51
|
Zhang G, Li J, Cui P, Wang T, Jiang J, Prezhdo OV. Two-Dimensional Linear Dichroism Spectroscopy for Identifying Protein Orientation and Secondary Structure Composition. J Phys Chem Lett 2017; 8:1031-1037. [PMID: 28198629 DOI: 10.1021/acs.jpclett.7b00311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Quantitative measurements of protein orientation and secondary structure composition are of great importance for protein biotechnology applications and disease treatments, and yet, they are technically challenging for a spectroscopic study. On the basis of quantum mechanics/molecular mechanics simulations, we demonstrate that two-dimensional (2D) linear dichroism spectroscopy is capable of probing the direction of α-helix motifs in proteins. Compared to the conventional linear dichroism (LD) spectra, 2D spectra double the measurable range of orientation of secondary structures. In addition, by calculating the ratio of transverse ππ* signals to longitudinal ππ* signals in 2D spectra, we can achieve quantitative measurement of the fraction of α-helix content in a protein.
Collapse
Affiliation(s)
- Guozhen Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China , Hefei, Anhui 230026, People's Republic of China
| | - Jun Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China , Hefei, Anhui 230026, People's Republic of China
| | - Peng Cui
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China , Hefei, Anhui 230026, People's Republic of China
| | - Tao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China , Hefei, Anhui 230026, People's Republic of China
| | - Jun Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China , Hefei, Anhui 230026, People's Republic of China
| | - Oleg V Prezhdo
- Department of Chemistry, Department of Physics, and Department of Astronomy, University of Southern California , Los Angeles, California 90089, United States
| |
Collapse
|
52
|
Rossetti G, Musiani F, Abad E, Dibenedetto D, Mouhib H, Fernandez CO, Carloni P. Conformational ensemble of human α-synuclein physiological form predicted by molecular simulations. Phys Chem Chem Phys 2017; 18:5702-6. [PMID: 26553504 DOI: 10.1039/c5cp04549e] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We perform here enhanced sampling simulations of N-terminally acetylated human α-synuclein, an intrinsically disordered protein involved in Parkinson's disease. The calculations, consistent with experiments, suggest that the post-translational modification leads to the formation of a transient amphipathic α-helix. The latter, absent in the non-physiological form, alters protein dynamics at the N-terminal and intramolecular interactions.
Collapse
Affiliation(s)
- G Rossetti
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425 Jülich, Germany. and Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany and Department of Oncology, Hematology and Stem Cell Transplantation, RWTH Aachen University, Aachen, Germany
| | - F Musiani
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425 Jülich, Germany. and Scuola Internazionale Superiore di Studi Avanzati (SISSA/ISAS), via Bonomea 265, 34136 Trieste, Italy and Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| | - E Abad
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425 Jülich, Germany. and German Research School for Simulation Sciences, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - D Dibenedetto
- German Research School for Simulation Sciences, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - H Mouhib
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | - C O Fernandez
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR), Universidad Nacional de Rosario, 27 de Febrero 210 bis, S2002LRK-Rosario, Argentina and Institute for Drug Discovery of Rosario (IIDEFAR), Universidad Nacional de Rosario, Rosario, 27 de Febrero 210 bis, S2002LRK-Rosario, Argentina
| | - P Carloni
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425 Jülich, Germany. and German Research School for Simulation Sciences, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
53
|
Daly S, Knight G, Halim MA, Kulesza A, Choi CM, Chirot F, MacAleese L, Antoine R, Dugourd P. Action-FRET of a Gaseous Protein. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:38-49. [PMID: 27506208 PMCID: PMC5174150 DOI: 10.1007/s13361-016-1449-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 05/03/2023]
Abstract
Mass spectrometry is an extremely powerful technique for analysis of biological molecules, in particular proteins. One aspect that has been contentious is how much native solution-phase structure is preserved upon transposition to the gas phase by soft ionization methods such as electrospray ionization. To address this question-and thus further develop mass spectrometry as a tool for structural biology-structure-sensitive techniques must be developed to probe the gas-phase conformations of proteins. Here, we report Förster resonance energy transfer (FRET) measurements on a ubiquitin mutant using specific photofragmentation as a reporter of the FRET efficiency. The FRET data is interpreted in the context of circular dichroism, molecular dynamics simulation, and ion mobility data. Both the dependence of the FRET efficiency on the charge state-where a systematic decrease is observed-and on methanol concentration are considered. In the latter case, a decrease in FRET efficiency with methanol concentration is taken as evidence that the conformational ensemble of gaseous protein cations retains a memory of the solution phase conformational ensemble upon electrospray ionization. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Steven Daly
- Institut Lumière Matière, Université Lyon 1-CNRS, Université de Lyon, 69622, Villeurbanne cedex, France
| | - Geoffrey Knight
- Institut Lumière Matière, Université Lyon 1-CNRS, Université de Lyon, 69622, Villeurbanne cedex, France
| | - Mohamed Abdul Halim
- Institut Lumière Matière, Université Lyon 1-CNRS, Université de Lyon, 69622, Villeurbanne cedex, France
| | - Alexander Kulesza
- Institut Lumière Matière, Université Lyon 1-CNRS, Université de Lyon, 69622, Villeurbanne cedex, France
| | - Chang Min Choi
- Institut Lumière Matière, Université Lyon 1-CNRS, Université de Lyon, 69622, Villeurbanne cedex, France
| | - Fabien Chirot
- Institut des Sciences Analytiques, Université Lyon 1 - CNRS, Université de Lyon, 69622, Villeurbanne Cedex, France
| | - Luke MacAleese
- Institut Lumière Matière, Université Lyon 1-CNRS, Université de Lyon, 69622, Villeurbanne cedex, France
| | - Rodolphe Antoine
- Institut Lumière Matière, Université Lyon 1-CNRS, Université de Lyon, 69622, Villeurbanne cedex, France
| | - Philippe Dugourd
- Institut Lumière Matière, Université Lyon 1-CNRS, Université de Lyon, 69622, Villeurbanne cedex, France.
| |
Collapse
|
54
|
Páez-Pérez ED, De La Cruz-Torres V, Sampedro JG. Nucleotide Binding in an Engineered Recombinant Ca 2+-ATPase N-Domain. Biochemistry 2016; 55:6751-6765. [PMID: 27951662 DOI: 10.1021/acs.biochem.6b00194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A recombinant Ca2+-ATPase nucleotide binding domain (N-domain) harboring the mutations Trp552Leu and Tyr587Trp was expressed and purified. Chemical modification by N-bromosuccinimide and fluorescence quenching by acrylamide showed that the displaced Trp residue was located at the N-domain surface and slightly exposed to solvent. Guanidine hydrochloride-mediated N-domain unfolding showed the low structural stability of the α6-loop-α7 motif (the new Trp location) located near the nucleotide binding site. The binding of nucleotides (free and in complex with Mg2+) to the engineered N-domain led to significant intrinsic fluorescence quenching (ΔFmax ∼ 30%) displaying a saturable hyperbolic pattern; the calculated affinities decreased in the following order: ATP > ADP = ADP-Mg2+ > ATP-Mg2+. Interestingly, it was found that Ca2+ binds to the N-domain as monitored by intrinsic fluorescence quenching (ΔFmax ∼ 12%) with a dissociation constant (Kd) of 50 μM. Notably, the presence of Ca2+ (200 μM) increased the ATP and ADP affinity but favored the binding of ATP over that of ADP. In addition, binding of ATP to the N-domain generated slight changes in secondary structure as evidenced by circular dichroism spectral changes. Molecular docking of ATP to the N-domain provided different binding modes that potentially might be the binding stages prior to γ-phosphate transfer. Finally, the nucleotide binding site was studied by fluorescein isothiocyanate labeling and molecular docking. The N-domain of Ca2+-ATPase performs structural dynamics upon Ca2+ and nucleotide binding. It is proposed that the increased affinity of the N-domain for ATP mediated by Ca2+ binding may be involved in Ca2+-ATPase activation under normal physiological conditions.
Collapse
Affiliation(s)
- Edgar D Páez-Pérez
- Instituto de Física, Universidad Autónoma de San Luis Potosí , Manuel Nava 6, Zona Universitaria, CP, 78290 San Luis Potosí, SLP, Mexico
| | - Valentín De La Cruz-Torres
- Instituto de Física, Universidad Autónoma de San Luis Potosí , Manuel Nava 6, Zona Universitaria, CP, 78290 San Luis Potosí, SLP, Mexico
| | - José G Sampedro
- Instituto de Física, Universidad Autónoma de San Luis Potosí , Manuel Nava 6, Zona Universitaria, CP, 78290 San Luis Potosí, SLP, Mexico
| |
Collapse
|
55
|
Mavridis L, Janes RW. PDB2CD: a web-based application for the generation of circular dichroism spectra from protein atomic coordinates. Bioinformatics 2016; 33:56-63. [PMID: 27651482 PMCID: PMC5408769 DOI: 10.1093/bioinformatics/btw554] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/13/2016] [Accepted: 08/21/2016] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Circular dichroism (CD) spectroscopy is extensively utilized for determining the percentages of secondary structure content present in proteins. However, although a large contributor, secondary structure is not the only factor that influences the shape and magnitude of the CD spectrum produced. Other structural features can make contributions so an entire protein structural conformation can give rise to a CD spectrum. There is a need for an application capable of generating protein CD spectra from atomic coordinates. However, no empirically derived method to do this currently exists. RESULTS PDB2CD has been created as an empirical-based approach to the generation of protein CD spectra from atomic coordinates. The method utilizes a combination of structural features within the conformation of a protein; not only its percentage secondary structure content, but also the juxtaposition of these structural components relative to one another, and the overall structure similarity of the query protein to proteins in our dataset, the SP175 dataset, the 'gold standard' set obtained from the Protein Circular Dichroism Data Bank (PCDDB). A significant number of the CD spectra associated with the 71 proteins in this dataset have been produced with excellent accuracy using a leave-one-out cross-validation process. The method also creates spectra in good agreement with those of a test set of 14 proteins from the PCDDB. The PDB2CD package provides a web-based, user friendly approach to enable researchers to produce CD spectra from protein atomic coordinates. AVAILABILITY AND IMPLEMENTATION http://pdb2cd.cryst.bbk.ac.uk CONTACT: r.w.janes@qmul.ac.ukSupplementary information: Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Lazaros Mavridis
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Robert W Janes
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| |
Collapse
|
56
|
Whiteley CG, Lee DJ. Computer simulations of the interaction of human immunodeficiency virus (HIV) aspartic protease with spherical gold nanoparticles: implications in acquired immunodeficiency syndrome (AIDS). NANOTECHNOLOGY 2016; 27:365101. [PMID: 27483476 DOI: 10.1088/0957-4484/27/36/365101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The interaction of gold nanoparticles (AuNP) with human immune-deficiency virus aspartic protease (HIVPR) is modelled using a regime of molecular dynamics simulations. The simulations of the 'docking', first as a rigid-body complex, and eventually through flexible-fit analysis, creates 36 different complexes from four initial orientations of the nanoparticle strategically positioned around the surface of the enzyme. The structural deviations of the enzymes from the initial x-ray crystal structure during each docking simulation are assessed by comparative analysis of secondary structural elements, root mean square deviations, B-factors, interactive bonding energies, dihedral angles, radius of gyration (R g), circular dichroism (CD), volume occupied by C α , electrostatic potentials, solvation energies and hydrophobicities. Normalisation of the data narrows the selection from the initial 36 to one 'final' probable structure. It is concluded that, after computer simulations on each of the 36 initial complexes incorporating the 12 different biophysical techniques, the top five complexes are the same no matter which technique is explored. The significance of the present work is an expansion of an earlier study on the molecular dynamic simulation for the interaction of HIVPR with silver nanoparticles. This work is supported by experimental evidence since the initial 'orientation' of the AgNP with the enzyme is the same as the 'final' AuNP-HIVPR complex generated in the present study. The findings will provide insight into the forces of the binding of the HIVPR to AuNP. It is anticipated that the protocol developed in this study will act as a standard process for the interaction of any nanoparticle with any biomedical target.
Collapse
|
57
|
Abelein A, Jarvet J, Barth A, Gräslund A, Danielsson J. Ionic Strength Modulation of the Free Energy Landscape of Aβ40 Peptide Fibril Formation. J Am Chem Soc 2016; 138:6893-902. [DOI: 10.1021/jacs.6b04511] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Axel Abelein
- Department
of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius
väg 16, SE-106 91 Stockholm, Sweden
| | - Jüri Jarvet
- Department
of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius
väg 16, SE-106 91 Stockholm, Sweden
- The National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Andreas Barth
- Department
of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius
väg 16, SE-106 91 Stockholm, Sweden
| | - Astrid Gräslund
- Department
of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius
väg 16, SE-106 91 Stockholm, Sweden
| | - Jens Danielsson
- Department
of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius
väg 16, SE-106 91 Stockholm, Sweden
| |
Collapse
|
58
|
Chin SL, Lu Q, Dane EL, Dominguez L, McKnight CJ, Straub JE, Grinstaff MW. Combined Molecular Dynamics Simulations and Experimental Studies of the Structure and Dynamics of Poly-Amido-Saccharides. J Am Chem Soc 2016; 138:6532-40. [DOI: 10.1021/jacs.6b01837] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | - Qing Lu
- Division
of Materials Science and Engineering, Boston University, Brookline, Massachusetts 02446, United States
| | | | | | | | - John E. Straub
- Division
of Materials Science and Engineering, Boston University, Brookline, Massachusetts 02446, United States
| | - Mark W. Grinstaff
- Division
of Materials Science and Engineering, Boston University, Brookline, Massachusetts 02446, United States
| |
Collapse
|
59
|
Zhou P, Deng L, Wang Y, Lu JR, Xu H. Interplay between Intrinsic Conformational Propensities and Intermolecular Interactions in the Self-Assembly of Short Surfactant-like Peptides Composed of Leucine/Isoleucine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:4662-4672. [PMID: 27088564 DOI: 10.1021/acs.langmuir.6b00287] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
To study how the conformational propensities of individual amino acid residues, primary structures (i.e., adjacent residues and molecular lengths), and intermolecular interactions of peptides affect their self-assembly properties, we report the use of replica exchange molecular dynamics (REMD) to investigate the monomers, dimers, and trimers of a series of short surfactant-like peptides (I3K, L3K, L4K, and L5K). For four-residue peptides X3K (I3K and L3K), the results show that their different aggregation behaviors arise from the different intrinsic conformational propensities of isoleucine and leucine. For LmK peptides (L3K, L4K, and L5K), the molecular length is found to dictate their aggregation via primarily modulating intermolecular interactions. Increasing the number of hydrophobic amino acid residues of LmK peptides enhances their intermolecular H-bonding and promotes the formation of β-strands in dimer and trimer aggregates, overwhelming the intrinsic preference of Leu for helical structures. Thus, the interplay between the conformational propensities of individual amino acid residues for secondary structures and molecular interactions determines the self-assembly properties of the peptides, and the competition between intramolecular and intermolecular H-bonding interactions determines the probability of β-sheet alignment of peptide molecules. These results are validated by comparing simulated and experimental CD spectra of the peptides. This study will aid the design of short peptide amphiphiles and improve the mechanistic understanding of their self-assembly behavior.
Collapse
Affiliation(s)
- Peng Zhou
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China) , 66 Changjiang West Road, Qingdao, China
| | - Li Deng
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China) , 66 Changjiang West Road, Qingdao, China
| | - Yanting Wang
- Institute of Theoretical Physics, Chinese Academy of Sciences , 55 East Zhongguancun Road, Beijing, China
| | - Jian R Lu
- Biological Physics Laboratory, School of Physics and Astronomy, The University of Manchester Institution , Manchester M13 9PL, United Kingdom
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China) , 66 Changjiang West Road, Qingdao, China
| |
Collapse
|
60
|
Owen GR, Channell JA, Forsyth VT, Haertlein M, Mitchell EP, Capovilla A, Papathanasopoulos M, Cerutti NM. Human CD4 Metastability Is a Function of the Allosteric Disulfide Bond in Domain 2. Biochemistry 2016; 55:2227-37. [DOI: 10.1021/acs.biochem.6b00154] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gavin R. Owen
- HIV
Pathogenesis Research Unit, Department of Molecular Medicine and Haematology,
Faculty of Health Sciences, University of the Witwatersrand, 7
York Road, Parktown, 2193, Johannesburg, South Africa
| | - Jennifer A. Channell
- Faculty
of Natural Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
- Life
Sciences Group, Institut Laue-Langevin, 71 Avenue des Martyrs, 38042, Grenoble, France
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - V. Trevor Forsyth
- Faculty
of Natural Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
- Life
Sciences Group, Institut Laue-Langevin, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Michael Haertlein
- Life
Sciences Group, Institut Laue-Langevin, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Edward P. Mitchell
- Faculty
of Natural Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Alexio Capovilla
- HIV
Pathogenesis Research Unit, Department of Molecular Medicine and Haematology,
Faculty of Health Sciences, University of the Witwatersrand, 7
York Road, Parktown, 2193, Johannesburg, South Africa
| | - Maria Papathanasopoulos
- HIV
Pathogenesis Research Unit, Department of Molecular Medicine and Haematology,
Faculty of Health Sciences, University of the Witwatersrand, 7
York Road, Parktown, 2193, Johannesburg, South Africa
| | - Nichole M. Cerutti
- HIV
Pathogenesis Research Unit, Department of Molecular Medicine and Haematology,
Faculty of Health Sciences, University of the Witwatersrand, 7
York Road, Parktown, 2193, Johannesburg, South Africa
| |
Collapse
|
61
|
The association of defensin HNP-2 with negatively charged membranes: A combined fluorescence and linear dichroism study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:892-903. [PMID: 26801370 DOI: 10.1016/j.bbamem.2016.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/11/2016] [Accepted: 01/19/2016] [Indexed: 01/09/2023]
Abstract
The association of defensin HNP-2 with negatively charged membranes has been studied using a new approach that combines fluorescence and linear dichroism (LD) spectroscopies with simulated LD spectra in order to characterise the binding kinetics and bound configurations of the peptide. Binding to membranes composed of mixtures of diacylglycerophosphocholines (PC) with either diacylglycerophosphoglycerol (PG) or diacylglycerophosphoserine (PS) was conducted at lipid:peptide ratios that yielded binding, but not membrane fusion. HNP-2 association with membranes under these conditions was a 2 stage-process, with both stages exhibiting first order kinetics. The fast initial step, with a half-life of < 1 min, was followed by a slower step with a half-life of > 3 min. Conversion between the states was estimated to have an enthalpy of activation of approximately 10 kJ mol(-1) and an entropy of activation of -0.2 kJ K mol(-1). LD spectra corresponding to each of the membrane bound states were generated by non-linear regression using a standard kinetic model. These spectra are interpreted in comparison with spectra calculated using the program Dichrocalc and reveal that the peptide associates with membranes in a small number of stable configurations. All of these configurations have a significant proportion of β-sheet structure residing in the plane of the membrane. Two configurations support structures previously proposed for defensins in membranes.
Collapse
|
62
|
Khazanov N, Iline-Vul T, Noy E, Goobes G, Senderowitz H. Design of Compact Biomimetic Cellulose Binding Peptides as Carriers for Cellulose Catalytic Degradation. J Phys Chem B 2016; 120:309-19. [DOI: 10.1021/acs.jpcb.5b11050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Netaly Khazanov
- Department of Chemistry, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Taly Iline-Vul
- Department of Chemistry, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Efrat Noy
- Department of Chemistry, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Gil Goobes
- Department of Chemistry, Bar Ilan University, Ramat Gan 5290002, Israel
| | | |
Collapse
|
63
|
Neelamraju S, Oakley MT, Johnston RL. Chiral effects on helicity studied via the energy landscape of short (d, l)-alanine peptides. J Chem Phys 2015; 143:165103. [DOI: 10.1063/1.4933428] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sridhar Neelamraju
- School of Chemistry, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Mark T. Oakley
- School of Chemistry, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Roy L. Johnston
- School of Chemistry, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| |
Collapse
|
64
|
Xiong M, Lee MW, Mansbach RA, Song Z, Bao Y, Peek RM, Yao C, Chen LF, Ferguson AL, Wong GCL, Cheng J. Helical antimicrobial polypeptides with radial amphiphilicity. Proc Natl Acad Sci U S A 2015; 112:13155-60. [PMID: 26460016 PMCID: PMC4629321 DOI: 10.1073/pnas.1507893112] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
α-Helical antimicrobial peptides (AMPs) generally have facially amphiphilic structures that may lead to undesired peptide interactions with blood proteins and self-aggregation due to exposed hydrophobic surfaces. Here we report the design of a class of cationic, helical homo-polypeptide antimicrobials with a hydrophobic internal helical core and a charged exterior shell, possessing unprecedented radial amphiphilicity. The radially amphiphilic structure enables the polypeptide to bind effectively to the negatively charged bacterial surface and exhibit high antimicrobial activity against both gram-positive and gram-negative bacteria. Moreover, the shielding of the hydrophobic core by the charged exterior shell decreases nonspecific interactions with eukaryotic cells, as evidenced by low hemolytic activity, and protects the polypeptide backbone from proteolytic degradation. The radially amphiphilic polypeptides can also be used as effective adjuvants, allowing improved permeation of commercial antibiotics in bacteria and enhanced antimicrobial activity by one to two orders of magnitude. Designing AMPs bearing this unprecedented, unique radially amphiphilic structure represents an alternative direction of AMP development; radially amphiphilic polypeptides may become a general platform for developing AMPs to treat drug-resistant bacteria.
Collapse
Affiliation(s)
- Menghua Xiong
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Michelle W Lee
- Department of Bioengineering, Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, CA 90095
| | - Rachael A Mansbach
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Ziyuan Song
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Yan Bao
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Richard M Peek
- Division of Gastroenterology, Department of Medicine and Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Catherine Yao
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Lin-Feng Chen
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Andrew L Ferguson
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Gerard C L Wong
- Department of Bioengineering, Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, CA 90095;
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801;
| |
Collapse
|
65
|
Sah S, Varshney U. Impact of Mutating the Key Residues of a Bifunctional 5,10-Methylenetetrahydrofolate Dehydrogenase-Cyclohydrolase from Escherichia coli on Its Activities. Biochemistry 2015; 54:3504-13. [PMID: 25988590 DOI: 10.1021/acs.biochem.5b00400] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methylenetetrahydrofolate dehydrogenase-cyclohydrolase (FolD) catalyzes interconversion of 5,10-methylene-tetrahydrofolate and 10-formyl-tetrahydrofolate in the one-carbon metabolic pathway. In some organisms, the essential requirement of 10-formyl-tetrahydrofolate may also be fulfilled by formyltetrahydrofolate synthetase (Fhs). Recently, we developed an Escherichia coli strain in which the folD gene was deleted in the presence of Clostridium perfringens fhs (E. coli ΔfolD/p-fhs) and used it to purify FolD mutants (free from the host-encoded FolD) and determine their biological activities. Mutations in the key residues of E. coli FolD, as identified from three-dimensional structures (D121A, Q98K, K54S, Y50S, and R191E), and a genetic screen (G122D and C58Y) were generated, and the mutant proteins were purified to determine their kinetic constants. Except for the R191E and K54S mutants, others were highly compromised in terms of both dehydrogenase and cyclohydrolase activities. While the R191E mutant showed high cyclohydrolase activity, it retained only a residual dehydrogenase activity. On the other hand, the K54S mutant lacked the cyclohydrolase activity but possessed high dehydrogenase activity. The D121A and G122D (in a loop between two helices) mutants were highly compromised in terms of both dehydrogenase and cyclohydrolase activities. In vivo and in vitro characterization of wild-type and mutant (R191E, G122D, D121A, Q98K, C58Y, K54S, and Y50S) FolD together with three-dimensional modeling has allowed us to develop a better understanding of the mechanism for substrate binding and catalysis by E. coli FolD.
Collapse
Affiliation(s)
- Shivjee Sah
- †Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Umesh Varshney
- †Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.,‡Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
66
|
Mansbach RA, Ferguson AL. Machine learning of single molecule free energy surfaces and the impact of chemistry and environment upon structure and dynamics. J Chem Phys 2015; 142:105101. [DOI: 10.1063/1.4914144] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
67
|
D'Urzo A, Konijnenberg A, Rossetti G, Habchi J, Li J, Carloni P, Sobott F, Longhi S, Grandori R. Molecular basis for structural heterogeneity of an intrinsically disordered protein bound to a partner by combined ESI-IM-MS and modeling. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:472-481. [PMID: 25510932 DOI: 10.1007/s13361-014-1048-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 11/04/2014] [Accepted: 11/08/2014] [Indexed: 06/04/2023]
Abstract
Intrinsically disordered proteins (IDPs) form biologically active complexes that can retain a high degree of conformational disorder, escaping structural characterization by conventional approaches. An example is offered by the complex between the intrinsically disordered N(TAIL) domain and the phosphoprotein X domain (P(XD)) from measles virus (MeV). Here, distinct conformers of the complex are detected by electrospray ionization-mass spectrometry (ESI-MS) and ion mobility (IM) techniques yielding estimates for the solvent-accessible surface area (SASA) in solution and the average collision cross-section (CCS) in the gas phase. Computational modeling of the complex in solution, based on experimental constraints, provides atomic-resolution structural models featuring different levels of compactness. The resulting models indicate high structural heterogeneity. The intermolecular interactions are predominantly hydrophobic, not only in the ordered core of the complex, but also in the dynamic, disordered regions. Electrostatic interactions become involved in the more compact states. This system represents an illustrative example of a hydrophobic complex that could be directly detected in the gas phase by native mass spectrometry. This work represents the first attempt to modeling the entire N(TAIL) domain bound to P(XD) at atomic resolution.
Collapse
Affiliation(s)
- Annalisa D'Urzo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Gerstel M, Deane CM, Garman EF. Identifying and quantifying radiation damage at the atomic level. JOURNAL OF SYNCHROTRON RADIATION 2015; 22:201-12. [PMID: 25723922 PMCID: PMC4344357 DOI: 10.1107/s1600577515002131] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/01/2015] [Indexed: 05/23/2023]
Abstract
Radiation damage impedes macromolecular diffraction experiments. Alongside the well known effects of global radiation damage, site-specific radiation damage affects data quality and the veracity of biological conclusions on protein mechanism and function. Site-specific radiation damage follows a relatively predetermined pattern, in that different structural motifs are affected at different dose regimes: in metal-free proteins, disulfide bonds tend to break first followed by the decarboxylation of aspartic and glutamic acids. Even within these damage motifs the decay does not progress uniformly at equal rates. Within the same protein, radiation-induced electron density decay of a particular chemical group is faster than for the same group elsewhere in the protein: an effect known as preferential specific damage. Here, BDamage, a new atomic metric, is defined and validated to recognize protein regions susceptible to specific damage and to quantify the damage at these sites. By applying BDamage to a large set of known protein structures in a statistical survey, correlations between the rates of damage and various physicochemical parameters were identified. Results indicate that specific radiation damage is independent of secondary protein structure. Different disulfide bond groups (spiral, hook, and staple) show dissimilar radiation damage susceptibility. There is a consistent positive correlation between specific damage and solvent accessibility.
Collapse
Affiliation(s)
- Markus Gerstel
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Charlotte M. Deane
- Department of Statistics, University of Oxford, 1 South Parks Road, Oxford OX1 3TG, UK
| | - Elspeth F. Garman
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
69
|
Calandrini V, Nguyen TH, Arnesano F, Galliani A, Ippoliti E, Carloni P, Natile G. Structural Biology of Cisplatin Complexes with Cellular Targets: The Adduct with Human Copper Chaperone Atox1 in Aqueous Solution. Chemistry 2014; 20:11719-25. [DOI: 10.1002/chem.201402834] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Indexed: 12/17/2022]
|
70
|
Calandrini V, Arnesano F, Galliani A, Nguyen TH, Ippoliti E, Carloni P, Natile G. Platination of the copper transporter ATP7A involved in anticancer drug resistance. Dalton Trans 2014; 43:12085-94. [DOI: 10.1039/c4dt01339e] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
71
|
Cerutti N, Killick M, Jugnarain V, Papathanasopoulos M, Capovilla A. Disulfide reduction in CD4 domain 1 or 2 is essential for interaction with HIV glycoprotein 120 (gp120), which impairs thioredoxin-driven CD4 dimerization. J Biol Chem 2014; 289:10455-10465. [PMID: 24550395 PMCID: PMC4036167 DOI: 10.1074/jbc.m113.539353] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/12/2014] [Indexed: 11/06/2022] Open
Abstract
Human CD4 is a membrane-bound glycoprotein expressed on the surface of certain leukocytes, where it plays a key role in the activation of immunostimulatory T cells and acts as the primary receptor for human immunodeficiency virus (HIV) glycoprotein (gp120). Although growing evidence suggests that redox exchange reactions involving CD4 disulfides, potentially catalyzed by cell surface-secreted oxidoreductases such as thioredoxin (Trx) and protein disulfide isomerase, play an essential role in regulating the activity of CD4, their mechanism(s) and biological utility remain incompletely understood. To gain more insights in this regard, we generated a panel of recombinant 2-domain CD4 proteins (2dCD4), including wild-type and Cys/Ala variants, and used these to show that while protein disulfide isomerase has little capacity for 2dCD4 reduction, Trx reduces 2dCD4 highly efficiently, catalyzing the formation of conformationally distinct monomeric 2dCD4 isomers, and a stable, disulfide-linked 2dCD4 dimer. Moreover, we show that HIV gp120 is incapable of binding a fully oxidized, monomeric 2dCD4 in which both domain 1 and 2 disulfides are intact, but binds robustly to reduced counterparts that are the ostensible products of Trx-mediated isomerization. Finally, we demonstrate that Trx-driven dimerization of CD4, a process believed to be critical for the establishment of functional MHCII-TCR-CD4 antigen presentation complexes, is impaired when CD4 is bound to gp120. These observations reinforce the importance of cell surface redox activity for HIV entry and posit the intriguing possibility that one of the many pathogenic effects of HIV may be related to gp120-mediated inhibition of oxidoreductive CD4 isomerization.
Collapse
Affiliation(s)
- Nichole Cerutti
- HIV Pathogenesis Research Laboratory, Department of Molecular Medicine and Haematology, University of Witwatersrand Medical School, 7 York Road Parktown, 2193 Johannesburg, South Africa
| | - Mark Killick
- HIV Pathogenesis Research Laboratory, Department of Molecular Medicine and Haematology, University of Witwatersrand Medical School, 7 York Road Parktown, 2193 Johannesburg, South Africa
| | - Vinesh Jugnarain
- HIV Pathogenesis Research Laboratory, Department of Molecular Medicine and Haematology, University of Witwatersrand Medical School, 7 York Road Parktown, 2193 Johannesburg, South Africa
| | - Maria Papathanasopoulos
- HIV Pathogenesis Research Laboratory, Department of Molecular Medicine and Haematology, University of Witwatersrand Medical School, 7 York Road Parktown, 2193 Johannesburg, South Africa
| | - Alexio Capovilla
- HIV Pathogenesis Research Laboratory, Department of Molecular Medicine and Haematology, University of Witwatersrand Medical School, 7 York Road Parktown, 2193 Johannesburg, South Africa.
| |
Collapse
|
72
|
Meissner RH, Schneider J, Schiffels P, Colombi Ciacchi L. Computational prediction of circular dichroism spectra and quantification of helicity loss upon peptide adsorption on silica. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:3487-3494. [PMID: 24627945 DOI: 10.1021/la500285m] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Circular dichroism (CD) spectroscopy is one of the few experimental techniques sensitive to the structural changes that peptides undergo when they adsorb on inorganic material surfaces, a problem of deep significance in medicine, biotechnology, and materials science. Although the theoretical calculation of the CD spectrum of a molecule in a given conformation can be routinely performed, the inverse problem of extracting atomistic structural details from a measured spectrum is not uniquely determined. Especially complicated is the case of oligopeptides, whose folding/unfolding energy landscapes are often very broad and shallow. This means that the CD spectra measured for either dissolved or adsorbed peptides arise from a multitude of different structures, each present with a probability dictated by their relative free-energy variations, according to Boltzmann statistics. Here we present a modeling method based on replica exchange with solute tempering in combination with metadynamics, which allows us to predict both the helicity loss of a small peptide upon interaction with silica colloids in water and to compute the full CD spectra of the adsorbed and dissolved states, in quantitative agreement with experimental measurements. In our method, the CD ellipticity Θ for any given wavelength λ is calculated as an external collective variable by means of reweighting the biased trajectory obtained using the peptide-SiO2 surface distance and the structural helicity as two independent, internal collective variables. Our results also provide support for the often-employed hypothesis that the Θ intensity at λ = 222 nm is linearly correlated with the peptides' fractional helicity.
Collapse
Affiliation(s)
- Robert H Meissner
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM , D-28359 Bremen, Germany
| | | | | | | |
Collapse
|
73
|
Matsuo K, Hiramatsu H, Gekko K, Namatame H, Taniguchi M, Woody RW. Characterization of intermolecular structure of β(2)-microglobulin core fragments in amyloid fibrils by vacuum-ultraviolet circular dichroism spectroscopy and circular dichroism theory. J Phys Chem B 2014; 118:2785-95. [PMID: 24512563 DOI: 10.1021/jp409630u] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Intermolecular structures are important factors for understanding the conformational properties of amyloid fibrils. In this study, vacuum-ultraviolet circular dichroism (VUVCD) spectroscopy and circular dichroism (CD) theory were used for characterizing the intermolecular structures of β2-microglobulin (β2m) core fragments in the amyloid fibrils. The VUVCD spectra of β2m20-41, β2m21-31, and β2m21-29 fragments in the amyloid fibrils exhibited characteristic features, but they were affected not only by the backbone conformations but also by the aromatic side-chain conformations. To estimate the contributions of aromatic side-chains to the spectra, the theoretical spectra were calculated from the simulated structures of β2m21-29 amyloid fibrils with various types of β-sheet stacking (parallel or antiparallel) using CD theory. We found that the experimental spectrum of β2m21-29 fibrils is largely affected by aromatic-backbone couplings, which are induced by the interaction between transitions within the aromatic and backbone chromophores, and these couplings are sensitive to the type of stacking among the β-sheets of the fibrils. Further theoretical analyses of simulated structures incorporating mutated aromatic residues suggested that the β2m21-29 fibrils are composed of amyloid accumulations in which the parallel β-sheets stack in an antiparallel manner and that the characteristic Phe-Tyr interactions among the β-sheet stacks affect the aromatic-backbone coupling. These findings indicate that the coupling components, which depend on the characteristic intermolecular structures, induce the spectral differences among three fragments in the amyloid fibrils. These advanced spectral analyses using CD theory provide a useful method for characterizing the intermolecular structures of protein and peptide fragment complexes.
Collapse
Affiliation(s)
- Koichi Matsuo
- Hiroshima Synchrotron Radiation Center, Hiroshima University , Higashi-Hiroshima 739-0046, Japan
| | | | | | | | | | | |
Collapse
|
74
|
Ceballos JA, Giraldo MA, Cossio P. Effects of a disulfide bridge prior to amyloid formation of the ABRI peptide. RSC Adv 2014. [DOI: 10.1039/c4ra06034b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Computational studies characterize remarkable differences between the most probable structures of the monomeric amyloidogenic peptide, ABRI, with and without a single disulfide bond; the peptide is compact and alpha-helical with the bond, otherwise it is partially extended with slight β-bridges and an exposed hydrophobic surface area.
Collapse
Affiliation(s)
| | | | - Pilar Cossio
- Department of Theoretical Biophysics
- Max Planck Institute of Biophysics
- 60438 Frankfurt am Main, Germany
| |
Collapse
|
75
|
Hall V, Nash A, Hines E, Rodger A. Elucidating protein secondary structure with circular dichroism and a neural network. J Comput Chem 2013; 34:2774-86. [DOI: 10.1002/jcc.23456] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 09/02/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Vincent Hall
- Molecular Organisation and Assembly in Cells Doctoral Training Centre; University of Warwick; Coventry CV4 7AL United Kingdom
- Department of Chemistry; University of Warwick; Coventry CV4 7AL United Kingdom
- School of Engineering; University of Warwick; Coventry CV4 7AL United Kingdom
| | - Anthony Nash
- Molecular Organisation and Assembly in Cells Doctoral Training Centre; University of Warwick; Coventry CV4 7AL United Kingdom
- Centre for Scientific Computing; University of Warwick; Coventry CV4 7AL United Kingdom
| | - Evor Hines
- School of Engineering; University of Warwick; Coventry CV4 7AL United Kingdom
| | - Alison Rodger
- Department of Chemistry; University of Warwick; Coventry CV4 7AL United Kingdom
- Warwick Centre for Analytical Science; University of Warwick; Coventry CV4 7AL United Kingdom
| |
Collapse
|
76
|
Tortorici M, Borrello MT, Tardugno M, Chiarelli LR, Pilotto S, Ciossani G, Vellore NA, Bailey SG, Cowan J, O’Connell M, Crabb SJ, Packham G, Mai A, Baron R, Ganesan A, Mattevi A. Protein recognition by short peptide reversible inhibitors of the chromatin-modifying LSD1/CoREST lysine demethylase. ACS Chem Biol 2013; 8:1677-82. [PMID: 23721412 DOI: 10.1021/cb4001926] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The combinatorial assembly of protein complexes is at the heart of chromatin biology. Lysine demethylase LSD1(KDM1A)/CoREST beautifully exemplifies this concept. The active site of the enzyme tightly associates to the N-terminal domain of transcription factors of the SNAIL1 family, which therefore can competitively inhibit the binding of the N-terminal tail of the histone substrate. Our enzymatic, crystallographic, spectroscopic, and computational studies reveal that LSD1/CoREST can bind to a hexapeptide derived from the SNAIL sequence through recognition of a positively charged α-helical turn that forms upon binding to the enzyme. Variations in sequence and length of this six amino acid ligand modulate affinities enabling the same binding site to differentially interact with proteins that exert distinct biological functions. The discovered short peptide inhibitors exhibit antiproliferative activities and lay the foundation for the development of peptidomimetic small molecule inhibitors of LSD1.
Collapse
Affiliation(s)
- Marcello Tortorici
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy
| | - Maria Teresa Borrello
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich
NR47TJ, United Kingdom
| | - Maria Tardugno
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich
NR47TJ, United Kingdom
- Department
of Drug Chemistry and
Technologies, University “La Sapienza”, P. le A. Moro 5, Roma 00185, Italy
| | - Laurent R. Chiarelli
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy
| | - Simona Pilotto
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy
| | - Giuseppe Ciossani
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy
| | - Nadeem A. Vellore
- Department of Medicinal Chemistry,
College of Pharmacy, and The Henry Eyring Center for Theoretical Chemistry, The University of Utah, Salt Lake City, Utah 84112-5820,
United States
| | - Sarah G. Bailey
- Cancer Research
UK Centre, University
of Southampton, Faculty of Medicine, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, United
Kingdom
| | - Jonathan Cowan
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich
NR47TJ, United Kingdom
| | - Maria O’Connell
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich
NR47TJ, United Kingdom
| | - Simon J. Crabb
- Cancer Research
UK Centre, University
of Southampton, Faculty of Medicine, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, United
Kingdom
| | - Graham Packham
- Cancer Research
UK Centre, University
of Southampton, Faculty of Medicine, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, United
Kingdom
| | - Antonello Mai
- Department
of Drug Chemistry and
Technologies, University “La Sapienza”, P. le A. Moro 5, Roma 00185, Italy
| | - Riccardo Baron
- Department of Medicinal Chemistry,
College of Pharmacy, and The Henry Eyring Center for Theoretical Chemistry, The University of Utah, Salt Lake City, Utah 84112-5820,
United States
| | - A. Ganesan
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich
NR47TJ, United Kingdom
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|
77
|
Oakley MT, Oheix E, Peacock AFA, Johnston RL. Computational and Experimental Investigations into the Conformations of Cyclic Tetra-α/β-peptides. J Phys Chem B 2013; 117:8122-34. [DOI: 10.1021/jp4043039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Mark T. Oakley
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K
| | - Emmanuel Oheix
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K
| | - Anna F. A. Peacock
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K
| | - Roy L. Johnston
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K
| |
Collapse
|
78
|
Di Marino D, Achsel T, Lacoux C, Falconi M, Bagni C. Molecular dynamics simulations show how the FMRP Ile304Asn mutation destabilizes the KH2 domain structure and affects its function. J Biomol Struct Dyn 2013; 32:337-50. [PMID: 23527791 DOI: 10.1080/07391102.2013.768552] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mutations or deletions of FMRP, involved in the regulation of mRNA metabolism in brain, lead to the Fragile X syndrome (FXS), the most frequent form of inherited intellectual disability. A severe manifestation of the disease has been associated with the Ile304Asn mutation, located on the KH2 domain of the protein. Several hypotheses have been proposed to explain the possible molecular mechanism responsible for the drastic effect of this mutation in humans. Here, we performed a molecular dynamics simulation and show that the Ile304Asn mutation destabilizes the hydrophobic core producing a partial unfolding of two α-helices and a displacement of a third one. The affected regions show increased residue flexibility and motion. Molecular docking analysis revealed strongly reduced binding to a model single-stranded nucleic acid in agreement with known data that the two partially unfolded helices form the RNA-binding surface. The third helix, which we show here to be also affected, is involved in the PAK1 protein interaction. These two functional binding sites on the KH2 domain do not overlap spatially, and therefore, they can simultaneously bind their targets. Since the Ile304Asn mutation affects both binding sites, this may justify the severe clinical manifestation observed in the patient in which both mRNA metabolism activity and cytoskeleton remodeling would be affected.
Collapse
Affiliation(s)
- Daniele Di Marino
- a VIB Center for the Biology of Disease, Catholic University of Leuven , Herestraat 49, 3000 Leuven , Belgium
| | | | | | | | | |
Collapse
|
79
|
Karabencheva-Christova TG, Carlsson U, Balali-Mood K, Black GW, Christov CZ. Conformational effects on the circular dichroism of Human Carbonic Anhydrase II: a multilevel computational study. PLoS One 2013; 8:e56874. [PMID: 23526922 PMCID: PMC3582176 DOI: 10.1371/journal.pone.0056874] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 01/15/2013] [Indexed: 11/25/2022] Open
Abstract
Circular Dichroism (CD) spectroscopy is a powerful method for investigating conformational changes in proteins and therefore has numerous applications in structural and molecular biology. Here a computational investigation of the CD spectrum of the Human Carbonic Anhydrase II (HCAII), with main focus on the near-UV CD spectra of the wild-type enzyme and it seven tryptophan mutant forms, is presented and compared to experimental studies. Multilevel computational methods (Molecular Dynamics, Semiempirical Quantum Mechanics, Time-Dependent Density Functional Theory) were applied in order to gain insight into the mechanisms of interaction between the aromatic chromophores within the protein environment and understand how the conformational flexibility of the protein influences these mechanisms. The analysis suggests that combining CD semi empirical calculations, crystal structures and molecular dynamics (MD) could help in achieving a better agreement between the computed and experimental protein spectra and provide some unique insight into the dynamic nature of the mechanisms of chromophore interactions.
Collapse
Affiliation(s)
- Tatyana G Karabencheva-Christova
- Department of Applied Sciences, School of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom.
| | | | | | | | | |
Collapse
|
80
|
Gonçalves MB, Dreyer J, Lupieri P, Barrera-Patiño C, Ippoliti E, Webb MR, Corrie JET, Carloni P. Structural prediction of a rhodamine-based biosensor and comparison with biophysical data. Phys Chem Chem Phys 2013; 15:2177-83. [DOI: 10.1039/c2cp42396k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
81
|
Influence of Scaffold Stability and Electrostatics on Top7-Based Engineered Helical HIV-1 Epitopes. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/978-3-319-02624-4_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
82
|
Majumdar R, Railkar R, Dighe RR. The antibodies against the computationally designed mimic of the glycoprotein hormone receptor transmembrane domain provide insights into receptor activation and suppress the constitutively activated receptor mutants. J Biol Chem 2012; 287:34514-32. [PMID: 22904318 DOI: 10.1074/jbc.m112.355032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The exoloops of glycoprotein hormone receptors (GpHRs) transduce the signal generated by the ligand-ectodomain interactions to the transmembrane helices either through direct hormonal contact and/or by modulating the interdomain interactions between the hinge region (HinR) and the transmembrane domain (TMD). The ligand-induced conformational alterations in the HinRs and the interhelical loops of luteinizing hormone receptor/follicle stimulating hormone receptor/thyroid stimulating hormone receptor were mapped using exoloop-specific antibodies generated against a mini-TMD protein designed to mimic the native exoloop conformations that were created by joining the thyroid stimulating hormone receptor exoloops constrained through helical tethers and library-derived linkers. The antibody against the mini-TMD specifically recognized all three GpHRs and inhibited the basal and hormone-stimulated cAMP production without affecting hormone binding. Interestingly, binding of the antibody to all three receptors was abolished by prior incubation of the receptors with the respective hormones, suggesting that the exoloops are buried in the hormone-receptor complexes. The antibody also suppressed the high basal activities of gain-of-function mutations in the HinRs, exoloops, and TMDs such as those involved in precocious puberty and thyroid toxic adenomas. Using the antibody and point/deletion/chimeric receptor mutants, we demonstrate that changes in the HinR-exoloop interactions play an important role in receptor activation. Computational analysis suggests that the mini-TMD antibodies act by conformationally locking the transmembrane helices by means of restraining the exoloops and the juxta-membrane regions. Using GpHRs as a model, we describe a novel computational approach of generating soluble TMD mimics that can be used to explain the role of exoloops during receptor activation and their interplay with TMDs.
Collapse
Affiliation(s)
- Ritankar Majumdar
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
83
|
Nguyen TH, Arnesano F, Scintilla S, Rossetti G, Ippoliti E, Carloni P, Natile G. Structural Determinants of Cisplatin and Transplatin Binding to the Met-Rich Motif of Ctr1: A Computational Spectroscopy Approach. J Chem Theory Comput 2012; 8:2912-20. [DOI: 10.1021/ct300167m] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Trung Hai Nguyen
- Computational Biophysics, German Research School for Simulation Sciences, D-52425 Jülich, Germany,
and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Fabio Arnesano
- Department Farmaco-Chimico, University of Bari “A. Moro”, via Edoardo
Orabona 4, 70125 Bari, Italy
| | - Simone Scintilla
- Department Farmaco-Chimico, University of Bari “A. Moro”, via Edoardo
Orabona 4, 70125 Bari, Italy
| | - Giulia Rossetti
- Computational Biophysics, German Research School for Simulation Sciences, D-52425 Jülich, Germany,
and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Emiliano Ippoliti
- Computational Biophysics, German Research School for Simulation Sciences, D-52425 Jülich, Germany,
and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Paolo Carloni
- Computational Biophysics, German Research School for Simulation Sciences, D-52425 Jülich, Germany,
and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
- Statistical and Biological Physics Sector, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265,
I-34136 Trieste, Italy
| | - Giovanni Natile
- Department Farmaco-Chimico, University of Bari “A. Moro”, via Edoardo
Orabona 4, 70125 Bari, Italy
| |
Collapse
|
84
|
Calero M, Gasset M. Featuring amyloids with Fourier transform infrared and circular dichroism spectroscopies. Methods Mol Biol 2012; 849:53-68. [PMID: 22528083 DOI: 10.1007/978-1-61779-551-0_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Amyloids are fibrillar aggregates of proteins characterized by a basic scaffold consisting of cross β-sheet structure that can exert physiological or pathological effects. Both far-UV circular dichroism and Fourier transform infrared (FTIR) spectroscopies are techniques used for the fast analysis of protein secondary structure. Both techniques are complementary and preferentially used depending on the physical state of the analyte, the major secondary structure element and the relative abundance of given amino acids. Although there are special setups for working with films, circular dichroism is best suited for ideal diluted solutions of polypeptides exhibiting α-helix as major structural element and low content of aromatic residues. During the last decade, a related technique, linear dichroism, has been applied to study the orientation of protein subunits within amyloid oligomers or fibrils in solution. Alternatively, FTIR works best with concentrated solutions, solids and films, and resolves with accuracy the β-sheet composition, but it is affected by contributions of amide groups. The advent of new infrared techniques based on correlation analysis of time-dependent variations induced by external perturbations that generates two-dimensional IR maps has enabled to greatly increase spectral resolution and to extend its applicability to protein secondary structure characterization in a variety of physical environments. Within the amyloid field, conjunction of both spectroscopies has provided the first filter step for amyloid detection and has contributed to decipher the structural aspects of the amyloid formation mechanism.
Collapse
Affiliation(s)
- Miguel Calero
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| | | |
Collapse
|
85
|
Louis-Jeune C, Andrade-Navarro MA, Perez-Iratxeta C. Prediction of protein secondary structure from circular dichroism using theoretically derived spectra. Proteins 2011; 80:374-81. [PMID: 22095872 DOI: 10.1002/prot.23188] [Citation(s) in RCA: 601] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 08/18/2011] [Accepted: 08/27/2011] [Indexed: 11/08/2022]
Abstract
Circular dichroism (CD) is a spectroscopic technique commonly used to investigate the structure of proteins. Major secondary structure types, alpha-helices and beta-strands, produce distinctive CD spectra. Thus, by comparing the CD spectrum of a protein of interest to a reference set consisting of CD spectra of proteins of known structure, predictive methods can estimate the secondary structure of the protein. Currently available methods, including K2D2, use such experimental CD reference sets, which are very small in size when compared to the number of tertiary structures available in the Protein Data Bank (PDB). Conversely, given a PDB structure, it is possible to predict a theoretical CD spectrum from it. The methodological framework for this calculation was established long ago but only recently a convenient implementation called DichroCalc has been developed. In this study, we set to determine whether theoretically derived spectra could be used as reference set for accurate CD based predictions of secondary structure. We used DichroCalc to calculate the theoretical CD spectra of a nonredundant set of structures representing most proteins in the PDB, and applied a straightforward approach for predicting protein secondary structure content using these theoretical CD spectra as reference set. We show that this method improves the predictions, particularly for the wavelength interval between 200 and 240 nm and for beta-strand content. We have implemented this method, called K2D3, in a publicly accessible web server at http://www. ogic.ca/projects/k2d3.
Collapse
Affiliation(s)
- Caroline Louis-Jeune
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
| | | | | |
Collapse
|
86
|
Kapoor A, Shandilya M, Kundu S. Structural insight of dopamine β-hydroxylase, a drug target for complex traits, and functional significance of exonic single nucleotide polymorphisms. PLoS One 2011; 6:e26509. [PMID: 22028891 PMCID: PMC3197665 DOI: 10.1371/journal.pone.0026509] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 09/28/2011] [Indexed: 11/29/2022] Open
Abstract
Background Human dopamine β-hydroxylase (DBH) is an important therapeutic target for complex traits. Several single nucleotide polymorphisms (SNPs) have also been identified in DBH with potential adverse physiological effect. However, difficulty in obtaining diffractable crystals and lack of a suitable template for modeling the protein has ensured that neither crystallographic three-dimensional structure nor computational model for the enzyme is available to aid rational drug design, prediction of functional significance of SNPs or analytical protein engineering. Principal Findings Adequate biochemical information regarding human DBH, structural coordinates for peptidylglycine alpha-hydroxylating monooxygenase and computational data from a partial model of rat DBH were used along with logical manual intervention in a novel way to build an in silico model of human DBH. The model provides structural insight into the active site, metal coordination, subunit interface, substrate recognition and inhibitor binding. It reveals that DOMON domain potentially promotes tetramerization, while substrate dopamine and a potential therapeutic inhibitor nepicastat are stabilized in the active site through multiple hydrogen bonding. Functional significance of several exonic SNPs could be described from a structural analysis of the model. The model confirms that SNP resulting in Ala318Ser or Leu317Pro mutation may not influence enzyme activity, while Gly482Arg might actually do so being in the proximity of the active site. Arg549Cys may cause abnormal oligomerization through non-native disulfide bond formation. Other SNPs like Glu181, Glu250, Lys239 and Asp290 could potentially inhibit tetramerization thus affecting function. Conclusions The first three-dimensional model of full-length human DBH protein was obtained in a novel manner with a set of experimental data as guideline for consistency of in silico prediction. Preliminary physicochemical tests validated the model. The model confirms, rationalizes and provides structural basis for several biochemical data and claims testable hypotheses regarding function. It provides a reasonable template for drug design as well.
Collapse
Affiliation(s)
- Abhijeet Kapoor
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | | | | |
Collapse
|
87
|
Losasso V, Pietropaolo A, Zannoni C, Gustincich S, Carloni P. Structural role of compensatory amino acid replacements in the α-synuclein protein. Biochemistry 2011; 50:6994-7001. [PMID: 21736378 DOI: 10.1021/bi2007564] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A subset of familial Parkinson's disease (PD) cases is associated with the presence of disease-causing point mutations in human α-synuclein [huAS(wt)], including A53T. Surprisingly, the human neurotoxic amino acid 53T is present in non-primate, wild-type sequences of α-synucleins, including that expressed by mice [mAS(wt)]. Because huAS(A53T) causes neurodegeneration when expressed in rodents, the amino acid changes between the wild-type human protein [huAS(wt)] and mAS(wt) might act as intramolecular suppressors of A53T toxicity in the mouse protein, restoring its physiological structure and function. The lack of structural information for mAS(wt) in aqueous solution has prompted us to conduct a comparative molecular dynamics study of huAS(wt), huAS(A53T), and mAS(wt) in water at 300 K. The calculations are based on an ensemble of nuclear magnetic resonance-derived huAS(wt) structures. huAS(A53T) turns out to be more flexible and less compact than huAS(wt). Its central (NAC) region, involved in fibril formation by the protein, is more solvent-exposed than that of the wild-type protein, in agreement with nuclear magnetic resonance data. The compactness of mAS(wt) is similar to that of the human protein. In addition, its NAC region is less solvent-exposed and more rigid than that of huAS(A53T). All of these features may be caused by an increase in the level of intramolecular interactions on passing from huAS(A53T) to mAS(wt). We conclude that the presence of "compensatory replacements" in the mouse protein causes a significant change in the protein relative to huAS(A53T), restoring features not too dissimilar to those of the human protein.
Collapse
Affiliation(s)
- Valeria Losasso
- International School for Advanced Studies, 34136 Trieste, Italy
| | | | | | | | | |
Collapse
|
88
|
Dixon AS, Pendley SS, Bruno BJ, Woessner DW, Shimpi AA, Cheatham TE, Lim CS. Disruption of Bcr-Abl coiled coil oligomerization by design. J Biol Chem 2011; 286:27751-60. [PMID: 21659527 DOI: 10.1074/jbc.m111.264903] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Oligomerization is an important regulatory mechanism for many proteins, including oncoproteins and other pathogenic proteins. The oncoprotein Bcr-Abl relies on oligomerization via its coiled coil domain for its kinase activity, suggesting that a designed coiled coil domain with enhanced binding to Bcr-Abl and reduced self-oligomerization would be therapeutically useful. Key mutations in the coiled coil domain of Bcr-Abl were identified that reduce homo-oligomerization through intermolecular charge-charge repulsion yet increase interaction with the Bcr-Abl coiled coil through additional salt bridges, resulting in an enhanced ability to disrupt the oligomeric state of Bcr-Abl. The mutations were modeled computationally to optimize the design. Assays performed in vitro confirmed the validity and functionality of the optimal mutations, which were found to exhibit reduced homo-oligomerization and increased binding to the Bcr-Abl coiled coil domain. Introduction of the mutant coiled coil into K562 cells resulted in decreased phosphorylation of Bcr-Abl, reduced cell proliferation, and increased caspase-3/7 activity and DNA segmentation. Importantly, the mutant coiled coil domain was more efficacious than the wild type in all experiments performed. The improved inhibition of Bcr-Abl through oligomeric disruption resulting from this modified coiled coil domain represents a viable alternative to small molecule inhibitors for therapeutic intervention.
Collapse
Affiliation(s)
- Andrew S Dixon
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, Utah 84108, USA
| | | | | | | | | | | | | |
Collapse
|
89
|
Jiang J, Abramavicius D, Bulheller BM, Hirst JD, Mukamel S. Ultraviolet spectroscopy of protein backbone transitions in aqueous solution: combined QM and MM simulations. J Phys Chem B 2010; 114:8270-7. [PMID: 20503991 PMCID: PMC2888931 DOI: 10.1021/jp101980a] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A generalized approach combining quantum mechanics (QM) and molecular mechanics (MM) calculations is developed to simulate the n --> pi* and pi --> pi* backbone transitions of proteins in aqueous solution. These transitions, which occur in the ultraviolet (UV) at 180-220 nm, provide a sensitive probe for secondary structures. The excitation Hamiltonian is constructed using high-level electronic structure calculations of N-methylacetamide (NMA). Its electrostatic fluctuations are modeled using a new algorithm, EHEF, which combines a molecular dynamics (MD) trajectory obtained with a MM forcefield and electronic structures of sampled MD snapshots calculated by QM. The lineshapes and excitation splittings induced by the electrostatic environment in the experimental UV linear absorption (LA) and circular dichroism (CD) spectra of several proteins in aqueous solution are reproduced by our calculations. The distinct CD features of alpha-helix and beta-sheet protein structures are observed in the simulations and can be assigned to different backbone geometries. The fine structure of the UV spectra is accurately characterized and enables us to identify signatures of secondary structures.
Collapse
Affiliation(s)
- Jun Jiang
- Chemistry Department, University of California Irvine, USA
| | | | - Benjamin M. Bulheller
- School of Chemistry, University of Nottingham, University Park Nottingham NG7 2RD UK
| | - Jonathan D. Hirst
- School of Chemistry, University of Nottingham, University Park Nottingham NG7 2RD UK
| | - Shaul Mukamel
- Chemistry Department, University of California Irvine, USA
| |
Collapse
|
90
|
Abramavicius D, Jiang J, Bulheller BM, Hirst JD, Mukamel S. Simulation study of chiral two-dimensional ultraviolet spectroscopy of the protein backbone. J Am Chem Soc 2010; 132:7769-75. [PMID: 20481498 PMCID: PMC2896252 DOI: 10.1021/ja101968g] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Amide n-pi* and pi-pi* excitations around 200 nm are prominent spectroscopic signatures of the protein backbone, which are routinely used in ultraviolet (UV) circular dichroism for structure characterization. Recently developed ultrafast laser sources may be used to extend these studies to two dimensions. We apply a new algorithm for modeling protein electronic transitions to simulate two-dimensional UV photon echo signals in this regime and to identify signatures of protein backbone secondary (and tertiary) structure. Simulated signals for a set of globular and fibrillar proteins and their specific regions reveal characteristic patterns of helical and sheet secondary structures. We investigate how these patterns vary and converge with the size of the structural motif. Specific chiral polarization configurations of the UV pulses are found to be sensitive to aspects of the protein structure. This information significantly augments that available from linear circular dichroism.
Collapse
|
91
|
Majava V, Polverini E, Mazzini A, Nanekar R, Knoll W, Peters J, Natali F, Baumgärtel P, Kursula I, Kursula P. Structural and functional characterization of human peripheral nervous system myelin protein P2. PLoS One 2010; 5:e10300. [PMID: 20421974 PMCID: PMC2858655 DOI: 10.1371/journal.pone.0010300] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 03/24/2010] [Indexed: 11/19/2022] Open
Abstract
The myelin sheath is a tightly packed multilayered membrane structure insulating selected axons in the central and the peripheral nervous systems. Myelin is a biochemically unique membrane, containing a specific set of proteins. In this study, we expressed and purified recombinant human myelin P2 protein and determined its crystal structure to a resolution of 1.85 A. A fatty acid molecule, modeled as palmitate based on the electron density, was bound inside the barrel-shaped protein. Solution studies using synchrotron radiation indicate that the crystal structure is similar to the structure of the protein in solution. Docking experiments using the high-resolution crystal structure identified cholesterol, one of the most abundant lipids in myelin, as a possible ligand for P2, a hypothesis that was proven by fluorescence spectroscopy. In addition, electrostatic potential surface calculations supported a structural role for P2 inside the myelin membrane. The potential membrane-binding properties of P2 and a peptide derived from its N terminus were studied. Our results provide an enhanced view into the structure and function of the P2 protein from human myelin, which is able to bind both monomeric lipids inside its cavity and membrane surfaces.
Collapse
Affiliation(s)
- Viivi Majava
- Department of Biochemistry, University of Oulu, Oulu, Finland
| | | | | | - Rahul Nanekar
- Department of Biochemistry, University of Oulu, Oulu, Finland
| | - Wiebke Knoll
- Institut Laue-Langevin, Grenoble, France
- University Joseph Fourier, Grenoble, France
| | - Judith Peters
- Institut Laue-Langevin, Grenoble, France
- University Joseph Fourier, Grenoble, France
- Institut de Biologie Structurale, Grenoble, France
| | - Francesca Natali
- Institut Laue-Langevin, Grenoble, France
- Consiglio Nazionale delle Richerche – Operative Group in Grenoble, Grenoble, France
| | | | - Inari Kursula
- Centre for Structural Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- German Electron Synchrotron, University of Hamburg, Hamburg, Germany
| | - Petri Kursula
- Department of Biochemistry, University of Oulu, Oulu, Finland
- Centre for Structural Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- German Electron Synchrotron, University of Hamburg, Hamburg, Germany
| |
Collapse
|
92
|
Hamley IW, Nutt DR, Brown GD, Miravet JF, Escuder B, Rodríguez-Llansola F. Influence of the solvent on the self-assembly of a modified amyloid beta peptide fragment. II. NMR and computer simulation investigation. J Phys Chem B 2010; 114:940-51. [PMID: 20039666 DOI: 10.1021/jp906107p] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The conformation of a model peptide AAKLVFF based on a fragment of the amyloid beta peptide Abeta16-20, KLVFF, is investigated in methanol and water via solution NMR experiments and molecular dynamics computer simulations. In previous work, we have shown that AAKLVFF forms peptide nanotubes in methanol and twisted fibrils in water. Chemical shift measurements were used to investigate the solubility of the peptide as a function of concentration in methanol and water. This enabled the determination of critical aggregation concentrations. The solubility was lower in water. In dilute solution, diffusion coefficients revealed the presence of intermediate aggregates in concentrated solution, coexisting with NMR-silent larger aggregates, presumed to be beta-sheets. In water, diffusion coefficients did not change appreciably with concentration, indicating the presence mainly of monomers, coexisting with larger aggregates in more concentrated solution. Concentration-dependent chemical shift measurements indicated a folded conformation for the monomers/intermediate aggregates in dilute methanol, with unfolding at higher concentration. In water, an antiparallel arrangement of strands was indicated by certain ROESY peak correlations. The temperature-dependent solubility of AAKLVFF in methanol was well described by a van't Hoff analysis, providing a solubilization enthalpy and entropy. This pointed to the importance of solvophobic interactions in the self-assembly process. Molecular dynamics simulations constrained by NOE values from NMR suggested disordered reverse turn structures for the monomer, with an antiparallel twisted conformation for dimers. To model the beta-sheet structures formed at higher concentration, possible model arrangements of strands into beta-sheets with parallel and antiparallel configurations and different stacking sequences were used as the basis for MD simulations; two particular arrangements of antiparallel beta-sheets were found to be stable, one being linear and twisted and the other twisted in two directions. These structures were used to simulate circular dichroism spectra. The roles of aromatic stacking interactions and charge transfer effects were also examined. Simulated spectra were found to be similar to those observed experimentally (in water or methanol) which show a maximum at 215 or 218 nm due to pi-pi* interactions, when allowance is made for a 15-18 nm red-shift that may be due to light scattering effects.
Collapse
Affiliation(s)
- I W Hamley
- Department of Chemistry, University of Reading, Reading RG6 6AD, UK
| | | | | | | | | | | |
Collapse
|
93
|
Karabencheva T, Christov C. Mechanisms of protein circular dichroism: insights from computational modeling. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2010; 80:85-115. [DOI: 10.1016/b978-0-12-381264-3.00003-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
94
|
Bulheller BM, Rodger A, Hicks MR, Dafforn TR, Serpell LC, Marshall KE, Bromley EHC, King PJS, Channon KJ, Woolfson DN, Hirst JD. Flow linear dichroism of some prototypical proteins. J Am Chem Soc 2009; 131:13305-14. [PMID: 19715308 DOI: 10.1021/ja902662e] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Flow linear dichroism (LD) spectroscopy provides information on the orientation of molecules in solution and hence on the relative orientation of parts of molecules. Long molecules such as fibrous proteins can be aligned in Couette flow cells and characterized using LD. We have measured using Couette flow and calculated from first principles the LD of proteins representing prototypical secondary structure classes: a self-assembling fiber and tropomyosin (all-alpha-helical), FtsZ (an alphabeta protein), an amyloid fibril (beta-sheet), and collagen [poly(proline)II helices]. The combination of calculation and experiment allows elucidation of the protein orientation in the Couette flow and the orientation of chromophores within the protein fibers.
Collapse
Affiliation(s)
- Benjamin M Bulheller
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Bulheller BM, Pantoş GD, Sanders JKM, Hirst JD. Electronic structure and circular dichroism spectroscopy of naphthalenediimide nanotubes. Phys Chem Chem Phys 2009; 11:6060-5. [DOI: 10.1039/b905187b] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|