51
|
Pathak S, Deori N, Sharma A, Nagotu S, Kale A. In vitro, in vivo and in silico rationale for the muscle loss due to therapeutic drugs used in the treatment of Mycobacterium tuberculosis infection. J Biomol Struct Dyn 2020; 40:44-60. [PMID: 32795137 DOI: 10.1080/07391102.2020.1806928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Tuberculosis globally affects millions of people every year and is responsible for high rates of mortality and morbidity in tropical countries like India. The treatment of tuberculosis involves using the first line of drugs especially Isoniazid, Pyrazinamide, Streptomycin, Ethambutol and Rifampicin for treatment under the DOTS (Directly Observed Treatment Shots) regime which can last up to minimum of six months. These drugs although widely used against Mycobacterium tuberculosis has given rise to multi drug resistant (MDR) tuberculosis strain. It has been observed widely that prolonged drug treatment for tuberculosis patient has rendered several side effects that include increasing muscle wasting and malnutrition. In our study, we have investigated the role of these major tuberculosis drugs namely Rifampicin, Streptomycin, Isoniazid, Pyrazinamide, and Ethambutol on actin polymerization which are famously known to be a central player in the sarcomere region of the muscle in human body. For in vitro studies, we have used biophysical approaches such as 90° scattering assay (RLS), size exclusion chromatography (SEC), Dynamic light scattering (DLS), Circular dichroism spectroscopy (CD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), kinetic analysis to understand the time taken to break down effect of above mentioned drugs on actin disruption. In vivo analysis was carried out on yeast Δend3 mutants which are rich in F-actin filaments in order to understand the effect of the aforementioned drugs in rendering the muscle wasting phenomenon in tuberculosis. Furthermore, we also carried out in silico analysis to understand the probable modes of binding of these drugs on actin filaments.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Samridhi Pathak
- School of Chemical Sciences, UM-DAE Center for excellence in basic sciences, University of Mumbai, Mumbai, India
| | - Nayan Deori
- Organelle Biology and Cellular Ageing Lab (OBCAL), Department of Biosciences and Bioengineering (BSBE), Indian Institute of Technology Guwahati (IITG), Guwahati, India
| | - Aditi Sharma
- School of Biotechnology and Bioinformatics, D. Y. Patil Deemed to be University, Navi Mumbai, India
| | - Shirisha Nagotu
- Organelle Biology and Cellular Ageing Lab (OBCAL), Department of Biosciences and Bioengineering (BSBE), Indian Institute of Technology Guwahati (IITG), Guwahati, India
| | - Avinash Kale
- School of Chemical Sciences, UM-DAE Center for excellence in basic sciences, University of Mumbai, Mumbai, India
| |
Collapse
|
52
|
Treatment quality and outcome for multidrug-resistant tuberculosis patients in four regions of China: a cohort study. Infect Dis Poverty 2020; 9:97. [PMID: 32682446 PMCID: PMC7368741 DOI: 10.1186/s40249-020-00719-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/09/2020] [Indexed: 12/01/2022] Open
Abstract
Background China incurs an extremely low treatment coverage of multidrug-resistant tuberculosis (MDR-TB). This study aimed to understand the experience of MDR-TB patients on quality of health care, and the clinical impact through an up to six-year follow-up. Methods Cohorts of MDR-TB patients were built in TB/MDR-TB designated hospitals in four regions of China from 2014 to 2015. Patients were followed up during treatment course, and yearly confirmation afterward until 2019. Delay in MDR-TB diagnosis and treatment was calculated upon bacteriological confirmation and treatment initiation. Risk factors for unfavourable outcomes were identified by multivariate logistic regression. Results Among 1168 bacteriological-positive TB patients identified from a 12-million population, 58 (5.0%) MDR-TB cases were detected. The median delay for MDR-TB diagnosis was 90.0 days, with 13.8% having a delay above 180.0 days. MDR-TB treatment was only recommended to 19 (32.8%) participants, while the rest continued with regimen for drug-susceptible TB. In MDR-TB treatment group, 36.8% achieved treatment success, while the others had incomplete treatment (21.1%), loss to follow-up (36.8%) and TB relapse (5.3%). For non-MDR-TB treatment group, 33.3% succeeded, 25.6% relapsed, 2.6% failed, 23.1% died, and 15.4% were lost to follow-up. Overall, only 35.7% (20/56) of detected MDR-TB patients had favourable outcomes and higher education level was positively associated with it (adjusted odds ratio [aOR]: 3.60, 95% confidence interval [CI]: 1.04–12.5). Conclusions A large proportion of patients did not receive MDR-TB treatment and had unfavourable outcomes. Delayed MDR-TB diagnosis resulted in poor quality of MDR-TB care. Rapid diagnosis, regulated patient management and high-quality MDR-TB treatment should be enhanced in China.
Collapse
|
53
|
Influence of Single Nucleotide Polymorphisms on Rifampin Pharmacokinetics in Tuberculosis Patients. Antibiotics (Basel) 2020; 9:antibiotics9060307. [PMID: 32521634 PMCID: PMC7344705 DOI: 10.3390/antibiotics9060307] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 12/03/2022] Open
Abstract
Rifampin (RF) is metabolized in the liver into an active metabolite 25-desacetylrifampin and excreted almost equally via biliary and renal routes. Various influx and efflux transporters influence RF disposition during hepatic uptake and biliary excretion. Evidence has also shown that Vitamin D deficiency (VDD) and Vitamin D receptor (VDR) polymorphisms are associated with tuberculosis (TB). Hence, genetic polymorphisms of metabolizing enzymes, drug transporters and/or their transcriptional regulators and VDR and its pathway regulators may affect the pharmacokinetics of RF. In this narrative review, we aim to identify literature that has explored the influence of single nucleotide polymorphisms (SNPs) of genes encoding drug transporters and their transcriptional regulators (SLCO1B1, ABCB1, PXR and CAR), metabolizing enzymes (CES1, CES2 and AADAC) and VDR and its pathway regulators (VDR, CYP27B1 and CYP24A1) on plasma RF concentrations in TB patients on antitubercular therapy. Available reports to date have shown that there is a lack of any association of ABCB1, PXR, CAR, CES1 and AADAC genetic variants with plasma concentrations of RF. Further evidence is required from a more comprehensive exploration of the association of SLCO1B1, CES2 and Vitamin D pathway gene variants with RF pharmacokinetics in distinct ethnic groups and a larger population to reach conclusive information.
Collapse
|
54
|
Kloprogge F, Mwandumba HC, Banda G, Kamdolozi M, Shani D, Corbett EL, Kontogianni N, Ward S, Khoo SH, Davies GR, Sloan DJ. Longitudinal Pharmacokinetic-Pharmacodynamic Biomarkers Correlate With Treatment Outcome in Drug-Sensitive Pulmonary Tuberculosis: A Population Pharmacokinetic-Pharmacodynamic Analysis. Open Forum Infect Dis 2020; 7:ofaa218. [PMID: 32733976 PMCID: PMC7378673 DOI: 10.1093/ofid/ofaa218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/03/2020] [Indexed: 11/13/2022] Open
Abstract
Background This study aims to explore relationships between baseline demographic covariates, plasma antibiotic exposure, sputum bacillary load, and clinical outcome data to help improve future tuberculosis (TB) treatment response predictions. Methods Data were available from a longitudinal cohort study in Malawian drug-sensitive TB patients on standard therapy, including steady-state plasma antibiotic exposure (154 patients), sputum bacillary load (102 patients), final outcome (95 patients), and clinical details. Population pharmacokinetic and pharmacokinetic-pharmacodynamic models were developed in the software package NONMEM. Outcome data were analyzed using univariate logistic regression and Cox proportional hazard models in R, a free software for statistical computing. Results Higher isoniazid exposure correlated with increased bacillary killing in sputum (P < .01). Bacillary killing in sputum remained fast, with later progression to biphasic decline, in patients with higher rifampicin area under the curve (AUC)0-24 (P < .01). Serial sputum colony counting negativity at month 2 (P < .05), isoniazid CMAX (P < .05), isoniazid CMAX/minimum inhibitory concentration ([MIC] P < .01), and isoniazid AUC0-24/MIC (P < .01) correlated with treatment success but not with remaining free of TB. Slower bacillary killing (P < .05) and earlier progression to biphasic bacillary decline (P < .01) both correlate with treatment failure. Posttreatment recurrence only correlated with slower bacillary killing (P < .05). Conclusions Patterns of early bacillary clearance matter. Static measurements such as month 2 sputum conversion and pharmacokinetic parameters such as CMAX/MIC and AUC0-24/MIC were predictive of treatment failure, but modeling of quantitative longitudinal data was required to assess the risk of recurrence. Pooled individual patient data analyses from larger datasets are needed to confirm these findings.
Collapse
Affiliation(s)
- Frank Kloprogge
- Institute for Global Health, University College London, London, United Kingdom
| | - Henry C Mwandumba
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,Liverpool School of Tropical Medicine, Liverpool, United Kingdom.,Department of Microbiology, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Gertrude Banda
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Mercy Kamdolozi
- Department of Microbiology, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Doris Shani
- Department of Microbiology, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Elizabeth L Corbett
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,Department of Microbiology, College of Medicine, University of Malawi, Blantyre, Malawi.,London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Steve Ward
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Saye H Khoo
- Department of Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Geraint R Davies
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,Liverpool School of Tropical Medicine, Liverpool, United Kingdom.,Institute of Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Derek J Sloan
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,Liverpool School of Tropical Medicine, Liverpool, United Kingdom.,Department of Microbiology, College of Medicine, University of Malawi, Blantyre, Malawi.,Institute of Global Health, University of Liverpool, Liverpool, United Kingdom.,School of Medicine, University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|
55
|
A model-based analysis identifies differences in phenotypic resistance between in vitro and in vivo: implications for translational medicine within tuberculosis. J Pharmacokinet Pharmacodyn 2020; 47:421-430. [PMID: 32488575 PMCID: PMC7520421 DOI: 10.1007/s10928-020-09694-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/28/2020] [Indexed: 11/22/2022]
Abstract
Proper characterization of drug effects on Mycobacterium tuberculosis relies on the characterization of phenotypically resistant bacteria to correctly establish exposure–response relationships. The aim of this work was to evaluate the potential difference in phenotypic resistance in in vitro compared to murine in vivo models using CFU data alone or CFU together with most probable number (MPN) data following resuscitation with culture supernatant. Predictions of in vitro and in vivo phenotypic resistance i.e. persisters, using the Multistate Tuberculosis Pharmacometric (MTP) model framework was evaluated based on bacterial cultures grown with and without drug exposure using CFU alone or CFU plus MPN data. Phenotypic resistance and total bacterial number in in vitro natural growth observations, i.e. without drug, was well predicted by the MTP model using only CFU data. Capturing the murine in vivo total bacterial number and persisters during natural growth did however require re-estimation of model parameter using both the CFU and MPN observations implying that the ratio of persisters to total bacterial burden is different in vitro compared to murine in vivo. The evaluation of the in vitro rifampicin drug effect revealed that higher resolution in the persister drug effect was seen using CFU and MPN compared to CFU alone although drug effects on the other bacterial populations were well predicted using only CFU data. The ratio of persistent bacteria to total bacteria was predicted to be different between in vitro and murine in vivo. This difference could have implications for subsequent translational efforts in tuberculosis drug development.
Collapse
|
56
|
Onufrak NJ, Smith NM, Satlin MJ, Bulitta JB, Tan X, Holden PN, Nation RL, Li J, Forrest A, Tsuji BT, Bulman ZP. In pursuit of the triple crown: mechanism-based pharmacodynamic modelling for the optimization of three-drug combinations against KPC-producing Klebsiella pneumoniae. Clin Microbiol Infect 2020; 26:1256.e1-1256.e8. [PMID: 32387437 DOI: 10.1016/j.cmi.2020.04.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/30/2020] [Accepted: 04/19/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Optimal combination therapy for Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae (KPC-Kp) is unknown. The present study sought to characterize the pharmacodynamics (PD) of polymyxin B (PMB), meropenem (MEM) and rifampin (RIF) alone and in combination using a hollow fibre infection model (HFIM) coupled with mechanism-based modelling (MBM). METHODS A 10-day HFIM was utilized to simulate human pharmacokinetics (PK) of various PMB, MEM and RIF dosing regimens against a clinical KPC-Kp isolate, with total and resistant subpopulations quantified to capture PD response. A MBM was developed to characterize bacterial subpopulations and synergy between agents. Simulations using the MBM and published population PK models were employed to forecast the bacterial time course and the extent of its variability in infected patients for three-drug regimens. RESULTS In the HFIM, a PMB single-dose ('burst') regimen of 5.53 mg/kg combined with MEM 8 g using a 3-hr prolonged infusion every 8 hr and RIF 600 mg every 24 hr resulted in bacterial counts below the quantitative limit within 24 hr and remained undetectable throughout the 10-day experiment. The final MBM consisted of two bacterial subpopulations of differing PMB and MEM joint susceptibility and the ability to form a non-replicating, tolerant subpopulation. Synergistic interactions between PMB, MEM and RIF were well quantified, with the MBM providing adequate capture of the observed data. DISCUSSION An in vitro-in silico approach answers questions related to PD optimization as well as overall feasibility of combination therapy against KPC-Kp, offering crucial insights in the absence of clinical trials.
Collapse
Affiliation(s)
- N J Onufrak
- Department of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Institute for Clinical Pharmacodynamics, Inc., Schenectady, NY, USA.
| | - N M Smith
- Department of Pharmacy Practice, University at Buffalo, Buffalo, NY, USA
| | - M J Satlin
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - J B Bulitta
- Department of Pharmacotherapy & Translational Research, University of Florida, Gainesville, FL, USA
| | - X Tan
- Department of Pharmacy Practice, University of Illinois at Chicago, Chicago, IL, USA
| | - P N Holden
- Department of Pharmacy Practice, University at Buffalo, Buffalo, NY, USA
| | - R L Nation
- Drug Delivery Disposition & Dynamics, Monash University, Melbourne, Victoria, Australia
| | - J Li
- Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - A Forrest
- Department of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - B T Tsuji
- Department of Pharmacy Practice, University at Buffalo, Buffalo, NY, USA
| | - Z P Bulman
- Department of Pharmacy Practice, University at Buffalo, Buffalo, NY, USA; Department of Pharmacy Practice, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
57
|
Model-Informed Drug Discovery and Development Strategy for the Rapid Development of Anti-Tuberculosis Drug Combinations. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072376] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The increasing emergence of drug-resistant tuberculosis requires new effective and safe drug regimens. However, drug discovery and development are challenging, lengthy and costly. The framework of model-informed drug discovery and development (MID3) is proposed to be applied throughout the preclinical to clinical phases to provide an informative prediction of drug exposure and efficacy in humans in order to select novel anti-tuberculosis drug combinations. The MID3 includes pharmacokinetic-pharmacodynamic and quantitative systems pharmacology models, machine learning and artificial intelligence, which integrates all the available knowledge related to disease and the compounds. A translational in vitro-in vivo link throughout modeling and simulation is crucial to optimize the selection of regimens with the highest probability of receiving approval from regulatory authorities. In vitro-in vivo correlation (IVIVC) and physiologically-based pharmacokinetic modeling provide powerful tools to predict pharmacokinetic drug-drug interactions based on preclinical information. Mechanistic or semi-mechanistic pharmacokinetic-pharmacodynamic models have been successfully applied to predict the clinical exposure-response profile for anti-tuberculosis drugs using preclinical data. Potential pharmacodynamic drug-drug interactions can be predicted from in vitro data through IVIVC and pharmacokinetic-pharmacodynamic modeling accounting for translational factors. It is essential for academic and industrial drug developers to collaborate across disciplines to realize the huge potential of MID3.
Collapse
|
58
|
Silva DR, Mello FCDQ, Migliori GB. Shortened tuberculosis treatment regimens: what is new? J Bras Pneumol 2020; 46:e20200009. [PMID: 32215450 PMCID: PMC7462706 DOI: 10.36416/1806-3756/e20200009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 01/30/2020] [Indexed: 11/17/2022] Open
Abstract
Given the global burden of tuberculosis, shortened treatment regimens with existing or repurposed drugs are needed to contribute to tuberculosis control. The long duration of treatment of drug-susceptible tuberculosis (DS-TB) is associated with nonadherence and loss to follow up, and the treatment success rate of multidrug-resistant tuberculosis (MDR-TB) is low (approximately 50%) with longer regimens. In this review article, we report recent advances and ongoing clinical trials aimed at shortening regimens for DS-TB and MDR-TB. We discuss the role of high-dose rifampin, as well as that of clofazimine and linezolid in regimens for DS-TB. There are at least 5 ongoing clinical trials and 17 observational studies and clinical trials evaluating shorter regimens for DS-TB and MDR-TB, respectively. We also report the results of observational studies and clinical trials evaluating a standardized nine-month moxifloxacin-based regimen for MDR-TB. Further studies, especially randomized clinical trials, are needed to evaluate regimens including newer drugs, drugs proven to be or highly likely to be efficacious, and all-oral drugs in an effort to eliminate the need for injectable drugs.
Collapse
Affiliation(s)
- Denise Rossato Silva
- . Faculdade de Medicina, Universidade Federal do Rio Grande do Sul - UFRGS - Porto Alegre (RS) Brasil
| | | | - Giovanni Battista Migliori
- . Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri, IRCCS, Tradate, Italia
- . Blizard Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
59
|
Dorman SE, Nahid P, Kurbatova EV, Goldberg SV, Bozeman L, Burman WJ, Chang KC, Chen M, Cotton M, Dooley KE, Engle M, Feng PJ, Fletcher CV, Ha P, Heilig CM, Johnson JL, Lessem E, Metchock B, Miro JM, Nhung NV, Pettit AC, Phillips PPJ, Podany AT, Purfield AE, Robergeau K, Samaneka W, Scott NA, Sizemore E, Vernon A, Weiner M, Swindells S, Chaisson RE. High-dose rifapentine with or without moxifloxacin for shortening treatment of pulmonary tuberculosis: Study protocol for TBTC study 31/ACTG A5349 phase 3 clinical trial. Contemp Clin Trials 2020; 90:105938. [PMID: 31981713 PMCID: PMC7307310 DOI: 10.1016/j.cct.2020.105938] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Phase 2 clinical trials of tuberculosis treatment have shown that once-daily regimens in which rifampin is replaced by high dose rifapentine have potent antimicrobial activity that may be sufficient to shorten overall treatment duration. Herein we describe the design of an ongoing phase 3 clinical trial testing the hypothesis that once-daily regimens containing high dose rifapentine in combination with other anti-tuberculosis drugs administered for four months can achieve cure rates not worse than the conventional six-month treatment regimen. METHODS/DESIGN S31/A5349 is a multicenter randomized controlled phase 3 non-inferiority trial that compares two four-month regimens with the standard six-month regimen for treating drug-susceptible pulmonary tuberculosis in HIV-negative and HIV-positive patients. Both of the four-month regimens contain high-dose rifapentine instead of rifampin, with ethambutol replaced by moxifloxacin in one regimen. All drugs are administered seven days per week, and under direct observation at least five days per week. The primary outcome is tuberculosis disease-free survival at twelve months after study treatment assignment. A total of 2500 participants will be randomized; this gives 90% power to show non-inferiority with a 6.6% margin of non-inferiority. DISCUSSION This phase 3 trial formally tests the hypothesis that augmentation of rifamycin exposures can shorten tuberculosis treatment to four months. Trial design and standardized implementation optimize the likelihood of obtaining valid results. Results of this trial may have important implications for clinical management of tuberculosis at both individual and programmatic levels. TRIAL REGISTRATION NCT02410772. Registered 8 April 2015,https://www.clinicaltrials.gov/ct2/show/NCT02410772?term=02410772&rank=1.
Collapse
Affiliation(s)
- Susan E Dorman
- Medical University of South Carolina, Charleston, SC, USA.
| | - Payam Nahid
- University of California, San Francisco, California, USA
| | | | | | - Lorna Bozeman
- US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Kwok-Chiu Chang
- Tuberculosis and Chest Service, Department of Health, Hong Kong
| | - Michael Chen
- US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mark Cotton
- Stellenbosch University, Cape Town, South Africa
| | - Kelly E Dooley
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Melissa Engle
- Audie L. Murphy Veterans Affairs Medical Center / University of Texas Health Science Center, San Antonio, TX, USA
| | - Pei-Jean Feng
- US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Phan Ha
- Vietnam National TB Program (NTP)/UCSF Research Collaboration, Hanoi, Viet Nam
| | | | - John L Johnson
- Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Uganda-Case Western Reserve University Research Collaboration, Kampala, Uganda
| | | | | | - Jose M Miro
- Hospital Clinic-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Nguyen Viet Nhung
- Vietnam National TB Program (NTP)/UCSF Research Collaboration, Hanoi, Viet Nam
| | - April C Pettit
- Vanderbilt University Medical Center, Department of Medicine, Division of Infectious Diseases, Nashville, TN, USA
| | | | | | - Anne E Purfield
- US Centers for Disease Control and Prevention, Atlanta, GA, USA; U.S. Public Health Service Commissioned Corps, Rockville, MD, USA
| | | | | | - Nigel A Scott
- US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Erin Sizemore
- US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Andrew Vernon
- US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Marc Weiner
- Audie L. Murphy Veterans Affairs Medical Center / University of Texas Health Science Center, San Antonio, TX, USA
| | | | | |
Collapse
|
60
|
Lienhardt C, Nunn A, Chaisson R, Vernon AA, Zignol M, Nahid P, Delaporte E, Kasaeva T. Advances in clinical trial design: Weaving tomorrow's TB treatments. PLoS Med 2020; 17:e1003059. [PMID: 32106220 PMCID: PMC7046183 DOI: 10.1371/journal.pmed.1003059] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Christian Lienhardt and co-authors discuss the conclusions of the PLOS Medicine Collection on advances in clinical trial design for development of new tuberculosis treatments.
Collapse
Affiliation(s)
- Christian Lienhardt
- Unité Mixte Internationale TransVIHMI, UMI 233 IRD–U1175 INSERM—Université de Montpellier, Institut de Recherche pour le Développement (IRD), Montpellier, France
- * E-mail:
| | - Andrew Nunn
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, University College London, London, United Kingdom
| | - Richard Chaisson
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Andrew A. Vernon
- Division of TB Elimination, National Center for HIV, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Matteo Zignol
- Global TB Programme, World Health Organization, Geneva, Switzerland
| | - Payam Nahid
- UCSF Center for Tuberculosis and Division of Pulmonary and Critical Care Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Eric Delaporte
- Unité Mixte Internationale TransVIHMI, UMI 233 IRD–U1175 INSERM—Université de Montpellier, Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Tereza Kasaeva
- Global TB Programme, World Health Organization, Geneva, Switzerland
| |
Collapse
|
61
|
Te Brake LHM, Boeree MJ, Aarnoutse RE. Conflicting Findings on an Intermediate Dose of Rifampicin for Pulmonary Tuberculosis. Am J Respir Crit Care Med 2020; 199:1166-1167. [PMID: 30645149 PMCID: PMC6515878 DOI: 10.1164/rccm.201811-2101le] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
| | - Martin J Boeree
- 1 Radboud university medical center Nijmegen, the Netherlands
| | | |
Collapse
|
62
|
Grace AG, Mittal A, Jain S, Tripathy JP, Satyanarayana S, Tharyan P, Kirubakaran R. Shortened treatment regimens versus the standard regimen for drug-sensitive pulmonary tuberculosis. Cochrane Database Syst Rev 2019; 12:CD012918. [PMID: 31828771 PMCID: PMC6953336 DOI: 10.1002/14651858.cd012918.pub2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Tuberculosis causes more deaths than any other infectious disease worldwide, with pulmonary tuberculosis being the most common form. Standard first-line treatment for drug-sensitive pulmonary tuberculosis for six months comprises isoniazid, rifampicin, pyrazinamide, and ethambutol (HRZE) for two months, followed by HRE (in areas of high TB drug resistance) or HR, given over a four-month continuation phase. Many people do not complete this full course. Shortened treatment regimens that are equally effective and safe could improve treatment success. OBJECTIVES To evaluate the efficacy and safety of shortened treatment regimens versus the standard six-month treatment regimen for individuals with drug-sensitive pulmonary tuberculosis. SEARCH METHODS We searched the following databases up to 10 July 2019: the Cochrane Infectious Diseases Group Specialized Register; the Central Register of Controlled Trials (CENTRAL), in the Cochrane Library; MEDLINE (PubMed); Embase; the Latin American Caribbean Health Sciences Literature (LILACS); Science Citation Index-Expanded; Indian Medlars Center; and the South Asian Database of Controlled Clinical Trials. We also searched the World Health Organization (WHO) International Clinical Trials Registry Platform, ClinicalTrials.gov, the Clinical Trials Unit of the International Union Against Tuberculosis and Lung Disease, the UK Medical Research Council Clinical Trials Unit, and the Clinical Trials Registry India for ongoing trials. We checked the reference lists of identified articles to find additional relevant studies. SELECTION CRITERIA We searched for randomized controlled trials (RCTs) or quasi-RCTs that compared shorter-duration regimens (less than six months) versus the standard six-month regimen for people of all ages, irrespective of HIV status, who were newly diagnosed with pulmonary tuberculosis by positive sputum culture or GeneXpert, and with presumed or proven drug-sensitive tuberculosis. The primary outcome of interest was relapse within two years of completion of anti-tuberculosis treatment (ATT). DATA COLLECTION AND ANALYSIS Two review authors independently selected trials, extracted data, and assessed risk of bias for the included trials. For dichotomous outcomes, we used risk ratios (RRs) with 95% confidence intervals (CIs). When appropriate, we pooled data from the included trials in meta-analyses. We assessed the certainty of evidence using the GRADE approach. MAIN RESULTS We included five randomized trials that compared fluoroquinolone-containing four-month ATT regimens versus standard six-month ATT regimens and recruited 5825 adults with newly diagnosed drug-sensitive pulmonary tuberculosis from 14 countries with high tuberculosis transmission in Asia, Africa, and Latin Ameria. Three were multi-country trials that included a total of 572 HIV-positive people. These trials excluded children, pregnant or lactating women, people with serious comorbid conditions, and those with diabetes mellitus. Four trials had multiple treatment arms. Moxifloxacin replaced ethambutol in standard four-month, daily or thrice-weekly ATT regimens in two trials; moxifloxacin replaced isoniazid in four-month ATT regimens in two trials, was given daily in one trial, and was given with rifapentine instead of rifampicin daily for two months and twice weekly for two months in one trial. Moxifloxacin was added to standard ATT drugs for three to four months in one ongoing trial that reported interim results. Gatifloxacin replaced ethambutol in standard ATT regimens given daily or thrice weekly for four months in two trials. Follow-up ranged from 12 months to 24 months after treatment completion for the majority of participants. Moxifloxacin-containing four-month ATT regimens Moxifloxacin-containing four-month ATT regimens that replaced ethambutol or isoniazid probably increased the proportions who experienced relapse after successful treatment compared to standard ATT regimens (RR 3.56, 95% CI 2.37 to 5.37; 2265 participants, 3 trials; moderate-certainty evidence). For death from any cause, there was probably little or no difference between the two regimens (2760 participants, 3 trials; moderate-certainty evidence). Treatment failure was rare, and there was probably little or no difference in proportions with treatment failure between ATT regimens (2282 participants, 3 trials; moderate-certainty evidence). None of the participants given moxifloxacin-containing regimens developed resistance to rifampicin, and these regimens may not increase the risk of acquired resistance (2282 participants, 3 trials; low-certainty evidence). Severe adverse events were probably little or no different with moxifloxacin-containing four-month regimens that replaced ethambutol or isoniazid, and with three- to four-month regimens that augmented standard ATT with moxifloxacin, when compared to standard six-month ATT regimens (3548 participants, 4 trials; moderate-certainty evidence). Gatifloxacin-containing four-month ATT regimens Gatifloxacin-containing four-month ATT regimens that replaced ethambutol probably increased relapse compared to standard six-month ATT regimens in adults with drug-sensitive pulmonary tuberculosis (RR 2.11, 95% CI 1.56 to 2.84; 1633 participants, 2 trials; moderate-certainty evidence). The four-month regimen probably made little or no difference in death compared to the six-month regimen (1886 participants, 2 trials; moderate-certainty evidence). Treatment failure was uncommon and was probably little or no different between the four-month and six-month regimens (1657 participants, 2 trials; moderate-certainty evidence). Acquired resistance to isoniazid or rifampicin was not detected in those given the gatifloxacin-containing shortened ATT regimen, but we are uncertain whether acquired drug resistance is any different in the four- and six-month regimens (429 participants, 1 trial; very low-certainty evidence). Serious adverse events were probably no different with either regimen (1993 participants, 2 trials; moderate-certainty evidence). AUTHORS' CONCLUSIONS Evidence to date does not support the use of shortened ATT regimens in adults with newly diagnosed drug-sensitive pulmonary tuberculosis. Four-month ATT regimens that replace ethambutol with moxifloxacin or gatifloxacin, or isoniazid with moxifloxacin, increase relapse substantially compared to standard six-month ATT regimens, although treatment success and serious adverse events are little or no different. The results of six large ongoing trials will help inform decisions on whether shortened ATT regimens can replace standard six-month ATT regimens. 9 December 2019 Up to date All studies incorporated from most recent search All eligible published studies found in the last search (10 Jul, 2019) were included.
Collapse
Affiliation(s)
- Angeline G Grace
- Sree Balaji Medical College & HospitalDepartment of Community MedicineWorks roadChrompetChennaiIndia600044
| | - Abhenil Mittal
- All India Institute of Medical SciencesDepartment of Internal MedicineNew DelhiIndia
| | - Siddharth Jain
- Postgraduate Institute of Medical Education and Research (PGIMER)Clinical Immunology and Rheumatology Unit, Department of Internal MedicineChandigarhIndia160012
| | - Jaya P Tripathy
- International Union Against Tuberculosis and Lung Disease (The Union), South‐East Asia Regional OfficeCentre for Operational ResearchNew DelhiIndia
| | - Srinath Satyanarayana
- International Union Against Tuberculosis and Lung Disease (The Union), South‐East Asia Regional OfficeNew DelhiIndia
| | - Prathap Tharyan
- Christian Medical CollegeClinical Epidemiology Unit, Prof. BV Moses Centre for Evidence‐Informed Healthcare and Health PolicyCarman Block II FloorCMC Campus, BagayamVelloreTamil NaduIndia632002
| | - Richard Kirubakaran
- Christian Medical CollegeCochrane South Asia, Prof. BV Moses Centre for Evidence‐Informed Healthcare and Health PolicyCarman Block II FloorCMC Campus, BagayamVelloreIndia632002
| | | |
Collapse
|
63
|
Nahid P, Mase SR, Migliori GB, Sotgiu G, Bothamley GH, Brozek JL, Cattamanchi A, Cegielski JP, Chen L, Daley CL, Dalton TL, Duarte R, Fregonese F, Horsburgh CR, Ahmad Khan F, Kheir F, Lan Z, Lardizabal A, Lauzardo M, Mangan JM, Marks SM, McKenna L, Menzies D, Mitnick CD, Nilsen DM, Parvez F, Peloquin CA, Raftery A, Schaaf HS, Shah NS, Starke JR, Wilson JW, Wortham JM, Chorba T, Seaworth B. Treatment of Drug-Resistant Tuberculosis. An Official ATS/CDC/ERS/IDSA Clinical Practice Guideline. Am J Respir Crit Care Med 2019; 200:e93-e142. [PMID: 31729908 PMCID: PMC6857485 DOI: 10.1164/rccm.201909-1874st] [Citation(s) in RCA: 262] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background: The American Thoracic Society, U.S. Centers for Disease Control and Prevention, European Respiratory Society, and Infectious Diseases Society of America jointly sponsored this new practice guideline on the treatment of drug-resistant tuberculosis (DR-TB). The document includes recommendations on the treatment of multidrug-resistant TB (MDR-TB) as well as isoniazid-resistant but rifampin-susceptible TB.Methods: Published systematic reviews, meta-analyses, and a new individual patient data meta-analysis from 12,030 patients, in 50 studies, across 25 countries with confirmed pulmonary rifampin-resistant TB were used for this guideline. Meta-analytic approaches included propensity score matching to reduce confounding. Each recommendation was discussed by an expert committee, screened for conflicts of interest, according to the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) methodology.Results: Twenty-one Population, Intervention, Comparator, and Outcomes questions were addressed, generating 25 GRADE-based recommendations. Certainty in the evidence was judged to be very low, because the data came from observational studies with significant loss to follow-up and imbalance in background regimens between comparator groups. Good practices in the management of MDR-TB are described. On the basis of the evidence review, a clinical strategy tool for building a treatment regimen for MDR-TB is also provided.Conclusions: New recommendations are made for the choice and number of drugs in a regimen, the duration of intensive and continuation phases, and the role of injectable drugs for MDR-TB. On the basis of these recommendations, an effective all-oral regimen for MDR-TB can be assembled. Recommendations are also provided on the role of surgery in treatment of MDR-TB and for treatment of contacts exposed to MDR-TB and treatment of isoniazid-resistant TB.
Collapse
|
64
|
Re-growth of Mycobacterium tuberculosis populations exposed to antibiotic combinations is due to the presence of isoniazid and not bacterial growth rate. Antimicrob Agents Chemother 2019:AAC.00570-19. [PMID: 31527023 PMCID: PMC6879242 DOI: 10.1128/aac.00570-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Modulation of the growth rate in Mycobacterium tuberculosis is key to its survival in the host, particularly with regard to its adaptation during chronic infection, when the growth rate is very slow. The resulting physiological changes influence the way in which this pathogen interacts with the host and responds to antibiotics. Therefore, it is important that we understand how the growth rate impacts antibiotic efficacy, particularly with respect to recovery/relapse. Modulation of the growth rate in Mycobacterium tuberculosis is key to its survival in the host, particularly with regard to its adaptation during chronic infection, when the growth rate is very slow. The resulting physiological changes influence the way in which this pathogen interacts with the host and responds to antibiotics. Therefore, it is important that we understand how the growth rate impacts antibiotic efficacy, particularly with respect to recovery/relapse. This is the first study that has asked how growth rates influence the mycobacterial responses to combinations of the frontline antimycobacterials, isoniazid (INH), rifampin (RIF), and pyrazinamide (PZA), using continuous cultures. The time course profiles of log-transformed total viable counts for cultures, controlled at either a fast growth rate (mean generation time [MGT], 23.1 h) or a slow growth rate (MGT, 69.3 h), were analyzed by the fitting of a mathematical model by nonlinear regression that accounted for the dilution rate in the chemostat and profiled the kill rates and recovery in culture. Using this approach, we show that populations growing more slowly were generally less susceptible to all treatments. We observed a faster kill rate associated with INH than with RIF or PZA and the appearance of regrowth. In line with this observation, regrowth was not observed with RIF exposure, which provided a slower bactericidal response. The sequential additions of RIF and PZA did not eliminate regrowth. We consider here that faster, early bactericidal activity is not what is required for the successful sterilization of M. tuberculosis, but instead, slower elimination of the bacilli followed by reduced recovery of the bacterial population is required.
Collapse
|
65
|
Development of new TB regimens: Harmonizing trial design, product registration requirements, and public health guidance. PLoS Med 2019; 16:e1002915. [PMID: 31490921 PMCID: PMC6730844 DOI: 10.1371/journal.pmed.1002915] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Christian Lienhardt and colleagues discuss the importance of communication and coordination between regulators, researchers, and policy makers to ensure tuberculosis trials provide high-quality evidence for policy decisions.
Collapse
|
66
|
Lawal IO, Fourie BP, Mathebula M, Moagi I, Lengana T, Moeketsi N, Nchabeleng M, Hatherill M, Sathekge MM. 18F-FDG PET/CT as a Noninvasive Biomarker for Assessing Adequacy of Treatment and Predicting Relapse in Patients Treated for Pulmonary Tuberculosis. J Nucl Med 2019; 61:412-417. [PMID: 31451489 DOI: 10.2967/jnumed.119.233783] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/05/2019] [Indexed: 12/16/2022] Open
Abstract
Microbial culture is the gold standard for determining the effectiveness of tuberculosis treatment. End-of-treatment (EOT) 18F-FDG PET/CT findings are variable among patients with negative microbial culture results after completing a standard regimen of antituberculous treatment (ATT), with some patients having a complete metabolic response to treatment whereas others have residual metabolic activity (RMA). We herein determine the impact of findings on EOT 18F-FDG PET/CT on tuberculosis relapse in patients treated with a standard regimen of ATT for drug-sensitive pulmonary tuberculosis (DS-PTB). Methods: Patients who completed a standard regimen of ATT for DS-PTB and were declared cured based on a negative clinical and bacteriologic examination were prospectively recruited to undergo EOT 18F-FDG PET/CT. Images were assessed for the presence of RMA. Patients were subsequently followed up for 6 mo looking for symptoms of tuberculosis relapse. When new symptoms developed, relapse was confirmed with bacteriologic testing. Repeat 18F-FDG PET/CT was done in patients who relapsed. Results: Fifty-three patients were included (mean age, 37.81 ± 11.29 y), with 62% being male and 75% HIV-infected. RMA was demonstrated in 33 patients (RMA group), whereas 20 patients had a complete metabolic response to ATT (non-RMA group). There was a higher prevalence of lung cavitation in the RMA group (P = 0.035). The groups did not significantly differ in age, sex, presence of HIV infection, body mass index, or hemoglobin level (P > 0.05). On follow-up, no patients in the non-RMA group developed tuberculosis relapse. Three patients in the RMA group developed relapse. All patients who developed tuberculosis relapse had bilateral disease with lung cavitation. Conclusion: A negative EOT 18F-FDG PET/CT result is protective against tuberculosis relapse. Nine percent of patients with RMA after ATT may experience tuberculosis relapse within 6 mo of completing ATT. Bilateral disease with lung cavitation is prevalent among patients with tuberculosis relapse.
Collapse
Affiliation(s)
- Ismaheel O Lawal
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
| | - Bernard P Fourie
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa
| | - Matsontso Mathebula
- Department of Medical Microbiology and MeCRU, Sefako Makgatho University of Medical Science, Pretoria, South Africa; and
| | - Ingrid Moagi
- Department of Medical Microbiology and MeCRU, Sefako Makgatho University of Medical Science, Pretoria, South Africa; and
| | - Thabo Lengana
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
| | - Nontando Moeketsi
- Department of Medical Microbiology and MeCRU, Sefako Makgatho University of Medical Science, Pretoria, South Africa; and
| | - Maphoshane Nchabeleng
- Department of Medical Microbiology and MeCRU, Sefako Makgatho University of Medical Science, Pretoria, South Africa; and
| | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Mike M Sathekge
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
| |
Collapse
|
67
|
Svensson RJ, Niward K, Davies Forsman L, Bruchfeld J, Paues J, Eliasson E, Schön T, Simonsson USH. Individualised dosing algorithm and personalised treatment of high-dose rifampicin for tuberculosis. Br J Clin Pharmacol 2019; 85:2341-2350. [PMID: 31269277 DOI: 10.1111/bcp.14048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/07/2019] [Accepted: 06/17/2019] [Indexed: 11/28/2022] Open
Abstract
AIMS To propose new exposure targets for Bayesian dose optimisation suited for high-dose rifampicin and to apply them using measured plasma concentrations coupled with a Bayesian forecasting algorithm allowing predictions of future doses, considering rifampicin's auto-induction, saturable pharmacokinetics and high interoccasion variability. METHODS Rifampicin exposure targets for Bayesian dose optimisation were defined based on literature data on safety and anti-mycobacterial activity in relation to rifampicin's pharmacokinetics i.e. highest plasma concentration up to 24 hours and area under the plasma concentration-time curve up to 24 hours (AUC0-24h ). Targets were suggested with and without considering minimum inhibitory concentration (MIC) information. Individual optimal doses were predicted for patients treated with rifampicin (10 mg/kg) using the targets with Bayesian forecasting together with sparse measurements of rifampicin plasma concentrations and baseline rifampicin MIC. RESULTS The suggested exposure target for Bayesian dose optimisation was a steady state AUC0-24h of 181-214 h × mg/L. The observed MICs ranged from 0.016-0.125 mg/L (mode: 0.064 mg/L). The predicted optimal dose in patients using the suggested target ranged from 1200-3000 mg (20-50 mg/kg) with a mode of 1800 mg (30 mg/kg, n = 24). The predicted optimal doses when taking MIC into account were highly dependent on the known technical variability of measured individual MIC and the dose was substantially lower compared to when using the AUC0-24h -only target. CONCLUSIONS A new up-to-date exposure target for Bayesian dose optimisation suited for high-dose rifampicin was derived. Using measured plasma concentrations coupled with Bayesian forecasting allowed prediction of the future dose whilst accounting for the auto-induction, saturable pharmacokinetics and high between-occasion variability of rifampicin.
Collapse
Affiliation(s)
- Robin J Svensson
- Department of Pharmaceutical Biosciences, Uppsala University, Sweden
| | - Katarina Niward
- Department of Clinical and Experimental Medicine, Linköping University, Sweden.,Department of Infectious Diseases, Linköping University Hospital, Sweden
| | - Lina Davies Forsman
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Sweden.,Department of Infectious Diseases, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Judith Bruchfeld
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Sweden.,Department of Infectious Diseases, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Jakob Paues
- Department of Clinical and Experimental Medicine, Linköping University, Sweden.,Department of Infectious Diseases, Linköping University Hospital, Sweden
| | - Erik Eliasson
- Department of Laboratory Medicine, Division of Clinical Pharmacology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Thomas Schön
- Department of Clinical Microbiology and Infectious Diseases, Kalmar County Hospital, Sweden.,Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Sweden
| | | |
Collapse
|
68
|
Dosing tuberculosis drugs in young children: the road ahead. THE LANCET CHILD & ADOLESCENT HEALTH 2019; 3:590-592. [PMID: 31324599 DOI: 10.1016/s2352-4642(19)30180-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 11/24/2022]
|
69
|
Advancing the development of new tuberculosis treatment regimens: The essential role of translational and clinical pharmacology and microbiology. PLoS Med 2019; 16:e1002842. [PMID: 31276490 PMCID: PMC6611566 DOI: 10.1371/journal.pmed.1002842] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
70
|
Grobbelaar M, Louw GE, Sampson SL, van Helden PD, Donald PR, Warren RM. Evolution of rifampicin treatment for tuberculosis. INFECTION GENETICS AND EVOLUTION 2019; 74:103937. [PMID: 31247337 DOI: 10.1016/j.meegid.2019.103937] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023]
Abstract
Rifampicin was discovered in 1965 and remains one of the most important drugs in tuberculosis treatment that is valued for its sterilizing activity and ability to shorten treatment. Antimicrobial activity of rifampicin was initially proved in vitro; subsequently numerous in vivo studies showed the bactericidal properties and dose-dependent effect of rifampicin. Rifampicin was first during the late 1960s to treat patients suffering from chronic drug-resistant pulmonary TB. Decades later, rifampicin continues to be studied with particular emphasis on whether higher doses could shorten the duration of treatment without increasing relapse or having adverse effects. Lesion-specific drug penetration and pharmacokinetics of rifampicin are improving our understanding of effective concentration while potentially refining drug regimen designs. Another prospective aspect of high-dose rifampicin is its potential use in treating discrepant mutation thereby eliminating the need for MDR treatment. To date, several clinical trials have shown the safety, efficacy, and tolerability of high-dose rifampicin. Currently, high-dose rifampicin has been used successfully in a routine clinical setting for the treatment of high-risk patients. However, the WHO and other relevant policy makers have not committed to implementing a controlled rollout thereof. This review describes the course that rifampicin has travelled to the present-day exploration of high-dose rifampicin treatment.
Collapse
Affiliation(s)
- Melanie Grobbelaar
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Gail E Louw
- Institute of Infectious Diseases and Molecular Medicine, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Samantha L Sampson
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Paul D van Helden
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Peter R Donald
- Department of Paediatrics and Child Health, Desmond Tutu TB Centre, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Robin M Warren
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
71
|
Aljayyoussi G, Donnellan S, Ward SA, Biagini GA. Intracellular PD Modelling ( PDi) for the Prediction of Clinical Activity of Increased Rifampicin Dosing. Pharmaceutics 2019; 11:pharmaceutics11060278. [PMID: 31200534 PMCID: PMC6630509 DOI: 10.3390/pharmaceutics11060278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 11/16/2022] Open
Abstract
Increasing rifampicin (RIF) dosages could significantly reduce tuberculosis (TB) treatment durations. Understanding the pharmacokinetic-pharmacodynamics (PK-PD) of increasing RIF dosages could inform clinical regimen selection. We used intracellular PD modelling (PDi) to predict clinical outcomes, primarily time to culture conversion, of increasing RIF dosages. PDi modelling utilizes in vitro-derived measurements of intracellular (macrophage) and extracellular Mycobacterium tuberculosis sterilization rates to predict the clinical outcomes of RIF at increasing doses. We evaluated PDi simulations against recent clinical data from a high dose (35 mg/kg per day) RIF phase II clinical trial. PDi-based simulations closely predicted the observed time-to-patient culture conversion status at eight weeks (hazard ratio: 2.04 (predicted) vs. 2.06 (observed)) for high dose RIF-based treatments. However, PDi modelling was less predictive of culture conversion status at 26 weeks for high-dosage RIF (99% predicted vs. 81% observed). PDi-based simulations indicate that increasing RIF beyond 35 mg/kg/day is unlikely to significantly improve culture conversion rates, however, improvements to other clinical outcomes (e.g., relapse rates) cannot be ruled out. This study supports the value of translational PDi-based modelling in predicting culture conversion rates for antitubercular therapies and highlights the potential value of this platform for the improved design of future clinical trials.
Collapse
Affiliation(s)
- Ghaith Aljayyoussi
- Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
| | - Samantha Donnellan
- Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
| | - Stephen A Ward
- Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
| | - Giancarlo A Biagini
- Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
| |
Collapse
|
72
|
Chirehwa MT, Velásquez GE, Gumbo T, McIlleron H. Quantitative assessment of the activity of antituberculosis drugs and regimens. Expert Rev Anti Infect Ther 2019; 17:449-457. [PMID: 31144539 PMCID: PMC6581212 DOI: 10.1080/14787210.2019.1621747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/17/2019] [Indexed: 10/26/2022]
Abstract
Introduction: Identification of optimal drug doses and drug combinations is crucial for optimized treatment of tuberculosis. Areas covered: An unprecedented level of research activity involving multiple approaches is seeking to improve tuberculosis treatment. This report is a review of the quantitative methods currently used on clinical data sets to identify drug exposure targets and optimal drug combinations for tuberculosis treatment. A high-level summary of the methods, including the strengths and weaknesses of each method and potential methodological improvements is presented. Methods incorporating data generated from multiple sources such as in vitro and clinical studies, and their potential to provide better estimates of pharmacokinetic/pharmacodynamic (PK/PD) targets, are discussed. PK/PD relationships identified are compared between different studies and data analysis methods. Expert opinion: The relationships between drug exposures and tuberculosis treatment outcomes are complex and require analytical methods capable of handling the multidimensional nature of the relationships. The choice of a method is guided by its complexity, interpretability of results, and type of data available.
Collapse
Affiliation(s)
- Maxwell T. Chirehwa
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, South Africa
| | - Gustavo E. Velásquez
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
| | - Tawanda Gumbo
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas, USA
| | - Helen McIlleron
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, South Africa
| |
Collapse
|
73
|
Mukherjee A, Lodha R, Kabra SK. Pharmacokinetics of First-Line Anti-Tubercular Drugs. Indian J Pediatr 2019; 86:468-478. [PMID: 30915644 DOI: 10.1007/s12098-019-02911-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/13/2022]
Abstract
Determining the optimal dosages of isoniazid, rifampicin, pyrazinamide and ethambutol in children is necessary to obtain therapeutic serum concentrations of these drugs. Revised dosages have improved the exposure of 1st line anti-tubercular drugs to some extent; there is still scope for modification of the dosages to achieve exposures which can lead to favourable outcome of the disease. High dose of rifampicin is being investigated in clinical trials in adults with some benefit; studies are required in children. Inter-individual pharmacokinetic variability and the effect of age, nutritional status, Human immunodeficiency virus (HIV) infection, acetylator genotype may need to be accounted for in striving for the dosages best suited for an individual.
Collapse
Affiliation(s)
- Aparna Mukherjee
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - S K Kabra
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| |
Collapse
|
74
|
Seijger C, Hoefsloot W, Bergsma-de Guchteneire I, te Brake L, van Ingen J, Kuipers S, van Crevel R, Aarnoutse R, Boeree M, Magis-Escurra C. High-dose rifampicin in tuberculosis: Experiences from a Dutch tuberculosis centre. PLoS One 2019; 14:e0213718. [PMID: 30870476 PMCID: PMC6417786 DOI: 10.1371/journal.pone.0213718] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/27/2019] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Recent evidence suggests that higher rifampicin doses may improve tuberculosis (TB) treatment outcome. METHODS In this observational cohort study we evaluated all TB patients who were treated with high-dose rifampicin (> 10 mg/kg daily) in our reference centre, from January 2008 to May 2018. Indications, achieved plasma rifampicin exposures, safety and tolerability were evaluated. RESULTS Eighty-eight patients were included. The main indications were low plasma concentrations (64.7%) and severe illness (29.5%), including central nervous system TB. Adjusted rifampicin dosages ranged from 900 mg to a maximum of 2400 mg (corresponding to 32 mg/kg) per day. Patients with severe illness received high-dose rifampicin immediately, the others had a higher dosage guided by therapeutic drug monitoring. Four patients developed hepatotoxicity, of which two were proven due to isoniazid. Re-introduction of high-dose rifampicin was successful in all four. Eighty-seven patients tolerated high-dose rifampicin well throughout treatment. Only one patient required a dose reduction due to gastro-intestinal disturbance. CONCLUSION High-dose rifampicin, used in specific groups of patients in our clinical setting, is safe and well-tolerated for the whole treatment duration. Measurement of drug exposures could be used as a tool/guide to increase rifampicin dosage if a reduced medication absorption or a poor treatment outcome is suspected. We suggest to administer high-dose rifampicin to patients with severe manifestations of TB or low rifampicin exposure to improve treatment outcome.
Collapse
Affiliation(s)
- Charlotte Seijger
- Department of Pulmonary Diseases, Radboud University Medical Center-Dekkerswald, Nijmegen, The Netherlands
| | - Wouter Hoefsloot
- Department of Pulmonary Diseases, Radboud University Medical Center-Dekkerswald, Nijmegen, The Netherlands
| | | | - Lindsey te Brake
- Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jakko van Ingen
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Saskia Kuipers
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Reinout van Crevel
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob Aarnoutse
- Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martin Boeree
- Department of Pulmonary Diseases, Radboud University Medical Center-Dekkerswald, Nijmegen, The Netherlands
| | - Cecile Magis-Escurra
- Department of Pulmonary Diseases, Radboud University Medical Center-Dekkerswald, Nijmegen, The Netherlands
| |
Collapse
|
75
|
Cresswell FV, Te Brake L, Atherton R, Ruslami R, Dooley KE, Aarnoutse R, Van Crevel R. Intensified antibiotic treatment of tuberculosis meningitis. Expert Rev Clin Pharmacol 2019; 12:267-288. [PMID: 30474434 DOI: 10.1080/17512433.2019.1552831] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Meningitis is the most severe manifestation of tuberculosis, resulting in death or disability in over 50% of those affected, with even higher morbidity and mortality among patients with HIV or drug resistance. Antimicrobial treatment of Tuberculous meningitis (TBM) is similar to treatment of pulmonary tuberculosis, although some drugs show poor central nervous system penetration. Therefore, intensification of antibiotic treatment may improve TBM treatment outcomes. Areas covered: In this review, we address three main areas: available data for old and new anti-tuberculous agents; intensified treatment in specific patient groups like HIV co-infection, drug-resistance, and children; and optimal research strategies. Expert commentary: There is good evidence from preclinical, clinical, and modeling studies to support the use of high-dose rifampicin in TBM, likely to be at least 30 mg/kg. Higher dose isoniazid could be beneficial, especially in rapid acetylators. The role of other first and second line drugs is unclear, but observational data suggest that linezolid, which has good brain penetration, may be beneficial. We advocate the use of molecular pharmacological approaches, physiologically based pharmacokinetic modeling and pharmacokinetic-pharmacodynamic studies to define optimal regimens to be tested in clinical trials. Exciting data from recent studies hold promise for improved regimens and better clinical outcomes in future.
Collapse
Affiliation(s)
- Fiona V Cresswell
- a Clinical Research Department , London School of Hygiene and Tropical Medicine , London , UK.,b Research Department , Infectious Diseases Institute , Kampala , Uganda
| | - Lindsey Te Brake
- c Department of Pharmacy , Radboud Institute of Health Sciences, Radboud Center for Infectious Diseases Radboud university medical center , Nijmegen , The Netherlands
| | - Rachel Atherton
- b Research Department , Infectious Diseases Institute , Kampala , Uganda
| | - Rovina Ruslami
- d TB-HIV Research Centre, Faculty of Medicine , Universitas Padjadjaran , Bandung , Indonesia
| | - Kelly E Dooley
- e Divisions of Clinical Pharmacology and Infectious Diseases, Department of Medicine , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Rob Aarnoutse
- c Department of Pharmacy , Radboud Institute of Health Sciences, Radboud Center for Infectious Diseases Radboud university medical center , Nijmegen , The Netherlands
| | - Reinout Van Crevel
- f Department of Internal Medicine and Radboud Center for Infectious Diseases , Radboud university medical center , Nijmegen , the Netherlands.,g Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine , University of Oxford , Oxford , UK
| |
Collapse
|
76
|
Bothamley G. What next? Basic research, new treatments and a patient-centred approach in controlling tuberculosis. Tuberculosis (Edinb) 2018. [DOI: 10.1183/2312508x.10026118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
77
|
Differentially Detectable Mycobacterium tuberculosis Cells in Sputum from Treatment-Naive Subjects in Haiti and Their Proportionate Increase after Initiation of Treatment. mBio 2018; 9:mBio.02192-18. [PMID: 30459198 PMCID: PMC6247085 DOI: 10.1128/mbio.02192-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Measurement of the reduction in CFU in sputum of patients with TB up to 2 weeks after the initiation of treatment is the gateway test for a new TB treatment. Reports have suggested that CFU assays fail to detect the majority of viable M. tuberculosis cells in sputum samples from the majority of patients when the number of M. tuberculosis is estimated by limiting dilution (LD). In an effort to avoid potential methodologic confounders, we applied a modified version of the LD assay in a study of a geographically distinct population. We confirmed that differentially detectable (DD) M. tuberculosis is often found before treatment, albeit at lower proportionate levels than in earlier reports. Strikingly, the prevalence and proportionate representation of DD M. tuberculosis increased during standard treatment. Sublethal exposure to certain antibiotics may help generate DD M. tuberculosis cells or enrich their representation among the surviving bacteria, and this may contribute to the need for prolonged treatment with those agents in order to achieve durable cures. Recent reports indicate that the sputum of 80% or more of treatment-naive subjects with tuberculosis recruited in England or South Africa contained more viable Mycobacterium tuberculosis cells detected by limiting dilution (LD) in liquid culture than detected as CFU. Efforts to generate such differentially detectable (DD) M. tuberculosis populations in vitro have been difficult to reproduce, and the LD assay is prone to artifact. Here, we applied a stringent version of the LD assay to sputum from 33 treatment-naive, HIV-negative Haitian subjects with drug-sensitive tuberculosis (TB) and to a second sputum sample after two weeks of standard treatment with isoniazid, rifampin, pyrazinamide, and ethambutol (HRZE) for 13 of these subjects. Twenty-one percent had statistically defined levels of DD M. tuberculosis in their pretreatment sputum at an average proportional excess over CFU of 3-fold. Sixty-nine percent of those who received HRZE had statistically defined levels of DD M. tuberculosis in their sputum, and of these, the mean proportionate excess over CFU was 7.9-fold. Thus, DD M. tuberculosis is detectable in pretreatment sputum from a significant proportion of subjects in the Western Hemisphere, and certain drugs or drug regimens, while reducing CFU, may at the same time increase the proportional representation of DD M. tuberculosis among the surviving bacilli. Monitoring DD M. tuberculosis may improve our ability to predict the efficacy of efforts to shorten treatment.
Collapse
|
78
|
Svensson RJ, Svensson EM, Aarnoutse RE, Diacon AH, Dawson R, Gillespie SH, Moodley M, Boeree MJ, Simonsson USH. Greater Early Bactericidal Activity at Higher Rifampicin Doses Revealed by Modeling and Clinical Trial Simulations. J Infect Dis 2018; 218:991-999. [DOI: 10.1093/infdis/jiy242] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/24/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Robin J Svensson
- Department of Pharmaceutical Biosciences, Uppsala University, Sweden
| | - Elin M Svensson
- Department of Pharmaceutical Biosciences, Uppsala University, Sweden
- Department of Pharmacy, Radboud Institute for Health Sciences, Nijmegen
| | - Rob E Aarnoutse
- Department of Pharmacy, Radboud Institute for Health Sciences, Nijmegen
| | | | - Rodney Dawson
- Division of Pulmonology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- University of Cape Town Lung Institute, Cape Town, South Africa
| | | | | | - Martin J Boeree
- Department of Lung Diseases, Radboud University Medical Center, Nijmegen
- University Center for Chronic Diseases Dekkerswald, Groesbeek, the Netherlands
| | | |
Collapse
|