51
|
Mechanistic insights into the regulation of plant phosphate homeostasis by the rice SPX2 - PHR2 complex. Nat Commun 2022; 13:1581. [PMID: 35332155 PMCID: PMC8948245 DOI: 10.1038/s41467-022-29275-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 03/03/2022] [Indexed: 01/21/2023] Open
Abstract
Phosphate (Pi) starvation response (PHR) transcription factors play key roles in plant Pi homeostasis maintenance. They are negatively regulated by stand-alone SPX proteins, cellular receptors for inositol pyrophosphate (PP-InsP) nutrient messengers. How PP-InsP-bound SPX interacts with PHRs is poorly understood. Here, we report crystal structures of the rice SPX2/InsP6/PHR2 complex and of the PHR2 DNA binding (MYB) domain in complex with target DNA at resolutions of 3.1 Å and 2.7 Å, respectively. In the SPX2/InsP6/PHR2 complex, the signalling-active SPX2 assembles into a domain-swapped dimer conformation and binds two copies of PHR2, targeting both its coiled-coil (CC) oligomerisation domain and MYB domain. Our results reveal that the SPX2 senses PP-InsPs to inactivate PHR2 by establishing severe steric clashes with the PHR2 MYB domain, preventing DNA binding, and by disrupting oligomerisation of the PHR2 CC domain, attenuating promoter binding. Our findings rationalize how PP-InsPs activate SPX receptor proteins to target PHR family transcription factors. SPX receptors regulate plant phosphate response via PHR transcription factors. Here, based on crystal structure analysis of rice PHR2 complexes, the authors propose that SPX2 regulates PHR2 by preventing DNA binding and oligomerisation of the PHR2 CC domain.
Collapse
|
52
|
Sanchez AM, Jacewicz A, Shuman S. Fission yeast Duf89 and Duf8901 are cobalt/nickel-dependent phosphatase-pyrophosphatases that act via a covalent aspartyl-phosphate intermediate. J Biol Chem 2022; 298:101851. [PMID: 35314193 PMCID: PMC9062747 DOI: 10.1016/j.jbc.2022.101851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/02/2022] Open
Abstract
Domain of Unknown Function 89 (DUF89) proteins are metal-dependent phosphohydrolases. Exemplary DUF89 enzymes differ in their metal and phosphosubstrate preferences. Here, we interrogated the activities and structures of two DUF89 paralogs from fission yeast-Duf89 and Duf8901. We find that Duf89 and Duf8901 are cobalt/nickel-dependent phosphohydrolases adept at hydrolyzing p-nitrophenylphosphate and PPi. Crystal structures of metal-free Duf89 and Co2+-bound Duf8901 disclosed two enzyme conformations that differed with respect to the position of a three-helix module, which is either oriented away from the active site in Duf89 or forms a lid over the active site in Duf8901. Lid closure results in a 16 Å movement of Duf8901 Asp195, vis-à-vis Asp199 in Duf89, that brings Asp195 into contact with an octahedrally coordinated cobalt. Reaction of Duf8901 with BeCl2 and NaF in the presence of divalent cations Co2+, Ni2+, or Zn2+ generated covalent Duf8901-(Asp248)-beryllium trifluoride (BeF3)•Co2+, Duf8901-(Asp248)-BeF3•Ni2+, or Duf8901-(Asp248)-BeF3•Zn2+ adducts, the structures of which suggest a two-step catalytic mechanism via formation and hydrolysis of an enzyme-(aspartyl)-phosphate intermediate. Alanine mutations of Duf8901 Asp248, Asn249, Lys401, Asp286, and Asp195 that interact with BeF3•Co2+ squelched p-nitrophenylphosphatase activity. A 1.8 Å structure of a Duf8901-(Asp248)-AlF4-OH2•Co2+ transition-state mimetic suggests an associative mechanism in which Asp195 and Asp363 orient and activate the water nucleophile. Whereas deletion of the duf89 gene elicited a phenotype in which expression of phosphate homeostasis gene pho1 was derepressed, deleting duf8901 did not, thereby hinting that the DUF89 paralogs have distinct functional repertoires in vivo.
Collapse
Affiliation(s)
- Ana M Sanchez
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA; Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, New York, USA
| | - Agata Jacewicz
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Stewart Shuman
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA.
| |
Collapse
|
53
|
Bheemireddy S, Srinivasan N. Computational Study on the Dynamics of Mycobacterium Tuberculosis RNA Polymerase Assembly. Methods Mol Biol 2022; 2516:61-79. [PMID: 35922622 DOI: 10.1007/978-1-0716-2413-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Gene regulation is an intricate phenomenon involving precise function of many macromolecular complexes. Molecular basis of this phenomenon is highly complex and cannot be fully understood using a single technique. Computational approaches can play a crucial role in overall understanding of functional and mechanistic features of a protein or an assembly. Large amounts of structural data pertaining to these complexes are publicly available. In this project, we took advantage of the availability of the structural information to unravel functional intricacies of Mycobacterium tuberculosis RNA polymerase upon interaction with RbpA. In this article, we discuss how the knowledge on protein structure and dynamics can be exploited to study function using various computational tools and resources. Overall, this article provides an overview of various computational methods which can be efficiently used to understand the role of any protein. We hope especially the nonexperts in the field could benefit from our article.
Collapse
Affiliation(s)
- Sneha Bheemireddy
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India.
| | | |
Collapse
|
54
|
Xiao R, Wang S, Han R, Li Z, Gabel C, Mukherjee IA, Chang L. Structural basis of target DNA recognition by CRISPR-Cas12k for RNA-guided DNA transposition. Mol Cell 2021; 81:4457-4466.e5. [PMID: 34450043 PMCID: PMC8571069 DOI: 10.1016/j.molcel.2021.07.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/15/2021] [Accepted: 07/29/2021] [Indexed: 02/08/2023]
Abstract
The type V-K CRISPR-Cas system, featured by Cas12k effector with a naturally inactivated RuvC domain and associated with Tn7-like transposon for RNA-guided DNA transposition, is a promising tool for precise DNA insertion. To reveal the mechanism underlying target DNA recognition, we determined a cryoelectron microscopy (cryo-EM) structure of Cas12k from cyanobacteria Scytonema hofmanni in complex with a single guide RNA (sgRNA) and a double-stranded target DNA. Coupled with mutagenesis and in vitro DNA transposition assay, our results revealed mechanisms for the recognition of the GGTT protospacer adjacent motif (PAM) sequence and the structural elements of Cas12k critical for RNA-guided DNA transposition. These structural and mechanistic insights should aid in the development of type V-K CRISPR-transposon systems as tools for genome editing.
Collapse
Affiliation(s)
- Renjian Xiao
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Shukun Wang
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Ruijie Han
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Zhuang Li
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Clinton Gabel
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Indranil Arun Mukherjee
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Leifu Chang
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA.
| |
Collapse
|
55
|
Eichinger A, Neumaier I, Skerra A. The extracellular region of bovine milk butyrophilin exhibits closer structural similarity to human myelin oligodendrocyte glycoprotein than to immunological BTN family receptors. Biol Chem 2021; 402:1187-1202. [PMID: 34342946 DOI: 10.1515/hsz-2021-0122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 06/17/2021] [Indexed: 11/15/2022]
Abstract
Bovine butyrophilin (BTN1A1) is an abundant type I transmembrane glycoprotein exposed on the surface of milk fat globules. We have solved the crystal structure of its extracellular region via multiple wavelength anomalous dispersion after incorporation of selenomethionine into the bacterially produced protein. The butyrophilin ectodomain exhibits two subdomains with immunoglobulin fold, each comprising a β-sandwich with a central disulfide bridge as well as one N-linked glycosylation. The fifth Cys residue at position 193 is unpaired and prone to forming disulfide crosslinks. The apparent lack of a ligand-binding site or receptor activity suggests a function predominantly as hydrophilic coat protein to prevent coagulation of the milk fat droplets. While there is less structural resemblance to members of the human butyrophilin family such as BTN3A, which play a role as immune receptors, the N-terminal bovine butyrophilin subdomain shows surprising similarity to the human myelin oligodendrocyte glycoprotein, a protein exposed on the surface of myelin sheaths. Thus, our study lends structural support to earlier hypotheses of a correlation between the consumption of cow milk and prevalence of neurological autoimmune diseases and may offer guidance for the breeding of cattle strains that express modified butyrophilin showing less immunological cross-reactivity.
Collapse
Affiliation(s)
- Andreas Eichinger
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, D-85354 Freising, Germany
| | - Irmgard Neumaier
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, D-85354 Freising, Germany
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, D-85354 Freising, Germany
| |
Collapse
|
56
|
Levine TP. TMEM106B in humans and Vac7 and Tag1 in yeast are predicted to be lipid transfer proteins. Proteins 2021; 90:164-175. [PMID: 34347309 DOI: 10.1002/prot.26201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/11/2021] [Accepted: 07/23/2021] [Indexed: 11/05/2022]
Abstract
TMEM106B is an integral membrane protein of late endosomes and lysosomes involved in neuronal function, its overexpression being associated with familial frontotemporal lobar degeneration, and point mutation linked to hypomyelination. It has also been identified in multiple screens for host proteins required for productive SARS-CoV-2 infection. Because standard approaches to understand TMEM106B at the sequence level find no homology to other proteins, it has remained a protein of unknown function. Here, the standard tool PSI-BLAST was used in a nonstandard way to show that the lumenal portion of TMEM106B is a member of the late embryogenesis abundant-2 (LEA-2) domain superfamily. More sensitive tools (HMMER, HHpred, and trRosetta) extended this to predict LEA-2 domains in two yeast proteins. One is Vac7, a regulator of PI(3,5)P2 production in the degradative vacuole, equivalent to the lysosome, which has a LEA-2 domain in its lumenal domain. The other is Tag1, another vacuolar protein, which signals to terminate autophagy and has three LEA-2 domains in its lumenal domain. Further analysis of LEA-2 structures indicated that LEA-2 domains have a long, conserved lipid-binding groove. This implies that TMEM106B, Vac7, and Tag1 may all be lipid transfer proteins in the lumen of late endocytic organelles.
Collapse
|
57
|
Álamo P, Cedano J, Conchillo-Sole O, Cano-Garrido O, Alba-Castellon L, Serna N, Aviñó A, Carrasco-Diaz LM, Sánchez-Chardi A, Martinez-Torró C, Gallardo A, Cano M, Eritja R, Villaverde A, Mangues R, Vazquez E, Unzueta U. Rational engineering of a human GFP-like protein scaffold for humanized targeted nanomedicines. Acta Biomater 2021; 130:211-222. [PMID: 34116228 DOI: 10.1016/j.actbio.2021.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/14/2021] [Accepted: 06/02/2021] [Indexed: 01/01/2023]
Abstract
Green fluorescent protein (GFP) is a widely used scaffold for protein-based targeted nanomedicines because of its high biocompatibility, biological neutrality and outstanding structural stability. However, being immunogenicity a major concern in the development of drug carriers, the use of exogenous proteins such as GFP in clinics might be inadequate. Here we report a human nidogen-derived protein (HSNBT), rationally designed to mimic the structural and functional properties of GFP as a scaffold for nanomedicine. For that, a GFP-like β-barrel, containing the G2 domain of the human nidogen, has been rationally engineered to obtain a biologically neutral protein that self-assembles as 10nm-nanoparticles. This scaffold is the basis of a humanized nanoconjugate, where GFP, from the well-characterized protein T22-GFP-H6, has been substituted by the nidogen-derived GFP-like HSNBT protein. The resulting construct T22-HSNBT-H6, is a humanized CXCR4-targeted nanoparticle that selectively delivers conjugated genotoxic Floxuridine into cancer CXCR4+ cells. Indeed, the administration of T22-HSNBT-H6-FdU in a CXCR4-overexpressing colorectal cancer mouse model results in an even more efficient selective antitumoral effect than that shown by its GFP-counterpart, in absence of systemic toxicity. Therefore, the newly developed GFP-like protein scaffold appears as an ideal candidate for the development of humanized protein nanomaterials and successfully supports the tumor-targeted nanoscale drug T22-HSNBT-H6-FdU. STATEMENT OF SIGNIFICANCE: Targeted nanomedicine seeks for humanized and biologically neutral protein carriers as alternative of widely used but immunogenic exogenous protein scaffolds such as green fluorescent protein (GFP). This work reports for the first time the rational engineering of a human homolog of the GFP based in the human nidogen (named HSNBT) that shows full potential to be used in humanized protein-based targeted nanomedicines. This has been demonstrated in T22-HSNBT-H6-FdU, a humanized CXCR4-targeted protein nanoconjugate able to selectively deliver its genotoxic load into cancer cells.
Collapse
|
58
|
Schaeffer RD, Kinch LN, Pei J, Medvedev KE, Grishin NV. Completeness and Consistency in Structural Domain Classifications. ACS OMEGA 2021; 6:15698-15707. [PMID: 34179613 PMCID: PMC8223206 DOI: 10.1021/acsomega.1c00950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/25/2021] [Indexed: 06/13/2023]
Abstract
Domain classifications are a useful resource for computational analysis of the protein structure, but elements of their composition are often opaque to potential users. We perform a comparative analysis of our classification ECOD against the SCOPe, SCOP2, and CATH domain classifications with respect to their constituent domain boundaries and hierarchal organization. The coverage of these domain classifications with respect to ECOD and to the PDB was assessed by structure and by sequence. We also conducted domain pair analysis to determine broad differences in hierarchy between domains shared by ECOD and other classifications. Finally, we present domains from the major facilitator superfamily (MFS) of transporter proteins and provide evidence that supports their split into domains and for multiple conformations within these families. We find that the ECOD and CATH provide the most extensive structural coverage of the PDB. ECOD and SCOPe have the most consistent domain boundary conditions, whereas CATH and SCOP2 both differ significantly.
Collapse
Affiliation(s)
- R. Dustin Schaeffer
- Departments
of Biophysics and Biochemistry, University
of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Lisa N. Kinch
- Howard
Hughes Medical Institute, University of
Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Jimin Pei
- Howard
Hughes Medical Institute, University of
Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Kirill E. Medvedev
- Departments
of Biophysics and Biochemistry, University
of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Nick V. Grishin
- Departments
of Biophysics and Biochemistry, University
of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Howard
Hughes Medical Institute, University of
Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
59
|
Zhao G, Kosek D, Liu HB, Ohlemacher SI, Blackburne B, Nikolskaya A, Makarova KS, Sun J, Barry Iii CE, Koonin EV, Dyda F, Bewley CA. Structural Basis for a Dual Function ATP Grasp Ligase That Installs Single and Bicyclic ω-Ester Macrocycles in a New Multicore RiPP Natural Product. J Am Chem Soc 2021; 143:8056-8068. [PMID: 34028251 DOI: 10.1021/jacs.1c02316] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Among the ribosomally synthesized and post-translationally modified peptide (RiPP) natural products, "graspetides" (formerly known as microviridins) contain macrocyclic esters and amides that are formed by ATP-grasp ligase tailoring enzymes using the side chains of Asp/Glu as acceptors and Thr/Ser/Lys as donors. Graspetides exhibit diverse patterns of macrocylization and connectivities exemplified by microviridins, that have a caged tricyclic core, and thuringin and plesiocin that feature a "hairpin topology" with cross-strand ω-ester bonds. Here, we characterize chryseoviridin, a new type of multicore RiPP encoded by Chryseobacterium gregarium DS19109 (Phylum Bacteroidetes) and solve a 2.44 Å resolution crystal structure of a quaternary complex consisting of the ATP-grasp ligase CdnC bound to ADP, a conserved leader peptide and a peptide substrate. HRMS/MS analyses show that chryseoviridin contains four consecutive five- or six-residue macrocycles ending with a microviridin-like core. The crystal structure captures respective subunits of the CdnC homodimer in the apo or substrate-bound state revealing a large conformational change in the B-domain upon substrate binding. A docked model of ATP places the γ-phosphate group within 2.8 Å of the Asp acceptor residue. The orientation of the bound substrate is consistent with a model in which macrocyclization occurs in the N- to C-terminal direction for core peptides containing multiple Thr/Ser-to-Asp macrocycles. Using systematically varied sequences, we validate this model and identify two- or three-amino acid templating elements that flank the macrolactone and are required for enzyme activity in vitro. This work reveals the structural basis for ω-ester bond formation in RiPP biosynthesis.
Collapse
Affiliation(s)
- Gengxiang Zhao
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Dalibor Kosek
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Hong-Bing Liu
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Shannon I Ohlemacher
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Brittney Blackburne
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, United States
| | - Anastasia Nikolskaya
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, United States
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, United States
| | - Jiadong Sun
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Clifton E Barry Iii
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20894, United States
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, United States
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Carole A Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
60
|
Neuwald AF, Kolaczkowski BD, Altschul SF. eCOMPASS: evaluative comparison of multiple protein alignments by statistical score. Bioinformatics 2021; 37:3456-3463. [PMID: 33983436 PMCID: PMC8545322 DOI: 10.1093/bioinformatics/btab374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/31/2021] [Accepted: 05/12/2021] [Indexed: 11/21/2022] Open
Abstract
Motivation Detecting subtle biologically relevant patterns in protein sequences often requires the construction of a large and accurate multiple sequence alignment (MSA). Methods for constructing MSAs are usually evaluated using benchmark alignments, which, however, typically contain very few sequences and are therefore inappropriate when dealing with large numbers of proteins. Results eCOMPASS addresses this problem using a statistical measure of relative alignment quality based on direct coupling analysis (DCA): to maintain protein structural integrity over evolutionary time, substitutions at one residue position typically result in compensating substitutions at other positions. eCOMPASS computes the statistical significance of the congruence between high scoring directly coupled pairs and 3D contacts in corresponding structures, which depends upon properly aligned homologous residues. We illustrate eCOMPASS using both simulated and real MSAs. Availability and implementation The eCOMPASS executable, C++ open source code and input data sets are available at https://www.igs.umaryland.edu/labs/neuwald/software/compass Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Andrew F Neuwald
- Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Bryan D Kolaczkowski
- Department of Microbiology & Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Stephen F Altschul
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
61
|
The structure of a major surface antigen SAG19 from Eimeria tenella unifies the Eimeria SAG family. Commun Biol 2021; 4:376. [PMID: 33742128 PMCID: PMC7979774 DOI: 10.1038/s42003-021-01904-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/19/2021] [Indexed: 01/31/2023] Open
Abstract
In infections by apicomplexan parasites including Plasmodium, Toxoplasma gondii, and Eimeria, host interactions are mediated by proteins including families of membrane-anchored cysteine-rich surface antigens (SAGs) and SAG-related sequences (SRS). Eimeria tenella causes caecal coccidiosis in chickens and has a SAG family with over 80 members making up 1% of the proteome. We have solved the structure of a representative E. tenella SAG, EtSAG19, revealing that, despite a low level of sequence similarity, the entire Eimeria SAG family is unified by its three-layer αβα fold which is related to that of the CAP superfamily. Furthermore, sequence comparisons show that the Eimeria SAG fold is conserved in surface antigens of the human coccidial parasite Cyclospora cayetanensis but this fold is unrelated to that of the SAGs/SRS proteins expressed in other apicomplexans including Plasmodium species and the cyst-forming coccidia Toxoplasma gondii, Neospora caninum and Besnoitia besnoiti. However, despite having very different structures, Consurf analysis showed that Eimeria SAG and Toxoplasma SRS families each exhibit marked hotspots of sequence hypervariability that map to their surfaces distal to the membrane anchor. This suggests that the primary and convergent purpose of the different structures is to provide a platform onto which sequence variability can be imposed.
Collapse
|
62
|
D'Andréa ÉD, Retel JS, Diehl A, Schmieder P, Oschkinat H, Pires JR. NMR structure and dynamics of Q4DY78, a conserved kinetoplasid-specific protein from Trypanosoma cruzi. J Struct Biol 2021; 213:107715. [PMID: 33705979 DOI: 10.1016/j.jsb.2021.107715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 10/21/2022]
Abstract
The 106-residue protein Q4DY78 (UniProt accession number) from Trypanosoma cruzi is highly conserved in the related kinetoplastid pathogens Trypanosoma brucei and Leishmania major. Given the essentiality of its orthologue in T. brucei, the high sequence conservation with other trypanosomatid proteins, and the low sequence similarity with mammalian proteins, Q4DY78 is an attractive protein for structural characterization. Here, we solved the structure of Q4DY78 by solution NMR and evaluated its backbone dynamics. Q4DY78 is composed of five α -helices and a small, two-stranded antiparallel β-sheet. The backbone RMSD is 0.22 ± 0.05 Å for the representative ensemble of the 20 lowest-energy structures. Q4DY78 is overall rigid, except for N-terminal residues (V8 to I10), residues at loop 4 (K57 to G65) and residues at the C-terminus (F89 to F112). Q4DY78 has a short motif FPCAP that could potentially mediate interactions with the host cytoskeleton via interaction with EVH1 (Drosophila Enabled (Ena)/Vasodilator-stimulated phosphoprotein (VASP) homology 1) domains. Albeit Q4DY78 lacks calcium-binding motifs, its fold resembles that of eukaryotic calcium-binding proteins such as calcitracin, calmodulin, and polcacin Bet V4. We characterized this novel protein with a calcium binding fold without the capacity to bind calcium.
Collapse
Affiliation(s)
- Éverton Dias D'Andréa
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373 - Bloco E, sala 32, Rio de Janeiro, RJ 21941-902, Brazil
| | - Joren Sebastian Retel
- Leibniz-Institut für Molekulare Pharmakologie, FMP, Robert-Rössle-Straβe 10, Berlin 13125, Germany
| | - Anne Diehl
- Leibniz-Institut für Molekulare Pharmakologie, FMP, Robert-Rössle-Straβe 10, Berlin 13125, Germany
| | - Peter Schmieder
- Leibniz-Institut für Molekulare Pharmakologie, FMP, Robert-Rössle-Straβe 10, Berlin 13125, Germany
| | - Hartmut Oschkinat
- Leibniz-Institut für Molekulare Pharmakologie, FMP, Robert-Rössle-Straβe 10, Berlin 13125, Germany; Freie Universität Berlin, Institut für Chemie und Biochemie, Takustrasse 3, Berlin 14195, Germany
| | - José Ricardo Pires
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373 - Bloco E, sala 32, Rio de Janeiro, RJ 21941-902, Brazil.
| |
Collapse
|
63
|
Chung IYW, Li L, Tyurin O, Gagarinova A, Wibawa R, Li P, Hartland EL, Cygler M. Structural and functional study of Legionella pneumophila effector RavA. Protein Sci 2021; 30:940-955. [PMID: 33660322 DOI: 10.1002/pro.4057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 01/20/2023]
Abstract
Legionella pneumophila is an intracellular pathogen that causes Legionnaire's disease in humans. This bacterium can be found in freshwater environments as a free-living organism, but it is also an intracellular parasite of protozoa. Human infection occurs when inhaled aerosolized pathogen comes into contact with the alveolar mucosa and replicates in alveolar macrophages. Legionella enters the host cell by phagocytosis and redirects the Legionella-containing phagosomes from the phagocytic maturation pathway. These nascent phagosomes fuse with ER-derived secretory vesicles and membranes forming the Legionella-containing vacuole. Legionella subverts many host cellular processes by secreting over 300 effector proteins into the host cell via the Dot/Icm type IV secretion system. The cellular function for many Dot/Icm effectors is still unknown. Here, we present a structural and functional study of L. pneumophila effector RavA (Lpg0008). Structural analysis revealed that the RavA consists of four ~85 residue long α-helical domains with similar folds, which show only a low level of structural similarity to other protein domains. The ~90 residues long C-terminal segment is predicted to be natively unfolded. We show that during L. pneumophila infection of human cells, RavA localizes to the Golgi apparatus and to the plasma membrane. The same localization is observed when RavA is expressed in human cells. The localization signal resides within the C-terminal sequence C409 WTSFCGLF417 . Yeast-two-hybrid screen using RavA as bait identified RAB11A as a potential binding partner. RavA is present in L. pneumophila strains but only distant homologs are found in other Legionella species, where the number of repeats varies.
Collapse
Affiliation(s)
- Ivy Y W Chung
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Lei Li
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Oleg Tyurin
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Symvivo Corporation, Burnaby, British Columbia, Canada
| | - Alla Gagarinova
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Raissa Wibawa
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.,Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, and Department of Molecular and Translational Science, Monash University, Clayton, Australia
| | - Pengfei Li
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.,Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, and Department of Molecular and Translational Science, Monash University, Clayton, Australia
| | - Elizabeth L Hartland
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.,Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, and Department of Molecular and Translational Science, Monash University, Clayton, Australia
| | - Miroslaw Cygler
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
64
|
Structural basis for a bacterial Pip system plant effector recognition protein. Proc Natl Acad Sci U S A 2021; 118:2019462118. [PMID: 33649224 DOI: 10.1073/pnas.2019462118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A number of plant-associated proteobacteria have LuxR family transcription factors that we refer to as PipR subfamily members. PipR proteins play roles in interactions between bacteria and their plant hosts, and some are important for bacterial virulence of plants. We identified an ethanolamine derivative, N-(2-hydroxyethyl)-2-(2-hydroxyethylamino) acetamide (HEHEAA), as a potent effector of PipR-mediated gene regulation in the plant endophyte Pseudomonas GM79. HEHEAA-dependent PipR activity requires an ATP-binding cassette-type active transport system, and the periplasmic substrate-binding protein (SBP) of that system binds HEHEAA. To begin to understand the molecular basis of PipR system responses to plant factors we crystallized a HEHEAA-responsive SBP in the free- and HEHEAA-bound forms. The SBP, which is similar to peptide-binding SBPs, was in a closed conformation. A narrow cavity at the interface of its two lobes is wide enough to bind HEHEAA, but it cannot accommodate peptides with side chains. The polar atoms of HEHEAA are recognized by hydrogen-bonding interactions, and additional SBP residues contribute to the binding site. This binding mode was confirmed by a structure-based mutational analysis. We also show that a closely related SBP from the plant pathogen Pseudomonas syringae pv tomato DC3000 does not recognize HEHEAA. However, a single amino acid substitution in the presumed effector-binding pocket of the P. syringae SBP converted it to a weak HEHEAA-binding protein. The P. syringae PipR depends on a plant effector for activity, and our findings imply that different PipR-associated SBPs bind different effectors.
Collapse
|
65
|
Molecular Cloning, Purification and Characterization of Mce1R of Mycobacterium tuberculosis. Mol Biotechnol 2021; 63:200-220. [PMID: 33423211 DOI: 10.1007/s12033-020-00293-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2020] [Indexed: 10/22/2022]
Abstract
The mce1 operon of Mycobacterium tuberculosis, important for lipid metabolism/transport, host cell invasion, modulation of host immune response and pathogenicity, is under the transcriptional control of Mce1R. Hence characterizing Mce1R is an important step for novel anti-tuberculosis drug discovery. The present study reports functional and in silico characterization of Mce1R. In this work, we have computationally modeled the structure of Mce1R and have validated the structure by computational and experimental methods. Mce1R has been shown to harbor the canonical VanR-like structure with a flexible N-terminal 'arm', carrying conserved positively charged residues, most likely involved in the operator DNA binding. The mce1R gene has been cloned, expressed, purified and its DNA-binding activity has been measured in vitro. The Kd value for Mce1R-operator DNA interaction has been determined to be 0.35 ± 0.02 µM which implies that Mce1R binds to DNA with moderate affinity compared to the other FCD family of regulators. So far, this is the first report for measuring the DNA-binding affinity of any VanR-type protein. Despite significant sequence similarity at the N-terminal domain, the wHTH motif of Mce1R exhibits poor conservancy of amino acid residues, critical for DNA-binding, thus results in moderate DNA-binding affinity. The N-terminal DNA-binding domain is structurally dynamic while the C-terminal domain showed significant stability and such profile of structural dynamics is most likely to be preserved in the structural orthologs of Mce1R. In addition to this, a cavity has been detected in the C-terminal domain of Mce1R which contains a few conserved residues. Comparison with other FCD family of regulators suggests that most of the conserved residues might be critical for binding to specific ligand. The max pKd value and drug score for the cavity are estimated to be 9.04 and 109 respectively suggesting that the cavity represents a suitable target site for novel anti-tuberculosis drug discovery approaches.
Collapse
|
66
|
M. Iyer L, Anantharaman V, Krishnan A, Burroughs AM, Aravind L. Jumbo Phages: A Comparative Genomic Overview of Core Functions and Adaptions for Biological Conflicts. Viruses 2021; 13:v13010063. [PMID: 33466489 PMCID: PMC7824862 DOI: 10.3390/v13010063] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023] Open
Abstract
Jumbo phages have attracted much attention by virtue of their extraordinary genome size and unusual aspects of biology. By performing a comparative genomics analysis of 224 jumbo phages, we suggest an objective inclusion criterion based on genome size distributions and present a synthetic overview of their manifold adaptations across major biological systems. By means of clustering and principal component analysis of the phyletic patterns of conserved genes, all known jumbo phages can be classified into three higher-order groups, which include both myoviral and siphoviral morphologies indicating multiple independent origins from smaller predecessors. Our study uncovers several under-appreciated or unreported aspects of the DNA replication, recombination, transcription and virion maturation systems. Leveraging sensitive sequence analysis methods, we identify novel protein-modifying enzymes that might help hijack the host-machinery. Focusing on host–virus conflicts, we detect strategies used to counter different wings of the bacterial immune system, such as cyclic nucleotide- and NAD+-dependent effector-activation, and prevention of superinfection during pseudolysogeny. We reconstruct the RNA-repair systems of jumbo phages that counter the consequences of RNA-targeting host effectors. These findings also suggest that several jumbo phage proteins provide a snapshot of the systems found in ancient replicons preceding the last universal ancestor of cellular life.
Collapse
Affiliation(s)
- Lakshminarayan M. Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (L.M.I.); (V.A.); (A.M.B.)
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (L.M.I.); (V.A.); (A.M.B.)
| | - Arunkumar Krishnan
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Odisha 760010, India;
| | - A. Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (L.M.I.); (V.A.); (A.M.B.)
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (L.M.I.); (V.A.); (A.M.B.)
- Correspondence:
| |
Collapse
|
67
|
Krtenic B, Drazic A, Arnesen T, Reuter N. Classification and phylogeny for the annotation of novel eukaryotic GNAT acetyltransferases. PLoS Comput Biol 2020; 16:e1007988. [PMID: 33362253 PMCID: PMC7790372 DOI: 10.1371/journal.pcbi.1007988] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 01/07/2021] [Accepted: 10/16/2020] [Indexed: 11/19/2022] Open
Abstract
The enzymes of the GCN5-related N-acetyltransferase (GNAT) superfamily count more than 870 000 members through all kingdoms of life and share the same structural fold. GNAT enzymes transfer an acyl moiety from acyl coenzyme A to a wide range of substrates including aminoglycosides, serotonin, glucosamine-6-phosphate, protein N-termini and lysine residues of histones and other proteins. The GNAT subtype of protein N-terminal acetyltransferases (NATs) alone targets a majority of all eukaryotic proteins stressing the omnipresence of the GNAT enzymes. Despite the highly conserved GNAT fold, sequence similarity is quite low between members of this superfamily even when substrates are similar. Furthermore, this superfamily is phylogenetically not well characterized. Thus functional annotation based on sequence similarity is unreliable and strongly hampered for thousands of GNAT members that remain biochemically uncharacterized. Here we used sequence similarity networks to map the sequence space and propose a new classification for eukaryotic GNAT acetyltransferases. Using the new classification, we built a phylogenetic tree, representing the entire GNAT acetyltransferase superfamily. Our results show that protein NATs have evolved more than once on the GNAT acetylation scaffold. We use our classification to predict the function of uncharacterized sequences and verify by in vitro protein assays that two fungal genes encode NAT enzymes targeting specific protein N-terminal sequences, showing that even slight changes on the GNAT fold can lead to change in substrate specificity. In addition to providing a new map of the relationship between eukaryotic acetyltransferases the classification proposed constitutes a tool to improve functional annotation of GNAT acetyltransferases. Enzymes of the GCN5-related N-acetyltransferase (GNAT) superfamily transfer an acetyl group from one molecule to another. This reaction is called acetylation and is one of the most common reactions inside the cell. The GNAT superfamily counts more than 870 000 members through all kingdoms of life. Despite sharing the same fold the GNAT superfamily is very diverse in terms of amino acid sequence and substrates. The eight N-terminal acetyltransferases (NatA, NatB, etc.. to NatH) are a GNAT subtype which acetylates the free amine group of polypeptide chains. This modification is called N-terminal acetylation and is one of the most abundant protein modifications in eukaryotic cells. This subtype is also characterized by a high sequence diversity even though they share the same substrate. In addition, the phylogeny of the superfamily is not characterized. This hampers functional annotation based on sequence similarity, and discovery of novel NATs. In this work we set out to solve the problem of the classification of eukaryotic GCN5-related acetyltransferases and report the first classification framework of the superfamily. This framework can be used as a tool for annotation of all GCN5-related acetyltransferases. As an example of what can be achieved we report in this paper the computational prediction and in vitro verification of the function of two previously uncharacterized N-terminal acetyltransferases. We also report the first acetyltransferase phylogenetic tree of the GCN5 superfamily. It indicates that N-terminal acetyltransferases do not constitute one homogeneous protein family, but that the ability to bind and acetylate protein N-termini had evolved more than once on the same acetylation scaffold. We also show that even small changes in key positions can lead to altered enzyme specificity.
Collapse
Affiliation(s)
- Bojan Krtenic
- Department of Biological Sciences, University of Bergen, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Norway
- * E-mail: (BK); (NR)
| | - Adrian Drazic
- Department of Biomedicine, University of Bergen, Norway
| | - Thomas Arnesen
- Department of Biological Sciences, University of Bergen, Norway
- Department of Biomedicine, University of Bergen, Norway
- Department of Surgery, Haukeland University Hospital, Norway
| | - Nathalie Reuter
- Computational Biology Unit, Department of Informatics, University of Bergen, Norway
- Department of Chemistry, University of Bergen, Norway
- * E-mail: (BK); (NR)
| |
Collapse
|
68
|
Harjes E, Jameson GB, Tu YH, Burr N, Loo TS, Goroncy AK, Edwards PJB, Harjes S, Munro B, Göbl C, Sattlegger E, Norris GE. Experimentally based structural model of Yih1 provides insight into its function in controlling the key translational regulator Gcn2. FEBS Lett 2020; 595:324-340. [PMID: 33156522 DOI: 10.1002/1873-3468.13990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/21/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022]
Abstract
Yeast impact homolog 1 (Yih1), or IMPACT in mammals, is part of a conserved regulatory module controlling the activity of General Control Nonderepressible 2 (Gcn2), a protein kinase that regulates protein synthesis. Yih1/IMPACT is implicated not only in many essential cellular processes, such as neuronal development, immune system regulation and the cell cycle, but also in cancer. Gcn2 must bind to Gcn1 in order to impair the initiation of protein translation. Yih1 hinders this key Gcn1-Gcn2 interaction by binding to Gcn1, thus preventing Gcn2-mediated inhibition of protein synthesis. Here, we solved the structures of the two domains of Saccharomyces cerevisiae Yih1 separately using Nuclear Magnetic Resonance and determined the relative positions of the two domains using a range of biophysical methods. Our findings support a compact structural model of Yih1 in which the residues required for Gcn1 binding are buried in the interface. This model strongly implies that Yih1 undergoes a large conformational rearrangement from a latent closed state to a primed open state to bind Gcn1. Our study provides structural insight into the interactions of Yih1 with partner molecules.
Collapse
Affiliation(s)
- Elena Harjes
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Maurice Wilkins Centre for Molecular BioDiscovery, Massey University, Palmerston North, New Zealand
| | - Geoffrey B Jameson
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Maurice Wilkins Centre for Molecular BioDiscovery, Massey University, Palmerston North, New Zealand
| | - Yi-Hsuan Tu
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Natalie Burr
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Trevor S Loo
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Alexander K Goroncy
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Patrick J B Edwards
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Stefan Harjes
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Ben Munro
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Christoph Göbl
- Centre for Free Radical Research, Department of Pathology, University of Otago, Christchurch, New Zealand
| | - Evelyn Sattlegger
- Maurice Wilkins Centre for Molecular BioDiscovery, Massey University, Palmerston North, New Zealand.,School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| | - Gillian E Norris
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Maurice Wilkins Centre for Molecular BioDiscovery, Massey University, Palmerston North, New Zealand
| |
Collapse
|
69
|
Murakami S, Okada U, van Veen HW. Tripartite transporters as mechanotransmitters in periplasmic alternating-access mechanisms. FEBS Lett 2020; 594:3908-3919. [PMID: 32936941 DOI: 10.1002/1873-3468.13929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022]
Abstract
To remove xenobiotics from the periplasmic space, Gram-negative bacteria utilise unique tripartite efflux systems in which a molecular engine in the plasma membrane connects to periplasmic and outer membrane subunits. Substrates bind to periplasmic sections of the engine or sometimes to the periplasmic subunits. Then, the tripartite machines undergo conformational changes that allow the movement of the substrates down the substrate translocation pathway to the outside of the cell. The transmembrane (TM) domains of the tripartite resistance-nodulation-drug-resistance (RND) transporters drive these conformational changes by converting proton motive force into mechanical motion. Similarly, the TM domains of tripartite ATP-binding cassette (ABC) transporters transmit mechanical movement associated with nucleotide binding and hydrolysis at the nucleotide-binding domains to the relevant subunits in the periplasm. In this way, metabolic energy is coupled to periplasmic alternating-access mechanisms to achieve substrate transport across the outer membrane.
Collapse
Affiliation(s)
- Satoshi Murakami
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Ui Okada
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | | |
Collapse
|
70
|
Evans JC, Johnstone BA, Lawrence SL, Morton CJ, Christie MP, Parker MW, Tweten RK. A Key Motif in the Cholesterol-Dependent Cytolysins Reveals a Large Family of Related Proteins. mBio 2020; 11:e02351-20. [PMID: 32994330 PMCID: PMC7527733 DOI: 10.1128/mbio.02351-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 11/20/2022] Open
Abstract
The cholesterol-dependent cytolysins (CDCs) are bacterial, β-barrel, pore-forming toxins. A central enigma of the pore-forming mechanism is how completion of the prepore is sensed to initiate its conversion to the pore. We identified a motif that is conserved between the CDCs and a diverse family of nearly 300 uncharacterized proteins present in over 220 species that span at least 10 bacterial and 2 eukaryotic phyla. Except for this motif, these proteins exhibit little similarity to the CDCs at the primary structure level. Studies herein show this motif is a critical component of the sensor that initiates the prepore-to-pore transition in the CDCs. We further show by crystallography, single particle analysis, and biochemical studies of one of these CDC-like (CDCL) proteins from Elizabethkingia anophelis, a commensal of the malarial mosquito midgut, that a high degree of structural similarity exists between the CDC and CDCL monomer structures and both form large oligomeric pore complexes. Furthermore, the conserved motif in the E. anophelis CDCL crystal structure occupies a nearly identical position and makes similar contacts to those observed in the structure of the archetype CDC, perfringolysin O (PFO). This suggests a common function in the CDCs and CDCLs and may explain why only this motif is conserved in the CDCLs. Hence, these studies identify a critical component of the sensor involved in initiating the prepore-to-pore transition in the CDCs, which is conserved in a large and diverse group of distant relatives of the CDCs.IMPORTANCE The cholesterol-dependent cytolysins' pore-forming mechanism relies on the ability to sense the completion of the oligomeric prepore structure and initiate the insertion of the β-barrel pore from the assembled prepore structure. These studies show that a conserved motif is an important component of the sensor that triggers the prepore-to-pore transition and that it is conserved in a large family of previously unidentified CDC-like proteins, the genes for which are present in a vast array of microbial species that span most terrestrial environments, as well as most animal and human microbiomes. These studies establish the foundation for future investigations that will probe the contribution of this large family of CDC-like proteins to microbial survival and human disease.
Collapse
Affiliation(s)
- Jordan C Evans
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Bronte A Johnstone
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Sara L Lawrence
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Craig J Morton
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Michelle P Christie
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Michael W Parker
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Rodney K Tweten
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
71
|
Methionine aminopeptidases with short sequence inserts within the catalytic domain are differentially inhibited: Structural and biochemical studies of three proteins from Vibrio spp. Eur J Med Chem 2020; 209:112883. [PMID: 33035924 DOI: 10.1016/j.ejmech.2020.112883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/09/2020] [Accepted: 09/23/2020] [Indexed: 11/20/2022]
Abstract
Methionine aminopeptidases (MetAPs) have been recognized as drug targets and have been extensively studied for discovery of selective inhibitors. MetAPs are essential enzymes in all living cells. While most prokaryotes contain a single gene, some prokaryotes and all eukaryotes including human have redundancy. Due to the similarity in the active sites of the MetAP enzyme between the pathogens and human limited the success of discovering selective inhibitors. We recently have discovered that MetAPs with small inserts within the catalytic domain to have different susceptibilities against some inhibitors compared to those that do not have. Using this clue we used bioinformatic tools to identify new variants of MetAPs with inserts in pathogenic species. Two new isoforms were identified in Vibrio species with two and three inserts in addition to an isoform without any insert. Multiple sequence alignment suggested that inserts are conserved in several of the Vibrio species. Two of the three inserts are common between two and three insert isoforms. One of the inserts is identified to have "NNKNN" motif that is similar to well-characterized quorum sensing peptide, "NNWNN". Another insert is predicted to have a posttranslational modification site. Three Vibrio proteins were cloned, expressed, purified, enzyme kinetics established and inhibitor screening has been performed. Several of the pyridinylpyrimidine derivatives selectively inhibited MetAPs with inserts compared to those that do not have, including the human enzyme. Crystal structure and molecular modeling studies provide the molecular basis for selective inhibition.
Collapse
|
72
|
Mechanisms for target recognition and cleavage by the Cas12i RNA-guided endonuclease. Nat Struct Mol Biol 2020; 27:1069-1076. [PMID: 32895556 DOI: 10.1038/s41594-020-0499-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/06/2020] [Indexed: 12/27/2022]
Abstract
Cas12i is a recently identified type V CRISPR-Cas endonuclease that predominantly cleaves the non-target strand of a double-stranded DNA substrate. This nicking activity of Cas12i could potentially be used for genome editing with high specificity. To elucidate its mechanisms for target recognition and cleavage, we determined cryo-EM structures of Cas12i in multiple functional states. Cas12i pre-orders a seven-nucleotide seed sequence of the crRNA for target recognition and undergoes a two-step activation through crRNA-DNA hybridization. Formation of 14 base pairs activates the nickase activity, and 28-bp hybridization promotes cleavage of the target strand. The atomic structures and mechanistic insights gained should facilitate the manipulation of Cas12i for genome editing applications.
Collapse
|
73
|
D'Andréa ÉD, Roske Y, Oliveira GAD, Cremer N, Diehl A, Schmieder P, Heinemann U, Oschkinat H, Pires JR. Crystal structure of Q4D6Q6, a conserved kinetoplastid-specific protein from Trypanosoma cruzi. J Struct Biol 2020; 211:107536. [DOI: 10.1016/j.jsb.2020.107536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 10/24/2022]
|
74
|
Chang L, Yang J, Jo CH, Boland A, Zhang Z, McLaughlin SH, Abu-Thuraia A, Killoran RC, Smith MJ, Côté JF, Barford D. Structure of the DOCK2-ELMO1 complex provides insights into regulation of the auto-inhibited state. Nat Commun 2020; 11:3464. [PMID: 32651375 PMCID: PMC7351999 DOI: 10.1038/s41467-020-17271-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/17/2020] [Indexed: 12/29/2022] Open
Abstract
DOCK (dedicator of cytokinesis) proteins are multidomain guanine nucleotide exchange factors (GEFs) for RHO GTPases that regulate intracellular actin dynamics. DOCK proteins share catalytic (DOCKDHR2) and membrane-associated (DOCKDHR1) domains. The structurally-related DOCK1 and DOCK2 GEFs are specific for RAC, and require ELMO (engulfment and cell motility) proteins for function. The N-terminal RAS-binding domain (RBD) of ELMO (ELMORBD) interacts with RHOG to modulate DOCK1/2 activity. Here, we determine the cryo-EM structures of DOCK2-ELMO1 alone, and as a ternary complex with RAC1, together with the crystal structure of a RHOG-ELMO2RBD complex. The binary DOCK2-ELMO1 complex adopts a closed, auto-inhibited conformation. Relief of auto-inhibition to an active, open state, due to a conformational change of the ELMO1 subunit, exposes binding sites for RAC1 on DOCK2DHR2, and RHOG and BAI GPCRs on ELMO1. Our structure explains how up-stream effectors, including DOCK2 and ELMO1 phosphorylation, destabilise the auto-inhibited state to promote an active GEF.
Collapse
Affiliation(s)
- Leifu Chang
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Jing Yang
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Chang Hwa Jo
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Andreas Boland
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
- Department of Molecular Biology, Science III, University of Geneva, Geneva, Switzerland
| | - Ziguo Zhang
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | | | - Afnan Abu-Thuraia
- Montreal Institute of Clinical Research (IRCM), Montréal, QC, H2W 1R7, Canada
| | - Ryan C Killoran
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Matthew J Smith
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Jean-Francois Côté
- Montreal Institute of Clinical Research (IRCM), Montréal, QC, H2W 1R7, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, H3C 3J7, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, H3A 0C7, Canada
| | - David Barford
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK.
| |
Collapse
|
75
|
Real time structural search of the Protein Data Bank. PLoS Comput Biol 2020; 16:e1007970. [PMID: 32639954 PMCID: PMC7371193 DOI: 10.1371/journal.pcbi.1007970] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 07/20/2020] [Accepted: 05/20/2020] [Indexed: 11/19/2022] Open
Abstract
Detection of protein structure similarity is a central challenge in structural bioinformatics. Comparisons are usually performed at the polypeptide chain level, however the functional form of a protein within the cell is often an oligomer. This fact, together with recent growth of oligomeric structures in the Protein Data Bank (PDB), demands more efficient approaches to oligomeric assembly alignment/retrieval. Traditional methods use atom level information, which can be complicated by the presence of topological permutations within a polypeptide chain and/or subunit rearrangements. These challenges can be overcome by comparing electron density volumes directly. But, brute force alignment of 3D data is a compute intensive search problem. We developed a 3D Zernike moment normalization procedure to orient electron density volumes and assess similarity with unprecedented speed. Similarity searching with this approach enables real-time retrieval of proteins/protein assemblies resembling a target, from PDB or user input, together with resulting alignments (http://shape.rcsb.org).
Collapse
|
76
|
Carl AG, Harris LD, Feng M, Nordstrøm LU, Gerfen GJ, Evans GB, Silakov A, Almo SC, Grove TL. Narrow-Spectrum Antibiotic Targeting of the Radical SAM Enzyme MqnE in Menaquinone Biosynthesis. Biochemistry 2020; 59:2562-2575. [PMID: 32627538 DOI: 10.1021/acs.biochem.0c00070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Ayala G. Carl
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Lawrence D. Harris
- The Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
- The Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 5040, New Zealand
| | - Mu Feng
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Lars U. Nordstrøm
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Gary J. Gerfen
- Department of Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Gary B. Evans
- The Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
- The Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 5040, New Zealand
| | - Alexey Silakov
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Tyler L. Grove
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
77
|
Portlock TJ, Tyson JY, Dantu SC, Rehman S, White RC, McIntire IE, Sewell L, Richardson K, Shaw R, Pandini A, Cianciotto NP, Garnett JA. Structure, Dynamics and Cellular Insight Into Novel Substrates of the Legionella pneumophila Type II Secretion System. Front Mol Biosci 2020; 7:112. [PMID: 32656228 PMCID: PMC7325957 DOI: 10.3389/fmolb.2020.00112] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
Legionella pneumophila is a Gram-negative bacterium that is able to replicate within a broad range of aquatic protozoan hosts. L. pneumophila is also an opportunistic human pathogen that can infect macrophages and epithelia in the lung and lead to Legionnaires’ disease. The type II secretion system is a key virulence factor of L. pneumophila and is used to promote bacterial growth at low temperatures, regulate biofilm formation, modulate host responses to infection, facilitate bacterial penetration of mucin gels and is necessary for intracellular growth during the initial stages of infection. The L. pneumophila type II secretion system exports at least 25 substrates out of the bacterium and several of these, including NttA to NttG, contain unique amino acid sequences that are generally not observed outside of the Legionella genus. NttA, NttC, and NttD are required for infection of several amoebal species but it is unclear what influence other novel substrates have within their host. In this study, we show that NttE is required for optimal infection of Acanthamoeba castellanii and Vermamoeba vermiformis amoeba and is essential for the typical colony morphology of L. pneumophila. In addition, we report the atomic structures of NttA, NttC, and NttE and through a combined biophysical and biochemical hypothesis driven approach we propose novel functions for these substrates during infection. This work lays the foundation for future studies into the mechanistic understanding of novel type II substrate functions and how these relate to L. pneumophila ecology and disease.
Collapse
Affiliation(s)
- Theo J Portlock
- Centre for Host-Microbiome Interactions, Dental Institute, King's College London, London, United Kingdom.,Department of Chemistry and Biochemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Jessica Y Tyson
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Sarath C Dantu
- Department of Computer Science, Brunel University London, Uxbridge, United Kingdom
| | - Saima Rehman
- Centre for Host-Microbiome Interactions, Dental Institute, King's College London, London, United Kingdom
| | - Richard C White
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Ian E McIntire
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Lee Sewell
- Centre for Host-Microbiome Interactions, Dental Institute, King's College London, London, United Kingdom
| | - Katherine Richardson
- Department of Chemistry and Biochemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Rosie Shaw
- Department of Chemistry and Biochemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Alessandro Pandini
- Department of Computer Science, Brunel University London, Uxbridge, United Kingdom
| | - Nicholas P Cianciotto
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - James A Garnett
- Centre for Host-Microbiome Interactions, Dental Institute, King's College London, London, United Kingdom.,Department of Chemistry and Biochemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
78
|
The Legionella kinase LegK7 exploits the Hippo pathway scaffold protein MOB1A for allostery and substrate phosphorylation. Proc Natl Acad Sci U S A 2020; 117:14433-14443. [PMID: 32513747 DOI: 10.1073/pnas.2000497117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
During infection, the bacterial pathogen Legionella pneumophila manipulates a variety of host cell signaling pathways, including the Hippo pathway which controls cell proliferation and differentiation in eukaryotes. Our previous studies revealed that L. pneumophila encodes the effector kinase LegK7 which phosphorylates MOB1A, a highly conserved scaffold protein of the Hippo pathway. Here, we show that MOB1A, in addition to being a substrate of LegK7, also functions as an allosteric activator of its kinase activity. A crystallographic analysis of the LegK7-MOB1A complex revealed that the N-terminal half of LegK7 is structurally similar to eukaryotic protein kinases, and that MOB1A directly binds to the LegK7 kinase domain. Substitution of interface residues critical for complex formation abrogated allosteric activation of LegK7 both in vitro and within cells and diminished MOB1A phosphorylation. Importantly, the N-terminal extension (NTE) of MOB1A not only regulated complex formation with LegK7 but also served as a docking site for downstream substrates such as the transcriptional coregulator YAP1. Deletion of the NTE from MOB1A or addition of NTE peptides as binding competitors attenuated YAP1 recruitment to and phosphorylation by LegK7. By providing mechanistic insight into the formation and regulation of the LegK7-MOB1A complex, our study unravels a sophisticated molecular mimicry strategy that is used by L. pneumophila to take control of the host cell Hippo pathway.
Collapse
|
79
|
Ka D, Oh H, Park E, Kim JH, Bae E. Structural and functional evidence of bacterial antiphage protection by Thoeris defense system via NAD + degradation. Nat Commun 2020; 11:2816. [PMID: 32499527 PMCID: PMC7272460 DOI: 10.1038/s41467-020-16703-w] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/18/2020] [Indexed: 01/08/2023] Open
Abstract
The intense arms race between bacteria and phages has led to the development of diverse antiphage defense systems in bacteria. Unlike well-known restriction-modification and CRISPR-Cas systems, recently discovered systems are poorly characterized. One such system is the Thoeris defense system, which consists of two genes, thsA and thsB. Here, we report structural and functional analyses of ThsA and ThsB. ThsA exhibits robust NAD+ cleavage activity and a two-domain architecture containing sirtuin-like and SLOG-like domains. Mutation analysis suggests that NAD+ cleavage is linked to the antiphage function of Thoeris. ThsB exhibits a structural resemblance to TIR domain proteins such as nucleotide hydrolases and Toll-like receptors, but no enzymatic activity is detected in our in vitro assays. These results further our understanding of the molecular mechanism underlying the Thoeris defense system, highlighting a unique strategy for bacterial antiphage resistance via NAD+ degradation. The Thoeris defense system is a recently discovered bacterial defense system that protects bacteria against phage infection and consists of the two genes thsA and thsB. Here, the authors present the crystal structures of Bacillus cereus ThsA and ThsB and show that ThsA is a NAD+ cleaving enzyme.
Collapse
Affiliation(s)
- Donghyun Ka
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| | - Hyejin Oh
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea.,Department of Applied Biology and Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Eunyoung Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| | - Jeong-Han Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Euiyoung Bae
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea. .,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
80
|
Banerjee A, Goldgur Y, Schwer B, Shuman S. Atomic structures of the RNA end-healing 5'-OH kinase and 2',3'-cyclic phosphodiesterase domains of fungal tRNA ligase: conformational switches in the kinase upon binding of the GTP phosphate donor. Nucleic Acids Res 2020; 47:11826-11838. [PMID: 31722405 PMCID: PMC7145591 DOI: 10.1093/nar/gkz1049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/16/2019] [Accepted: 11/07/2019] [Indexed: 01/17/2023] Open
Abstract
Fungal tRNA ligase (Trl1) rectifies RNA breaks with 2′,3′-cyclic-PO4 and 5′-OH termini. Trl1 consists of three catalytic modules: an N-terminal ligase (LIG) domain; a central polynucleotide kinase (KIN) domain; and a C-terminal cyclic phosphodiesterase (CPD) domain. Trl1 enzymes found in all human fungal pathogens are untapped targets for antifungal drug discovery. Here we report a 1.9 Å crystal structure of Trl1 KIN-CPD from the pathogenic fungus Candida albicans, which adopts an extended conformation in which separate KIN and CPD domains are connected by an unstructured linker. CPD belongs to the 2H phosphotransferase superfamily by dint of its conserved central concave β sheet and interactions of its dual HxT motif histidines and threonines with phosphate in the active site. Additional active site motifs conserved among the fungal CPD clade of 2H enzymes are identified. We present structures of the Candida Trl1 KIN domain at 1.5 to 2.0 Å resolution—as apoenzyme and in complexes with GTP•Mg2+, IDP•PO4, and dGDP•PO4—that highlight conformational switches in the G-loop (which recognizes the guanine base) and lid-loop (poised over the nucleotide phosphates) that accompany nucleotide binding.
Collapse
Affiliation(s)
- Ankan Banerjee
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Yehuda Goldgur
- Structural Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Beate Schwer
- Microbiology and Immunology Department, Weill Cornell Medical College, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
81
|
Janowski R, Niessing D. The large family of PC4-like domains - similar folds and functions throughout all kingdoms of life. RNA Biol 2020; 17:1228-1238. [PMID: 32476604 PMCID: PMC7549692 DOI: 10.1080/15476286.2020.1761639] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RNA- and DNA-binding domains are essential building blocks for specific regulation of gene expression. While a number of canonical nucleic acid binding domains share sequence and structural conservation, others are less obviously linked by evolutionary traits. In this review, we describe a protein fold of about 150 aa in length, bearing a conserved β-β-β-β-α-linker-β-β-β-β-α topology and similar nucleic acid binding properties but no apparent sequence conservation. The same overall fold can also be achieved by dimerization of two proteins, each bearing a β-β-β-β-α topology. These proteins include but are not limited to the transcription factors PC4 and P24 from humans and plants, respectively, the human RNA-transport factor Pur-α (also termed PURA), as well as the ssDNA-binding SP_0782 protein from Streptococcus pneumonia and the bacteriophage coat proteins PP7 and MS2. Besides their common overall topology, these proteins share common nucleic acids binding surfaces and thus functional similarity. We conclude that these PC4-like domains include proteins from all kingdoms of life and are much more abundant than previously known.
Collapse
Affiliation(s)
- Robert Janowski
- Institute of Structural Biology, Helmholtz Zentrum München - German Research Center for Environmental Health , Neuherberg, Germany
| | - Dierk Niessing
- Institute of Structural Biology, Helmholtz Zentrum München - German Research Center for Environmental Health , Neuherberg, Germany.,Institute of Pharmaceutical Biotechnology, Ulm University , Ulm, Germany
| |
Collapse
|
82
|
Tan Y, Schneider T, Leong M, Aravind L, Zhang D. Novel Immunoglobulin Domain Proteins Provide Insights into Evolution and Pathogenesis of SARS-CoV-2-Related Viruses. mBio 2020; 11:e00760-20. [PMID: 32471829 PMCID: PMC7267882 DOI: 10.1128/mbio.00760-20] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022] Open
Abstract
A novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was recently identified as the causative agent for the coronavirus disease 2019 (COVID-19) outbreak that has generated a global health crisis. We use a combination of genomic analysis and sensitive profile-based sequence and structure analysis to understand the potential pathogenesis determinants of this virus. As a result, we identify several fast-evolving genomic regions that might be at the interface of virus-host interactions, corresponding to the receptor binding domain of the Spike protein, the three tandem Macro fold domains in ORF1a, and the uncharacterized protein ORF8. Further, we show that ORF8 and several other proteins from alpha- and beta-CoVs belong to novel families of immunoglobulin (Ig) proteins. Among them, ORF8 is distinguished by being rapidly evolving, possessing a unique insert, and having a hypervariable position among SARS-CoV-2 genomes in its predicted ligand-binding groove. We also uncover numerous Ig domain proteins from several unrelated metazoan viruses, which are distinct in sequence and structure but share comparable architectures to those of the CoV Ig domain proteins. Hence, we propose that SARS-CoV-2 ORF8 and other previously unidentified CoV Ig domain proteins fall under the umbrella of a widespread strategy of deployment of Ig domain proteins in animal viruses as pathogenicity factors that modulate host immunity. The rapid evolution of the ORF8 Ig domain proteins points to a potential evolutionary arms race between viruses and hosts, likely arising from immune pressure, and suggests a role in transmission between distinct host species.IMPORTANCE The ongoing COVID-19 pandemic strongly emphasizes the need for a more complete understanding of the biology and pathogenesis of its causative agent SARS-CoV-2. Despite intense scrutiny, several proteins encoded by the genomes of SARS-CoV-2 and other SARS-like coronaviruses remain enigmatic. Moreover, the high infectivity and severity of SARS-CoV-2 in certain individuals make wet-lab studies currently challenging. In this study, we used a series of computational strategies to identify several fast-evolving regions of SARS-CoV-2 proteins which are potentially under host immune pressure. Most notably, the hitherto-uncharacterized protein encoded by ORF8 is one of them. Using sensitive sequence and structural analysis methods, we show that ORF8 and several other proteins from alpha- and beta-coronavirus comprise novel families of immunoglobulin domain proteins, which might function as potential immune modulators to delay or attenuate the host immune response against the viruses.
Collapse
Affiliation(s)
- Yongjun Tan
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, Missouri, USA
| | - Theresa Schneider
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, Missouri, USA
| | - Matthew Leong
- School of Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Dapeng Zhang
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, Missouri, USA
- Program of Bioinformatics and Computational Biology, College of Arts and Sciences, Saint Louis University, St. Louis, Missouri, USA
| |
Collapse
|
83
|
Structural and Functional Analyses of the FAM46C/Plk4 Complex. Structure 2020; 28:910-921.e4. [PMID: 32433990 DOI: 10.1016/j.str.2020.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023]
Abstract
FAM46C, a non-canonical poly(A) polymerase, is frequently mutated in multiple myeloma. Loss of function of FAM46C promotes cell survival of multiple myeloma, suggesting a tumor-suppressive role. FAM46C is also essential for fastening sperm head and flagellum, indispensable for male fertility. The molecular mechanisms of these functions of FAM46C remain elusive. We report the crystal structure of FAM46C to provide the basis for its poly(A) polymerase activity and rationalize mutations associated with multiple myeloma. In addition, we found that FAM46C interacts directly with the serine/threonine kinase Plk4, the master regulator of centrosome duplication. We present the structure of FAM46C in complex with the Cryptic Polo-Box 1-2 domains of Plk4. Our structure-based mutational analyses show that the interaction with Plk4 recruits FAM46C to centrosomes. Our data suggest that Plk4-mediated localization of FAM46C enables its regulation of centrosome structure and functions, which may underlie the roles for FAM46C in cell proliferation and sperm development.
Collapse
|
84
|
Ghosh S, Goldgur Y, Shuman S. Mycobacterial DNA polymerase I: activities and crystal structures of the POL domain as apoenzyme and in complex with a DNA primer-template and of the full-length FEN/EXO-POL enzyme. Nucleic Acids Res 2020; 48:3165-3180. [PMID: 32034423 PMCID: PMC7102940 DOI: 10.1093/nar/gkaa075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/23/2020] [Accepted: 02/06/2020] [Indexed: 02/06/2023] Open
Abstract
Mycobacterial Pol1 is a bifunctional enzyme composed of an N-terminal DNA flap endonuclease/5' exonuclease domain (FEN/EXO) and a C-terminal DNA polymerase domain (POL). Here we document additional functions of Pol1: FEN activity on the flap RNA strand of an RNA:DNA hybrid and reverse transcriptase activity on a DNA-primed RNA template. We report crystal structures of the POL domain, as apoenzyme and as ternary complex with 3'-dideoxy-terminated DNA primer-template and dNTP. The thumb, palm, and fingers subdomains of POL form an extensive interface with the primer-template and the triphosphate of the incoming dNTP. Progression from an open conformation of the apoenzyme to a nearly closed conformation of the ternary complex entails a disordered-to-ordered transition of several segments of the thumb and fingers modules and an inward motion of the fingers subdomain-especially the O helix-to engage the primer-template and dNTP triphosphate. Distinctive structural features of mycobacterial Pol1 POL include a manganese binding site in the vestigial 3' exonuclease subdomain and a non-catalytic water-bridged magnesium complex at the protein-DNA interface. We report a crystal structure of the bifunctional FEN/EXO-POL apoenzyme that reveals the positions of two active site metals in the FEN/EXO domain.
Collapse
Affiliation(s)
- Shreya Ghosh
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Yehuda Goldgur
- Structural Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
85
|
Li P, Liu C, Li B, Ma Q. Structural analysis of the CARB β-lactamase from Vibrio parahaemolyticus facilitates application of the β-lactam/β-lactamase inhibitor therapy. Biochimie 2020; 171-172:213-222. [DOI: 10.1016/j.biochi.2020.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 03/11/2020] [Indexed: 01/07/2023]
|
86
|
Substrate Interaction with the EssC Coupling Protein of the Type VIIb Secretion System. J Bacteriol 2020; 202:JB.00646-19. [PMID: 31964696 DOI: 10.1128/jb.00646-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/08/2020] [Indexed: 01/05/2023] Open
Abstract
Staphylococcus aureus employs the type VIIb secretion system (T7SSb) to secrete effector proteins that either have antibacterial activities or promote bacterial persistence in mouse infection models. Here, we present the crystal structure of the ATPase domain D3 of the EssC coupling protein from S. aureus USA300_FPR3757, an integral component of the T7SSb complex, resolved at a 1.7-Å resolution. EssC-D3 shares structural homology with FtsK/SpoIII-like ATPase domains of T7SSa and T7SSb and exhibits a conserved pocket on the surface with differential amino acid composition. In T7SSa, substrate EsxB interacts with the D3 domain through this pocket. Here, we identify amino acids in this pocket that are essential for effector protein secretion in the T7SSb. Our results reveal that the adjacent ATPase domain D2 is a substrate binding site on EssC and that substrates bound to D2 require domain D3 for further transport. Point mutations in the Walker B motif of domain D3 have diametric effects on secretion activity, either abolishing or boosting it, pointing to a critical role of domain D3 in the substrate transport. Finally, we identify ATPase domain D3 as a virulence determinant of S. aureus USA300_FPR3757 using an invertebrate in vivo infection model.IMPORTANCE The emergence of antibiotic-resistant bacteria poses a rising problem in antibiotic treatment (S. Boyle-Vavra and R. S. Daum, Lab Invest 87:3-9, 2007, https://doi.org/10.1038/labinvest.3700501). We have used the multidrug-resistant S. aureus USA300_FPR3757 as a model organism to study the T7SSb. Effector proteins of this system have been associated with abscess formation and bacterial persistence in mouse models (M. L. Burts, A. C. DeDent, and D. M. Missiakas, Mol Microbiol 69:736-746, 2008, https://doi.org/10.1111/j.1365-2958.2008.06324.x; M. L. Burts, W. A. Williams, K. DeBord, and D. M. Missiakas, Proc Natl Acad Sci U S A 102:1169-1174, 2005, https://doi.org/10.1073/pnas.0405620102). We determined the structure of the essential ATPase domain D3 of the T7SSb at atomic resolution and validated a surface-exposed pocket as a potential drug target to block secretion. Furthermore, our study provides new mechanistic insights into the T7SSb substrate transport.
Collapse
|
87
|
Tan Y, Schneider T, Leong M, Aravind L, Zhang D. Novel Immunoglobulin Domain Proteins Provide Insights into Evolution and Pathogenesis Mechanisms of SARS-Related Coronaviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.03.04.977736. [PMID: 32511297 PMCID: PMC7217140 DOI: 10.1101/2020.03.04.977736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A novel coronavirus (SARS-CoV-2) is the causative agent of an emergent severe respiratory disease (COVID-19) in humans that is threatening to result in a global health crisis. By using genomic, sequence, structural and evolutionary analysis, we show that Alpha- and Beta-CoVs possess several novel families of immunoglobulin (Ig) domain proteins, including ORF8 and ORF7a from SARS-related coronaviruses and two protein groups from certain Alpha-CoVs. Among them, ORF8 is distinguished in being rapidly evolving, possessing a unique insert and a hypervariable position among SARS-CoV-2 genomes in its predicted ligand-binding groove. We also uncover many Ig proteins from several metazoan viruses which are distinct in sequence and structure but share an architecture comparable to that of CoV Ig domain proteins. Hence, we propose that deployment of Ig domain proteins is a widely-used strategy by viruses, and SARS-CoV-2 ORF8 is a potential pathogenicity factor which evolves rapidly to counter the immune response and facilitate the transmission between hosts.
Collapse
Affiliation(s)
- Yongjun Tan
- Department of Biology, College of Arts and Sciences, Saint Louis University, MO 63110
| | - Theresa Schneider
- Department of Biology, College of Arts and Sciences, Saint Louis University, MO 63110
| | - Matthew Leong
- School of Medicine, Saint Louis University, MO 63110
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| | - Dapeng Zhang
- Department of Biology, College of Arts and Sciences, Saint Louis University, MO 63110
- Program of Bioinformatics and Computational Biology, College of Arts and Sciences, Saint Louis University, MO 63110
| |
Collapse
|
88
|
Kaur G, Burroughs AM, Iyer LM, Aravind L. Highly regulated, diversifying NTP-dependent biological conflict systems with implications for the emergence of multicellularity. eLife 2020; 9:e52696. [PMID: 32101166 PMCID: PMC7159879 DOI: 10.7554/elife.52696] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
Social cellular aggregation or multicellular organization pose increased risk of transmission of infections through the system upon infection of a single cell. The generality of the evolutionary responses to this outside of Metazoa remains unclear. We report the discovery of several thematically unified, remarkable biological conflict systems preponderantly present in multicellular prokaryotes. These combine thresholding mechanisms utilizing NTPase chaperones (the MoxR-vWA couple), GTPases and proteolytic cascades with hypervariable effectors, which vary either by using a reverse transcriptase-dependent diversity-generating system or through a system of acquisition of diverse protein modules, typically in inactive form, from various cellular subsystems. Conciliant lines of evidence indicate their deployment against invasive entities, like viruses, to limit their spread in multicellular/social contexts via physical containment, dominant-negative interactions or apoptosis. These findings argue for both a similar operational 'grammar' and shared protein domains in the sensing and limiting of infections during the multiple emergences of multicellularity.
Collapse
Affiliation(s)
- Gurmeet Kaur
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - A Maxwell Burroughs
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Lakshminarayan M Iyer
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - L Aravind
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
89
|
Kang JM, Yoo WG, Lê HG, Lee J, Sohn WM, Na BK. Clonorchis sinensis MF6p/HDM (CsMF6p/HDM) induces pro-inflammatory immune response in RAW 264.7 macrophage cells via NF-κB-dependent MAPK pathways. Parasit Vectors 2020; 13:20. [PMID: 31931867 PMCID: PMC6958574 DOI: 10.1186/s13071-020-3882-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/01/2020] [Indexed: 12/12/2022] Open
Abstract
Background MF6p/host defense molecules (HDMs) are a broad family of small proteins secreted by helminth parasites. Although the physiological role of MF6p/HDMs in trematode parasites is not fully understood, their potential biological function in maintaining heme homeostasis and modulating host immune response has been proposed. Methods A gene encoding the MF6p/HDM of Clonorchis sinensis (CsMF6p/HDM) was cloned. Recombinant CsMF6p/HDM (rCsMF6p/HDM) was expressed in Escherichia coli. The biochemical and immunological properties of rCsMF6/HDM were analyzed. CsMF6p/HDM induced pro-inflammatory response in RAW 264.7 cells was analyzed by cytokine array assay, reverse transcription polymerase chain reaction, and enzyme-linked immunosorbent assay. The structural feature of CsMF6p/HDM was analyzed by three-dimensional modeling and molecular docking simulations. Results The CsMF6p/HDM shares a high level of amino acid sequence similarity with orthologs from other trematodes and is expressed in diverse developmental stages of the parasite. The rCsMF6p/HDM bound to bacteria-derived lipopolysaccharide (LPS), without effectively neutralizing LPS-induced inflammatory response in RAW 264.7 macrophage cells. Rather, the rCsMF6p/HDM induced pro-inflammatory immune response, which is characterized by the expression of TNF-α and IL-6, in RAW 264.7 cells. The rCsMF6p/HDM-induced pro-inflammatory immune response was regulated by JNK and p38 MAPKs, and was effectively down-regulated via inhibition of NF-κB. The structural analysis of CsMF6p/HDM and the docking simulation with LPS suggested insufficient capture of LPS by CsMF6p/HDM, which suggested that rCsMF6p/HDM could not effectively neutralize LPS-induced inflammatory response in RAW 264.7 cells. Conclusions Although rCsMF6p/HDM binds to LPS, the binding affinity may not be sufficient to maintain a stable complex of rCsMF6p/HDM and LPS. Moreover, the rCsMF6p/HDM-induced pro-inflammatory response is characterized by the release of IL-6 and TNF-α in RAW 264.7 macrophage cells. The pro-inflammatory response induced by rCsMF6p/HDM is mediated via NF-κB-dependent MAPK signaling pathway. These results collectively suggest that CsMF6p/HDM mediates C. sinensis-induced inflammation cascades that eventually lead to hepatobiliary diseases.![]()
Collapse
Affiliation(s)
- Jung-Mi Kang
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Won Gi Yoo
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, 06974, Republic of Korea
| | - Hương Giang Lê
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Jinyoung Lee
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,Department of Tropical Medicine, and Inha Research Institute for Medical Sciences, Inha University College of Medicine, Incheon, 22212, Republic of Korea
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea. .,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea.
| |
Collapse
|
90
|
Mrozek D, Kwiendacz J, Malysiak-Mrozek B. Protein Construction-Based Data Partitioning Scheme for Alignment of Protein Macromolecular Structures Through Distributed Querying in Federated Databases. IEEE Trans Nanobioscience 2020; 19:102-116. [DOI: 10.1109/tnb.2019.2930494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
91
|
Abstract
The exponential growth in the number of newly solved protein structures makes correlating and classifying the data an important task. Distance matrix alignment (Dali) is used routinely by crystallographers worldwide to screen the database of known structures for similarity to newly determined structures. Dali is easily accessible through the web server ( http://ekhidna.biocenter.helsinki.fi/dali ). Alternatively, the program may be downloaded and pairwise comparisons performed locally on Linux computers.
Collapse
Affiliation(s)
- Liisa Holm
- Faculty of Biological and Environmental Sciences and Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
92
|
Holm L. DALI and the persistence of protein shape. Protein Sci 2020; 29:128-140. [PMID: 31606894 PMCID: PMC6933842 DOI: 10.1002/pro.3749] [Citation(s) in RCA: 514] [Impact Index Per Article: 102.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 12/30/2022]
Abstract
DALI is a popular resource for comparing protein structures. The software is based on distance-matrix alignment. The associated web server provides tools to navigate, integrate and organize some data pushed out by genomics and structural genomics. The server has been running continuously for the past 25 years. Structural biologists routinely use DALI to compare a new structure against previously known protein structures. If significant similarities are discovered, it may indicate a distant homology, that is, that the structures are of shared origin. This may be significant in determining the molecular mechanisms, as these may remain very similar from a distant predecessor to the present day, for example, from the last common ancestor of humans and bacteria. Meta-analysis of independent reference-based evaluations of alignment accuracy and fold discrimination shows DALI at top rank in six out of 12 studies. The web server and standalone software are available from http://ekhidna2.biocenter.helsinki.fi/dali.
Collapse
Affiliation(s)
- Liisa Holm
- Institute of Biotechnology, Helsinki Institute of Life Sciences and Research Program of Evolutionary and Organismal BiologyFaculty of Biosciences, University of HelsinkiHelsinkiFinland
| |
Collapse
|
93
|
Kaiser M, Wurm JP, Märtens B, Bläsi U, Pogoryelov D, Wöhnert J. Crystal structure of the translation recovery factor Trf from Sulfolobus solfataricus. FEBS Open Bio 2019; 10:221-228. [PMID: 31804766 PMCID: PMC6996347 DOI: 10.1002/2211-5463.12772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/25/2019] [Accepted: 12/03/2019] [Indexed: 11/08/2022] Open
Abstract
During translation initiation, the heterotrimeric archaeal translation initiation factor 2 (aIF2) recruits the initiator tRNAi to the small ribosomal subunit. In the stationary growth phase and/or during nutrient stress, Sulfolobus solfataricus aIF2 has a second function: It protects leaderless mRNAs against degradation by binding to their 5'-ends. The S. solfataricus protein Sso2509 is a translation recovery factor (Trf) that interacts with aIF2 and is responsible for the release of aIF2 from bound mRNAs, thereby enabling translation re-initiation. It is a member of the domain of unknown function 35 (DUF35) protein family and is conserved in Sulfolobales as well as in other archaea. Here, we present the X-ray structure of S. solfataricus Trf solved to a resolution of 1.65 Å. Trf is composed of an N-terminal rubredoxin-like domain containing a bound zinc ion and a C-terminal oligosaccharide/oligonucleotide binding fold domain. The Trf structure reveals putative mRNA binding sites in both domains. Surprisingly, the Trf protein is structurally but not sequentially very similar to proteins linked to acyl-CoA utilization-for example, the Sso2064 protein from S. solfataricus-as well as to scaffold proteins found in the acetoacetyl-CoA thiolase/high-mobility group-CoA synthase complex of the archaeon Methanothermococcus thermolithotrophicus and in a steroid side-chain-cleaving aldolase complex from the bacterium Thermomonospora curvata. This suggests that members of the DUF35 protein family are able to act as scaffolding and binding proteins in a wide variety of biological processes.
Collapse
Affiliation(s)
- Marco Kaiser
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Germany
| | - Jan Philip Wurm
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Germany
| | - Birgit Märtens
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna, Austria
| | - Udo Bläsi
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna, Austria
| | | | - Jens Wöhnert
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Germany
| |
Collapse
|
94
|
Naderi M, Lemoine JM, Govindaraj RG, Kana OZ, Feinstein WP, Brylinski M. Binding site matching in rational drug design: algorithms and applications. Brief Bioinform 2019; 20:2167-2184. [PMID: 30169563 PMCID: PMC6954434 DOI: 10.1093/bib/bby078] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/18/2018] [Accepted: 07/29/2018] [Indexed: 01/06/2023] Open
Abstract
Interactions between proteins and small molecules are critical for biological functions. These interactions often occur in small cavities within protein structures, known as ligand-binding pockets. Understanding the physicochemical qualities of binding pockets is essential to improve not only our basic knowledge of biological systems, but also drug development procedures. In order to quantify similarities among pockets in terms of their geometries and chemical properties, either bound ligands can be compared to one another or binding sites can be matched directly. Both perspectives routinely take advantage of computational methods including various techniques to represent and compare small molecules as well as local protein structures. In this review, we survey 12 tools widely used to match pockets. These methods are divided into five categories based on the algorithm implemented to construct binding-site alignments. In addition to the comprehensive analysis of their algorithms, test sets and the performance of each method are described. We also discuss general pharmacological applications of computational pocket matching in drug repurposing, polypharmacology and side effects. Reflecting on the importance of these techniques in drug discovery, in the end, we elaborate on the development of more accurate meta-predictors, the incorporation of protein flexibility and the integration of powerful artificial intelligence technologies such as deep learning.
Collapse
Affiliation(s)
- Misagh Naderi
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Jeffrey Mitchell Lemoine
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
- Division of Computer Science and Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | - Omar Zade Kana
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Wei Pan Feinstein
- High-Performance Computing, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Michal Brylinski
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
- Center for Computation & Technology, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
95
|
Bauer TL, Buchholz PCF, Pleiss J. The modular structure of α/β-hydrolases. FEBS J 2019; 287:1035-1053. [PMID: 31545554 DOI: 10.1111/febs.15071] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/15/2019] [Accepted: 09/19/2019] [Indexed: 12/22/2022]
Abstract
The α/β-hydrolase fold family is highly diverse in sequence, structure and biochemical function. To investigate the sequence-structure-function relationships, the Lipase Engineering Database (https://led.biocatnet.de) was updated. Overall, 280 638 protein sequences and 1557 protein structures were analysed. All α/β-hydrolases consist of the catalytically active core domain, but they might also contain additional structural modules, resulting in 12 different architectures: core domain only, additional lids at three different positions, three different caps, additional N- or C-terminal domains and combinations of N- and C-terminal domains with caps and lids respectively. In addition, the α/β-hydrolases were distinguished by their oxyanion hole signature (GX-, GGGX- and Y-types). The N-terminal domains show two different folds, the Rossmann fold or the β-propeller fold. The C-terminal domains show a β-sandwich fold. The N-terminal β-propeller domain and the C-terminal β-sandwich domain are structurally similar to carbohydrate-binding proteins such as lectins. The classification was applied to the newly discovered polyethylene terephthalate (PET)-degrading PETases and MHETases, which are core domain α/β-hydrolases of the GX- and the GGGX-type respectively. To investigate evolutionary relationships, sequence networks were analysed. The degree distribution followed a power law with a scaling exponent γ = 1.4, indicating a highly inhomogeneous network which consists of a few hubs and a large number of less connected sequences. The hub sequences have many functional neighbours and therefore are expected to be robust toward possible deleterious effects of mutations. The cluster size distribution followed a power law with an extrapolated scaling exponent τ = 2.6, which strongly supports the connectedness of the sequence space of α/β-hydrolases. DATABASE: Supporting data about domains from other proteins with structural similarity to the N- or C-terminal domains of α/β-hydrolases are available in Data Repository of the University of Stuttgart (DaRUS) under doi: https://doi.org/10.18419/darus-458.
Collapse
Affiliation(s)
- Tabea L Bauer
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Germany
| | - Patrick C F Buchholz
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Germany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Germany
| |
Collapse
|
96
|
Xu Q, Biancalana M, Grant JC, Chiu H, Jaroszewski L, Knuth MW, Lesley SA, Godzik A, Elsliger M, Deacon AM, Wilson IA. Structures of single-layer β-sheet proteins evolved from β-hairpin repeats. Protein Sci 2019; 28:1676-1689. [PMID: 31306512 PMCID: PMC6699103 DOI: 10.1002/pro.3683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 11/09/2022]
Abstract
Free-standing single-layer β-sheets are extremely rare in naturally occurring proteins, even though β-sheet motifs are ubiquitous. Here we report the crystal structures of three homologous, single-layer, anti-parallel β-sheet proteins, comprised of three or four twisted β-hairpin repeats. The structures reveal that, in addition to the hydrogen bond network characteristic of β-sheets, additional hydrophobic interactions mediated by small clusters of residues adjacent to the turns likely play a significant role in the structural stability and compensate for the lack of a compact hydrophobic core. These structures enabled identification of a family of secreted proteins that are broadly distributed in bacteria from the human gut microbiome and are putatively involved in the metabolism of complex carbohydrates. A conserved surface patch, rich in solvent-exposed tyrosine residues, was identified on the concave surface of the β-sheet. These new modular single-layer β-sheet proteins may serve as a new model system for studying folding and design of β-rich proteins.
Collapse
Affiliation(s)
- Qingping Xu
- Joint Center for Structural Genomics, www.jcsg.org
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator LaboratoryMenlo ParkCalifornia
- GMCA@APS, Argonne National LaboratoryLemontIllinois
| | - Matthew Biancalana
- Perlmutter Cancer Center, New York University Langone Medical Center, Smilow Research CenterNew YorkNew York
| | | | - Hsiu‐Ju Chiu
- Joint Center for Structural Genomics, www.jcsg.org
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator LaboratoryMenlo ParkCalifornia
| | - Lukasz Jaroszewski
- Joint Center for Structural Genomics, www.jcsg.org
- Center for Research in Biological SystemsUniversity of CaliforniaLa JollaCalifornia
- Program on Bioinformatics and Systems BiologySanford‐Burnham Medical Research InstituteLa JollaCalifornia
- Division of Biomedical SciencesUniversity of CaliforniaRiversideCalifornia
| | - Mark W. Knuth
- Joint Center for Structural Genomics, www.jcsg.org
- Protein Sciences DepartmentGenomics Institute of the Novartis Research FoundationSan DiegoCalifornia
| | - Scott A. Lesley
- Joint Center for Structural Genomics, www.jcsg.org
- Protein Sciences DepartmentGenomics Institute of the Novartis Research FoundationSan DiegoCalifornia
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCalifornia
- Merck & Co., Inc.South San FranciscoCalifornia
| | - Adam Godzik
- Joint Center for Structural Genomics, www.jcsg.org
- Center for Research in Biological SystemsUniversity of CaliforniaLa JollaCalifornia
- Program on Bioinformatics and Systems BiologySanford‐Burnham Medical Research InstituteLa JollaCalifornia
- Division of Biomedical SciencesUniversity of CaliforniaRiversideCalifornia
| | - Marc‐André Elsliger
- Joint Center for Structural Genomics, www.jcsg.org
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCalifornia
| | - Ashley M. Deacon
- Joint Center for Structural Genomics, www.jcsg.org
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator LaboratoryMenlo ParkCalifornia
- Accelero BiostructuresSan CarlosCalifornia
| | - Ian A. Wilson
- Joint Center for Structural Genomics, www.jcsg.org
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCalifornia
| |
Collapse
|
97
|
Banerjee A, Ghosh S, Goldgur Y, Shuman S. Structure and two-metal mechanism of fungal tRNA ligase. Nucleic Acids Res 2019; 47:1428-1439. [PMID: 30590734 PMCID: PMC6379707 DOI: 10.1093/nar/gky1275] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023] Open
Abstract
Fungal tRNA ligase (Trl1) is an essential enzyme that repairs RNA breaks with 2′,3′-cyclic-PO4 and 5′-OH ends inflicted during tRNA splicing and non-canonical mRNA splicing in the fungal unfolded protein response. Trl1 is composed of C-terminal cyclic phosphodiesterase (CPD) and central GTP-dependent polynucleotide kinase (KIN) domains that heal the broken ends to generate the 3′-OH,2′-PO4 and 5′-PO4 termini required for sealing by an N-terminal ATP-dependent ligase domain (LIG). Here we report crystal structures of the Trl1-LIG domain from Chaetomium thermophilum at two discrete steps along the reaction pathway: the covalent LIG-(lysyl-Nζ)–AMP•Mn2+ intermediate and a LIG•ATP•(Mn2+)2 Michaelis complex. The structures highlight a two-metal mechanism whereby a penta-hydrated metal complex stabilizes the transition state of the ATP α phosphate and a second metal bridges the β and γ phosphates to help orient the pyrophosphate leaving group. A LIG-bound sulfate anion is a plausible mimetic of the essential RNA terminal 2′-PO4. Trl1-LIG has a distinctive C-terminal domain that instates fungal Trl1 as the founder of an Rnl6 clade of ATP-dependent RNA ligase. We discuss how the Trl1-LIG structure rationalizes the large body of in vivo structure–function data for Saccharomyces cerevisiae Trl1.
Collapse
Affiliation(s)
- Ankan Banerjee
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Shreya Ghosh
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Yehuda Goldgur
- Structural Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
98
|
Sim EUH, Talwar SP. In silico evidence of de novo interactions between ribosomal and Epstein - Barr virus proteins. BMC Mol Cell Biol 2019; 20:34. [PMID: 31416416 PMCID: PMC6694676 DOI: 10.1186/s12860-019-0219-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/08/2019] [Indexed: 12/29/2022] Open
Abstract
Background Association of Epstein-Barr virus (EBV) encoded latent gene products with host ribosomal proteins (RPs) has not been fully explored, despite their involvement in the aetiology of several human cancers. To gain an insight into their plausible interactions, we employed a computational approach that encompasses structural alignment, gene ontology analysis, pathway analysis, and molecular docking. Results In this study, the alignment analysis based on structural similarity allows the prediction of 48 potential interactions between 27 human RPs and the EBV proteins EBNA1, LMP1, LMP2A, and LMP2B. Gene ontology analysis of the putative protein-protein interactions (PPIs) reveals their probable involvement in RNA binding, ribosome biogenesis, metabolic and biosynthetic processes, and gene regulation. Pathway analysis shows their possible participation in viral infection strategies (viral translation), as well as oncogenesis (Wnt and EGFR signalling pathways). Finally, our molecular docking assay predicts the functional interactions of EBNA1 with four RPs individually: EBNA1-eS10, EBNA1-eS25, EBNA1-uL10 and EBNA1-uL11. Conclusion These interactions have never been revealed previously via either experimental or in silico approach. We envisage that the calculated interactions between the ribosomal and EBV proteins herein would provide a hypothetical model for future experimental studies on the functional relationship between ribosomal proteins and EBV infection. Electronic supplementary material The online version of this article (10.1186/s12860-019-0219-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Edmund Ui-Hang Sim
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia.
| | - Shruti Prashant Talwar
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| |
Collapse
|
99
|
Margelevičius M. Estimating statistical significance of local protein profile-profile alignments. BMC Bioinformatics 2019; 20:419. [PMID: 31409275 PMCID: PMC6693267 DOI: 10.1186/s12859-019-2913-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 05/23/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alignment of sequence families described by profiles provides a sensitive means for establishing homology between proteins and is important in protein evolutionary, structural, and functional studies. In the context of a steadily growing amount of sequence data, estimating the statistical significance of alignments, including profile-profile alignments, plays a key role in alignment-based homology search algorithms. Still, it is an open question as to what and whether one type of distribution governs profile-profile alignment score, especially when profile-profile substitution scores involve such terms as secondary structure predictions. RESULTS This study presents a methodology for estimating the statistical significance of this type of alignments. The methodology rests on a new algorithm developed for generating random profiles such that their alignment scores are distributed similarly to those obtained for real unrelated profiles. We show that improvements in statistical accuracy and sensitivity and high-quality alignment rate result from statistically characterizing alignments by establishing the dependence of statistical parameters on various measures associated with both individual and pairwise profile characteristics. Implemented in the COMER software, the proposed methodology yielded an increase of up to 34.2% in the number of true positives and up to 61.8% in the number of high-quality alignments with respect to the previous version of the COMER method. CONCLUSIONS The more accurate estimation of statistical significance is implemented in the COMER method, which is now more sensitive and provides an increased rate of high-quality profile-profile alignments. The results of the present study also suggest directions for future research.
Collapse
Affiliation(s)
- Mindaugas Margelevičius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, Vilnius, 10257, Lithuania.
| |
Collapse
|
100
|
Dong R, Pan S, Peng Z, Zhang Y, Yang J. mTM-align: a server for fast protein structure database search and multiple protein structure alignment. Nucleic Acids Res 2019; 46:W380-W386. [PMID: 29788129 PMCID: PMC6030909 DOI: 10.1093/nar/gky430] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/07/2018] [Indexed: 11/14/2022] Open
Abstract
With the rapid increase of the number of protein structures in the Protein Data Bank, it becomes urgent to develop algorithms for efficient protein structure comparisons. In this article, we present the mTM-align server, which consists of two closely related modules: one for structure database search and the other for multiple structure alignment. The database search is speeded up based on a heuristic algorithm and a hierarchical organization of the structures in the database. The multiple structure alignment is performed using the recently developed algorithm mTM-align. Benchmark tests demonstrate that our algorithms outperform other peering methods for both modules, in terms of speed and accuracy. One of the unique features for the server is the interplay between database search and multiple structure alignment. The server provides service not only for performing fast database search, but also for making accurate multiple structure alignment with the structures found by the search. For the database search, it takes about 2-5 min for a structure of a medium size (∼300 residues). For the multiple structure alignment, it takes a few seconds for ∼10 structures of medium sizes. The server is freely available at: http://yanglab.nankai.edu.cn/mTM-align/.
Collapse
Affiliation(s)
- Runze Dong
- School of Mathematical Sciences, Nankai University, Tianjin 300071, China
| | - Shuo Pan
- School of Mathematical Sciences, Nankai University, Tianjin 300071, China
| | - Zhenling Peng
- Center for Applied Mathematics, Tianjin University, Tianjin 300072, China
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109-2218, USA
| | - Jianyi Yang
- School of Mathematical Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|