51
|
Kreslová M, Sýkorová A, Bittenglová R, Schwarz J, Pomahačová R, Jehlička P, Kobr J, Trefil L, Sýkora J. Age-Related Progression of Microvascular Dysfunction in Cystic Fibrosis: New Detection Ways and Clinical Outcomes. Physiol Res 2021. [DOI: 10.33549//physiolres.934743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
There are concerns about altered vascular functions that could play an important role in the pathogenesis and influence the severity of chronic disease, however, increased cardiovascular risk in paediatric cystic fibrosis (CF) has not been yet fully understood. Aim was to analyse vascular disease risk and investigate changes over times in CF and controls. We prospectively enrolled 22 CF subjects (a median age of 16.07 years), and 22 healthy demographically matched controls (a median age of 17.28 years) and determined endothelial function. We utilised a combined diagnostic approach by measuring the plethysmographic Reactive Hyperemia Index (RHI) as the post-to preocclusive endothelium-dependent changes of vascular tone, and biomarkers that are known to be related to endothelial dysfunction (ED): asymmetric dimethyl arginine (ADMA), high-sensitive CRP (hsCRP), VCAM-1 and E-selectin. RHI values were significantly lower in CF young adults (p<0.005). HsCRP (p<0.005), E-selectin (p<0.001) and VCAM-1 (p<0.001) were significantly increased in CF patients since childhood. The findings have provided a detailed account of the ongoing process of microvascular dysfunction with gradual progression with the age of CF patients, making them further at risk of advanced vascular disease. Elevations of biomarkers in CF children with not yet demonstrated RHI changes but with significantly reduced RHI in adulthood and lipid profile changes indicate the possible occurrence of ED with CF-related specific risk factors over time and will enable us to provide the best possible support.
Collapse
Affiliation(s)
- M. Kreslová
- Department of Pediatrics, Charles University in Prague, Faculty of Medicine in Pilsen, Faculty Hospital, Pilsen, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Amirpour-Najafabadi B, Hosseini SS, Sam-Sani P, Rezaei E, Ramezani M, Changizi-Ashtiyani S. The glycocalyx, a novel key in understanding of mechanism of diabetic nephropathy: a commentary. J Diabetes Metab Disord 2021; 20:2049-2053. [PMID: 34900840 DOI: 10.1007/s40200-021-00826-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/30/2021] [Indexed: 11/28/2022]
Abstract
Introduction Diabetes is a chronic and progressive disease that usually causes disrupts the function of the body's organs and can eventually lead to cardiomyopathy, nephropathy, retinopathy, and neuropathy. Diabetic nephropathy (DN) is the most common cause of chronic kidney disease and causes chronic structural changes in different parts of the affected kidney. Glycocalyx layer is one of the most important components of the vascular base found in the endothelium throughout the body's arteries and it has been shown that glycocalyx is also damaged during diabetic nephropathy. Our goal is to conduct this systematic review study is to find the cause-and-effect relationship between glycocalyx and diabetic nephropathy and also to clarify the role of the endothelial renal glycocalyx in understanding of mechanism of the course of diabetic nephropathy, and to provide an accurate background for further important studies. Methods All databases included MEDLINE (PubMed), Science Direct, Scopus, Ovid and Google Scholar were systematically searched for related published articles. In all databases, the following search strategy was implemented and these key words (in the title/abstract) were used: "diabetes" AND "glycocalyx" OR "diabetic nephropathy" AND "glycocalyx". Results and discussion A total of 19 articles were retrieved from all databases using search strategy. After screening based on the title and abstract, number of 17 of them selected for full text assessment. Finally, after extracting the key points and making connections between the articles, we came up with new points to consider. It can be said that diabetes with the action of reactive oxygen species through oxidative stress, increases ICAM-1 and TNF-α and decreases heparanase enzyme, it affects the glomerular endothelium and eventually leads to albuminuria and destruction of the Glx layer. Conclusion Diabetes causes super-structural changes in the kidney nephrons at the glomerular level. The glomerular filter barrier, which includes the epithelial cell called the podocyte, endothelial pore cells, and basal membrane of the glomerulus, plays a major role in stabilizing the selective glomerular function in healthy individuals. Diabetic nephropathy also causes changes in endothelial glycocalyx.
Collapse
Affiliation(s)
- Behnam Amirpour-Najafabadi
- Faculty of Para-Medicine, Arak University of Medical Sciences, Arak, Iran.,Student Research Committee, Arak University of Medical Sciences, Arak, Iran
| | | | - Parnian Sam-Sani
- Faculty of Para-Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Erfan Rezaei
- Student Research Committee, Arak University of Medical Sciences, Arak, Iran
| | - Majid Ramezani
- Department of Internal Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Saeed Changizi-Ashtiyani
- Traditional and Complementary Medicine Research Center (TCMRC), Arak University of Medical Sciences, Arak, Iran.,Faculty of Para-Medicine, Department of Physiology, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
53
|
Ebert T, Neytchev O, Witasp A, Kublickiene K, Stenvinkel P, Shiels PG. Inflammation and Oxidative Stress in Chronic Kidney Disease and Dialysis Patients. Antioxid Redox Signal 2021; 35:1426-1448. [PMID: 34006115 DOI: 10.1089/ars.2020.8184] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Chronic kidney disease (CKD) can be regarded as a burden of lifestyle disease that shares common underpinning features and risk factors with the aging process; it is a complex constituted by several adverse components, including chronic inflammation, oxidative stress, early vascular aging, and cellular senescence. Recent Advances: A systemic approach to tackle CKD, based on mitigating the associated inflammatory, cell stress, and damage processes, has the potential to attenuate the effects of CKD, but it also preempts the development and progression of associated morbidities. In effect, this will enhance health span and compress the period of morbidity. Pharmacological, nutritional, and potentially lifestyle-based interventions are promising therapeutic avenues to achieve such a goal. Critical Issues: In the present review, currents concepts of inflammation and oxidative damage as key patho-mechanisms in CKD are addressed. In particular, potential beneficial but also adverse effects of different systemic interventions in patients with CKD are discussed. Future Directions: Senotherapeutics, the nuclear factor erythroid 2-related factor 2-kelch-like ECH-associated protein 1 (NRF2-KEAP1) signaling pathway, the endocrine klotho axis, inhibitors of the sodium-glucose cotransporter 2 (SGLT2), and live bio-therapeutics have the potential to reduce the burden of CKD and improve quality of life, as well as morbidity and mortality, in this fragile high-risk patient group. Antioxid. Redox Signal. 35, 1426-1448.
Collapse
Affiliation(s)
- Thomas Ebert
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Ognian Neytchev
- Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Anna Witasp
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Karolina Kublickiene
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Paul G Shiels
- Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
54
|
Hennigs JK, Matuszcak C, Trepel M, Körbelin J. Vascular Endothelial Cells: Heterogeneity and Targeting Approaches. Cells 2021; 10:2712. [PMID: 34685692 PMCID: PMC8534745 DOI: 10.3390/cells10102712] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 01/18/2023] Open
Abstract
Forming the inner layer of the vascular system, endothelial cells (ECs) facilitate a multitude of crucial physiological processes throughout the body. Vascular ECs enable the vessel wall passage of nutrients and diffusion of oxygen from the blood into adjacent cellular structures. ECs regulate vascular tone and blood coagulation as well as adhesion and transmigration of circulating cells. The multitude of EC functions is reflected by tremendous cellular diversity. Vascular ECs can form extremely tight barriers, thereby restricting the passage of xenobiotics or immune cell invasion, whereas, in other organ systems, the endothelial layer is fenestrated (e.g., glomeruli in the kidney), or discontinuous (e.g., liver sinusoids) and less dense to allow for rapid molecular exchange. ECs not only differ between organs or vascular systems, they also change along the vascular tree and specialized subpopulations of ECs can be found within the capillaries of a single organ. Molecular tools that enable selective vascular targeting are helpful to experimentally dissect the role of distinct EC populations, to improve molecular imaging and pave the way for novel treatment options for vascular diseases. This review provides an overview of endothelial diversity and highlights the most successful methods for selective targeting of distinct EC subpopulations.
Collapse
Affiliation(s)
- Jan K. Hennigs
- ENDomics Lab, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Christiane Matuszcak
- ENDomics Lab, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Martin Trepel
- Department of Hematology and Medical Oncology, University Medical Center Augsburg, 86156 Augsburg, Germany;
| | - Jakob Körbelin
- ENDomics Lab, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| |
Collapse
|
55
|
Abstract
PURPOSE OF REVIEW The extracellular matrix (ECM) is critical for all aspects of vascular pathobiology. In vascular disease the balance of its structural components is shifted. In atherosclerotic plaques there is in fact a dynamic battle between stabilizing and proinflammatory responses. This review explores the most recent strides that have been made to detail the active role of the ECM - and its main binding partners - in driving atherosclerotic plaque development and destabilization. RECENT FINDINGS Proteoglycans-glycosaminoglycans (PGs-GAGs) synthesis and remodelling, as well as elastin synthesis, cross-linking, degradation and its elastokines potentially affect disease progression, providing multiple steps for potential therapeutic intervention and diagnostic targeted imaging. Of note, GAGs biosynthetic enzymes modulate the phenotype of vascular resident and infiltrating cells. In addition, while plaque collagen structure exerts very palpable effects on its immediate surroundings, a new role for collagen is also emerging on a more systemic level as a biomarker for cardiovascular disease as well as a target for selective drug-delivery. SUMMARY The importance of studying the ECM in atherosclerosis is more and more acknowledged and various systems are being developed to visualize, target and mimic it.
Collapse
Affiliation(s)
- Chrysostomi Gialeli
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Center, Malmö
| | - Annelie Shami
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Center, Malmö
| | - Isabel Gonçalves
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Center, Malmö
- Department of Cardiology, Malmö, Skåne University Hospital, Lund University, Sweden
| |
Collapse
|
56
|
Schenck H, Netti E, Teernstra O, De Ridder I, Dings J, Niemelä M, Temel Y, Hoogland G, Haeren R. The Role of the Glycocalyx in the Pathophysiology of Subarachnoid Hemorrhage-Induced Delayed Cerebral Ischemia. Front Cell Dev Biol 2021; 9:731641. [PMID: 34540844 PMCID: PMC8446455 DOI: 10.3389/fcell.2021.731641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/06/2021] [Indexed: 12/02/2022] Open
Abstract
The glycocalyx is an important constituent of blood vessels located between the bloodstream and the endothelium. It plays a pivotal role in intercellular interactions in neuroinflammation, reduction of vascular oxidative stress, and provides a barrier regulating vascular permeability. In the brain, the glycocalyx is closely related to functions of the blood-brain barrier and neurovascular unit, both responsible for adequate neurovascular responses to potential threats to cerebral homeostasis. An aneurysmal subarachnoid hemorrhage (aSAH) occurs following rupture of an intracranial aneurysm and leads to immediate brain damage (early brain injury). In some cases, this can result in secondary brain damage, also known as delayed cerebral ischemia (DCI). DCI is a life-threatening condition that affects up to 30% of all aSAH patients. As such, it is associated with substantial societal and healthcare-related costs. Causes of DCI are multifactorial and thought to involve neuroinflammation, oxidative stress, neuroinflammation, thrombosis, and neurovascular uncoupling. To date, prediction of DCI is limited, and preventive and effective treatment strategies of DCI are scarce. There is increasing evidence that the glycocalyx is disrupted following an aSAH, and that glycocalyx disruption could precipitate or aggravate DCI. This review explores the potential role of the glycocalyx in the pathophysiological mechanisms contributing to DCI following aSAH. Understanding the role of the glycocalyx in DCI could advance the development of improved methods to predict DCI or identify patients at risk for DCI. This knowledge may also alter the methods and timing of preventive and treatment strategies of DCI. To this end, we review the potential and limitations of methods currently used to evaluate the glycocalyx, and strategies to restore or prevent glycocalyx shedding.
Collapse
Affiliation(s)
- Hanna Schenck
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Eliisa Netti
- Department of Neurosurgery, Helsinki University Hospital, Helsinki, Finland
| | - Onno Teernstra
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Inger De Ridder
- Department of Neurology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, Netherlands
| | - Jim Dings
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Mika Niemelä
- Department of Neurosurgery, Helsinki University Hospital, Helsinki, Finland
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Govert Hoogland
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Roel Haeren
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands.,Department of Neurosurgery, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
57
|
[Vascular emergencies in pregnant patients : Peripartum hemorrhage, thromboembolic events and hypertensive diseases in pregnancy]. Anaesthesist 2021; 70:895-908. [PMID: 34495345 DOI: 10.1007/s00101-021-00945-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 10/20/2022]
Abstract
In developed countries, peripartum hemorrhage, thromboembolic events and hypertensive pregnancy disorders are the most frequent complications in pregnancy. They pose a significant challenge for the interdisciplinary team of gynecology and anesthesiology. Untreated, these pregnancy-related complications result in a fulminant course. Close consultation between the specialist departments and knowledge of the area of responsibility are essential. In the case of acute bleeding the anesthesiologist is responsible for maintaining adequate circulatory conditions and management of hemostasis. Thromboembolic events require immediate anticoagulation and focused diagnostics. Thereby, both the fetal and the maternal risks must be weighed up. The hypertensive diseases in pregnancy have a very high risk of complications. In addition to symptomatic treatment in the intensive care unit, the optimal time of delivery must be determined by an interdisciplinary consensus. This is the only causal treatment option possible.
Collapse
|
58
|
Nicosia RF, Ligresti G, Caporarello N, Akilesh S, Ribatti D. COVID-19 Vasculopathy: Mounting Evidence for an Indirect Mechanism of Endothelial Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1374-1384. [PMID: 34033751 PMCID: PMC8141344 DOI: 10.1016/j.ajpath.2021.05.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022]
Abstract
Patients with coronavirus disease 2019 (COVID-19) who are critically ill develop vascular complications characterized by thrombosis of small, medium, and large vessels. Dysfunction of the vascular endothelium due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been implicated in the pathogenesis of the COVID-19 vasculopathy. Although initial reports suggested that endothelial injury was caused directly by the virus, recent studies indicate that endothelial cells do not express angiotensin-converting enzyme 2, the receptor that SARS-CoV-2 uses to gain entry into cells, or express it at low levels and are resistant to the infection. These new findings, together with the observation that COVID-19 triggers a cytokine storm capable of injuring the endothelium and disrupting its antithrombogenic properties, favor an indirect mechanism of endothelial injury mediated locally by an augmented inflammatory reaction to infected nonendothelial cells, such as the bronchial and alveolar epithelium, and systemically by the excessive immune response to infection. Herein we review the vascular pathology of COVID-19 and critically discuss the potential mechanisms of endothelial injury in this disease.
Collapse
Affiliation(s)
- Roberto F Nicosia
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington.
| | - Giovanni Ligresti
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Nunzia Caporarello
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Shreeram Akilesh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neuroscienze e Organi di Senso (SMBNOS), Universita' degli Studi Aldo Moro, Policlinico, Bari, Italy
| |
Collapse
|
59
|
Protective Treatments against Endothelial Glycocalyx Degradation in Surgery: A Systematic Review and Meta-Analysis. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11156994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The aim was to explore the body of literature focusing on protective treatments against endothelial glycocalyx degradation in surgery. A comprehensive systematic review of relevant articles was conducted across databases. Inclusion criteria: (1) treatments for the protection of the endothelial glycocalyx in surgery; (2) syndecan-1 used as a biomarker for endothelial glycocalyx degradation. Outcomes analysed: (1) mean difference of syndecan-1 (2) correlation between glycocalyx degradation and inflammation; (3) correlation between glycocalyx degradation and extravasation. A meta-analysis was used to present mean differences and 95% confidence intervals. Seven articles with eight randomised controlled trials were included. The greatest change from baseline values in syndecan-1 concentrations was generally from the first timepoint measured post-operatively. Interventions looked to either dampen the inflammatory response or fluid therapy. Methylprednisolone had the highest mean difference in plasma syndecan-1 concentrations. Ulinastatin showed correlations between alleviation of degradation and preserving vascular permeability. In this systematic review of 385 patients, those treated were more likely than those treated with placebo to exhibit less shedding of the endothelial glycocalyx. Methylprednisolone has been shown to specifically target the transient increase of glycocalyx degradation immediately post-operation and has displayed anti-inflammatory effects. We have proposed suggestions for improved uniformity and enhanced confidence for future randomised controlled trials.
Collapse
|
60
|
Soerensen M, Debrabant B, Halekoh U, Møller JE, Hassager C, Frydland M, Hjelmborg J, Beck HC, Rasmussen LM. Does diabetes modify the effect of heparin on plasma proteins? - A proteomic search for plasma protein biomarkers for diabetes-related endothelial dysfunction. J Diabetes Complications 2021; 35:107906. [PMID: 33785251 DOI: 10.1016/j.jdiacomp.2021.107906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/11/2021] [Accepted: 03/07/2021] [Indexed: 11/23/2022]
Abstract
AIM Heparin administration affects the concentrations of many plasma proteins through their displacement from the endothelial glycocalyx. A differentiated protein response in diabetes will therefore, at least partly, reflect glycocalyx changes. This study aims at identifying biomarkers of endothelial dysfunction in diabetes by statistical exploration of plasma proteome data for interactions between diabetes status and heparin treatment. METHODS Diabetes-by-heparin interactions in relation to protein levels were inspected by regression modelling in plasma proteome data from 497 patients admitted for acute angiography. Analyses were conducted separately for all 273 proteins and as set-based analyses of 44 heparin-relevant proteins identified by gene ontology analysis and 42 heparin-influenced proteins previously reported. RESULTS Seventy-five patients had diabetes and 361 received heparin before hospitalization. The proteome-wide analysis displayed no proteins with diabetes-heparin interaction to pass correction for multiple testing. The overall set-based analyses revealed significant association for both protein sets (p-values<2*10-4), while constraining on opposite directions of effect in diabetics and none-diabetics was insignificant (p-values = 0.11 and 0.17). CONCLUSIONS Our plasma proteome-wide interaction approach supports that diabetes influences heparin effects on protein levels, however the direction of effects and individual proteins could not be definitively pinpointed, likely reflecting a complex protein-basis for glycocalyx dysfunction in diabetes.
Collapse
Affiliation(s)
- Mette Soerensen
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, J.B. Winsløws Vej 9B, 5000 Odense C, Denmark; Center for Individualized Medicine in Arterial Diseases, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J.B. Winsløws Vej 4, 5000 Odense C, Denmark; Department of Clinical Genetics, Odense University Hospital, J.B. Winsløws Vej 4, 5000 Odense C, Denmark.
| | - Birgit Debrabant
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, J.B. Winsløws Vej 9B, 5000 Odense C, Denmark.
| | - Ulrich Halekoh
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, J.B. Winsløws Vej 9B, 5000 Odense C, Denmark.
| | - Jacob Eifer Møller
- Department of Clinical Cardiology, Odense University Hospital, J.B. Winsløws Vej 4, 5000 Odense C, Denmark; Department of Cardiology, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Christian Hassager
- Department of Cardiology, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Martin Frydland
- Department of Cardiology, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Jacob Hjelmborg
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, J.B. Winsløws Vej 9B, 5000 Odense C, Denmark.
| | - Hans Christian Beck
- Center for Individualized Medicine in Arterial Diseases, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J.B. Winsløws Vej 4, 5000 Odense C, Denmark.
| | - Lars Melholt Rasmussen
- Center for Individualized Medicine in Arterial Diseases, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J.B. Winsløws Vej 4, 5000 Odense C, Denmark.
| |
Collapse
|
61
|
Walter FR, Santa-Maria AR, Mészáros M, Veszelka S, Dér A, Deli MA. Surface charge, glycocalyx, and blood-brain barrier function. Tissue Barriers 2021; 9:1904773. [PMID: 34003072 DOI: 10.1080/21688370.2021.1904773] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The negative surface charge of brain microvessel endothelial cells is derived from the special composition of their membrane lipids and the thick endothelial surface glycocalyx. They are important elements of the unique defense systems of the blood-brain barrier. The tissue-specific properties, components, function and charge of the brain endothelial glycocalyx have only been studied in detail in the past 15 years. This review highlights the importance of the negative surface charge in the permeability of macromolecules and nanoparticles as well as in drug interactions. We discuss surface charge and glycoxalyx changes in pathologies related to the brain microvasculature and protective measures against glycocalyx shedding and damage. We present biophysical techniques, including a microfluidic chip device, to measure surface charge of living brain endothelial cells and imaging methods for visualization of surface charge and glycocalyx.
Collapse
Affiliation(s)
- Fruzsina R Walter
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Ana R Santa-Maria
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Mária Mészáros
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Szilvia Veszelka
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - András Dér
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Mária A Deli
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| |
Collapse
|
62
|
Qi F, Zhou H, Gu P, Tang ZH, Zhu BF, Chen JR, Zhang JS, Li F. Endothelial glycocalyx degradation is associated with early organ impairment in polytrauma patients. BMC Emerg Med 2021; 21:52. [PMID: 33879092 PMCID: PMC8056622 DOI: 10.1186/s12873-021-00446-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/08/2021] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Endothelial glycocalyx (EG) abnormal degradation were widely found in critical illness. However, data of EG degradation in multiple traumas is limited. We performed a study to assess the EG degradation and the correlation between the degradation and organ functions in polytrauma patients. METHODS A prospective observational study was conducted to enroll health participants (control group) and polytrauma patients (trauma group) at a University affiliated hospital between Feb 2020 and Oct 2020. Syndecan1 (SDC1) and heparin sulfate (HS) were detected in serum sample of both groups. In trauma group, injury severity scores (ISS) and sequential organ failure assessments (SOFA) were calculated. Occurrences of acute kidney injury (AKI), trauma-induced coagulopathy (TIC) within 48 h and 28-day all-cause mortality in trauma group were recorded. Serum SDC1 and HS levels were compared between two groups. Correlations between SDC1/HS and the indicators of organ systems in the trauma group were analyzed. ROC analyses were performed to assess the predictive value of SDC1 and HS for AKI, TIC within 48 h, and 28-day mortality in trauma group. RESULTS There were 45 polytrauma patients and 15 healthy participants were collected, totally. SDC1 and HS were significantly higher in trauma group than in control group (69.39 [54.18-130.80] vs. 24.15 [13.89-32.36], 38.92 [30.47-67.96] vs. 15.55 [11.89-23.24], P < 0.001, respectively). Trauma group was divided into high degradation group and low degradation group according to SDC1 median. High degradation group had more severe ISS, SOFA scores, worse organ functions (respiratory, kidney, coagulation and metabolic system), and higher incidence of hypothermia, acidosis and shock. The area under the receiver operator characteristic curves (AUC) of SDC1 to predict AKI, TIC occurrence within 48 h and 28-day mortality were 0.838 (95%CI: 0.720-0.957), 0.700 (95%CI: 0.514-0.885) and 0.764 (95%CI: 0.543-0.984), respectively. CONCLUSIONS EG degradation was elevated significantly in polytrauma patients, and the degradation was correlated with impaired respiratory, kidney, coagulation and metabolic systems in early stage. Serum SDC1 is a valuable predictive indicator of early onset of AKI, TIC, and 28-day mortality in polytrauma patients.
Collapse
Affiliation(s)
- Feng Qi
- Emergency Intensive Care Unit, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, 6 Haier Xiang North Road, Nantong, 226001, Jiangsu, China
| | - Hao Zhou
- Emergency Intensive Care Unit, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, 6 Haier Xiang North Road, Nantong, 226001, Jiangsu, China
| | - Peng Gu
- Emergency Intensive Care Unit, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, 6 Haier Xiang North Road, Nantong, 226001, Jiangsu, China
| | - Zhi-He Tang
- Emergency Intensive Care Unit, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, 6 Haier Xiang North Road, Nantong, 226001, Jiangsu, China
| | - Bao-Feng Zhu
- Emergency Intensive Care Unit, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, 6 Haier Xiang North Road, Nantong, 226001, Jiangsu, China
| | - Jian-Rong Chen
- Emergency Intensive Care Unit, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, 6 Haier Xiang North Road, Nantong, 226001, Jiangsu, China
| | - Jin-Song Zhang
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Feng Li
- Emergency Intensive Care Unit, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, 6 Haier Xiang North Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
63
|
The Effect of Tranexamic Acid Administration on Early Endothelial Damage Following Posterior Lumbar Fusion Surgery. J Clin Med 2021; 10:jcm10071415. [PMID: 33915859 PMCID: PMC8037070 DOI: 10.3390/jcm10071415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 01/22/2023] Open
Abstract
Tranexamic acid (TXA) protects against endothelial glycocalyx injury in vitro. We aimed to evaluate whether TXA could protect against endothelial glycocalyx degradation in patients undergoing posterior lumbar fusion surgery. Patients aged 30–80 years were enrolled. The TXA group was administered a loading dose of 10 mg/kg, followed by a 1 mg/kg/h infusion. Serum syndecan-1 and heparan sulfate concentrations, which are biomarkers of glycocalyx degradation, were measured at preoperative baseline (T0), immediately post-surgery (T1), and 2 h post-surgery (T2). Postoperative complications were assessed, including hypotension, desaturation, and acute kidney injury. Among the 121 patients who completed the study, 60 received TXA. There were no significant differences in the marker concentrations at each time point. However, the postoperative increase in syndecan-1 levels from baseline was significantly attenuated in the TXA group compared with the control group (median (interquartile range); T1 vs. T0: −1.6 (−5.3–2.6) vs. 2.2 (−0.7–4.8), p = 0.001; T2 vs. T0: 0.0 (−3.3–5.5) vs. 3.6 (−0.1–9.3), p = 0.013). Postoperative complications were significantly associated with the magnitude of the change in syndecan-1 levels (for T2 vs. T0: odds ratio: 1.08, 95% confidence interval: 1.02–1.14, p = 0.006). TXA administration was associated with reduced syndecan-1 shedding in patients undergoing posterior lumbar fusion surgery.
Collapse
|
64
|
Price S, Targoński R, Sadowski J, Targoński R. To Curb the Progression of Fatal COVID-19 Course-Dream or Reality. Curr Hypertens Rep 2021; 23:12. [PMID: 33638064 PMCID: PMC7910199 DOI: 10.1007/s11906-021-01130-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW To analyze the impact of sodium retention states on the course of COVID-19 and propose possible interventions to curb disease progression. RECENT FINDINGS Numerous data confirm a positive association of non-communicable diseases, aging, and other sodium-retaining states, including iatrogenic ones, with more severe sometimes fatal clinical course of COVID-19. Reasons for this effect could include increased angiotensin signaling via the AT1R receptor. The endothelial glycocalyx also plays an important role in infection, leading to a vicious cycle of inflammation and tissue sodium retention when damaged. RAS inhibitors may help restore glycocalyx function and prevent severe organ damage. Anticoagulants, especially heparin, may also have therapeutic applications due to antithrombotic, anti-inflammatory, glycocalyx-repairing, and antialdosteronic properties. The ambiguous influence of some diuretics on sodium balance was also discussed. Abnormal sodium storage and increased angiotensin-converting enzyme activity are related to the severity of COVID-19. Inducing sodium removal and reducing intake might improve outcomes.
Collapse
Affiliation(s)
- Szymon Price
- Miejski Szpital Zespolony w Olsztynie, Klinika Kardiologii i Chorób Wewnętrznych, Clinic of Cardiology and Internal Medicine, Metropolitan Hospital of Nicolaus Copernicus, University of Warmia and Mazury, Niepodległości 44, 10-045 Olsztyn, Poland
| | - Radosław Targoński
- Department of Cardiac & Vascular Surgery, University Hospital of Gdańsk, M. Skłodowskiej-Curie 3a street, 80-210 Gdańsk, Poland
| | - Janusz Sadowski
- Miejski Szpital Zespolony w Olsztynie, Klinika Kardiologii i Chorób Wewnętrznych, Clinic of Cardiology and Internal Medicine, Metropolitan Hospital of Nicolaus Copernicus, University of Warmia and Mazury, Niepodległości 44, 10-045 Olsztyn, Poland
| | - Ryszard Targoński
- Department of Cardiac & Vascular Surgery, University Hospital of Gdańsk, M. Skłodowskiej-Curie 3a street, 80-210 Gdańsk, Poland
| |
Collapse
|
65
|
De Luca M, Bryan DR, Hunter GR. Circulating Levels of the Heparan Sulfate Proteoglycan Syndecan-4 Positively Associate with Blood Pressure in Healthy Premenopausal Women. Biomolecules 2021; 11:biom11030342. [PMID: 33668381 PMCID: PMC7996250 DOI: 10.3390/biom11030342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 12/13/2022] Open
Abstract
Syndecans (SDCs) are transmembrane proteins that are present on most cell types where they play a role in multiple physiological processes, including cell-matrix adhesion and inflammation. Growing evidence suggests that elevated levels of both shed SDC1 and SDC4 are associated with hypertension and cardiovascular diseases, but their relationships with cardiovascular risk factors in healthy individuals are unknown. The primary objective of this study was to investigate whether serum levels of SDC4 and SDC1 were associated with body composition, hemodynamic parameters, pro-inflammatory cytokine concentrations, and urinary noradrenaline and dopamine levels in healthy women (17 African American and 20 European American) between the ages of 20 and 40 years old. Univariate analyses revealed only a significant (p < 0.05) inverse correlation between serum SDC1 and body fat percentage. On the other hand, serum SDC4 was positively correlated with systolic blood pressure, diastolic blood pressure, and urinary levels of noradrenaline and dopamine. Serum SDC4 was also a significant predictor of systolic blood pressure in a multivariate regression model that included fat-free mass and urinary dopamine levels as significant independent variables. The result did not change even adjusting for race. Our findings indicate that SDC4 has an important role in the physiological regulation of blood pressure.
Collapse
Affiliation(s)
- Maria De Luca
- Correspondence: ; Tel.: +1-205-934-7033; Fax: +1-205-934-7050
| | | | | |
Collapse
|
66
|
Peelen DM, Hoogduijn MJ, Hesselink DA, Baan CC. Advanced in vitro Research Models to Study the Role of Endothelial Cells in Solid Organ Transplantation. Front Immunol 2021; 12:607953. [PMID: 33664744 PMCID: PMC7921837 DOI: 10.3389/fimmu.2021.607953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/21/2021] [Indexed: 12/26/2022] Open
Abstract
The endothelium plays a key role in acute and chronic rejection of solid organ transplants. During both processes the endothelium is damaged often with major consequences for organ function. Also, endothelial cells (EC) have antigen-presenting properties and can in this manner initiate and enhance alloreactive immune responses. For decades, knowledge about these roles of EC have been obtained by studying both in vitro and in vivo models. These experimental models poorly imitate the immune response in patients and might explain why the discovery and development of agents that control EC responses is hampered. In recent years, various innovative human 3D in vitro models mimicking in vivo organ structure and function have been developed. These models will extend the knowledge about the diverse roles of EC in allograft rejection and will hopefully lead to discoveries of new targets that are involved in the interactions between the donor organ EC and the recipient's immune system. Moreover, these models can be used to gain a better insight in the mode of action of the currently prescribed immunosuppression and will enhance the development of novel therapeutics aiming to reduce allograft rejection and prolong graft survival.
Collapse
Affiliation(s)
- Daphne M Peelen
- Rotterdam Transplant Group, Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Martin J Hoogduijn
- Rotterdam Transplant Group, Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Dennis A Hesselink
- Rotterdam Transplant Group, Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Carla C Baan
- Rotterdam Transplant Group, Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
67
|
Puchwein-Schwepcke A, Artmann S, Rajwich L, Genzel-Boroviczény O, Nussbaum C. Effect of gestational age and postnatal age on the endothelial glycocalyx in neonates. Sci Rep 2021; 11:3133. [PMID: 33542284 PMCID: PMC7862677 DOI: 10.1038/s41598-021-81847-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/23/2020] [Indexed: 01/27/2023] Open
Abstract
Prematurity predisposes to cardiovascular disease; however the underlying mechanisms remain elusive. Disturbance of the endothelial glycocalyx (EG), an important regulator of vessel function, is thought to contribute to vascular pathology. Here, we studied the EG with respect to gestational and postnatal age in preterm and term neonates. The Perfused Boundary Region (PBR), an inverse measure of glycocalyx thickness, was measured postnatally in 85 term and 39 preterm neonates. Preterm neonates were further analyzed in two subgroups i.e., neonates born < 30 weeks gestational age (group A) and neonates born ≥ 30 weeks (group B). In preterm neonates, weekly follow-up measurements were performed if possible. PBR differed significantly between preterm and term neonates with lowest values representing largest EG dimension in extremely premature infants possibly reflecting its importance in fetal vascular development. Linear regression revealed a dependence of PBR on both, gestational age and postnatal age. Furthermore, hematocrit predicted longitudinal PBR changes. PBR measured in group A at a corrected age of > 30 weeks was significantly higher than in group B at birth, pointing towards an alteration of intrinsic maturational effects by extrinsic factors. These changes might contribute to the increased cardiovascular risk associated with extreme prematurity.
Collapse
Affiliation(s)
- Alexandra Puchwein-Schwepcke
- Division of Neonatology, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Lindwurmstr. 4, 80337, Munich, Germany
| | - Stefanie Artmann
- Division of Neonatology, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Lindwurmstr. 4, 80337, Munich, Germany
| | - Lea Rajwich
- Division of Neonatology, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Lindwurmstr. 4, 80337, Munich, Germany
| | - Orsolya Genzel-Boroviczény
- Division of Neonatology, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Lindwurmstr. 4, 80337, Munich, Germany
| | - Claudia Nussbaum
- Division of Neonatology, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Lindwurmstr. 4, 80337, Munich, Germany.
| |
Collapse
|
68
|
Abstract
Endothelial dysfunction (ED) plays a substantial role in the pathogenesis of atherosclerosis and some other vascular diseases. ED has been demonstrated in patients with hypercholesterolemia, diabetes, smoking, hypertension, and in patients with atherosclerotic disease. Besides classical risk factors, ED is affected by chronic inflammatory diseases and acute infections, particularly viral diseases. Causes of ED include oxidative stress, inflammation, and shear stress, which decrease the bioavailability of nitric oxide. Markers of ED have been sought, particularly circulating markers. Using these tests, it is possible to evaluate the response to harmful effects of risk factors and the effects of treatment on vessel wall function. Endothelial dysfunction is significantly and directly correlated with the occurrence of cardiac events and the risk of cardiac events increase as ED worsens. Because endothelial function plays a central role in atherogenesis it became a therapeutic target. Endothelial dysfunction is reversible and its improvement may be achieved by elimination of risk factors, inhibitors of endothelium-derived contracting factors (angiotensin-converting enzyme), smoking cessation, lipid-lowering drugs, diet, and physical exercise. By reversing ED, it is possible to restore vascular function.
Collapse
Affiliation(s)
- Pavel Poredos
- Department of Vascular Disease, 37663University Medical Centre Ljubljana, Slovenia.,Department of Advanced Cardiopulmonary Therapies and Transplantation, 7067The University of Texas Health Science Centre at Houston, TX, USA
| | | | - Igor Gregoric
- Department of Advanced Cardiopulmonary Therapies and Transplantation, 7067The University of Texas Health Science Centre at Houston, TX, USA
| |
Collapse
|
69
|
Gil CL, Hooker E, Larrivée B. Diabetic Kidney Disease, Endothelial Damage, and Podocyte-Endothelial Crosstalk. Kidney Med 2021; 3:105-115. [PMID: 33604542 PMCID: PMC7873832 DOI: 10.1016/j.xkme.2020.10.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Diabetes-related complications are a significant source of morbidity and mortality worldwide. Diabetic kidney disease is a frequent microvascular complication and a primary cause of kidney failure in patients with diabetes. The glomerular filtration barrier is composed of 3 layers: the endothelium, glomerular basement membrane, and podocytes. Podocytes and the endothelium communicate through molecular crosstalk to maintain filtration at the glomerular filtration barrier. Chronic hyperglycemia affects all 3 layers of the glomerular filtration barrier, as well as the molecular crosstalk that occurs between the 2 cellular layers. One of the earliest events following chronic hyperglycemia is endothelial cell dysfunction. Early endothelial damage is associated with progression of diabetic kidney disease. However, current therapies are based in controlling glycemia and arterial blood pressure without targeting endothelial dysfunction. Disruption of the endothelial cell layer also alters the molecular crosstalk that occurs between the endothelium and podocytes. This review discusses both the physiologic and pathologic communication that occurs at the glomerular filtration barrier. It examines how these signaling components contribute to podocyte foot effacement, podocyte detachment, and the progression of diabetic kidney disease.
Collapse
Affiliation(s)
- Cindy Lora Gil
- Department of Biomedical Sciences, University of Montreal, Montréal, QC, Canada
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montréal, QC, Canada
| | - Erika Hooker
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montréal, QC, Canada
| | - Bruno Larrivée
- Department of Ophtalmology, University of Montreal, Montréal, QC, Canada
| |
Collapse
|
70
|
Shevchenko IL, Stoĭko IM, Gudymovich VG, Cherniago TI. [Glycocalyx as a determining factor in development of endothelial venous dysfunction and possibilities of correction thereof]. ANGIOLOGII︠A︡ I SOSUDISTAI︠A︡ KHIRURGII︠A︡ = ANGIOLOGY AND VASCULAR SURGERY 2020; 26:71-77. [PMID: 33332308 DOI: 10.33529/angio2020404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Modern vascular surgery has the data on a substantial role of the endothelium in pathogenesis of vascular diseases. Endothelial dysfunction is associated with a wide range of pathological processes including those in chronic diseases of lower-limb veins. The discovery of the endothelial glycocalyx made it possible to evaluate its role in the development of endothelial dysfunction as a trigger mechanism in impairment of venous blood flow. The understanding of the unifying role of endothelial dysfunction in pathology in various fields of medicine provides a possibility of predicting the development of serious socially significant diseases such as cardiovascular diseases, diabetes mellitus, obstetrical complications, and to correct the conditions associated therewith. The present study was aimed at carrying out a systematic literature review, thus making it possible to evaluate the role of the endothelial glycocalyx in the development of endothelial dysfunction, as well as to determine therapy with sulodexide capable of decreasing the probability of the onset of endothelial dysfunction at the expense of an anti-inflammatory, antithrombotic, and angioprotective effect on the endothelial wall.
Collapse
Affiliation(s)
- Iu L Shevchenko
- National Medical and Surgical Centre named after N.I. Pirogov under the RF Ministry of Public Health, Moscow, Russia
| | - Iu M Stoĭko
- National Medical and Surgical Centre named after N.I. Pirogov under the RF Ministry of Public Health, Moscow, Russia
| | - V G Gudymovich
- National Medical and Surgical Centre named after N.I. Pirogov under the RF Ministry of Public Health, Moscow, Russia
| | - T Iu Cherniago
- National Medical and Surgical Centre named after N.I. Pirogov under the RF Ministry of Public Health, Moscow, Russia
| |
Collapse
|
71
|
Prikryl P, Satrapova V, Frydlova J, Hruskova Z, Zima T, Tesar V, Vokurka M. Mass spectrometry-based proteomic exploration of the small urinary extracellular vesicles in ANCA-associated vasculitis in comparison with total urine. J Proteomics 2020; 233:104067. [PMID: 33307252 DOI: 10.1016/j.jprot.2020.104067] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/11/2020] [Accepted: 11/29/2020] [Indexed: 01/07/2023]
Abstract
ANCA-associated vasculitis (AAV) is a rare, but potentially severe autoimmune disease, even nowadays displaying increased mortality and morbidity. Finding early biomarkers of activity and prognosis is thus very important. Small extracellular vesicles (EVs) isolated from urine can be considered as a non-invasive source of biomarkers. We evaluated several protocols for urinary EV isolation. To eliminate contaminating non-vesicular proteins due to AAV associated proteinuria we used proteinase K treatment. We investigated the differences in proteomes of small EVs of patients with AAV compared to healthy controls by label-free LC-MS/MS. In parallel, we performed an analogous proteomic analysis of urine samples from identical patients. The study results showed significant differences and similarities in both EV and urine proteome, the latter one being highly affected by proteinuria. Using bioinformatics tools we explored differentially changed proteins and their related pathways with a focus on the pathophysiology of AAV. Our findings indicate significant regulation of Golgi enzymes, such as MAN1A1, which can be involved in T cell activation by N-glycans glycosylation and may thus play a key role in pathogenesis and diagnosis of AAV. SIGNIFICANCE: The present study explores for the first time the changes in proteomes of small extracellular vesicles and urine of patients with renal ANCA-associated vasculitis compared to healthy controls by label-free LC-MS/MS. Isolation of vesicles from proteinuric urine samples has been modified to minimize contamination by plasma proteins and to reduce co-isolation of extraluminal proteins. Differentially changed proteins and their related pathways with a role in the pathophysiology of AAV were described and discussed. The results could be helpful for the research of potential biomarkers in renal vasculitis associated with ANCA.
Collapse
Affiliation(s)
- Petr Prikryl
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Veronika Satrapova
- Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jana Frydlova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Zdenka Hruskova
- Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Tomas Zima
- Institute of Clinical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Vladimir Tesar
- Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Martin Vokurka
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
72
|
Colombo M, Asadi Shehni A, Thoma I, McGurnaghan SJ, Blackbourn LAK, Wilkinson H, Collier A, Patrick AW, Petrie JR, McKeigue PM, Saldova R, Colhoun HM. Quantitative levels of serum N-glycans in type 1 diabetes and their association with kidney disease. Glycobiology 2020; 31:613-623. [PMID: 33245334 DOI: 10.1093/glycob/cwaa106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/30/2020] [Accepted: 11/07/2020] [Indexed: 12/14/2022] Open
Abstract
We investigated associations of quantitative levels of N-glycans with hemoglobin A1c (HbA1c), renal function and renal function decline in type 1 diabetes. We measured 46 total N-glycan peaks (GPs) on 1565 serum samples from the Scottish Diabetes Research Network Type 1 Bioresource Study (SDRNT1BIO) and a pool of healthy donors. Quantitation of absolute abundance of each GP used 2AB-labeled mannose-3 as a standard. We studied cross-sectional associations of GPs and derived measures with HbA1c, albumin/creatinine ratio (ACR) and estimated glomerular filtration rate (eGFR), and prospective associations with incident albuminuria and final eGFR. All GPs were 1.4 to 3.2 times more abundant in SDRTN1BIO than in the healthy samples. Absolute levels of all GPs were slightly higher with higher HbA1c, with strongest associations for triantennary trigalactosylated disialylated, triantennary trigalactosylated trisialylated structures with core or outer arm fucose, and tetraantennary tetragalactosylated trisialylated glycans. Most GPs showed increased abundance with worsening ACR. Lower eGFR was associated with higher absolute GP levels, most significantly with biantennary digalactosylated disialylated glycans with and without bisect, triantennary trigalactosylated trisialylated glycans with and without outer arm fucose, and core fucosylated biantennary monogalactosylated monosialylated glycans. Although several GPs were inversely associated prospectively with final eGFR, cross-validated multivariable models did not improve prediction beyond clinical covariates. Elevated HbA1c is associated with an altered N-glycan profile in type 1 diabetes. Although we could not establish GPs to be prognostic of future renal function decline independently of HbA1c, further studies to evaluate their impact in the pathogenesis of diabetic kidney disease are warranted.
Collapse
Affiliation(s)
- Marco Colombo
- Independent conultant, Via Palestro 16/B, 23900, Lecco, Italy
| | - Akram Asadi Shehni
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland
| | - Ioanna Thoma
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Stuart J McGurnaghan
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Luke A K Blackbourn
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Hayden Wilkinson
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland
| | - Andrew Collier
- School of Health and Life Sciences, Glasgow Caledonian University, Cowcaddens Road, Glasgow G4 0B4, UK
| | - Alan W Patrick
- Royal Infirmary of Edinburgh, NHS Lothian, Old Dalkeith Road, Edinburgh EH16 4SA, UK
| | - John R Petrie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Paul M McKeigue
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, UK
| | - Radka Saldova
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland.,UCD School of Medicine, College of Health and Agricultural Science, University College Dublin, Belfield, Dublin 4, Dublin D04 V1W8, Ireland
| | - Helen M Colhoun
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK.,Public Health, NHS Fife, Hayfield Road, Kirkcaldy KY2 5AH, UK
| | | |
Collapse
|
73
|
Miller R, Wentzel AR, Richards GA. COVID-19: NAD + deficiency may predispose the aged, obese and type2 diabetics to mortality through its effect on SIRT1 activity. Med Hypotheses 2020; 144:110044. [PMID: 32758884 PMCID: PMC7322475 DOI: 10.1016/j.mehy.2020.110044] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Abstract
The SARS-CoV-2 hyperinflammatory response is associated with high mortality. This hypothesis suggests that a deficiency of nicotinamide adenine dinucleotide (NAD+) may be the primary factor related to the SARS-Cov-2 disease spectrum and the risk for mortality, as subclinical nutritional deficiencies may be unmasked by any significant increase in oxidative stress. NAD+ levels decline with age and are also reduced in conditions associated with oxidative stress as occurs with hypertension, diabetes and obesity. These groups have also been observed to have high mortality following infection with COVID-19. Further consumption of NAD+ in a pre-existent depleted state is more likely to cause progression to the hyperinflammatory stage of the disease through its limiting effects on the production of SIRT1. This provides a unifying hypothesis as to why these groups are at high risk of mortality and suggests that nutritional support with NAD+ and SIRT1 activators, could minimise disease severity if administered prophylactically and or therapeutically. The significance of this, if proven, has far-reaching consequences in the management of COVID-19 especially in third world countries, where resources and finances are limited.
Collapse
Affiliation(s)
- R Miller
- Telluraves Aerospace, Cape Town, South Africa
| | - A R Wentzel
- Consultant Anaesthesiologist, Port Elizabeth, South Africa.
| | - G A Richards
- Emeritus Professor Critical Care, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
74
|
Bonacina F, Da Dalt L, Catapano AL, Norata GD. Metabolic adaptations of cells at the vascular-immune interface during atherosclerosis. Mol Aspects Med 2020; 77:100918. [PMID: 33032828 PMCID: PMC7534736 DOI: 10.1016/j.mam.2020.100918] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022]
Abstract
Metabolic reprogramming is a physiological cellular adaptation to intracellular and extracellular stimuli that couples to cell polarization and function in multiple cellular subsets. Pathological conditions associated to nutrients overload, such as dyslipidaemia, may disturb cellular metabolic homeostasis and, in turn, affect cellular response and activation, thus contributing to disease progression. At the vascular/immune interface, the site of atherosclerotic plaque development, many of these changes occur. Here, an intimate interaction between endothelial cells (ECs), vascular smooth muscle cells (VSMCs) and immune cells, mainly monocytes/macrophages and lymphocytes, dictates physiological versus pathological response. Furthermore, atherogenic stimuli trigger metabolic adaptations both at systemic and cellular level that affect the EC layer barrier integrity, VSMC proliferation and migration, monocyte infiltration, macrophage polarization, lymphocyte T and B activation. Rewiring cellular metabolism by repurposing “metabolic drugs” might represent a pharmacological approach to modulate cell activation at the vascular immune interface thus contributing to control the immunometabolic response in the context of cardiovascular diseases.
Collapse
Affiliation(s)
- F Bonacina
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.
| | - L Da Dalt
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.
| | - A L Catapano
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy; IRCSS Multimedica, Milan, Italy.
| | - G D Norata
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy; IRCCS, Ospedale Bassini, Cinisello Balsamo, Italy.
| |
Collapse
|
75
|
Johnson AS, Fatemi R, Winlow W. SARS-CoV-2 Bound Human Serum Albumin and Systemic Septic Shock. Front Cardiovasc Med 2020; 7:153. [PMID: 33088822 PMCID: PMC7498713 DOI: 10.3389/fcvm.2020.00153] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/22/2020] [Indexed: 12/26/2022] Open
Abstract
The emergence of the COVID-19 virus and the subsequent pandemic have driven a great deal of research activity. The effects of COVID-19 are caused by the severe respiratory syndrome coronavirus 2 (SARS-CoV-2) and it is the underlying actions of SARs-CoV-2 virions on the endothelial glycocalyx that we consider here. One of the key factors in COVID-19 infection is its almost unique age-related profile, with a doubling in mortality every 10 years after the age of 50. The endothelial glycocalyx layer is essential in maintaining normal fluid homeostasis, but is fragile and prone to pathophysiological damage. It is physiologically significant in capillary microcirculation and in fluid distribution to the tissues. Human serum albumin (HSA), the most abundant protein in plasma, is created in the liver which also maintains its concentration, but this reduces by 10-15% after 50 years of age. HSA transports hormones, free fatty acids and maintains oncotic pressure, but SARS-CoV-2 virions bind competitively to HSA diminishing its normal transport function. Furthermore, hypoalbuminemia is frequently observed in patients with such conditions as diabetes, hypertension, and chronic heart failure, i.e., those most vulnerable to SARS-CoV-2 infection. Hypoalbuminemia, coagulopathy, and vascular disease have been linked in COVID-19 and have been shown to predict outcome independent of age and morbidity. Hypoalbuminemia is also known factor in sepsis and Acute respiratory distress syndrome (ARDS) occurs when fluids build-up in the alveoli and it is associated with sepsis, whose mechanism is systemic, being associated with the fluid and logistic mechanisms of the circulation. Glycocalyx damage is associated with changes plasma protein concentration, particularly HSA and blockage of albumin transport can produce the systemic symptoms seen in SARS-CoV-2 infection and sepsis. We therefore conclude that albumin binding to SARS-CoV-2 virions may inhibit the formation of the endothelial glycocalyx by inhibition of albumin transport binding sites. We postulate that albumin therapy to replace bound albumin might alleviate some of the symptoms leading to sepsis and that clinical trials to test this postulation should be initiated as a matter of urgency.
Collapse
Affiliation(s)
- Andrew S. Johnson
- Dipartimento di Biologia, Università Degli Studi di Naples, Federico II, Naples, Italy
| | - Rouholah Fatemi
- Physiology Research Center (PRC), School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - William Winlow
- Dipartimento di Biologia, Università Degli Studi di Naples, Federico II, Naples, Italy
- Institute of Ageing and Chronic Diseases, The Apex Building, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
76
|
Manenti A, Farinetti A, Manco G, Mattioli A. Secondary Lymphatic Insufficiency in Chronic Varicose Veins. Ann Vasc Surg 2020; 70:e7-e8. [PMID: 32871199 DOI: 10.1016/j.avsg.2020.08.099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 08/26/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Antonio Manenti
- Department of Surgery, University of Modena, Polyclinic Hospital, Modena, Italy.
| | - Alberto Farinetti
- Department of Surgery, University of Modena, Polyclinic Hospital, Modena, Italy
| | - Gianrocco Manco
- Department of Surgery, University of Modena, Polyclinic Hospital, Modena, Italy
| | | |
Collapse
|
77
|
Ikonomidis I, Pavlidis G, Katsimbri P, Lambadiari V, Parissis J, Andreadou I, Tsoumani M, Boumpas D, Kouretas D, Iliodromitis E. Tocilizumab improves oxidative stress and endothelial glycocalyx: A mechanism that may explain the effects of biological treatment on COVID-19. Food Chem Toxicol 2020; 145:111694. [PMID: 32822775 PMCID: PMC7434461 DOI: 10.1016/j.fct.2020.111694] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/05/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
We investigated the effects of tocilizumab on endothelial glycocalyx, a determinant of vascular permeability, and myocardial function in rheumatoid arthritis (RA). Eighty RA patients were randomized to tocilizumab (n = 40) or conventional synthetic disease-modifying antirheumatic drugs (csDMARDs) and glucocorticoids (GC) (n = 40) for 3 months. Forty healthy subjects with similar age and sex served as controls. We measured: (a)perfused boundary region (PBR) of the sublingual arterial microvessels (increased PBR indicates reduced glycocalyx thickness), (b)pulse wave velocity (PWV), (c)global LV longitudinal strain (GLS), (d)global work index (GWI) using speckle tracking echocardiography and e)C-reactive protein (CRP), malondialdehyde (MDA) and protein carbonyls (PCs) as oxidative stress markers at baseline and post-treatment. Compared to controls, RA patients had impaired glycocalyx and myocardial deformation markers (P < 0.05). Compared with baseline, tocilizumab reduced PBR(2.14 ± 0.2 versus 1.97 ± 0.2 μm; P < 0.05) while no significant differences were observed post-csDMARDs + GC(P > 0.05). Compared with csDMARDs + GC, tocilizumab achieved a greater increase of GLS, GWI and reduction of MDA, PCs and CRP(P < 0.05). The percent improvement of glycocalyx thickness (PBR) was associated with the percent decrease of PWV, MDA, PCs and the percent improvement of GLS and GWI(P < 0.05). Tocilizumab improves endothelial function leading to a greater increase of effective myocardial work than csDMARDs + GC through a profound reduction of inflammatory burden and oxidative stress. This mechanism may explain the effects of tocilizumab on COVID-19. Clinical trial registration url: https://www.clinicaltrials.gov. Unique identifier: NCT03288584. Tocilizumab improves endothelial glycocalyx and increases effective myocardial work. IL-6 inhibition significantly reduces the inflammatory burden and oxidative stress. Tocilizumab may have favorable effects on diseases with excess IL-6 release.
Collapse
Affiliation(s)
- Ignatios Ikonomidis
- 2nd Department of Cardiology, Attikon Hospital, National and Kapodistrian University of Athens, Medical School, 12462, Athens, Greece.
| | - George Pavlidis
- 2nd Department of Cardiology, Attikon Hospital, National and Kapodistrian University of Athens, Medical School, 12462, Athens, Greece
| | - Pelagia Katsimbri
- 4th Department of Internal Medicine, Attikon Hospital, National and Kapodistrian University of Athens, Medical School, 12462, Athens, Greece
| | - Vaia Lambadiari
- 2nd Department of Internal Medicine, Research Unit and Diabetes Center, Attikon Hospital, National and Kapodistrian University of Athens, Medical School, 12462, Athens, Greece
| | - John Parissis
- 2nd Department of Cardiology, Attikon Hospital, National and Kapodistrian University of Athens, Medical School, 12462, Athens, Greece
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15741, Athens, Greece
| | - Maria Tsoumani
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15741, Athens, Greece
| | - Dimitrios Boumpas
- 4th Department of Internal Medicine, Attikon Hospital, National and Kapodistrian University of Athens, Medical School, 12462, Athens, Greece
| | - Dimitrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500, Larissa, Greece
| | - Efstathios Iliodromitis
- 2nd Department of Cardiology, Attikon Hospital, National and Kapodistrian University of Athens, Medical School, 12462, Athens, Greece
| |
Collapse
|
78
|
Hirota T, Levy JH, Iba T. The influence of hyperglycemia on neutrophil extracellular trap formation and endothelial glycocalyx damage in a mouse model of type 2 diabetes. Microcirculation 2020; 27:e12617. [PMID: 32125048 DOI: 10.1111/micc.12617] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/23/2020] [Accepted: 02/27/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Hyperglycemia induces vascular dysfunction that is thought to be initiated by neutrophils. Neutrophil activation produces endothelial injury by pathways that include NETosis, a type of specific cell death. In this study, we investigated the effects of hyperglycemia on neutrophil activation, cell death, NETosis, and endothelial glycocalyx damage using a mouse diabetes model. METHODS We used db/db mice as a type 2 diabetes model, and C57BL/6 mice were the controls. At 5, 8, and 12 weeks of age, the proportion of CD11b+ granulocytes/monocytes, neutrophil extracellular trap (NET)-forming granulocytes/monocytes, and damaged and nonviable granulocytes/monocytes was analyzed. In addition, serum levels of high mobility group box 1, histone H3, and glycocalyx components that included syndecan-1 and hyaluronan were measured. RESULTS In diabetic mice, we observed an increased proportion of CD11b+ granulocytes/monocytes. The proportion of NET-forming granulocytes/monocytes increased from the early stages of the experiments. The proportions of damaged and nonviable granulocytes/monocytes increased over time. In the 12-week-old diabetic mice, serum histone H3 levels increased. Circulating levels of syndecan-1 and hyaluronan decreased over time and were lower in diabetic mice. CONCLUSION Neutrophil activation and cell death induce endothelial glycocalyx damage, and NET formation also participates in the mechanisms of vascular injury in type 2 diabetes.
Collapse
Affiliation(s)
- Tatsuhiko Hirota
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Jerrold H Levy
- Department of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
79
|
Martinac B, Nikolaev YA, Silvani G, Bavi N, Romanov V, Nakayama Y, Martinac AD, Rohde P, Bavi O, Cox CD. Cell membrane mechanics and mechanosensory transduction. CURRENT TOPICS IN MEMBRANES 2020; 86:83-141. [DOI: 10.1016/bs.ctm.2020.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|