the number of LTR retroelements and the number of host tandem ZF genes. This correlation is specific to LTR retroelements and ZF genes and was not explained by covariation in other genomic features. We further show that recently active LTR retroelements are correlated with recent tandem ZF gene duplicates across vertebrates. On branches of the primate phylogeny, we find that the appearance of new families of endogenous retroviruses is strongly predictive of the appearance of new duplicate KZNF genes. We hypothesize that retroviral and LTR retroelement burden drives evolution of host tandem ZF genes. This hypothesis is consistent with previously described molecular evolutionary patterns in duplicate ZF genes throughout vertebrates. To further explore these patterns, we investigated 34 duplicate human KZNF gene pairs, all of which underwent an early burst of divergence in the major nucleotide contact residues of their ZF domains, followed by purifying selection in both duplicates. Our results support a host-pathogen model for tandem ZF gene evolution, in which new LTR retroelement challenges drive duplication and divergence of host tandem ZF genes.
Collapse
Affiliation(s)
- James H Thomas
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA.
| | | |
Collapse
|
76
|
Zhang Y, Romanish MT, Mager DL. Distributions of transposable elements reveal hazardous zones in mammalian introns. PLoS Comput Biol 2011; 7:e1002046. [PMID: 21573203 PMCID: PMC3088655 DOI: 10.1371/journal.pcbi.1002046] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 03/25/2011] [Indexed: 11/20/2022] Open
Abstract
Comprising nearly half of the human and mouse genomes, transposable elements (TEs) are found within most genes. Although the vast majority of TEs in introns are fixed in the species and presumably exert no significant effects on the enclosing gene, some markedly perturb transcription and result in disease or a mutated phenotype. Factors determining the likelihood that an intronic TE will affect transcription are not clear. In this study, we examined intronic TE distributions in both human and mouse and found several factors that likely contribute to whether a particular TE can influence gene transcription. Specifically, we observed that TEs near exons are greatly underrepresented compared to random distributions, but the size of these “underrepresentation zones” differs between TE classes. Compared to elsewhere in introns, TEs within these zones are shorter on average and show stronger orientation biases. Moreover, TEs in extremely close proximity (<20 bp) to exons show a strong bias to be near splice-donor sites. Interestingly, disease-causing intronic TE insertions show the opposite distributional trends, and by examining expressed sequence tag (EST) databases, we found that the proportion of TEs contributing to chimeric TE-gene transcripts is significantly higher within their underrepresentation zones. In addition, an analysis of predicted splice sites within human long terminal repeat (LTR) elements showed a significantly lower total number and weaker strength for intronic LTRs near exons. Based on these factors, we selectively examined a list of polymorphic mouse LTR elements in introns and showed clear evidence of transcriptional disruption by LTR element insertions in the Trpc6 and Kcnh6 genes. Taken together, these studies lend insight into the potential selective forces that have shaped intronic TE distributions and enable identification of TEs most likely to exert transcriptional effects on genes. Sequences derived from transposable elements (TEs) are major constituents of mammalian genomes and are found within introns of most genes. While nearly all TEs within introns appear harmless, some de novo intronic TE insertions do disrupt gene transcription and splicing and cause disease. It is unclear why some intronic TEs perturb gene transcription whereas most do not. Here, we examined intronic TE distributions in both human and mouse genes to gain insight into which TEs may be more likely to affect transcription. We found evidence that TEs near exons are likely subject to strong negative selection but the size of the region under selection or “underrepresentation zone” differs for different TE classes. Strikingly, all reported human disease-causing intronic TE insertions fall within these underrepresentation zones, and the proportion of TEs contributing to chimeric TE-gene transcripts is significantly higher when TEs are located in these zones. We also examined insertionally polymorphic mouse TEs located within underrepresentation zones and found evidence of transcriptional disruption in two genes. Given the growing appreciation for ongoing activity of TEs in human, our results should be of value in prioritizing insertionally polymorphic TEs for study of their potential contributions to gene expression differences and phenotypic variability.
Collapse
Affiliation(s)
- Ying Zhang
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mark T. Romanish
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dixie L. Mager
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
77
|
Li F, Nellåker C, Yolken RH, Karlsson H. A systematic evaluation of expression of HERV-W elements; influence of genomic context, viral structure and orientation. BMC Genomics 2011; 12:22. [PMID: 21226900 PMCID: PMC3031232 DOI: 10.1186/1471-2164-12-22] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 01/12/2011] [Indexed: 12/19/2022] Open
Abstract
Background One member of the W family of human endogenous retroviruses (HERV) appears to have been functionally adopted by the human host. Nevertheless, a highly diversified and regulated transcription from a range of HERV-W elements has been observed in human tissues and cells. Aberrant expression of members of this family has also been associated with human disease such as multiple sclerosis (MS) and schizophrenia. It is not known whether this broad expression of HERV-W elements represents transcriptional leakage or specific transcription initiated from the retroviral promoter in the long terminal repeat (LTR) region. Therefore, potential influences of genomic context, structure and orientation on the expression levels of individual HERV-W elements in normal human tissues were systematically investigated. Results Whereas intronic HERV-W elements with a pseudogene structure exhibited a strong anti-sense orientation bias, intronic elements with a proviral structure and solo LTRs did not. Although a highly variable expression across tissues and elements was observed, systematic effects of context, structure and orientation were also observed. Elements located in intronic regions appeared to be expressed at higher levels than elements located in intergenic regions. Intronic elements with proviral structures were expressed at higher levels than those elements bearing hallmarks of processed pseudogenes or solo LTRs. Relative to their corresponding genes, intronic elements integrated on the sense strand appeared to be transcribed at higher levels than those integrated on the anti-sense strand. Moreover, the expression of proviral elements appeared to be independent from that of their corresponding genes. Conclusions Intronic HERV-W provirus integrations on the sense strand appear to have elicited a weaker negative selection than pseudogene integrations of transcripts from such elements. Our current findings suggest that the previously observed diversified and tissue-specific expression of elements in the HERV-W family is the result of both directed transcription (involving both the LTR and internal sequence) and leaky transcription of HERV-W elements in normal human tissues.
Collapse
Affiliation(s)
- Fang Li
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
78
|
Huda A, Bowen NJ, Conley AB, Jordan IK. Epigenetic regulation of transposable element derived human gene promoters. Gene 2011; 475:39-48. [PMID: 21215797 DOI: 10.1016/j.gene.2010.12.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 12/22/2010] [Indexed: 02/08/2023]
Abstract
It was previously thought that epigenetic histone modifications of mammalian transposable elements (TEs) serve primarily to defend the genome against deleterious effects associated with their activity. However, we recently showed that, genome-wide, human TEs can also be epigenetically modified in a manner consistent with their ability to regulate host genes. Here, we explore the ability of TE sequences to epigenetically regulate individual human genes by focusing on the histone modifications of promoter sequences derived from TEs. We found 1520 human genes that initiate transcription from within TE-derived promoter sequences. We evaluated the distributions of eight histone modifications across these TE-promoters, within and between the GM12878 and K562 cell lines, and related their modification status with the cell-type specific expression patterns of the genes that they regulate. TE-derived promoters are significantly enriched for active histone modifications, and depleted for repressive modifications, relative to the genomic background. Active histone modifications of TE-promoters peak at transcription start sites and are positively correlated with increasing expression within cell lines. Furthermore, differential modification of TE-derived promoters between cell lines is significantly correlated with differential gene expression. LTR-retrotransposon derived promoters in particular play a prominent role in mediating cell-type specific gene regulation, and a number of these LTR-promoter genes are implicated in lineage-specific cellular functions. The regulation of human genes mediated by histone modifications targeted to TE-derived promoters is consistent with the ability of TEs to contribute to the epigenomic landscape in a way that provides functional utility to the host genome.
Collapse
Affiliation(s)
- Ahsan Huda
- School of Biology, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332, USA.
| | | | | | | |
Collapse
|
79
|
|
80
|
Gabriel U, Steidler A, Trojan L, Michel MS, Seifarth W, Fabarius A. Smoking increases transcription of human endogenous retroviruses in a newly established in vitro cell model and in normal urothelium. AIDS Res Hum Retroviruses 2010; 26:883-8. [PMID: 20666582 DOI: 10.1089/aid.2010.0014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Human endogenous retroviruses (HERVs) accounting for 9% of the human genome are considered as surrogate markers for genetic instability and as a driving force of genetic variation. Moreover, they modulate regular gene activities and give rise to expression of disease-associated peptides that may serve as diagnostic markers or even targets for T cell-based immune responses. To date, no data are available on the potential link between urothelial carcinogenesis, HERV activity, and tobacco smoking, the main risk for bladder cancer. Here, we report on potential alterations in HERV transcription induced by smoking in a newly established in vitro model and in human urothelium. Normal human dermal fibroblasts were cultivated with urine from never (n = 6) and current smokers (n = 6) and transcription levels for the HERV subfamilies HERV-E 4-1, HERV-T S71-TK1, and HERV-K HML-6 were measured by quantitative real-time PCR. Tendencies toward increased mean transcript levels were detected for cells treated with urine from current smokers. Equally, activity measured in human urothelium supported an increase of HERV transcription in current smokers (n = 9) compared to never smokers (n = 4).
Collapse
Affiliation(s)
- Ute Gabriel
- Department of Urology, University of Heidelberg, Mannheim, Germany
| | - Annette Steidler
- Department of Urology, University of Heidelberg, Mannheim, Germany
| | - Lutz Trojan
- Department of Urology, University of Heidelberg, Mannheim, Germany
| | | | - Wolfgang Seifarth
- Medical Clinic III, Mannheim Medical Center, University of Heidelberg, Mannheim, Germany
| | - Alice Fabarius
- Medical Clinic III, Mannheim Medical Center, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
81
|
Post-injury stress signals alter epigenetic profile of cytosine methylation in the proviral genome of endogenous retroviruses. Exp Mol Pathol 2010; 89:291-300. [PMID: 20609362 DOI: 10.1016/j.yexmp.2010.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2010] [Accepted: 06/29/2010] [Indexed: 11/22/2022]
Abstract
The majority of epigenetic methylation events at cytosine residues of the genome are reported to occur in transposable elements, as a result, it contributes to genome stability by repressing their transposition activity. Our recent studies demonstrated that the expression of certain murine endogenous retroviruses (MuERVs), a family of retrotransposons, is modulated in the liver after burn injury and sepsis. In this study, we investigated whether burn-elicited stress signals alter epigenetic methylation profile of cytosine residues of the MuERV proviral genome. Female C57BL/6J mice were subjected to ~18% total body surface area burn. The genomic DNAs from the livers, which were collected at 3 and 24 h after burn, were treated with bisulfite to convert unmethylated cytosines (C) to thymines (T). From four experimental groups (no burn-3h, burn-3h, no burn-24h, and burn-24h), 91, 98, 94, and 86 unique U3 sequences (from sense or antisense strand) were cloned, respectively and a total of 16 different U3 sizes were identified among them. The survey of C to T conversions in these U3 sequences revealed that the epigenetic profiles of cytosine methylation are differentially affected (increase or decrease in demethylated cytosine residues) by stress signals from burn and/or anesthesia-resuscitation in a position of cytosine residue and/or size of U3 sequence-specific manner. In addition, the methylation characteristics of the majority of cytosine residues of the different U3 sequences within each size group were conserved. The findings from this study suggest that burn-elicited stress signals contribute to a transient or permanent alteration in cytosine methylation characteristics of certain MuERV loci in the genome, potentially modulating transcription activity of their own as well as neighboring genes.
Collapse
|
82
|
Romanish MT, Cohen CJ, Mager DL. Potential mechanisms of endogenous retroviral-mediated genomic instability in human cancer. Semin Cancer Biol 2010; 20:246-53. [PMID: 20685251 DOI: 10.1016/j.semcancer.2010.05.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 05/12/2010] [Accepted: 05/19/2010] [Indexed: 01/13/2023]
Abstract
Malignancy results from a complex combination of genetic and epigenetic changes, the full effects of which are still largely unknown. Here we summarize current knowledge of the origin, retrotranspositional activity, epigenetic state, and transcription of human endogenous retroviruses (HERVs), and then discuss the potential effects of their deregulation in cancer. Evidence suggests that cancer-associated epigenetic changes most likely underlie potential HERV-mediated effects on genome and transcriptome instability and may play a role in malignancy. Despite our currently limited understanding of the importance of HERVs or other transposable elements in cancer development, we believe that the emerging era of high-throughput sequencing of cancer genomes, epigenomes, and transcriptomes will provide unprecedented opportunities to investigate these roles in the future.
Collapse
Affiliation(s)
- M T Romanish
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada.
| | | | | |
Collapse
|
83
|
Suzuki M, Jing Q, Lia D, Pascual M, McLellan A, Greally JM. Optimized design and data analysis of tag-based cytosine methylation assays. Genome Biol 2010; 11:R36. [PMID: 20359321 PMCID: PMC2884539 DOI: 10.1186/gb-2010-11-4-r36] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 03/16/2010] [Accepted: 04/01/2010] [Indexed: 01/11/2023] Open
Abstract
Genome-wide, tag-based cytosine methylation analysis is optimized. Using the type III restriction-modification enzyme EcoP15I, we isolated sequences flanking sites digested by the methylation-sensitive HpaII enzyme or its methylation-insensitive MspI isoschizomer for massively parallel sequencing. A novel data transformation allows us to normalise HpaII by MspI counts, resulting in more accurate quantification of methylation at >1.8 million loci in the human genome. This HELP-tagging assay is not sensitive to sequence polymorphism or base composition and allows exploration of both CG-rich and depleted genomic contexts.
Collapse
Affiliation(s)
- Masako Suzuki
- Department of Genetics (Computational Genetics), Center for Epigenomics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
84
|
Jintaridth P, Mutirangura A. Distinctive patterns of age-dependent hypomethylation in interspersed repetitive sequences. Physiol Genomics 2010; 41:194-200. [PMID: 20145203 DOI: 10.1152/physiolgenomics.00146.2009] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interspersed repetitive sequences (IRSs) are a major contributor to genome size and may contribute to cellular functions. IRSs are subdivided according to size and functionally related structures into short interspersed elements, long interspersed elements (LINEs), DNA transposons, and LTR-retrotransposons. Many IRSs may produce RNA and regulate genes by a variety of mechanisms. The majority of DNA methylation occurs in IRSs and is believed to suppress IRS activities. Global hypomethylation, or the loss of genome-wide methylation, is a common epigenetic event not only in senescent cells but also in cancer cells. Loss of LINE-1 methylation has been characterized in many cancers. Here, we evaluated the methylation levels of peripheral blood mononuclear cells of LINE-1, Alu, and human endogenous retrovirus K (HERV-K) in 177 samples obtained from volunteers between 20 and 88 yr of age. Age was negatively associated with methylation levels of Alu (r = -0.452, P < 10(-3)) and HERV-K (r = -0.326, P < 10(-3)) but not LINE-1 (r = 0.145, P = 0.055). Loss of methylation of Alu occurred during ages 34-68 yr, and loss of methylation of HERV-K occurred during ages 40-63 yr and again during ages 64-83 yr. Interestingly, methylation of Alu and LINE-1 are directly associated, particularly at ages 49 yr and older (r = 0.49, P < 10(-3)). Therefore, only some types of IRSs lose methylation at certain ages. Moreover, Alu and HERV-K become hypomethylated differently. Finally, there may be several mechanisms of global methylation. However, not all of these mechanisms are age-dependent. This finding may lead to a better understanding of not only the biological causes and consequences of genome-wide hypomethylation but also the role of IRSs in the aging process.
Collapse
Affiliation(s)
- Pornrutsami Jintaridth
- Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University
| | | |
Collapse
|
85
|
The LTR of endogenous retrovirus ev21 retains promoter activity and exhibits tissue specific transcription in chicken. Sci Bull (Beijing) 2010. [DOI: 10.1007/s11434-009-0547-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
86
|
Ladunga I. An overview of the computational analyses and discovery of transcription factor binding sites. Methods Mol Biol 2010; 674:1-22. [PMID: 20827582 DOI: 10.1007/978-1-60761-854-6_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Here we provide a pragmatic, high-level overview of the computational approaches and tools for the discovery of transcription factor binding sites. Unraveling transcription regulatory networks and their malfunctions such as cancer became feasible due to recent stellar progress in experimental techniques and computational analyses. While predictions of isolated sites still pose notorious challenges, cis-regulatory modules (clusters) of binding sites can now be identified with high accuracy. Further support comes from conserved DNA segments, co-regulation, transposable elements, nucleosomes, and three-dimensional chromosomal structures. We introduce computational tools for the analysis and interpretation of chromatin immunoprecipitation, next-generation sequencing, SELEX, and protein-binding microarray results. Because immunoprecipitation produces overly large DNA segments and well over half of the sequencing reads from constitute background noise, methods are presented for background correction, sequence read mapping, peak calling, false discovery rate estimation, and co-localization analyses. To discover short binding site motifs from extensive immunoprecipitation segments, we recommend algorithms and software based on expectation maximization and Gibbs sampling. Data integration using several databases further improves performance. Binding sites can be visualized in genomic and chromatin context using genome browsers. Binding site information, integrated with co-expression in large compendia of gene expression experiments, allows us to reveal complex transcriptional regulatory networks.
Collapse
Affiliation(s)
- Istvan Ladunga
- Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
87
|
Unique functions of repetitive transcriptomes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 285:115-88. [PMID: 21035099 DOI: 10.1016/b978-0-12-381047-2.00003-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Repetitive sequences occupy a huge fraction of essentially every eukaryotic genome. Repetitive sequences cover more than 50% of mammalian genomic DNAs, whereas gene exons and protein-coding sequences occupy only ~3% and 1%, respectively. Numerous genomic repeats include genes themselves. They generally encode "selfish" proteins necessary for the proliferation of transposable elements (TEs) in the host genome. The major part of evolutionary "older" TEs accumulated mutations over time and fails to encode functional proteins. However, repeats have important functions also on the RNA level. Repetitive transcripts may serve as multifunctional RNAs by participating in the antisense regulation of gene activity and by competing with the host-encoded transcripts for cellular factors. In addition, genomic repeats include regulatory sequences like promoters, enhancers, splice sites, polyadenylation signals, and insulators, which actively reshape cellular transcriptomes. TE expression is tightly controlled by the host cells, and some mechanisms of this regulation were recently decoded. Finally, capacity of TEs to proliferate in the host genome led to the development of multiple biotechnological applications.
Collapse
|
88
|
Identification of transcription factor binding sites derived from transposable element sequences using ChIP-seq. Methods Mol Biol 2010; 674:225-40. [PMID: 20827595 DOI: 10.1007/978-1-60761-854-6_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Transposable elements (TEs) form a substantial fraction of the non-coding DNA of many eukaryotic genomes. There are numerous examples of TEs being exapted for regulatory function by the host, many of which were identified through their high conservation. However, given that TEs are often the youngest part of a genome and typically exhibit a high turnover, conservation-based methods will fail to identify lineage- or species-specific exaptations. ChIP-seq has become a very popular and effective method for identifying in vivo DNA-protein interactions, such as those seen at transcription factor binding sites (TFBS), and has been used to show that there are a large number of TE-derived TFBS. Many of these TE-derived TFBS show poor conservation and would go unnoticed using conservation screens. Here, we describe a simple pipeline method for using data generated through ChIP-seq to identify TE-derived TFBS.
Collapse
|
89
|
Levy A, Schwartz S, Ast G. Large-scale discovery of insertion hotspots and preferential integration sites of human transposed elements. Nucleic Acids Res 2009; 38:1515-30. [PMID: 20008508 PMCID: PMC2836564 DOI: 10.1093/nar/gkp1134] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Throughout evolution, eukaryotic genomes have been invaded by transposable elements (TEs). Little is known about the factors leading to genomic proliferation of TEs, their preferred integration sites and the molecular mechanisms underlying their insertion. We analyzed hundreds of thousands nested TEs in the human genome, i.e. insertions of TEs into existing ones. We first discovered that most TEs insert within specific ‘hotspots’ along the targeted TE. In particular, retrotransposed Alu elements contain a non-canonical single nucleotide hotspot for insertion of other Alu sequences. We next devised a method for identification of integration sequence motifs of inserted TEs that are conserved within the targeted TEs. This method revealed novel sequences motifs characterizing insertions of various important TE families: Alu, hAT, ERV1 and MaLR. Finally, we performed a global assessment to determine the extent to which young TEs tend to nest within older transposed elements and identified a 4-fold higher tendency of TEs to insert into existing TEs than to insert within non-TE intergenic regions. Our analysis demonstrates that TEs are highly biased to insert within certain TEs, in specific orientations and within specific targeted TE positions. TE nesting events also reveal new characteristics of the molecular mechanisms underlying transposition.
Collapse
Affiliation(s)
- Asaf Levy
- Department of Human Molecular Genetics and Biochemistry, Tel-Aviv University, Ramat Aviv 69978, Israel
| | | | | |
Collapse
|
90
|
Gogvadze E, Buzdin A. Retroelements and their impact on genome evolution and functioning. Cell Mol Life Sci 2009; 66:3727-42. [PMID: 19649766 PMCID: PMC11115525 DOI: 10.1007/s00018-009-0107-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 06/11/2009] [Accepted: 07/14/2009] [Indexed: 12/31/2022]
Abstract
Retroelements comprise a considerable fraction of eukaryotic genomes. Since their initial discovery by Barbara McClintock in maize DNA, retroelements have been found in genomes of almost all organisms. First considered as a "junk DNA" or genomic parasites, they were shown to influence genome functioning and to promote genetic innovations. For this reason, they were suggested as an important creative force in the genome evolution and adaptation of an organism to altered environmental conditions. In this review, we summarize the up-to-date knowledge of different ways of retroelement involvement in structural and functional evolution of genes and genomes, as well as the mechanisms generated by cells to control their retrotransposition.
Collapse
Affiliation(s)
- Elena Gogvadze
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya st, 117997 Moscow, Russia.
| | | |
Collapse
|
91
|
Nellåker C, Li F, Uhrzander F, Tyrcha J, Karlsson H. Expression profiling of repetitive elements by melting temperature analysis: variation in HERV-W gag expression across human individuals and tissues. BMC Genomics 2009; 10:532. [PMID: 19919688 PMCID: PMC2779825 DOI: 10.1186/1471-2164-10-532] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 11/17/2009] [Indexed: 01/12/2023] Open
Abstract
Background Human endogenous retroviruses (HERV) constitute approximately 8% of the human genome and have long been considered "junk". The sheer number and repetitive nature of these elements make studies of their expression methodologically challenging. Hence, little is known of transcription of genomic regions harboring such elements. Results Applying a recently developed technique for obtaining high resolution melting temperature data, we examined the frequency distributions of HERV-W gag element into 13 Tm categories in human tissues. Transcripts containing HERV-W gag sequences were expressed in non-random patterns with extensive variations in the expression between both tissues, including different brain regions, and individuals. Furthermore, the patterns of such transcripts varied more between individuals in brain regions than other tissues. Conclusion Thus, regulated expression of non-coding regions of the human genome appears to include the HERV-W family of repetitive elements. Although it remains to be established whether such expression patterns represent leakage from transcription of functional regions or specific transcription, the current approach proves itself useful for studying detailed expression patterns of repetitive regions.
Collapse
Affiliation(s)
- Christoffer Nellåker
- Department of Neuroscience, Karolinska Institutet, Retzius Väg 8 B2:5, 17177 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
92
|
Huda A, Jordan IK. Epigenetic Regulation of Mammalian Genomes by Transposable Elements. Ann N Y Acad Sci 2009; 1178:276-84. [DOI: 10.1111/j.1749-6632.2009.05007.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
93
|
Human endogenous retroviral long terminal repeat sequences as cell type-specific promoters in retroviral vectors. J Virol 2009; 83:12643-50. [PMID: 19741000 DOI: 10.1128/jvi.00858-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human genome contains more than half a million human endogenous retrovirus (HERV) long terminal repeats (LTRs) that can be regarded as mobile regulatory modules. Many of these HERV LTRs have been recruited during evolution as transcriptional control elements for cellular gene expression. We have cloned LTR sequences from two HERV families, HERV-H and HERV-L, differing widely in their activity and tissue specificity into a murine leukemia virus (MLV)-based promoter conversion vector (ProCon). Various human cell lines were infected with the HERV-MLV hybrid vectors, and cell type-specific expression of the reporter gene was compared with the promoter specificity of the corresponding HERV LTRs in transient-transfection assays. Transcription start site analysis of HERV-MLV hybrid vectors revealed preferential use of the HERV promoter initiation site. Our data show that HERV LTRs function in the context of retroviral vectors in certain cell types and have the potential to be useful as cell type-specific promoters in vector construction.
Collapse
|
94
|
Huang CJ, Lin WY, Chang CM, Choo KB. Transcription of the rat testis-specific Rtdpoz-T1 and -T2 retrogenes during embryo development: co-transcription and frequent exonisation of transposable element sequences. BMC Mol Biol 2009; 10:74. [PMID: 19630990 PMCID: PMC2724483 DOI: 10.1186/1471-2199-10-74] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 07/25/2009] [Indexed: 01/22/2023] Open
Abstract
Background Retrotransposition is an important evolutionary force for the creation of new and potentially functional intronless genes which are collectively called retrogenes. Many retrogenes are expressed in the testis and the gene products have been shown to actively participate in spermatogenesis and other unique functions of the male germline. We have previously reported a cluster of retrogenes in the rat genome that encode putative TRAF- and POZ-domain proteins. Two of the genes, Rtdpoz-T1 and -T2 (abbreviated as T1 and T2), have further been shown to be expressed specifically in the rat testis. Results We show here that the T1 and T2 genes are also expressed in the rat embryo up to days 16–17 of development when the genes are silenced until being re-activated in the adult testis. On database interrogation, we find that some T1/T2 exons are chromosomally duplicated as cassettes of 2 or 3 exons consistent with retro-duplication. The embryonic T1/T2 transcripts, characterised by RT-PCR-cloning and rapid amplification of cDNA ends, are further found to have acquired one or more noncoding exons in the 5'-untranslated region (5'-UTR). Most importantly, the T1/T2 locus is embedded within a dense field of relics of transposable element (TE) derived mainly from LINE1 and ERV sequences, and the TE sequences are frequently exonised through alternative splicing to form the 5'-UTR sequences of the T1/T2 transcripts. In a case of T1 transcript, the 3'-end is extended into and terminated within an L1 sequence. Since the two genes share a common exon 1 and are, therefore, regulated by a single promoter, a T2-to-T1 co-transcription model is proposed. We further demonstrate that the exonised 5'-UTR TE sequences could lead to the creation of upstream open reading frames resulting in translational repression. Conclusion Exonisation of TE sequences is a frequent event in the transcription of retrogenes during embryonic development and in the testis and may contribute to post-transcriptional regulation of expression of retrogenes.
Collapse
Affiliation(s)
- Chiu-Jung Huang
- Department of Animal Science, School of Agriculture, Chinese Culture University, Yang-Ming-Shan, Taipei, Taiwan.
| | | | | | | |
Collapse
|
95
|
Endogenous retroviral LTRs as promoters for human genes: a critical assessment. Gene 2009; 448:105-14. [PMID: 19577618 DOI: 10.1016/j.gene.2009.06.020] [Citation(s) in RCA: 231] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 06/10/2009] [Accepted: 06/22/2009] [Indexed: 12/24/2022]
Abstract
Gene regulatory changes are thought to be major factors driving species evolution, with creation of new regulatory regions likely being instrumental in contributing to diversity among vertebrates. There is growing appreciation for the role of transposable elements (TEs) in gene regulation and, indeed, laboratory investigations have confirmed many specific examples of mammalian genes regulated by promoters donated by endogenous retroviruses (ERVs) or other TEs. Bioinformatics studies have revealed hundreds of additional instances where this is likely to be the case. Since the long terminal repeats (LTRs) of retroviruses naturally contain abundant transcriptional regulatory signals, roles for ERV LTRs in regulating mammalian genes are eminently plausible. Moreover, it seems reasonable that exaptation of an LTR regulatory module provides opportunities for evolution of new gene regulatory patterns. In this Review we summarize known examples of LTRs that function as human gene alternative promoters, as well as the evidence that LTR exaptation has resulted in a pattern of novel gene expression significantly different from the pattern before LTR insertion or from that of gene orthologs lacking the LTR. Available data suggest that, while new expression patterns can arise as a result of LTR usage, this situation is relatively rare and is largely restricted to the placenta. In many cases, the LTR appears to be a minor, alternative promoter with an expression pattern similar to that of the native promoter(s) and hence likely exerts a subtle overall effect on gene expression. We discuss these findings and offer evolutionary models to explain these trends.
Collapse
|
96
|
Huda A, Mariño-Ramírez L, Landsman D, Jordan IK. Repetitive DNA elements, nucleosome binding and human gene expression. Gene 2009; 436:12-22. [PMID: 19393174 DOI: 10.1016/j.gene.2009.01.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 01/23/2009] [Indexed: 11/26/2022]
Abstract
We evaluated the epigenetic contributions of repetitive DNA elements to human gene regulation. Human proximal promoter sequences show distinct distributions of transposable elements (TEs) and simple sequence repeats (SSRs). TEs are enriched distal from transcriptional start sites (TSSs) and their frequency decreases closer to TSSs, being largely absent from the core promoter region. SSRs, on the other hand, are found at low frequency distal to the TSS and then increase in frequency starting approximately 150 bp upstream of the TSS. The peak of SSR density is centered around the -35 bp position where the basal transcriptional machinery assembles. These trends in repetitive sequence distribution are strongly correlated, positively for TEs and negatively for SSRs, with relative nucleosome binding affinities along the promoters. Nucleosomes bind with highest probability distal from the TSS and the nucleosome binding affinity steadily decreases reaching its nadir just upstream of the TSS at the same point where SSR frequency is at its highest. Promoters that are enriched for TEs are more highly and broadly expressed, on average, than promoters that are devoid of TEs. In addition, promoters that have similar repetitive DNA profiles regulate genes that have more similar expression patterns and encode proteins with more similar functions than promoters that differ with respect to their repetitive DNA. Furthermore, distinct repetitive DNA promoter profiles are correlated with tissue-specific patterns of expression. These observations indicate that repetitive DNA elements mediate chromatin accessibility in proximal promoter regions and the repeat content of promoters is relevant to both gene expression and function.
Collapse
Affiliation(s)
- Ahsan Huda
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | |
Collapse
|