51
|
A Novel Modeling in Mathematical Biology for Classification of Signal Peptides. Sci Rep 2018; 8:1039. [PMID: 29348418 PMCID: PMC5773712 DOI: 10.1038/s41598-018-19491-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 01/02/2018] [Indexed: 11/17/2022] Open
Abstract
The molecular structure of macromolecules in living cells is ambiguous unless we classify them in a scientific manner. Signal peptides are of vital importance in determining the behavior of newly formed proteins towards their destined path in cellular and extracellular location in both eukaryotes and prokaryotes. In the present research work, a novel method is offered to foreknow the behavior of signal peptides and determine their cleavage site. The proposed model employs neural networks using isolated sets of prokaryote and eukaryote primary sequences. Protein sequences are classified as secretory or non-secretory in order to investigate secretory proteins and their signal peptides. In comparison with the previous prediction tools, the proposed algorithm is more rigorous, well-organized, significantly appropriate and highly accurate for the examination of signal peptides even in extensive collection of protein sequences.
Collapse
|
52
|
Advanced In Silico Tools for Designing of Antigenic Epitope as Potential Vaccine Candidates Against Coronavirus. BIOINFORMATICS: SEQUENCES, STRUCTURES, PHYLOGENY 2018. [PMCID: PMC7120312 DOI: 10.1007/978-981-13-1562-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Vaccines are the most economical and potent substitute of available medicines to cure various bacterial and viral diseases. Earlier, killed or attenuated pathogens were employed for vaccine development. But in present era, the peptide vaccines are in much trend and are favoured over whole vaccines because of their superiority over conventional vaccines. These vaccines are either based on single proteins or on synthetic peptides including several B-cell and T-cell epitopes. However, the overall mechanism of action remains the same and works by prompting the immune system to activate the specific B-cell- and T-cell-mediated responses against the pathogen. Rino Rappuoli and others have contributed in this field by plotting the design of the most potent and fully computational approach for discovery of potential vaccine candidates which is popular as reverse vaccinology. This is quite an unambiguous advance for vaccine evolution where one begins with the genome information of the pathogen and ends up with the list of certain epitopes after application of multiple bioinformatics tools. This book chapter is an effort to bring this approach of reverse vaccinology into notice of readers using example of coronavirus.
Collapse
|
53
|
Iida K, Teng J, Cho T, Yoshikawa-Kimura S, Iida H. Post-translational processing and membrane translocation of the yeast regulatory Mid1 subunit of the Cch1/VGCC/NALCN cation channel family. J Biol Chem 2017; 292:20570-20582. [PMID: 29042437 PMCID: PMC5733593 DOI: 10.1074/jbc.m117.810283] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/20/2017] [Indexed: 12/24/2022] Open
Abstract
Saccharomyces cerevisiae Mid1 is composed of 548 amino acids and a regulatory subunit of Cch1, a member of the eukaryotic pore-forming, four-domain cation channel family. The amino acid sequence and voltage insensitivity of Cch1 are more similar to those of Na+ leak channel non-selective (NALCN) than to the α1 subunit of voltage-gated Ca2+ channels (VGCCs). Despite a lack in overall primary sequence similarity, Mid1 resembles in some aspects VGCC α2/δ regulatory subunits and NALCN-associated proteins. Unlike animal α2/δ subunits, Mid1 and NALCN-associated proteins are essential for the function of the pore-forming subunit. We herein investigated the processing and membrane translocation of Mid1. Mid1 was found to have a 20-amino-acid-long N-terminal signal peptide and appeared to be entirely localized extracellularly. A signal peptide-deleted Mid1 protein, Mid1ΔN23, was N-glycosylated and retained Ca2+ influx activity through Cch1. Moreover, an N-terminal truncation analysis revealed that even truncated Mid1 lacking 209 N-terminal amino acid residues was N-glycosylated and maintained Ca2+ influx activity. A 219-amino-acid-truncated Mid1 protein lost this activity but was still N-glycosylated. In the sec71Δ and sec72Δ single mutants defective in the post-translational protein transport into the endoplasmic reticulum (ER), Mid1ΔN23 could not mediate Ca2+ influx and did not undergo N-glycosylation, whereas wild-type Mid1 exhibited normal Ca2+ influx activity and N-glycosylation in these mutants. Therefore, the signal peptide-lacking Mid1ΔN23 protein may be translocated to the ER exclusively through the post-translational protein translocation, which typically requires an N-terminal signal peptide. Mid1 may provide a tool for studying mechanisms of protein translocation into the ER.
Collapse
Affiliation(s)
- Kazuko Iida
- From the Laboratory of Biomembrane, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo 156-8506, Japan and
| | - Jinfeng Teng
- the Department of Biology, Tokyo Gakugei University, 4-1-1 Nukui kita-machi, Koganei, Tokyo 184-8501, Japan
| | - Toshihiko Cho
- the Department of Biology, Tokyo Gakugei University, 4-1-1 Nukui kita-machi, Koganei, Tokyo 184-8501, Japan
| | - Sato Yoshikawa-Kimura
- the Department of Biology, Tokyo Gakugei University, 4-1-1 Nukui kita-machi, Koganei, Tokyo 184-8501, Japan
| | - Hidetoshi Iida
- the Department of Biology, Tokyo Gakugei University, 4-1-1 Nukui kita-machi, Koganei, Tokyo 184-8501, Japan
| |
Collapse
|
54
|
Relative distribution and biological characterization of CXCL4L1 isoforms in platelets from healthy donors. Biochem Pharmacol 2017; 145:123-131. [DOI: 10.1016/j.bcp.2017.08.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/25/2017] [Indexed: 12/20/2022]
|
55
|
Natural Parasite Exposure Induces Protective Human Anti-Malarial Antibodies. Immunity 2017; 47:1197-1209.e10. [PMID: 29195810 DOI: 10.1016/j.immuni.2017.11.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/22/2017] [Accepted: 11/04/2017] [Indexed: 12/21/2022]
Abstract
Antibodies against the NANP repeat of circumsporozoite protein (CSP), the major surface antigen of Plasmodium falciparum (Pf) sporozoites, can protect from malaria in animal models but protective humoral immunity is difficult to induce in humans. Here we cloned and characterized rare affinity-matured human NANP-reactive memory B cell antibodies elicited by natural Pf exposure that potently inhibited parasite transmission and development in vivo. We unveiled the molecular details of antibody binding to two distinct protective epitopes within the NANP repeat. NANP repeat recognition was largely mediated by germline encoded and immunoglobulin (Ig) heavy-chain complementarity determining region 3 (HCDR3) residues, whereas affinity maturation contributed predominantly to stabilizing the antigen-binding site conformation. Combined, our findings illustrate the power of exploring human anti-CSP antibody responses to develop tools for malaria control in the mammalian and the mosquito vector and provide a molecular basis for the structure-based design of next-generation CSP malaria vaccines.
Collapse
|
56
|
Dehghani B, Ghasabi F, Hashempoor T, Joulaei H, Hasanshahi Z, Halaji M, Chatrabnous N, Mousavi Z, Moayedi J. Functional and structural characterization of Ebola virus glycoprotein (1976–2015) — Anin silicostudy. INT J BIOMATH 2017. [DOI: 10.1142/s179352451750108x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ebola virus (EBOV) is the causative agent of a severe hemorrhagic fever disease associated with high mortality rates in humans. This virus has five strains of which Zaire Ebola virus (ZEBOV) is the first and most important strain. It can be transmitted through contact with contaminated surfaces and objects. The genome of EBOV codes one non-structural and seven structural proteins consisting of two forms of glycoprotein (GP): soluble glycoprotein (sGP) and GP (spike). In this paper, we attempted to characterize and predict physicochemical properties, B-cell epitopes, mutation sites, phosphorylation sites, glycosylation sites, and different protein structures of EBOV GP to provide comprehensive data about changes of this GP during a 40-years course (1976–2015). GP sequences were obtained from NCBI gene bank from 1976–2015. Expasy’sProtParam, PROTSCALE, immuneepitope, Bepipred, BcePred, ABCpred, VaxiJen, DISPHOS, NetPhos, and numerous programs were used to predict and analyze all sequences. More variety of mutations were found in 2015 sequences and mutations were related to huge changes in B-cell epitopes, phosphorylation and glycosylation sites. In addition, our results determined different sites of disulfide bonds and an important mutation related to IgE epitope as well as four potent B-cell epitopes (380–387, 318–338, 405–438 and 434–475). In this study, we suggested the effect of mutations on GP properties, six positions for disulfide bonds and four phosphorylation sites for protein kinase C enzyme. Selected sequences were shown different sites for O-link and N-link glycosylation. A mutation that changed GP to an allergen protein and has a significant role in vaccine designing as well as four potent B-cell epitopes in GP protein were found.
Collapse
Affiliation(s)
- Behzad Dehghani
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzane Ghasabi
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tayebeh Hashempoor
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Joulaei
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Hasanshahi
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrdad Halaji
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, IR Iran
| | - Nazanin Chatrabnous
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Mousavi
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Javad Moayedi
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
57
|
Zielińska A, Billini M, Möll A, Kremer K, Briegel A, Izquierdo Martinez A, Jensen GJ, Thanbichler M. LytM factors affect the recruitment of autolysins to the cell division site in Caulobacter crescentus. Mol Microbiol 2017; 106:419-438. [PMID: 28833791 DOI: 10.1111/mmi.13775] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2017] [Indexed: 12/24/2022]
Abstract
Most bacteria possess a peptidoglycan cell wall that determines their morphology and provides mechanical robustness during osmotic challenges. The biosynthesis of this structure is achieved by a large set of synthetic and lytic enzymes with varying substrate specificities. Although the biochemical functions of these proteins are conserved and well-investigated, the precise roles of individual factors and the regulatory mechanisms coordinating their activities in time and space remain incompletely understood. Here, we comprehensively analyze the autolytic machinery of the alphaproteobacterial model organism Caulobacter crescentus, with a specific focus on LytM-like endopeptidases, soluble lytic transglycosylases and amidases. Our data reveal a high degree of redundancy within each protein family but also specialized functions for individual family members under stress conditions. In addition, we identify two lytic transglycosylases and an amidase as new divisome components that are recruited to midcell at distinct stages of the cell cycle. The midcell localization of these proteins is affected by two LytM factors with degenerate catalytic domains, DipM and LdpF, which may serve as regulatory hubs coordinating the activities of multiple autolytic enzymes during cell constriction and fission respectively. These findings set the stage for in-depth studies of the molecular mechanisms that control peptidoglycan remodeling in C. crescentus.
Collapse
Affiliation(s)
- Aleksandra Zielińska
- Faculty of Biology, Philipps-Universität, Marburg 35043, Germany.,Max Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Maria Billini
- Faculty of Biology, Philipps-Universität, Marburg 35043, Germany.,Max Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Andrea Möll
- Faculty of Biology, Philipps-Universität, Marburg 35043, Germany.,Max Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Katharina Kremer
- Faculty of Biology, Philipps-Universität, Marburg 35043, Germany
| | - Ariane Briegel
- Divison of Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.,Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Adrian Izquierdo Martinez
- Faculty of Biology, Philipps-Universität, Marburg 35043, Germany.,Max Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Grant J Jensen
- Divison of Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.,Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Martin Thanbichler
- Faculty of Biology, Philipps-Universität, Marburg 35043, Germany.,Max Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany.,LOEWE Center for Synthetic Microbiology, Marburg 35043, Germany
| |
Collapse
|
58
|
Nielsen H. Predicting Subcellular Localization of Proteins by Bioinformatic Algorithms. Curr Top Microbiol Immunol 2017; 404:129-158. [PMID: 26728066 DOI: 10.1007/82_2015_5006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
When predicting the subcellular localization of proteins from their amino acid sequences, there are basically three approaches: signal-based, global property-based, and homology-based. Each of these has its advantages and drawbacks, and it is important when comparing methods to know which approach was used. Various statistical and machine learning algorithms are used with all three approaches, and various measures and standards are employed when reporting the performances of the developed methods. This chapter presents a number of available methods for prediction of sorting signals and subcellular localization, but rather than providing a checklist of which predictors to use, it aims to function as a guide for critical assessment of prediction methods.
Collapse
Affiliation(s)
- Henrik Nielsen
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Kemitorvet building 208, 2800, Lyngby, Denmark.
| |
Collapse
|
59
|
Brandi J, Manfredi M, Speziali G, Gosetti F, Marengo E, Cecconi D. Proteomic approaches to decipher cancer cell secretome. Semin Cell Dev Biol 2017; 78:93-101. [PMID: 28684183 DOI: 10.1016/j.semcdb.2017.06.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/30/2017] [Accepted: 06/30/2017] [Indexed: 01/17/2023]
Abstract
In this review, we give an overview of the actual proteomic approaches used in the study of cancer cells secretome. In particular, we describe the proteomic strategies to decipher cancer cell secretome initially focusing on the different aspects of sample preparation. We examine the issues related to the presence of low abundant proteins, the analysis of secreted proteins in the conditioned media with or without the removal of fetal bovine serum and strategies developed to reduce intracellular protein contamination. As regards the identification and quantification of secreted proteins, we described the different proteomic approaches used, i.e. gel-based, MS-based (label-based and label-free), and the antibody and array-based methods, together with some of the most recent applications in the field of cancer research. Moreover, we describe the bioinformatics tools developed for the in silico validation and characterization of cancer cells secretome. We also discuss the most important available tools for protein annotation and for prediction of classical and non-classical secreted proteins. In summary in this review advances, concerns and challenges in the field of cancer secretome analysis are discussed.
Collapse
Affiliation(s)
- Jessica Brandi
- Department of Biotechnology, Proteomics and Mass Spectrometry Lab, University of Verona, Strada le Grazie 15, 37135, Verona, Italy
| | - Marcello Manfredi
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy; ISALIT S.r.l., Novara, Italy.
| | - Giulia Speziali
- Department of Biotechnology, Proteomics and Mass Spectrometry Lab, University of Verona, Strada le Grazie 15, 37135, Verona, Italy
| | - Fabio Gosetti
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Emilio Marengo
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Daniela Cecconi
- Department of Biotechnology, Proteomics and Mass Spectrometry Lab, University of Verona, Strada le Grazie 15, 37135, Verona, Italy
| |
Collapse
|
60
|
Early and late gene expression profiles of the ovine mucosa in response to Haemonchus contortus infection employing Illumina RNA-seq technology. Parasitol Int 2017; 66:681-692. [PMID: 28552633 DOI: 10.1016/j.parint.2017.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/03/2017] [Accepted: 05/23/2017] [Indexed: 02/07/2023]
Abstract
We conducted herein transcriptome sequencing of the ovine abomasal tissues using the Illumina HiSeq 4000 platform to segregate early and late H. contortus-infected sheep (7 and 50days post-infected groups, respectively) from the control naive ones. A total of 548, 357 and 7 were substantially induced genes in 7days post-infection versus uninfected-control group, 50days post-infection versus 7days post-infection (7dpi), and 50days post-infection (50dpi) versus uninfected-control group, respectively. However, a total of 301, 355 and 11 were significantly repressed genes between 7dpi versus uninfected-control group, 50dpi versus 7dpi, and 50dpi versus uninfected-control group, correspondingly. This indicates that H. contortus infection induced a more potent activation of abomasal gene expression in the early stage of infection as compared to the late stage. Seven pathways were annotated by Kyoto Encyclopedia of Genes, and Genomes pathway analysis accounted for the significant percentage in early H. contortus infection. This study shows for the first time that both galectin-11 and matricellular protein osteopontin are up-regulated in abomasal tissue after chronic H. contortus infection, while galectin-4 is specifically down-regulated in the early infection. Additionally, our results showed that the induction or repression of these molecules is likely to determine the infection progression.
Collapse
|
61
|
Li G, Niu H, Zhang Y, Li Y, Xie F, Langford PR, Liu S, Wang C. Haemophilus parasuis cytolethal distending toxin induces cell cycle arrest and p53-dependent apoptosis. PLoS One 2017; 12:e0177199. [PMID: 28545143 PMCID: PMC5436662 DOI: 10.1371/journal.pone.0177199] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/24/2017] [Indexed: 01/20/2023] Open
Abstract
Haemophilus parasuis is the causative agent of Glasser’s disease in pigs. Cytolethal distending toxin (CDT) is an important virulence factor of H. parasuis. It is composed of three subunits: CdtA, CdtB and CdtC and all were successfully expressed in soluble form in Escherichia coli when the signal peptides were removed. Purified CdtB had DNase activity, i.e. caused DNA double strand damage, in vitro and in vivo prior to cell arrest and apoptosis. Flow cytometry analysis showed CdtB alone could induce cell cycle arrest and apoptosis in PK-15 porcine kidney and pulmonary alveolar macrophage (PAM) cells, which could be enhanced by CdtA or/and CdtC. CDT holotoxin could lead to significant cell distension, G2 arrest and apoptotic death in PK-15 and PAM cells. The apoptosis induced by CDT holotoxin was significantly inhibited by pifithrin-α, which indicates that it is p53-dependent. The results suggest that H. parasuis CDT holotoxin is a major virulence factor.
Collapse
Affiliation(s)
- Gang Li
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hui Niu
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yanhe Zhang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yanling Li
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Fang Xie
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Paul R. Langford
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary’s Campus, London, United Kingdom
| | - Siguo Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chunlai Wang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- * E-mail:
| |
Collapse
|
62
|
Zhang YZ, Shen HB. Signal-3L 2.0: A Hierarchical Mixture Model for Enhancing Protein Signal Peptide Prediction by Incorporating Residue-Domain Cross-Level Features. J Chem Inf Model 2017; 57:988-999. [PMID: 28298081 DOI: 10.1021/acs.jcim.6b00484] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Signal peptides play key roles in targeting and translocation of integral membrane proteins and secretory proteins. However, signal peptides present several challenges for automatic prediction methods. One challenge is that it is difficult to discriminate signal peptides from transmembrane helices, as both the H-region of the peptides and the transmembrane helices are hydrophobic. Another is that it is difficult to identify the cleavage site between signal peptides and mature proteins, as cleavage motifs or patterns are still unclear for most proteins. To solve these problems and further enhance automatic signal peptide recognition, we report a new Signal-3L 2.0 predictor. Our new model is constructed with a hierarchical protocol, where it first determines the existence of a signal peptide. For this, we propose a new residue-domain cross-level feature-driven approach, and we demonstrate that protein functional domain information is particularly useful for discriminating between the transmembrane helices and signal peptides as they perform different functions. Next, in order to accurately identify the unique signal peptide cleavage sites along the sequence, we designed a top-down approach where a subset of potential cleavage sites are screened using statistical learning rules, and then a final unique site is selected according to its evolution conservation score. Because this mixed approach utilizes both statistical learning and evolution analysis, it shows a strong capacity for recognizing cleavage sites. Signal-3L 2.0 has been benchmarked on multiple data sets, and the experimental results have demonstrated its accuracy. The online server is available at www.csbio.sjtu.edu.cn/bioinf/Signal-3L/ .
Collapse
Affiliation(s)
- Yi-Ze Zhang
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University , Shanghai, 200240, China.,Key Laboratory of System Control and Information Processing, Ministry of Education of China , Shanghai, 200240, China
| | - Hong-Bin Shen
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University , Shanghai, 200240, China.,Key Laboratory of System Control and Information Processing, Ministry of Education of China , Shanghai, 200240, China
| |
Collapse
|
63
|
Chung JJ, Miki K, Kim D, Shim SH, Shi HF, Hwang JY, Cai X, Iseri Y, Zhuang X, Clapham DE. CatSperζ regulates the structural continuity of sperm Ca 2+ signaling domains and is required for normal fertility. eLife 2017; 6. [PMID: 28226241 PMCID: PMC5362262 DOI: 10.7554/elife.23082] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/20/2017] [Indexed: 12/16/2022] Open
Abstract
We report that the Gm7068 (CatSpere) and Tex40 (CatSperz) genes encode novel subunits of a 9-subunit CatSper ion channel complex. Targeted disruption of CatSperz reduces CatSper current and sperm rheotactic efficiency in mice, resulting in severe male subfertility. Normally distributed in linear quadrilateral nanodomains along the flagellum, the complex lacking CatSperζ is disrupted at ~0.8 μm intervals along the flagellum. This disruption renders the proximal flagellum inflexible and alters the 3D flagellar envelope, thus preventing sperm from reorienting against fluid flow in vitro and efficiently migrating in vivo. Ejaculated CatSperz-null sperm cells retrieved from the mated female uterus partially rescue in vitro fertilization (IVF) that failed with epididymal spermatozoa alone. Human CatSperε is quadrilaterally arranged along the flagella, similar to the CatSper complex in mouse sperm. We speculate that the newly identified CatSperζ subunit is a late evolutionary adaptation to maximize fertilization inside the mammalian female reproductive tract. DOI:http://dx.doi.org/10.7554/eLife.23082.001 Male mammals ejaculate millions of sperm cells each time they mate with a female. Only a few of these cells manage to travel up the female’s reproductive tract to reach the egg, and usually only one sperm fertilizes it. Freshly ejaculated sperm are incapable of fertilizing eggs and have to undergo several changes within the female to become able to do so. One crucial change occurs in the sperm tail, which starts to beat vigorously in a whip-like motion. This type of movement – known as hyperactivated motility – enables the sperm to swim towards the egg, push through a sticky coating that surrounds it, and then burrow into it. Hyperactivated motility is triggered when calcium ions enter the sperm cell via a specific channel protein known as CatSper, which is found in the membrane that surrounds the cell. CatSper channels form groups (known as complexes) with several other proteins that are arranged in a unique pattern of four straight ‘stripes’ running down the tail of the sperm. This arrangement is necessary for hyperactivated motility and mutations in the genes that encode these proteins can lead to infertility in males. The CatSper channel complex is known to contain seven proteins: four that form a pore through which calcium ions can enter, and three accessory proteins whose roles in hyperactivated motility are less clear. Chung et al. identified two genes in mice that encode new accessory proteins in the CatSper channel complex named CatSper epsilon and CatSper zeta. Further experiments analyzed the role of CatSper zeta in more detail. Mutant males that lack CatSper zeta have fragmented patterns of CatSper stripes in the tails of their sperm. Moreover, fewer calcium ions were able to pass through the channels to enter the cell. Together, this made the sperm tail more rigid, which prevented it from moving efficiently within the female, resulting in reduced fertility. Chung et al. also found that the mutant sperm were less able to penetrate the egg than normal sperm. During evolution, the gene that encodes CatSper zeta appeared first in mammals and may represent an adaptation that improved the chances of a sperm fertilizing the egg inside the reproductive tract of female mammals. Future challenges will be to explore how the CatSper channel assembles on the membrane of sperm and find out exactly how calcium ions trigger hyperactivated motility. DOI:http://dx.doi.org/10.7554/eLife.23082.002
Collapse
Affiliation(s)
- Jean-Ju Chung
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States.,Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, United States
| | - Kiyoshi Miki
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States
| | - Doory Kim
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States.,Department of Physics, Harvard University, Cambridge, United States
| | - Sang-Hee Shim
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States.,Department of Physics, Harvard University, Cambridge, United States
| | - Huanan F Shi
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, United States
| | - Jae Yeon Hwang
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, United States
| | - Xinjiang Cai
- Department of Medicine, James J. Perters VA Bronx, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Yusuf Iseri
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States.,Department of Physics, Harvard University, Cambridge, United States
| | - David E Clapham
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| |
Collapse
|
64
|
Alves CS, Dobrowsky TM. Strategies and Considerations for Improving Expression of "Difficult to Express" Proteins in CHO Cells. Methods Mol Biol 2017; 1603:1-23. [PMID: 28493120 DOI: 10.1007/978-1-4939-6972-2_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Despite substantial advances in the field of mammalian expression, there are still proteins that are characterized as difficult to express. Determining the expression bottleneck requires troubleshooting techniques specific for the given molecule and host. The complex array of intracellular processes involved in protein expression includes transcription, protein folding, post-translation processing, and secretion. Challenges in any of these steps could result in low protein expression, while the inherent properties of the molecule itself may limit its production via mechanisms such as cytotoxicity or inherent instability. Strategies to identify the rate-limiting step and subsequently improve expression and production are discussed here.
Collapse
|
65
|
Abstract
In sessile plants, the dynamic protein secretion pathways orchestrate the cellular responses to internal signals and external environmental changes in almost every aspect of plant developmental events. The cohort of plant proteins, secreted from the plant cells into the extracellular matrix, has been annotated as plant secretome. Therefore, the identification and characterization of secreted proteins will discover novel secretory potentials and establish the functional connection between cellular protein secretion and plant physiological phenomena. Noteworthy, an increasing number of bioinformatics databases and tools have been developed for computational predictions on either secreted proteins or secretory pathways. This chapter summarizes current accessible databases and tools for protein secretion analysis in Arabidopsis thaliana and higher plants, and provides feasible methodologies for bioinformatics analysis of secretome studies for the plant research community.
Collapse
Affiliation(s)
- Liyuan Chen
- RGC-AoE Centre for Organelle Biogenesis and Function, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
66
|
Prasad S, Xu J, Zhang Y, Wang N. SEC-Translocon Dependent Extracytoplasmic Proteins of Candidatus Liberibacter asiaticus. Front Microbiol 2016; 7:1989. [PMID: 28066334 PMCID: PMC5167687 DOI: 10.3389/fmicb.2016.01989] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/28/2016] [Indexed: 11/30/2022] Open
Abstract
Citrus Huanglongbing (HLB) is the most destructive citrus disease worldwide. HLB is associated with three species of the phloem-limited, gram-negative, fastidious α-proteobacteria: Candidatus Liberibacter asiaticus (Las), Ca. L. americanus (Lam), and Ca. L. africanus (Laf) with Las being the most widespread species. Las has not been cultured in artificial media, which has greatly hampered our efforts to understand its virulence mechanisms. Las contains a complete Sec-translocon, which has been suggested to transport Las proteins including virulence factors into the extracytoplasmic milieu. In this study, we characterized the Sec-translocon dependent, signal peptide containing extracytoplasmic proteins of Las. A total of 166 proteins of Las-psy62 strain were predicted to contain signal peptides targeting them out of the cell cytoplasm via the Sec-translocon using LipoP, SigalP 3.0, SignalP 4.1, and Phobius. We also predicated SP containing extracytoplasmic proteins for Las-gxpsy and Las-Ishi-1, Lam, Laf, Ca. L. solanacearum (Lso), and L. crescens (Lcr). For experimental validation of the predicted extracytoplasmic proteins, Escherichia coli based alkaline phosphatase (PhoA) gene fusion assays were conducted. A total of 86 out of the 166 predicted Las proteins were experimentally validated to contain signal peptides. Additionally, Las-psy62 lepB (CLIBASIA_04190), the gene encodes signal peptidase I, was able to partially complement the amber mutant of lepB of E. coli. This work will contribute to the identification of Sec-translocon dependent effector proteins of Las, which might be involved in virulence of Las.
Collapse
Affiliation(s)
| | | | | | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake AlfredFL, USA
| |
Collapse
|
67
|
Zarafeta D, Moschidi D, Ladoukakis E, Gavrilov S, Chrysina ED, Chatziioannou A, Kublanov I, Skretas G, Kolisis FN. Metagenomic mining for thermostable esterolytic enzymes uncovers a new family of bacterial esterases. Sci Rep 2016; 6:38886. [PMID: 27991516 PMCID: PMC5171882 DOI: 10.1038/srep38886] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/14/2016] [Indexed: 11/09/2022] Open
Abstract
Biocatalysts exerting activity against ester bonds have a broad range of applications in modern biotechnology. Here, we have identified a new esterolytic enzyme by screening a metagenomic sample collected from a hot spring in Kamchatka, Russia. Biochemical characterization of the new esterase, termed EstDZ2, revealed that it is highly active against medium chain fatty acid esters at temperatures between 25 and 60 °C and at pH values 7-8. The new enzyme is moderately thermostable with a half-life of more than six hours at 60 °C, but exhibits exquisite stability against high concentrations of organic solvents. Phylogenetic analysis indicated that EstDZ2 is likely an Acetothermia enzyme that belongs to a new family of bacterial esterases, for which we propose the index XV. One distinctive feature of this new family, is the presence of a conserved GHSAG catalytic motif. Multiple sequence alignment, coupled with computational modelling of the three-dimensional structure of EstDZ2, revealed that the enzyme lacks the largest part of the "cap" domain, whose extended structure is characteristic for the closely related Family IV esterases. Thus, EstDZ2 appears to be distinct from known related esterolytic enzymes, both in terms of sequence characteristics, as well as in terms of three-dimensional structure.
Collapse
Affiliation(s)
- Dimitra Zarafeta
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, Athens, Greece
- Laboratory of Biotechnology, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Danai Moschidi
- Laboratory of Biotechnology, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Efthymios Ladoukakis
- Laboratory of Biotechnology, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Sergey Gavrilov
- Winogradsky Institute of Microbiology, Research Center for Biotechnology Russian Academy of Sciences, Moscow, Russian Federation
| | - Evangelia D. Chrysina
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Aristotelis Chatziioannou
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Ilya Kublanov
- Winogradsky Institute of Microbiology, Research Center for Biotechnology Russian Academy of Sciences, Moscow, Russian Federation
| | - Georgios Skretas
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Fragiskos N. Kolisis
- Laboratory of Biotechnology, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| |
Collapse
|
68
|
Huang C, Morlighem JÉR, Zhou H, Lima ÉP, Gomes PB, Cai J, Lou I, Pérez CD, Lee SM, Rádis-Baptista G. The Transcriptome of the Zoanthid Protopalythoa variabilis (Cnidaria, Anthozoa) Predicts a Basal Repertoire of Toxin-like and Venom-Auxiliary Polypeptides. Genome Biol Evol 2016; 8:3045-3064. [PMID: 27566758 PMCID: PMC5630949 DOI: 10.1093/gbe/evw204] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2016] [Indexed: 12/12/2022] Open
Abstract
Protopalythoa is a zoanthid that, together with thousands of predominantly marine species, such as hydra, jellyfish, and sea anemones, composes the oldest eumetazoan phylum, i.e., the Cnidaria. Some of these species, such as sea wasps and sea anemones, are highly venomous organisms that can produce deadly toxins for preying, for defense or for territorial disputes. Despite the fact that hundreds of organic and polypeptide toxins have been characterized from sea anemones and jellyfish, practically nothing is known about the toxin repertoire in zoanthids. Here, based on a transcriptome analysis of the zoanthid Protopalythoa variabilis, numerous predicted polypeptides with canonical venom protein features are identified. These polypeptides comprise putative proteins from different toxin families: neurotoxic peptides, hemostatic and hemorrhagic toxins, membrane-active (pore-forming) proteins, protease inhibitors, mixed-function venom enzymes, and venom auxiliary proteins. The synthesis and functional analysis of two of these predicted toxin products, one related to the ShK/Aurelin family and the other to a recently discovered anthozoan toxin, displayed potent in vivo neurotoxicity that impaired swimming in larval zebrafish. Altogether, the complex array of venom-related transcripts that are identified in P. variabilis, some of which are first reported in Cnidaria, provides novel insight into the toxin distribution among species and might contribute to the understanding of composition and evolution of venom polypeptides in toxiferous animals.
Collapse
Affiliation(s)
- Chen Huang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jean-Étienne Rl Morlighem
- Northeast Biotechnology Network (RENORBIO), Post-graduation program in Biotechnology, Federal University of Ceará, Fortaleza, Brazil Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceará, Fortaleza, Brazil
| | - Hefeng Zhou
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Érica P Lima
- Centro Acadêmico de Vitoria, Universidade Federal de Pernambuco, Vitória de Santo Antão, Brazil
| | - Paula B Gomes
- Departamento de Biologia, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Jing Cai
- Faculty of Science and Technology, Department of Civil and Environmental Engineering, University of Macau, Macau, China
| | - Inchio Lou
- Faculty of Science and Technology, Department of Civil and Environmental Engineering, University of Macau, Macau, China
| | - Carlos D Pérez
- Centro Acadêmico de Vitoria, Universidade Federal de Pernambuco, Vitória de Santo Antão, Brazil
| | - Simon Ming Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Gandhi Rádis-Baptista
- Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
69
|
Van Ekert E, Chauvigné F, Finn RN, Mathew LG, Hull JJ, Cerdà J, Fabrick JA. Molecular and functional characterization of Bemisia tabaci aquaporins reveals the water channel diversity of hemipteran insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 77:39-51. [PMID: 27491441 DOI: 10.1016/j.ibmb.2016.07.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/28/2016] [Accepted: 07/31/2016] [Indexed: 06/06/2023]
Abstract
The Middle East-Asia Minor 1 (MEAM1) whitefly, Bemisia tabaci (Gennadius) is an economically important pest of food, fiber, and ornamental crops. This pest has evolved a number of adaptations to overcome physiological challenges, including 1) the ability to regulate osmotic stress between gut lumen and hemolymph after imbibing large quantities of a low nitrogen, sugar-rich liquid diet; 2) the ability to avoid or prevent dehydration and desiccation, particularly during egg hatching and molting; and 3) to be adapted for survival at elevated temperatures. One superfamily of proteins involved in the maintenance of fluid homeostasis in many organisms includes the aquaporins, which are integral membrane channel proteins that aid in the rapid flux of water and other small solutes across biological membranes. Here, we show that B. tabaci has eight aquaporins (BtAqps), of which seven belong to the classical aquaporin 4-related grade of channels, including Bib, Drip, Prip, and Eglps and one that belongs to the unorthodox grade of aquaporin 12-like channels. B. tabaci has further expanded its repertoire of water channels through the expression of three BtDrip2 amino-terminal splice variants, while other hemipteran species express amino- or carboxyl-terminal isoforms of Drip, Prip, and Eglps. Each BtAqp has unique transcript expression profiles, cellular localization, and/or substrate preference. Our phylogenetic and functional data reveal that hemipteran insects lost the classical glp genes, but have compensated for this by duplicating the eglp genes early in their evolution to comprise at least three separate clades of glycerol transporters.
Collapse
Affiliation(s)
- Evelien Van Ekert
- USDA-ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ 85138, USA
| | - François Chauvigné
- Department of Biology, Bergen High Technology Centre, University of Bergen, 5020 Bergen, Norway; Institut de Recerca i Tecnologia Agroalimentaries (IRTA)-Institut de Ciencies del Mar, Consejo Superior de Investigaciones Cientificas (CSIC), 08003 Barcelona, Spain
| | - Roderick Nigel Finn
- Department of Biology, Bergen High Technology Centre, University of Bergen, 5020 Bergen, Norway; Institute of Marine Research, Nordnes, 5817 Bergen, Norway
| | - Lolita G Mathew
- USDA-ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ 85138, USA
| | - J Joe Hull
- USDA-ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ 85138, USA
| | - Joan Cerdà
- Institut de Recerca i Tecnologia Agroalimentaries (IRTA)-Institut de Ciencies del Mar, Consejo Superior de Investigaciones Cientificas (CSIC), 08003 Barcelona, Spain
| | - Jeffrey A Fabrick
- USDA-ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ 85138, USA.
| |
Collapse
|
70
|
Campos BM, Liberato MV, Alvarez TM, Zanphorlin LM, Ematsu GC, Barud H, Polikarpov I, Ruller R, Gilbert HJ, Zeri ACDM, Squina FM. A Novel Carbohydrate-binding Module from Sugar Cane Soil Metagenome Featuring Unique Structural and Carbohydrate Affinity Properties. J Biol Chem 2016; 291:23734-23743. [PMID: 27621314 DOI: 10.1074/jbc.m116.744383] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Indexed: 11/06/2022] Open
Abstract
Carbohydrate-binding modules (CBMs) are appended to glycoside hydrolases and can contribute to the degradation of complex recalcitrant substrates such as the plant cell wall. For application in bioethanol production, novel enzymes with high catalytic activity against recalcitrant lignocellulosic material are being explored and developed. In this work, we report the functional and structural study of CBM_E1, which was discovered through a metagenomics approach and is the founding member of a novel CBM family, CBM81. CBM_E1, which is linked to an endoglucanase, displayed affinity for mixed linked β1,3-β1,4-glucans, xyloglucan, Avicel, and cellooligosaccharides. The crystal structure of CBM_E1 in complex with cellopentaose displayed a canonical β-sandwich fold comprising two β-sheets. The planar ligand binding site, observed in a parallel orientation with the β-strands, is a typical feature of type A CBMs, although the expected affinity for bacterial crystalline cellulose was not detected. Conversely, the binding to soluble glucans was enthalpically driven, which is typical of type B modules. These unique properties of CBM_E1 are at the interface between type A and type B CBMs.
Collapse
Affiliation(s)
| | | | | | | | | | - Hernane Barud
- the Centro Universitário de Araraquara-UNIARA, BioPolMat, CEP 14801-340, Araraquara-SP, Brazil
| | - Igor Polikarpov
- the Instituto de Física de São Carlos, Universidade de São Paulo, CEP 13566-590, São Carlos, São Paulo, Brazil
| | - Roberto Ruller
- the Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), and
| | - Harry J Gilbert
- the Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle-upon-Tyne NE 4HH, United Kingdom, and
| | - Ana Carolina de Mattos Zeri
- the Laboratório Nacional de Luz Sincrotron (LNLS), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, São Paulo, Brazil
| | | |
Collapse
|
71
|
Figueiredo Neto M, Figueiredo ML. Skeletal muscle signal peptide optimization for enhancing propeptide or cytokine secretion. J Theor Biol 2016; 409:11-17. [PMID: 27576355 DOI: 10.1016/j.jtbi.2016.08.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 08/02/2016] [Accepted: 08/23/2016] [Indexed: 11/28/2022]
Abstract
We have utilized hidden Markov models using HMMER software to predict and generate putative strong secretory signal peptide sequences for directing efficient secretion of cytokines from skeletal muscle for therapeutic applications. The results show that this approach can analyze signal sequences of a skeletal muscle secretome dataset and classify them, emitting new sequences that are strong candidate skeletal muscle-enriched signal peptides. The emitted signal peptides also were analyzed for their hydropathy and secondary structure profiles as compared to native signal peptides. The emitted signal peptides had a higher degree of hydropathy and helical composition relative to native sequences, which may suggest that these new sequences may hold promize for promoting enhanced secretion of proteins including cytokines or propeptides from skeletal muscle.
Collapse
Affiliation(s)
- Manoel Figueiredo Neto
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, 625 Harrison St, West Lafayette, IN 47904, United States
| | - Marxa L Figueiredo
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, 625 Harrison St, West Lafayette, IN 47904, United States.
| |
Collapse
|
72
|
Gozu Y, Ishizaki Y, Hosoyama Y, Miyazaki T, Nishikawa A, Tonozuka T. A glycoside hydrolase family 31 dextranase with high transglucosylation activity from Flavobacterium johnsoniae. Biosci Biotechnol Biochem 2016; 80:1562-7. [DOI: 10.1080/09168451.2016.1182852] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
Glycoside hydrolase family (GH) 31 enzymes exhibit various substrate specificities, although the majority of members are α-glucosidases. Here, we constructed a heterologous expression system of a GH31 enzyme, Fjoh_4430, from Flavobacterium johnsoniae NBRC 14942, using Escherichia coli, and characterized its enzymatic properties. The enzyme hydrolyzed dextran and pullulan to produce isomaltooligosaccharides and isopanose, respectively. When isomaltose was used as a substrate, the enzyme catalyzed disproportionation to form isomaltooligosaccharides. The enzyme also acted, albeit inefficiently, on p-nitrophenyl α-D-glucopyranoside, and p-nitrophenyl α-isomaltoside was the main product of the reaction. In contrast, Fjoh_4430 did not act on trehalose, kojibiose, nigerose, maltose, maltotriose, or soluble starch. The optimal pH and temperature were pH 6.0 and 60 °C, respectively. Our results indicate that Fjoh_4430 is a novel GH31 dextranase with high transglucosylation activity.
Collapse
Affiliation(s)
- Yoshifumi Gozu
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Yuichi Ishizaki
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Yuhei Hosoyama
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Takatsugu Miyazaki
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Atsushi Nishikawa
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Takashi Tonozuka
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| |
Collapse
|
73
|
Martínez-García M, Campos-Salinas J, Cabello-Donayre M, Pineda-Molina E, Gálvez FJ, Orrego LM, Sánchez-Cañete MP, Malagarie-Cazenave S, Koeller DM, Pérez-Victoria JM. LmABCB3, an atypical mitochondrial ABC transporter essential for Leishmania major virulence, acts in heme and cytosolic iron/sulfur clusters biogenesis. Parasit Vectors 2016; 9:7. [PMID: 26728034 PMCID: PMC4700571 DOI: 10.1186/s13071-015-1284-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/23/2015] [Indexed: 11/24/2022] Open
Abstract
Background Mitochondria play essential biological functions including the synthesis and trafficking of porphyrins and iron/sulfur clusters (ISC), processes that in mammals involve the mitochondrial ATP-Binding Cassette (ABC) transporters ABCB6 and ABCB7, respectively. The mitochondrion of pathogenic protozoan parasites such as Leishmania is a promising goal for new therapeutic approaches. Leishmania infects human macrophages producing the neglected tropical disease known as leishmaniasis. Like most trypanosomatid parasites, Leishmania is auxotrophous for heme and must acquire porphyrins from the host. Methods LmABCB3, a new Leishmania major protein with significant sequence similarity to human ABCB6/ABCB7, was identified and characterized using bioinformatic tools. Fluorescent microscopy was used to determine its cellular localization, and its level of expression was modulated by molecular genetic techniques. Intracellular in vitro assays were used to demonstrate its role in amastigotes replication, and an in vivo mouse model was used to analyze its role in virulence. Functional characterization of LmABCB3 was carried out in Leishmania promastigotes and Saccharomyces cerevisiae. Structural analysis of LmABCB3 was performed using molecular modeling software. Results LmABCB3 is an atypical ABC half-transporter that has a unique N-terminal extension not found in any other known ABC protein. This extension is required to target LmABCB3 to the mitochondrion and includes a potential metal-binding domain. We have shown that LmABCB3 interacts with porphyrins and is required for the mitochondrial synthesis of heme from a host precursor. We also present data supporting a role for LmABCB3 in the biogenesis of cytosolic ISC, essential cofactors for cell viability in all three kingdoms of life. LmABCB3 fully complemented the severe growth defect shown in yeast lacking ATM1, an orthologue of human ABCB7 involved in exporting from the mitochondria a gluthatione-containing compound required for the generation of cytosolic ISC. Indeed, docking analyzes performed with a LmABCB3 structural model using trypanothione, the main thiol in this parasite, as a ligand showed how both, LmABCB3 and yeast ATM1, contain a similar thiol-binding pocket. Additionally, we show solid evidence suggesting that LmABCB3 is an essential gene as dominant negative inhibition of LmABCB3 is lethal for the parasite. Moreover, the abrogation of only one allele of the gene did not impede promastigote growth in axenic culture but prevented the replication of intracellular amastigotes and the virulence of the parasites in a mouse model of cutaneous leishmaniasis. Conclusions Altogether our results present the previously undescribed LmABCB3 as an unusual mitochondrial ABC transporter essential for Leishmania survival through its role in the generation of heme and cytosolic ISC. Hence, LmABCB3 could represent a novel target to combat leishmaniasis. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-1284-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marta Martínez-García
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, PTS Granada, Granada, Spain.
| | - Jenny Campos-Salinas
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, PTS Granada, Granada, Spain.
| | - María Cabello-Donayre
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, PTS Granada, Granada, Spain.
| | - Estela Pineda-Molina
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, PTS Granada, Granada, Spain.
| | - Francisco J Gálvez
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, PTS Granada, Granada, Spain.
| | - Lina M Orrego
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, PTS Granada, Granada, Spain.
| | - María P Sánchez-Cañete
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, PTS Granada, Granada, Spain.
| | | | - David M Koeller
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR, USA.
| | - José M Pérez-Victoria
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, PTS Granada, Granada, Spain.
| |
Collapse
|
74
|
Qureshi A, Tandon H, Kumar M. AVP-IC50 Pred: Multiple machine learning techniques-based prediction of peptide antiviral activity in terms of half maximal inhibitory concentration (IC50). Biopolymers 2015; 104:753-63. [PMID: 26213387 PMCID: PMC7161829 DOI: 10.1002/bip.22703] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 06/16/2015] [Accepted: 07/21/2015] [Indexed: 01/29/2023]
Abstract
Peptide-based antiviral therapeutics has gradually paved their way into mainstream drug discovery research. Experimental determination of peptides' antiviral activity as expressed by their IC50 values involves a lot of effort. Therefore, we have developed "AVP-IC50 Pred," a regression-based algorithm to predict the antiviral activity in terms of IC50 values (μM). A total of 759 non-redundant peptides from AVPdb and HIPdb were divided into a training/test set having 683 peptides (T(683)) and a validation set with 76 independent peptides (V(76)) for evaluation. We utilized important peptide sequence features like amino-acid compositions, binary profile of N8-C8 residues, physicochemical properties and their hybrids. Four different machine learning techniques (MLTs) namely Support vector machine, Random Forest, Instance-based classifier, and K-Star were employed. During 10-fold cross validation, we achieved maximum Pearson correlation coefficients (PCCs) of 0.66, 0.64, 0.56, 0.55, respectively, for the above MLTs using the best combination of feature sets. All the predictive models also performed well on the independent validation dataset and achieved maximum PCCs of 0.74, 0.68, 0.59, 0.57, respectively, on the best combination of feature sets. The AVP-IC50 Pred web server is anticipated to assist the researchers working on antiviral therapeutics by enabling them to computationally screen many compounds and focus experimental validation on the most promising set of peptides, thus reducing cost and time efforts. The server is available at http://crdd.osdd.net/servers/ic50avp.
Collapse
Affiliation(s)
- Abid Qureshi
- Bioinformatics Centre, Institute of Microbial TechnologyCouncil of Scientific and Industrial ResearchSector 39‐AChandigarh160036India
| | - Himani Tandon
- Bioinformatics Centre, Institute of Microbial TechnologyCouncil of Scientific and Industrial ResearchSector 39‐AChandigarh160036India
| | - Manoj Kumar
- Bioinformatics Centre, Institute of Microbial TechnologyCouncil of Scientific and Industrial ResearchSector 39‐AChandigarh160036India
| |
Collapse
|
75
|
ProteINSIDE to Easily Investigate Proteomics Data from Ruminants: Application to Mine Proteome of Adipose and Muscle Tissues in Bovine Foetuses. PLoS One 2015; 10:e0128086. [PMID: 26000831 PMCID: PMC4441380 DOI: 10.1371/journal.pone.0128086] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/23/2015] [Indexed: 12/16/2022] Open
Abstract
Genomics experiments are widely acknowledged to produce a huge amount of data to be analysed. The challenge is to extract meaningful biological context for proteins or genes which is currently difficult because of the lack of an integrative workflow that hinders the efficiency and the robustness of data mining performed by biologists working on ruminants. Thus, we designed ProteINSIDE, a free web service (www.proteinside.org) that (I) provides an overview of the biological information stored in public databases or provided by annotations according to the Gene Ontology, (II) predicts proteins that are secreted to search for proteins that mediate signalisation between cells or tissues, and (III) analyses protein-protein interactions to identify proteins contributing to a process or to visualize functional pathways. Using lists of proteins or genes as a unique input, ProteINSIDE is an original all-in-one tool that merges data from these searches to present a fast overview and integrative analysis of genomic and proteomic data from Bovine, Ovine, Caprine, Human, Rat, and Murine species. ProteINSIDE was bench tested with 1000 proteins identifiers from each species by comparison with DAVID, BioMyn, AgBase, PrediSi, and Phobius. Compared to DAVID or BioMyn, identifications and annotations provided by ProteINSIDE were similar from monogastric proteins but more numerous and relevant for ruminants proteins. ProteINSIDE, thanks to SignalP, listed less proteins potentially secreted with a signal peptide than PrediSi and Phobius, in agreement with the low false positive rate of SignalP. In addition ProteINSIDE is the only resource that predicts proteins secreted by cellular processes that do not involve a signal peptide. Lastly, we reported the usefulness of ProteINSIDE to bring new biological hypotheses of research from proteomics data: the biological meaning of the uptake of adiponectin by the foetal muscle and a role for autophagy during ontogenesis of adipose and muscle tissues.
Collapse
|
76
|
Techawiwattanaboon T, Bartpho T, Sermswan RW, Chareonsudjai S. Transcription level analysis of intracellular Burkholderia pseudomallei illustrates the role of BPSL1502 during bacterial interaction with human lung epithelial cells. J Microbiol 2015; 53:134-40. [PMID: 25626369 DOI: 10.1007/s12275-015-4522-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/10/2014] [Accepted: 12/05/2014] [Indexed: 01/04/2023]
Abstract
Melioidosis caused by Burkholderia pseudomallei is a globally important disease of increasing concern according to high case-fatality rate and epidemic spreading. The ability of B. pseudomallei to attach and invade host cells and subsequently survive intracellularly has stimulated many questions concerning the comprehension of bacterial pathogenesis progression. Transcription levels of intracellular B. pseudomallei genes in human lung epithelial cells were therefore analyzed using bioinformatic tools, RT-PCR and real time RT-PCR. Here, it is reported that the identification of bpsl1502, encoding B. pseudomallei SurE (stationary phase survival protein E) located in a global transcriptional regulation operon was accomplished. The up-regulation of B. pseudomallei SurE was demonstrated during intracellular survival of A549 cells at 12, 18, and 24 h post-infection. To investigate the role of this protein, a B. pseudomallei SurE defective mutant was constructed. The invasion and initial survival of the SurE mutants within the A549 cells were impaired. There was no difference, however, between the growth of B. pseudomallei SurE mutant as compared to the wild type in Luria-Bertani culture. These data suggest that SurE may assist B. pseudomallei host cells invade and facilitate early intracellular infection but is not crucial during the stationary growth phase. The identification of B. pseudomallei SurE provides more information of bacterial strategy during an early step of the pathogenesis process of melioidosis.
Collapse
|
77
|
Dugat T, Loux V, Marthey S, Moroldo M, Lagrée AC, Boulouis HJ, Haddad N, Maillard R. Comparative genomics of first available bovine Anaplasma phagocytophilum genome obtained with targeted sequence capture. BMC Genomics 2014; 15:973. [PMID: 25400116 PMCID: PMC4239370 DOI: 10.1186/1471-2164-15-973] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/30/2014] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Anaplasma phagocytophilum is a zoonotic and obligate intracellular bacterium transmitted by ticks. In domestic ruminants, it is the causative agent of tick-borne fever, which causes significant economic losses in Europe. As A. phagocytophilum is difficult to isolate and cultivate, only nine genome sequences have been published to date, none of which originate from a bovine strain.Our goals were to; 1/ develop a sequencing methodology which efficiently circumvents the difficulties associated with A. phagocytophilum isolation and culture; 2/ describe the first genome of a bovine strain; and 3/ compare it with available genomes, in order to both explore key genomic features at the species level, and to identify candidate genes that could be specific to bovine strains. RESULTS DNA was extracted from a bovine blood sample infected by A. phagocytophilum. Following a whole genome capture approach, A. phagocytophilum DNA was enriched 197-fold in the sample and then sequenced using Illumina technology. In total, 58.9% of obtained reads corresponded to the A. phagocytophilum genome, covering 85.3% of the HZ genome. Then by performing comparisons with nine previously-sequenced A. phagocytophilum genomes, we determined the core genome of these ten strains. Following analysis, 1281 coding DNA sequences, including 1001 complete sequences, were detected in the A. phagocytophilum bovine genome, of which four appeared to be unique to the bovine isolate. These four coding DNA sequences coded for "hypothetical proteins of unknown function" and require further analysis. We also identified nine proteins common to both European domestic ruminants tested. CONCLUSION Using a whole genome capture approach, we have sequenced the first A. phagocytophilum genome isolated from a cow. To the best of our knowledge, this is the first time that this method has been used to selectively enrich pathogenic bacterial DNA from samples also containing host DNA. The four proteins unique to the A. phagocytophilum bovine genome could be involved in host tropism, therefore their functions need to be explored.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nadia Haddad
- Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR ENVA Anses UPEC USC INRA, Maisons-Alfort, France.
| | | |
Collapse
|
78
|
Abarca F, Gutierrez-Maldonado SE, Parada P, Martinez P, Maass A, Perez-Acle T. Insights on the structure and stability of Licanantase: a trimeric acid-stable coiled-coil lipoprotein from Acidithiobacillus thiooxidans. PeerJ 2014; 2:e457. [PMID: 25165619 PMCID: PMC4137666 DOI: 10.7717/peerj.457] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 06/06/2014] [Indexed: 12/29/2022] Open
Abstract
Licanantase (Lic) is the major component of the secretome of Acidithiobacillus thiooxidans when grown in elemental sulphur. When used as an additive, Lic improves copper recovery from bioleaching processes. However, this recovery enhancement is not fully understood. In this context, our aim is to predict the 3D structure of Lic, to shed light on its structure-function relationships. Bioinformatics analyses on the amino acid sequence of Lic showed a great similarity with Lpp, an Escherichia coli Lipoprotein that can form stable trimers in solution. Lic and Lpp share the secretion motif, intracellular processing and alpha helix structure, as well as the distribution of hydrophobic residues in heptads forming a hydrophobic core, typical of coiled-coil structures. Cross-linking experiments showed the presence of Lic trimers, supporting our predictions. Taking the in vitro and in silico evidence as a whole, we propose that the most probable structure for Lic is a trimeric coiled-coil. According to this prediction, a suitable model for Lic was produced using the de novo algorithm "Rosetta Fold-and-Dock". To assess the structural stability of our model, Molecular Dynamics (MD) and Replica Exchange MD simulations were performed using the structure of Lpp and a 14-alanine Lpp mutant as controls, at both acidic and neutral pH. Our results suggest that Lic was the most stable structure among the studied proteins in both pH conditions. This increased stability can be explained by a higher number of both intermonomer hydrophobic contacts and hydrogen bonds, key elements for the stability of Lic's secondary and tertiary structure.
Collapse
Affiliation(s)
- Fernando Abarca
- Computational Biology Lab (DLab), Fundación Ciencia y Vida, Ñuñoa, Santiago, Chile
- Centro Interdisciplinario de Neurociencias de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
| | - Sebastian E. Gutierrez-Maldonado
- Computational Biology Lab (DLab), Fundación Ciencia y Vida, Ñuñoa, Santiago, Chile
- Centro Interdisciplinario de Neurociencias de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
| | | | | | - Alejandro Maass
- Mathomics, Center for Mathematical Modeling (CMM) and Center for Genome Regulation (CRG), Universidad de Chile, Santiago, Chile
- Department of Mathematical Engineering, Universidad de Chile, Santiago, Chile
| | - Tomas Perez-Acle
- Computational Biology Lab (DLab), Fundación Ciencia y Vida, Ñuñoa, Santiago, Chile
- Centro Interdisciplinario de Neurociencias de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
79
|
In vitro and in vivo activities of antimicrobial peptides developed using an amino acid-based activity prediction method. Antimicrob Agents Chemother 2014; 58:5342-9. [PMID: 24982064 DOI: 10.1128/aac.02823-14] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To design and discover new antimicrobial peptides (AMPs) with high levels of antimicrobial activity, a number of machine-learning methods and prediction methods have been developed. Here, we present a new prediction method that can identify novel AMPs that are highly similar in sequence to known peptides but offer improved antimicrobial activity along with lower host cytotoxicity. Using previously generated AMP amino acid substitution data, we developed an amino acid activity contribution matrix that contained an activity contribution value for each amino acid in each position of the model peptide. A series of AMPs were designed with this method. After evaluating the antimicrobial activities of these novel AMPs against both Gram-positive and Gram-negative bacterial strains, DP7 was chosen for further analysis. Compared to the parent peptide HH2, this novel AMP showed broad-spectrum, improved antimicrobial activity, and in a cytotoxicity assay it showed lower toxicity against human cells. The in vivo antimicrobial activity of DP7 was tested in a Staphylococcus aureus infection murine model. When inoculated and treated via intraperitoneal injection, DP7 reduced the bacterial load in the peritoneal lavage solution. Electron microscope imaging and the results indicated disruption of the S. aureus outer membrane by DP7. Our new prediction method can therefore be employed to identify AMPs possessing minor amino acid differences with improved antimicrobial activities, potentially increasing the therapeutic agents available to combat multidrug-resistant infections.
Collapse
|
80
|
Zouk H, D'Hennezel E, Du X, Ounissi-Benkalha H, Piccirillo CA, Polychronakos C. Functional evaluation of the role of C-type lectin domain family 16A at the chromosome 16p13 locus. Clin Exp Immunol 2014; 175:485-97. [PMID: 24237155 DOI: 10.1111/cei.12240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2013] [Indexed: 01/17/2023] Open
Abstract
The type 1 diabetes-associated 16p13 locus contains the CLEC16A gene. Its preferential immune cell expression suggests involvement in autoimmunity. Given its elevated expression in dendritic and B cells - known professional antigen-presenting cells (APCs) - we hypothesize that C-type lectin domain family 16 member A (CLEC16A) may be involved in T cell co-stimulation and consequent activation and proliferation. We also sought to identify CLEC16A's subcellular localization. The effect of the CLEC16A knock-down (KD) on B cell co-stimulation and activation of T cells was tested in human lymphoblastoid cell lines (LCLs) by co-culture with CD4(+) T cells. T cell activation and proliferation were determined by flow-cytometric analysis of CD69 and CD25 expression and carboxyfluorescein succinimidyl ester (CFSE) dilution, respectively. CLEC16A subcellular localization in K562 cells was examined by immunofluorescence. We show that the CLEC16A KD did not affect the tested indices of lymphoblastoid cell line (LCL) APC capacity. Additionally, the percentage of activated T cells following LCL co-culture was not affected significantly by the CLEC16A KD. T cells co-cultured with KD or control LCLs also exhibited similar cell division profiles. CLEC16A co-localized with an endoplasmic reticulum (ER) marker, suggesting that it may be an ER protein. In conclusion, CLEC16A may not be involved in T cell co-stimulation. Additional studies on CLEC16A, accounting for its ER localization, are needed to uncover its biological role.
Collapse
Affiliation(s)
- H Zouk
- Endocrine Genetics Laboratory, McGill University Health Center, Montreal Children's Hospital Research Institute, McGill University, QC, Montreal, Canada; Department of Human Genetics, McGill University, QC, Montreal, Canada
| | | | | | | | | | | |
Collapse
|
81
|
Timbermont L, De Smet L, Van Nieuwerburgh F, Parreira VR, Van Driessche G, Haesebrouck F, Ducatelle R, Prescott J, Deforce D, Devreese B, Van Immerseel F. Perfrin, a novel bacteriocin associated with netB positive Clostridium perfringens strains from broilers with necrotic enteritis. Vet Res 2014; 45:40. [PMID: 24708344 PMCID: PMC3992141 DOI: 10.1186/1297-9716-45-40] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 03/13/2014] [Indexed: 11/10/2022] Open
Abstract
Necrotic enteritis in broiler chickens is associated with netB positive Clostridium perfringens type A strains. It is known that C. perfringens strains isolated from outbreaks of necrotic enteritis are more capable of secreting factors inhibiting growth of other C. perfringens strains than strains isolated from the gut of healthy chickens. This characteristic could lead to extensive and selective presence of a strain that contains the genetic make-up enabling to secrete toxins that cause gut lesions. This report describes the discovery, purification, characterization and recombinant expression of a novel bacteriocin, referred to as perfrin, produced by a necrotic enteritis-associated netB-positive C. perfringens strain. Perfrin is a 11.5 kDa C-terminal fragment of a 22.9 kDa protein and showed no sequence homology to any currently known bacteriocin. The 11.5 kDa fragment can be cloned into Escherichia coli, and expression yielded an active peptide. PCR detection of the gene showed its presence in 10 netB-positive C. perfringens strains of broiler origin, and not in other C. perfringens strains tested (isolated from broilers, cattle, sheep, pigs, and humans). Perfrin and NetB are not located on the same genetic element since NetB is plasmid-encoded and perfrin is not. The bacteriocin has bactericidal activity over a wide pH-range but is thermolabile and sensitive to proteolytic digestion (trypsin, proteinase K). C. perfringens bacteriocins, such as perfrin, can be considered as an additional factor involved in the pathogenesis of necrotic enteritis in broilers.
Collapse
Affiliation(s)
- Leen Timbermont
- Department of Pathology, Bacteriology and Avian Diseases, Research Group Veterinary Public Health and Zoonoses, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Fukasawa Y, Leung RKK, Tsui SKW, Horton P. Plus ça change - evolutionary sequence divergence predicts protein subcellular localization signals. BMC Genomics 2014; 15:46. [PMID: 24438075 PMCID: PMC3906766 DOI: 10.1186/1471-2164-15-46] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 01/06/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Protein subcellular localization is a central problem in understanding cell biology and has been the focus of intense research. In order to predict localization from amino acid sequence a myriad of features have been tried: including amino acid composition, sequence similarity, the presence of certain motifs or domains, and many others. Surprisingly, sequence conservation of sorting motifs has not yet been employed, despite its extensive use for tasks such as the prediction of transcription factor binding sites. RESULTS Here, we flip the problem around, and present a proof of concept for the idea that the lack of sequence conservation can be a novel feature for localization prediction. We show that for yeast, mammal and plant datasets, evolutionary sequence divergence alone has significant power to identify sequences with N-terminal sorting sequences. Moreover sequence divergence is nearly as effective when computed on automatically defined ortholog sets as on hand curated ones. Unfortunately, sequence divergence did not necessarily increase classification performance when combined with some traditional sequence features such as amino acid composition. However a post-hoc analysis of the proteins in which sequence divergence changes the prediction yielded some proteins with atypical (i.e. not MPP-cleaved) matrix targeting signals as well as a few misannotations. CONCLUSION We report the results of the first quantitative study of the effectiveness of evolutionary sequence divergence as a feature for protein subcellular localization prediction. We show that divergence is indeed useful for prediction, but it is not trivial to improve overall accuracy simply by adding this feature to classical sequence features. Nevertheless we argue that sequence divergence is a promising feature and show anecdotal examples in which it succeeds where other features fail.
Collapse
Affiliation(s)
- Yoshinori Fukasawa
- Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
- Japan Society for the Promotion of Science, Tokyo Chiyoda, Japan
| | - Ross KK Leung
- Hong Kong Bioinformatics Centre and School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, China
| | - Stephen KW Tsui
- Hong Kong Bioinformatics Centre and School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, China
| | - Paul Horton
- Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
- Computational Biology Research Center, Advanced Industrial Science and Technology, Tokyo, Japan
| |
Collapse
|
83
|
Dantas JM, Tomaz DM, Morgado L, Salgueiro CA. Functional characterization of PccH, a key cytochrome for electron transfer from electrodes to the bacterium Geobacter sulfurreducens. FEBS Lett 2013; 587:2662-8. [PMID: 23851008 DOI: 10.1016/j.febslet.2013.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/27/2013] [Accepted: 07/01/2013] [Indexed: 11/26/2022]
Abstract
The cytochrome PccH from Geobacter sulfurreducens (Gs) plays a crucial role in current-consuming fumarate-reducing biofilms. Deletion of pccH gene inhibited completely electron transfer from electrodes toward Gs cells. The pccH gene was cloned and the protein heterologously expressed in Escherichia coli. Complementary biophysical techniques including CD, UV-visible and NMR spectroscopy were used to characterize PccH. This cytochrome contains one low-spin c-type heme with His-Met axial coordination and unusual low-reduction potential. This reduction potential is pH-dependent, within the Gs physiological pH range, and is discussed within the context of the electron transfer mechanisms from electrodes to Gs cells.
Collapse
Affiliation(s)
- Joana M Dantas
- Requimte-CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal
| | | | | | | |
Collapse
|
84
|
Mooney C, Cessieux A, Shields DC, Pollastri G. SCL-Epred: a generalised de novo eukaryotic protein subcellular localisation predictor. Amino Acids 2013; 45:291-9. [PMID: 23568340 DOI: 10.1007/s00726-013-1491-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 03/26/2013] [Indexed: 11/26/2022]
Abstract
Knowledge of the subcellular location of a protein provides valuable information about its function, possible interaction with other proteins and drug targetability, among other things. The experimental determination of a protein's location in the cell is expensive, time consuming and open to human error. Fast and accurate predictors of subcellular location have an important role to play if the abundance of sequence data which is now available is to be fully exploited. In the post-genomic era, genomes in many diverse organisms are available. Many of these organisms are important in human and veterinary disease and fall outside of the well-studied plant, animal and fungi groups. We have developed a general eukaryotic subcellular localisation predictor (SCL-Epred) which predicts the location of eukaryotic proteins into three classes which are important, in particular, for determining the drug targetability of a protein-secreted proteins, membrane proteins and proteins that are neither secreted nor membrane. The algorithm powering SCL-Epred is a N-to-1 neural network and is trained on very large non-redundant sets of protein sequences. SCL-Epred performs well on training data achieving a Q of 86 % and a generalised correlation of 0.75 when tested in tenfold cross-validation on a set of 15,202 redundancy reduced protein sequences. The three class accuracy of SCL-Epred and LocTree2, and in particular a consensus predictor comprising both methods, surpasses that of other widely used predictors when benchmarked using a large redundancy reduced independent test set of 562 proteins. SCL-Epred is publicly available at http://distillf.ucd.ie/distill/ .
Collapse
Affiliation(s)
- Catherine Mooney
- Complex and Adaptive Systems Laboratory, Conway Institute of Biomolecular and Biomedical Science, School of Medicine and Medical Science, University College Dublin, Ireland.
| | | | | | | |
Collapse
|
85
|
Ivankov DN, Payne SH, Galperin MY, Bonissone S, Pevzner PA, Frishman D. How many signal peptides are there in bacteria? Environ Microbiol 2013; 15:983-90. [PMID: 23556536 PMCID: PMC3621014 DOI: 10.1111/1462-2920.12105] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Over the last 5 years proteogenomics (using mass spectroscopy to identify proteins predicted from genomic sequences) has emerged as a promising approach to the high-throughput identification of protein N-termini, which remains a problem in genome annotation. Comparison of the experimentally determined N-termini with those predicted by sequence analysis tools allows identification of the signal peptides and therefore conclusions on the cytoplasmic or extracytoplasmic (periplasmic or extracellular) localization of the respective proteins. We present here the results of a proteogenomic study of the signal peptides in Escherichia coli K-12 and compare its results with the available experimental data and predictions by such software tools as SignalP and Phobius. A single proteogenomics experiment recovered more than a third of all signal peptides that had been experimentally determined during the past three decades and confirmed at least 31 additional signal peptides, mostly in the known exported proteins, which had been previously predicted but not validated. The filtering of putative signal peptides for the peptide length and the presence of an eight-residue hydrophobic patch and a typical signal peptidase cleavage site proved sufficient to eliminate the false-positive hits. Surprisingly, the results of this proteogenomics study, as well as a re-analysis of the E. coli genome with the latest version of SignalP program, show that the fraction of proteins containing signal peptides is only about 10%, or half of previous estimates.
Collapse
Affiliation(s)
- Dmitry N. Ivankov
- Technische Universität München, Department of Genome-Oriented Bioinformatics, 85354 Freising, Germany
| | - Samuel H. Payne
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Michael Y. Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | | - Dmitrij Frishman
- Technische Universität München, Department of Genome-Oriented Bioinformatics, 85354 Freising, Germany
- Helmholtz Zentrum Munich, National Research Center for Environment and Health, Institute for Bioinformatics, 85764 Neuherberg, Germany
| |
Collapse
|
86
|
Low KO, Muhammad Mahadi N, Md. Illias R. Optimisation of signal peptide for recombinant protein secretion in bacterial hosts. Appl Microbiol Biotechnol 2013; 97:3811-26. [DOI: 10.1007/s00253-013-4831-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 03/03/2013] [Accepted: 03/04/2013] [Indexed: 10/27/2022]
|
87
|
Caccia D, Dugo M, Callari M, Bongarzone I. Bioinformatics tools for secretome analysis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2442-53. [PMID: 23395702 DOI: 10.1016/j.bbapap.2013.01.039] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 01/23/2013] [Accepted: 01/29/2013] [Indexed: 12/29/2022]
Abstract
Over recent years, analyses of secretomes (complete sets of secreted proteins) have been reported in various organisms, cell types, and pathologies and such studies are quickly gaining popularity. Fungi secrete enzymes can break down potential food sources; plant secreted proteins are primarily parts of the cell wall proteome; and human secreted proteins are involved in cellular immunity and communication, and provide useful information for the discovery of novel biomarkers, such as for cancer diagnosis. Continuous development of methodologies supports the wide identification and quantification of secreted proteins in a given cellular state. The role of secreted factors is also investigated in the context of the regulation of major signaling events, and connectivity maps are built to describe the differential expression and dynamic changes of secretomes. Bioinformatics has become the bridge between secretome data and computational tasks for managing, mining, and retrieving information. Predictions can be made based on this information, contributing to the elucidation of a given organism's physiological state and the determination of the specific malfunction in disease states. Here we provide an overview of the available bioinformatics databases and software that are used to analyze the biological meaning of secretome data, including descriptions of the main functions and limitations of these tools. The important challenges of data analysis are mainly related to the integration of biological information from dissimilar sources. Improvements in databases and developments in software will likely substantially contribute to the usefulness and reliability of secretome studies. This article is part of a Special Issue entitled: An Updated Secretome.
Collapse
Affiliation(s)
- Dario Caccia
- Proteomics Laboratory, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | | | | |
Collapse
|
88
|
Renier S, Micheau P, Talon R, Hébraud M, Desvaux M. Subcellular localization of extracytoplasmic proteins in monoderm bacteria: rational secretomics-based strategy for genomic and proteomic analyses. PLoS One 2012; 7:e42982. [PMID: 22912771 PMCID: PMC3415414 DOI: 10.1371/journal.pone.0042982] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 07/13/2012] [Indexed: 11/20/2022] Open
Abstract
Genome-scale prediction of subcellular localization (SCL) is not only useful for inferring protein function but also for supporting proteomic data. In line with the secretome concept, a rational and original analytical strategy mimicking the secretion steps that determine ultimate SCL was developed for Gram-positive (monoderm) bacteria. Based on the biology of protein secretion, a flowchart and decision trees were designed considering (i) membrane targeting, (ii) protein secretion systems, (iii) membrane retention, and (iv) cell-wall retention by domains or post-translocational modifications, as well as (v) incorporation to cell-surface supramolecular structures. Using Listeria monocytogenes as a case study, results were compared with known data set from SCL predictors and experimental proteomics. While in good agreement with experimental extracytoplasmic fractions, the secretomics-based method outperforms other genomic analyses, which were simply not intended to be as inclusive. Compared to all other localization predictors, this method does not only supply a static snapshot of protein SCL but also offers the full picture of the secretion process dynamics: (i) the protein routing is detailed, (ii) the number of distinct SCL and protein categories is comprehensive, (iii) the description of protein type and topology is provided, (iv) the SCL is unambiguously differentiated from the protein category, and (v) the multiple SCL and protein category are fully considered. In that sense, the secretomics-based method is much more than a SCL predictor. Besides a major step forward in genomics and proteomics of protein secretion, the secretomics-based method appears as a strategy of choice to generate in silico hypotheses for experimental testing.
Collapse
Affiliation(s)
- Sandra Renier
- INRA, UR454 Microbiology, Saint-Genès Champanelle, France
| | - Pierre Micheau
- INRA, UR454 Microbiology, Saint-Genès Champanelle, France
| | - Régine Talon
- INRA, UR454 Microbiology, Saint-Genès Champanelle, France
| | - Michel Hébraud
- INRA, UR454 Microbiology, Saint-Genès Champanelle, France
| | - Mickaël Desvaux
- INRA, UR454 Microbiology, Saint-Genès Champanelle, France
- * E-mail:
| |
Collapse
|
89
|
Gunasekaran P, Krishnasamy K, Arunagiri K, Sambasivam M, Lakshmipathy M, Arunpon, Fathima SG. Genetic analysis of HA gene of pandemic H1N1 2009 influenza viruses circulating in India. Indian J Med Microbiol 2012; 30:346-9. [DOI: 10.4103/0255-0857.99500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
90
|
Thakur N, Qureshi A, Kumar M. AVPpred: collection and prediction of highly effective antiviral peptides. Nucleic Acids Res 2012; 40:W199-204. [PMID: 22638580 PMCID: PMC3394244 DOI: 10.1093/nar/gks450] [Citation(s) in RCA: 208] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In the battle against viruses, antiviral peptides (AVPs) had demonstrated the immense potential. Presently, more than 15 peptide-based drugs are in various stages of clinical trials. Emerging and re-emerging viruses further emphasize the efforts to accelerate antiviral drug discovery efforts. Despite, huge importance of the field, no dedicated AVP resource is available. In the present study, we have collected 1245 peptides which were experimentally checked for antiviral activity targeting important human viruses like influenza, HIV, HCV and SARS, etc. After removing redundant peptides, 1056 peptides were divided into 951 training and 105 validation data sets. We have exploited various peptides sequence features, i.e. motifs and alignment followed by amino acid composition and physicochemical properties during 5-fold cross validation using Support Vector Machine. Physiochemical properties-based model achieved maximum 85% accuracy and 0.70 Matthew’s Correlation Coefficient (MCC). Performance of this model on the experimental validation data set showed 86% accuracy and 0.71 MCC which is far better than the general antimicrobial peptides prediction methods. Therefore, AVPpred—the first web server for predicting the highly effective AVPs would certainly be helpful to researchers working on peptide-based antiviral development. The web server is freely available at http://crdd.osdd.net/servers/avppred.
Collapse
Affiliation(s)
- Nishant Thakur
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| | | | | |
Collapse
|
91
|
Meckfessel MH, Blancaflor EB, Plunkett M, Dong Q, Dickstein R. Multiple domains in MtENOD8 protein including the signal peptide target it to the symbiosome. PLANT PHYSIOLOGY 2012; 159:299-310. [PMID: 22415512 PMCID: PMC3366718 DOI: 10.1104/pp.111.191403] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Symbiotic nitrogen fixation occurs in nodules, specialized organs on the roots of legumes. Within nodules, host plant cells are infected with rhizobia that are encapsulated by a plant-derived membrane forming a novel organelle, the symbiosome. In Medicago truncatula, the symbiosome consists of the symbiosome membrane, a single rhizobium, and the soluble space between them, called the symbiosome space. The symbiosome space is enriched with plant-derived proteins, including the M. truncatula EARLY NODULIN8 (MtENOD8) protein. Here, we present evidence from green fluorescent protein (GFP) fusion experiments that the MtENOD8 protein contains at least three symbiosome targeting domains, including its N-terminal signal peptide (SP). When ectopically expressed in nonnodulated root tissue, the MtENOD8 SP delivers GFP to the vacuole. During the course of nodulation, there is a nodule-specific redirection of MtENOD8-SP-GFP from the vacuole to punctate intermediates and subsequently to symbiosomes, with redirection of MtENOD8-SP-GFP from the vacuole to punctate intermediates preceding intracellular rhizobial infection. Experiments with M. truncatula mutants having defects in rhizobial infection and symbiosome development demonstrated that the MtNIP/LATD gene is required for redirection of the MtENOD8-SP-GFP from the vacuoles to punctate intermediates in nodules. Our evidence shows that MtENOD8 has evolved redundant targeting sequences for symbiosome targeting and that intracellular localization of ectopically expressed MtENOD8-SP-GFP is useful as a marker for monitoring the extent of development in mutant nodules.
Collapse
MESH Headings
- Amino Acid Sequence
- Blotting, Western
- Cloning, Molecular
- Green Fluorescent Proteins/chemistry
- Medicago truncatula/chemistry
- Medicago truncatula/genetics
- Medicago truncatula/microbiology
- Molecular Sequence Data
- Nitrogen Fixation
- Plant Proteins/chemistry
- Plant Root Nodulation
- Plants, Genetically Modified/chemistry
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/microbiology
- Protein Sorting Signals
- Protein Structure, Tertiary
- Protein Transport
- RNA, Plant/analysis
- RNA, Plant/chemistry
- Recombinant Fusion Proteins/chemistry
- Root Nodules, Plant/chemistry
- Root Nodules, Plant/genetics
- Root Nodules, Plant/microbiology
- Sequence Alignment
- Sinorhizobium meliloti/physiology
- Symbiosis
- Vacuoles/chemistry
Collapse
|
92
|
CANTACESSI C, CAMPBELL BE, JEX AR, YOUNG ND, HALL RS, RANGANATHAN S, GASSER RB. Bioinformatics meets parasitology. Parasite Immunol 2012; 34:265-75. [DOI: 10.1111/j.1365-3024.2011.01304.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
93
|
Etedali F, Baghban Kohnehrouz B, Valizadeh M, Gholizadeh A, Malboobi MA. Genome wide cloning of maize meiotic recombinase Dmc1 and its functional structure through molecular phylogeny. GENETICS AND MOLECULAR RESEARCH 2012; 10:1636-49. [PMID: 21863556 DOI: 10.4238/vol10-3gmr1338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The development of meiotic division and associated genetic recombination paved the way for evolutionary changes. However, the secondary and tertiary structure and functional domains of many of the proteins involved in genetic recombination have not been studied in detail. We used the human Dmc1 gene product along with secondary and tertiary domain structures of Escherichia coli RecA protein to help determine the molecular structure and function of maize Dmc1, which is required for synaptonemal complex formation and cell cycle progression. The maize recombinase Dmc1 gene was cloned and characterized, using rice Dmc1 cDNA as an orthologue. The deduced amino acid sequence was used for elaborating its 3-D structure, and functional analysis was made with the CDD software, showing significant identity of the Dmc1 gene product in Zea mays with that of Homo sapiens. Based on these results, the domains and motives of WalkerA and WalkerB as ATP binding sites, a multimer site (BRC) interface, the putative ssDNA binding L1 and L2 loops, the putative dsDNA binding helix-hairpin-helix, a polymerization motif, the subunit rotation motif, and a small N-terminal domain were proposed for maize recombinase Dmc1.
Collapse
Affiliation(s)
- F Etedali
- Department of Plant Breeding and Biotechnology, University of Tabriz, Iran
| | | | | | | | | |
Collapse
|
94
|
Singh H, Reilly TJ, Calcutt MJ, Tanner JJ. Expression, purification and crystallization of an atypical class C acid phosphatase from Mycoplasma bovis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1296-9. [PMID: 22102051 DOI: 10.1107/s1744309111031551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 08/04/2011] [Indexed: 11/11/2022]
Abstract
Class C acid phosphatases (CCAPs) are 25-30 kDa bacterial surface proteins that are thought to function as broad-specificity 5',3'-nucleotidases. Analysis of the newly published complete genome sequence of Mycoplasma bovis PG45 revealed a putative CCAP with a molecular weight of 49.9 kDa. The expression, purification and crystallization of this new family member are described here. Standard purification procedures involving immobilized metal-ion affinity chromatography and ion-exchange chromatography yielded highly pure and crystallizable protein. Crystals were grown in sitting drops at room temperature in the presence of PEG 3350 and HEPES buffer pH 7.5 and diffracted to 2.3 Å resolution. Analysis of diffraction data suggested a primitive monoclinic space group, with unit-cell parameters a = 78, b = 101, c = 180 Å, β = 92°. The asymmetric unit is predicted to contain six molecules, which are likely to be arranged as three dimers.
Collapse
Affiliation(s)
- Harkewal Singh
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | | | | |
Collapse
|
95
|
Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 2011; 8:785-6. [PMID: 21959131 DOI: 10.1038/nmeth.1701] [Citation(s) in RCA: 6984] [Impact Index Per Article: 498.9] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
96
|
Goudenège D, Avner S, Lucchetti-Miganeh C, Barloy-Hubler F. CoBaltDB: Complete bacterial and archaeal orfeomes subcellular localization database and associated resources. BMC Microbiol 2010; 10:88. [PMID: 20331850 PMCID: PMC2850352 DOI: 10.1186/1471-2180-10-88] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 03/23/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The functions of proteins are strongly related to their localization in cell compartments (for example the cytoplasm or membranes) but the experimental determination of the sub-cellular localization of proteomes is laborious and expensive. A fast and low-cost alternative approach is in silico prediction, based on features of the protein primary sequences. However, biologists are confronted with a very large number of computational tools that use different methods that address various localization features with diverse specificities and sensitivities. As a result, exploiting these computer resources to predict protein localization accurately involves querying all tools and comparing every prediction output; this is a painstaking task. Therefore, we developed a comprehensive database, called CoBaltDB, that gathers all prediction outputs concerning complete prokaryotic proteomes. DESCRIPTION The current version of CoBaltDB integrates the results of 43 localization predictors for 784 complete bacterial and archaeal proteomes (2.548.292 proteins in total). CoBaltDB supplies a simple user-friendly interface for retrieving and exploring relevant information about predicted features (such as signal peptide cleavage sites and transmembrane segments). Data are organized into three work-sets ("specialized tools", "meta-tools" and "additional tools"). The database can be queried using the organism name, a locus tag or a list of locus tags and may be browsed using numerous graphical and text displays. CONCLUSIONS With its new functionalities, CoBaltDB is a novel powerful platform that provides easy access to the results of multiple localization tools and support for predicting prokaryotic protein localizations with higher confidence than previously possible. CoBaltDB is available at http://www.umr6026.univ-rennes1.fr/english/home/research/basic/software/cobalten.
Collapse
Affiliation(s)
- David Goudenège
- CNRS UMR 6026, ICM, Equipe B@SIC, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes, France
| | | | | | | |
Collapse
|
97
|
Choo KH, Tan TW, Ranganathan S. A comprehensive assessment of N-terminal signal peptides prediction methods. BMC Bioinformatics 2009; 10 Suppl 15:S2. [PMID: 19958512 PMCID: PMC2788353 DOI: 10.1186/1471-2105-10-s15-s2] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background Amino-terminal signal peptides (SPs) are short regions that guide the targeting of secretory proteins to the correct subcellular compartments in the cell. They are cleaved off upon the passenger protein reaching its destination. The explosive growth in sequencing technologies has led to the deposition of vast numbers of protein sequences necessitating rapid functional annotation techniques, with subcellular localization being a key feature. Of the myriad software prediction tools developed to automate the task of assigning the SP cleavage site of these new sequences, we review here, the performance and reliability of commonly used SP prediction tools. Results The available signal peptide data has been manually curated and organized into three datasets representing eukaryotes, Gram-positive and Gram-negative bacteria. These datasets are used to evaluate thirteen prediction tools that are publicly available. SignalP (both the HMM and ANN versions) maintains consistency and achieves the best overall accuracy in all three benchmarking experiments, ranging from 0.872 to 0.914 although other prediction tools are narrowing the performance gap. Conclusion The majority of the tools evaluated in this study encounter no difficulty in discriminating between secretory and non-secretory proteins. The challenge clearly remains with pinpointing the correct SP cleavage site. The composite scoring schemes employed by SignalP may help to explain its accuracy. Prediction task is divided into a number of separate steps, thus allowing each score to tackle a particular aspect of the prediction.
Collapse
Affiliation(s)
- Khar Heng Choo
- Institute for Infocomm Research, 1 Fusionopolis Way, #21-01 Connexis, Singapore.
| | | | | |
Collapse
|
98
|
Clifford M, Twigg J, Upton C. Evidence for a novel gene associated with human influenza A viruses. Virol J 2009; 6:198. [PMID: 19917120 PMCID: PMC2780412 DOI: 10.1186/1743-422x-6-198] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 11/16/2009] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Influenza A virus genomes are comprised of 8 negative strand single-stranded RNA segments and are thought to encode 11 proteins, which are all translated from mRNAs complementary to the genomic strands. Although human, swine and avian influenza A viruses are very similar, cross-species infections are usually limited. However, antigenic differences are considerable and when viruses become established in a different host or if novel viruses are created by re-assortment devastating pandemics may arise. RESULTS Examination of influenza A virus genomes from the early 20th Century revealed the association of a 167 codon ORF encoded by the genomic strand of segment 8 with human isolates. Close to the timing of the 1948 pseudopandemic, a mutation occurred that resulted in the extension of this ORF to 216 codons. Since 1948, this ORF has been almost totally maintained in human influenza A viruses suggesting a selectable biological function. The discovery of cytotoxic T cells responding to an epitope encoded by this ORF suggests that it is translated into protein. Evidence of several other non-traditionally translated polypeptides in influenza A virus support the translation of this genomic strand ORF. The gene product is predicted to have a signal sequence and two transmembrane domains. CONCLUSION We hypothesize that the genomic strand of segment 8 of encodes a novel influenza A virus protein. The persistence and conservation of this genomic strand ORF for almost a century in human influenza A viruses provides strong evidence that it is translated into a polypeptide that enhances viral fitness in the human host. This has important consequences for the interpretation of experiments that utilize mutations in the NS1 and NEP genes of segment 8 and also for the consideration of events that may alter the spread and/or pathogenesis of swine and avian influenza A viruses in the human population.
Collapse
Affiliation(s)
- Monica Clifford
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada
| | - James Twigg
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada
| | - Chris Upton
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada
| |
Collapse
|
99
|
Singh H, Felts RL, Ma L, Malinski TJ, Calcutt MJ, Reilly TJ, Tanner JJ. Expression, purification and crystallization of class C acid phosphatases from Francisella tularensis and Pasteurella multocida. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:226-31. [PMID: 19255471 PMCID: PMC2650447 DOI: 10.1107/s1744309109001511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 01/12/2009] [Indexed: 11/10/2022]
Abstract
Class C nonspecific acid phosphatases are bacterial enzymes that are secreted across the cytoplasmic membrane and hydrolyze a variety of phosphomonoesters at acidic pH. These enzymes are of interest for the development of improved vaccines and clinical diagnostic methods. In one case, the category A pathogen Francisella tularensis, the class C phosphatase plays a role in bacterial fitness. Here, the cloning, expression, purification and crystallization methods for the class C acid phosphatases from F. tularensis and Pasteurella multocida are reported. Crystals of the F. tularensis enzyme diffracted to 2.0 A resolution and belonged to space group C222(1), with one enzyme molecule in the asymmetric unit. Crystals of the P. multocida enzyme diffracted to 1.85 A resolution and belonged to space group C2, with three molecules in the asymmetric unit. Diffraction patterns from crystals of the P. multocida enzyme exhibited multiple interpenetrating reciprocal-space lattices, indicating epitaxial twinning. Despite this aberrance, autoindexing was robust and the data could be satisfactorily processed to 1.85 A resolution using MOSFLM and SCALA.
Collapse
Affiliation(s)
- Harkewal Singh
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Richard L. Felts
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Li Ma
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Thomas J. Malinski
- Department of Veterinary Pathobiology, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Michael J. Calcutt
- Department of Veterinary Pathobiology, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Thomas J. Reilly
- Department of Veterinary Pathobiology, University of Missouri-Columbia, Columbia, MO 65211, USA
- Veterinary Medicine Diagnostic Laboratory, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - John J. Tanner
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| |
Collapse
|