51
|
Hori H. Methylated nucleosides in tRNA and tRNA methyltransferases. Front Genet 2014; 5:144. [PMID: 24904644 PMCID: PMC4033218 DOI: 10.3389/fgene.2014.00144] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/04/2014] [Indexed: 12/26/2022] Open
Abstract
To date, more than 90 modified nucleosides have been found in tRNA and the biosynthetic pathways of the majority of tRNA modifications include a methylation step(s). Recent studies of the biosynthetic pathways have demonstrated that the availability of methyl group donors for the methylation in tRNA is important for correct and efficient protein synthesis. In this review, I focus on the methylated nucleosides and tRNA methyltransferases. The primary functions of tRNA methylations are linked to the different steps of protein synthesis, such as the stabilization of tRNA structure, reinforcement of the codon-anticodon interaction, regulation of wobble base pairing, and prevention of frameshift errors. However, beyond these basic functions, recent studies have demonstrated that tRNA methylations are also involved in the RNA quality control system and regulation of tRNA localization in the cell. In a thermophilic eubacterium, tRNA modifications and the modification enzymes form a network that responses to temperature changes. Furthermore, several modifications are involved in genetic diseases, infections, and the immune response. Moreover, structural, biochemical, and bioinformatics studies of tRNA methyltransferases have been clarifying the details of tRNA methyltransferases and have enabled these enzymes to be classified. In the final section, the evolution of modification enzymes is discussed.
Collapse
Affiliation(s)
- Hiroyuki Hori
- Department of Materials Science and Biotechnology, Applied Chemistry, Graduate School of Science and Engineering, Ehime University Matsuyama, Japan
| |
Collapse
|
52
|
Björk GR, Hagervall TG. Transfer RNA Modification: Presence, Synthesis, and Function. EcoSal Plus 2014; 6. [PMID: 26442937 DOI: 10.1128/ecosalplus.esp-0007-2013] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Indexed: 06/05/2023]
Abstract
Transfer RNA (tRNA) from all organisms on this planet contains modified nucleosides, which are derivatives of the four major nucleosides. tRNA from Escherichia coli/Salmonella enterica serovar Typhimurium contains 33 different modified nucleosides, which are all, except one (Queuosine [Q]), synthesized on an oligonucleotide precursor, which by specific enzymes later matures into tRNA. The structural genes for these enzymes are found in mono- and polycistronic operons, the latter of which have a complex transcription and translation pattern. The synthesis of the tRNA-modifying enzymes is not regulated similarly, and it is not coordinated to that of their substrate, the tRNA. The synthesis of some of them (e.g., several methylated derivatives) is catalyzed by one enzyme, which is position and base specific, whereas synthesis of some has a very complex biosynthetic pathway involving several enzymes (e.g., 2-thiouridines, N 6-cyclicthreonyladenosine [ct6A], and Q). Several of the modified nucleosides are essential for viability (e.g., lysidin, ct6A, 1-methylguanosine), whereas the deficiency of others induces severe growth defects. However, some have no or only a small effect on growth at laboratory conditions. Modified nucleosides that are present in the anticodon loop or stem have a fundamental influence on the efficiency of charging the tRNA, reading cognate codons, and preventing missense and frameshift errors. Those that are present in the body of the tRNA primarily have a stabilizing effect on the tRNA. Thus, the ubiquitous presence of these modified nucleosides plays a pivotal role in the function of the tRNA by their influence on the stability and activity of the tRNA.
Collapse
Affiliation(s)
- Glenn R Björk
- Department of Molecular Biology, Umeå University, S-90187 Umeå, Sweden
| | - Tord G Hagervall
- Department of Molecular Biology, Umeå University, S-90187 Umeå, Sweden
| |
Collapse
|
53
|
Kumar A, Kumar S, Taneja B. The structure of Rv2372c identifies an RsmE-like methyltransferase fromMycobacterium tuberculosis. ACTA ACUST UNITED AC 2014; 70:821-32. [DOI: 10.1107/s1399004713033555] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 12/11/2013] [Indexed: 12/25/2022]
Abstract
U1498 of 16S rRNA plays an important role in translation fidelity as well as in antibiotic response. U1498 is present in a methylated form in the decoding centre of the ribosome. In this study, Rv2372c fromMycobacterium tuberculosishas been identified as an RsmE-like methyltransferase which specifically methylates U1498 of 16S rRNA at the N3 position and can complement RsmE-deletedEscherichia coli. The crystal structure of Rv2372c has been determined, and reveals that the protein belongs to a distinct class in the SPOUT superfamily and exists as a dimer. The deletion of critical residues at the C-terminus of Rv2372c leads to an inability of the protein to form stable dimers and to abolition of the methyltransferase activity. A ternary model of Rv2372c with its cofactorS-adenosylmethionine (SAM) and the 16S rRNA fragment148716S rRNA1510helps to identify binding pockets for SAM (in the deep trefoil knot) and substrate RNA (at the dimer interface) and suggests an SN2 mechanism for the methylation of N3 of U1498 in 16S rRNA.
Collapse
|
54
|
Shao Z, Yan W, Peng J, Zuo X, Zou Y, Li F, Gong D, Ma R, Wu J, Shi Y, Zhang Z, Teng M, Li X, Gong Q. Crystal structure of tRNA m1G9 methyltransferase Trm10: insight into the catalytic mechanism and recognition of tRNA substrate. Nucleic Acids Res 2014; 42:509-25. [PMID: 24081582 PMCID: PMC3874184 DOI: 10.1093/nar/gkt869] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 09/03/2013] [Accepted: 09/05/2013] [Indexed: 01/05/2023] Open
Abstract
Transfer RNA (tRNA) methylation is necessary for the proper biological function of tRNA. The N(1) methylation of guanine at Position 9 (m(1)G9) of tRNA, which is widely identified in eukaryotes and archaea, was found to be catalyzed by the Trm10 family of methyltransferases (MTases). Here, we report the first crystal structures of the tRNA MTase spTrm10 from Schizosaccharomyces pombe in the presence and absence of its methyl donor product S-adenosyl-homocysteine (SAH) and its ortholog scTrm10 from Saccharomyces cerevisiae in complex with SAH. Our crystal structures indicated that the MTase domain (the catalytic domain) of the Trm10 family displays a typical SpoU-TrmD (SPOUT) fold. Furthermore, small angle X-ray scattering analysis reveals that Trm10 behaves as a monomer in solution, whereas other members of the SPOUT superfamily all function as homodimers. We also performed tRNA MTase assays and isothermal titration calorimetry experiments to investigate the catalytic mechanism of Trm10 in vitro. In combination with mutational analysis and electrophoretic mobility shift assays, our results provide insights into the substrate tRNA recognition mechanism of Trm10 family MTases.
Collapse
Affiliation(s)
- Zhenhua Shao
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China and X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60349, USA
| | - Wei Yan
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China and X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60349, USA
| | - Junhui Peng
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China and X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60349, USA
| | - Xiaobing Zuo
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China and X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60349, USA
| | - Yang Zou
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China and X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60349, USA
| | - Fudong Li
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China and X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60349, USA
| | - Deshun Gong
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China and X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60349, USA
| | - Rongsheng Ma
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China and X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60349, USA
| | - Jihui Wu
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China and X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60349, USA
| | - Yunyu Shi
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China and X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60349, USA
| | - Zhiyong Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China and X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60349, USA
| | - Maikun Teng
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China and X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60349, USA
| | - Xu Li
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China and X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60349, USA
| | - Qingguo Gong
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China and X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60349, USA
| |
Collapse
|
55
|
Multilevel functional and structural defects induced by two pathogenic mitochondrial tRNA mutations. Biochem J 2013; 453:455-65. [PMID: 23631826 DOI: 10.1042/bj20130294] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Point mutations in hmtRNAs (human mitochondrial tRNAs) can cause various disorders, such as CPEO (chronic progressive external ophthalmoplegia) and MM (mitochondrial myopathy). Mitochondrial tRNALeu, especially the UUR codon isoacceptor, is recognized as a hot spot for pathogenic mtDNA point mutations. Thus far, 40 mutations have been reported in hmtRNAsLeu. In the present paper, we describe the wide range of effects of two substitutions found in the TΨC arms of two hmtRNAsLeu isoacceptors. The G52A substitution, corresponding to the pathogenic G12315A mutation in tRNALeu(CUN), and G3283A in tRNALeu(UUR) exhibited structural changes in the outer corner of the tRNA shape as shown by RNase probing. These mutations also induced reductions in aminoacylation, 3'-end processing and base modification processes. The main effects of the A57G substitution, corresponding to mutations A12320G in tRNALeu(CUN) and A3288G in tRNALeu(UUR), were observed on the aminoacylation activity and binding to hmEF-Tu (human mitochondrial elongation factor Tu). These observations suggest that the wide range of effects may amplify the deleterious impact on mitochondrial protein synthesis in vivo. The findings also emphasize that an exact understanding of tRNA dysfunction is critical for the future development of therapies for mitochondrial diseases.
Collapse
|
56
|
Hill PJ, Abibi A, Albert R, Andrews B, Gagnon MM, Gao N, Grebe T, Hajec LI, Huang J, Livchak S, Lahiri SD, McKinney DC, Thresher J, Wang H, Olivier N, Buurman ET. Selective Inhibitors of Bacterial t-RNA-(N1G37) Methyltransferase (TrmD) That Demonstrate Novel Ordering of the Lid Domain. J Med Chem 2013; 56:7278-88. [DOI: 10.1021/jm400718n] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pamela J. Hill
- Departments of Chemistry, ‡Biosciences and §Discovery Sciences, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Ayome Abibi
- Departments of Chemistry, ‡Biosciences and §Discovery Sciences, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Robert Albert
- Departments of Chemistry, ‡Biosciences and §Discovery Sciences, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Beth Andrews
- Departments of Chemistry, ‡Biosciences and §Discovery Sciences, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Moriah M. Gagnon
- Departments of Chemistry, ‡Biosciences and §Discovery Sciences, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Ning Gao
- Departments of Chemistry, ‡Biosciences and §Discovery Sciences, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Tyler Grebe
- Departments of Chemistry, ‡Biosciences and §Discovery Sciences, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Laurel I. Hajec
- Departments of Chemistry, ‡Biosciences and §Discovery Sciences, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Jian Huang
- Departments of Chemistry, ‡Biosciences and §Discovery Sciences, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Stephania Livchak
- Departments of Chemistry, ‡Biosciences and §Discovery Sciences, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Sushmita D. Lahiri
- Departments of Chemistry, ‡Biosciences and §Discovery Sciences, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - David C. McKinney
- Departments of Chemistry, ‡Biosciences and §Discovery Sciences, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Jason Thresher
- Departments of Chemistry, ‡Biosciences and §Discovery Sciences, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Hongming Wang
- Departments of Chemistry, ‡Biosciences and §Discovery Sciences, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Nelson Olivier
- Departments of Chemistry, ‡Biosciences and §Discovery Sciences, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Ed T. Buurman
- Departments of Chemistry, ‡Biosciences and §Discovery Sciences, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| |
Collapse
|
57
|
Christian T, Gamper H, Hou YM. Conservation of structure and mechanism by Trm5 enzymes. RNA (NEW YORK, N.Y.) 2013; 19:1192-1199. [PMID: 23887145 PMCID: PMC3753926 DOI: 10.1261/rna.039503.113] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 06/06/2013] [Indexed: 06/02/2023]
Abstract
Enzymes of the Trm5 family catalyze methyl transfer from S-adenosyl methionine (AdoMet) to the N¹ of G37 to synthesize m¹ G37-tRNA as a critical determinant to prevent ribosome frameshift errors. Trm5 is specific to eukaryotes and archaea, and it is unrelated in evolution from the bacterial counterpart TrmD, which is a leading anti-bacterial target. The successful targeting of TrmD requires detailed information on Trm5 to avoid cross-species inhibition. However, most information on Trm5 is derived from studies of the archaeal enzyme Methanococcus jannaschii (MjTrm5), whereas little information is available for eukaryotic enzymes. Here we use human Trm5 (Homo sapiens; HsTrm5) as an example of eukaryotic enzymes and demonstrate that it has retained key features of catalytic properties of the archaeal MjTrm5, including the involvement of a general base to mediate one proton transfer. We also address the protease sensitivity of the human enzyme upon expression in bacteria. Using the tRNA-bound crystal structure of the archaeal enzyme as a model, we have identified a single substitution in the human enzyme that improves resistance to proteolysis. These results establish conservation in both the catalytic mechanism and overall structure of Trm5 between evolutionarily distant eukaryotic and archaeal species and validate the crystal structure of the archaeal enzyme as a useful model for studies of the human enzyme.
Collapse
|
58
|
Masuda I, Sakaguchi R, Liu C, Gamper H, Hou YM. The temperature sensitivity of a mutation in the essential tRNA modification enzyme tRNA methyltransferase D (TrmD). J Biol Chem 2013; 288:28987-96. [PMID: 23986443 DOI: 10.1074/jbc.m113.485797] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Conditional temperature-sensitive (ts) mutations are important reagents to study essential genes. Although it is commonly assumed that the ts phenotype of a specific mutation arises from thermal denaturation of the mutant enzyme, the possibility also exists that the mutation decreases the enzyme activity to a certain level at the permissive temperature and aggravates the negative effect further upon temperature upshifts. Resolving these possibilities is important for exploiting the ts mutation for studying the essential gene. The trmD gene is essential for growth in bacteria, encoding the enzyme for converting G37 to m(1)G37 on the 3' side of the tRNA anticodon. This conversion involves methyl transfer from S-adenosyl methionine and is critical to minimize tRNA frameshift errors on the ribosome. Using the ts-S88L mutation of Escherichia coli trmD as an example, we show that although the mutation confers thermal lability to the enzyme, the effect is relatively minor. In contrast, the mutation decreases the catalytic efficiency of the enzyme to 1% at the permissive temperature, and at the nonpermissive temperature, it renders further deterioration of activity to 0.1%. These changes are accompanied by losses of both the quantity and quality of tRNA methylation, leading to the potential of cellular pleiotropic effects. This work illustrates the principle that the ts phenotype of an essential gene mutation can be closely linked to the catalytic defect of the gene product and that such a mutation can provide a useful tool to study the mechanism of catalytic inactivation.
Collapse
Affiliation(s)
- Isao Masuda
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | | | | | | | | |
Collapse
|
59
|
Ochi A, Makabe K, Yamagami R, Hirata A, Sakaguchi R, Hou YM, Watanabe K, Nureki O, Kuwajima K, Hori H. The catalytic domain of topological knot tRNA methyltransferase (TrmH) discriminates between substrate tRNA and nonsubstrate tRNA via an induced-fit process. J Biol Chem 2013; 288:25562-25574. [PMID: 23867454 DOI: 10.1074/jbc.m113.485128] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A conserved guanosine at position 18 (G18) in the D-loop of tRNAs is often modified to 2'-O-methylguanosine (Gm). Formation of Gm18 in eubacterial tRNA is catalyzed by tRNA (Gm18) methyltransferase (TrmH). TrmH enzymes can be divided into two types based on their substrate tRNA specificity. Type I TrmH, including Thermus thermophilus TrmH, can modify all tRNA species, whereas type II TrmH, for example Escherichia coli TrmH, modifies only a subset of tRNA species. Our previous crystal study showed that T. thermophilus TrmH is a class IV S-adenosyl-l-methionine-dependent methyltransferase, which maintains a topological knot structure in the catalytic domain. Because TrmH enzymes have short stretches at the N and C termini instead of a clear RNA binding domain, these stretches are believed to be involved in tRNA recognition. In this study, we demonstrate by site-directed mutagenesis that both N- and C-terminal regions function in tRNA binding. However, in vitro and in vivo chimera protein studies, in which four chimeric proteins of type I and II TrmHs were used, demonstrated that the catalytic domain discriminates substrate tRNAs from nonsubstrate tRNAs. Thus, the N- and C-terminal regions do not function in the substrate tRNA discrimination process. Pre-steady state analysis of complex formation between mutant TrmH proteins and tRNA by stopped-flow fluorescence measurement revealed that the C-terminal region works in the initial binding process, in which nonsubstrate tRNA is not excluded, and that structural movement of the motif 2 region of the catalytic domain in an induced-fit process is involved in substrate tRNA discrimination.
Collapse
Affiliation(s)
- Anna Ochi
- From the Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Koki Makabe
- the Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Ryota Yamagami
- From the Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Akira Hirata
- From the Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Reiko Sakaguchi
- the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Ya-Ming Hou
- the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Kazunori Watanabe
- From the Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Osamu Nureki
- the Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan, and
| | - Kunihiro Kuwajima
- the Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Hiroyuki Hori
- From the Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo, Matsuyama, Ehime 790-8577, Japan,; the Venture Business Laboratory, Ehime University, 3 Bunkyo, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
60
|
Liu RJ, Zhou M, Fang ZP, Wang M, Zhou XL, Wang ED. The tRNA recognition mechanism of the minimalist SPOUT methyltransferase, TrmL. Nucleic Acids Res 2013; 41:7828-42. [PMID: 23804755 PMCID: PMC3763551 DOI: 10.1093/nar/gkt568] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Unlike other transfer RNAs (tRNA)-modifying enzymes from the SPOUT methyltransferase superfamily, the tRNA (Um34/Cm34) methyltransferase TrmL lacks the usual extension domain for tRNA binding and consists only of a SPOUT domain. Both the catalytic and tRNA recognition mechanisms of this enzyme remain elusive. By using tRNAs purified from an Escherichia coli strain with the TrmL gene deleted, we found that TrmL can independently catalyze the methyl transfer from S-adenosyl-L-methionine to and isoacceptors without the involvement of other tRNA-binding proteins. We have solved the crystal structures of TrmL in apo form and in complex with S-adenosyl-homocysteine and identified the cofactor binding site and a possible active site. Methyltransferase activity and tRNA-binding affinity of TrmL mutants were measured to identify residues important for tRNA binding of TrmL. Our results suggest that TrmL functions as a homodimer by using the conserved C-terminal half of the SPOUT domain for catalysis, whereas residues from the less-conserved N-terminal half of the other subunit participate in tRNA recognition.
Collapse
Affiliation(s)
- Ru-Juan Liu
- Center for RNA research, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | | | | | | | | | | |
Collapse
|
61
|
Srinivasan T, Kumaran K, Selvakumar R, Velmurugan D, Sudarsanam D. Exploring GpG bases next to anticodon in tRNA subsets. Bioinformation 2013; 9:466-70. [PMID: 23847401 PMCID: PMC3705617 DOI: 10.6026/97320630009466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 04/08/2013] [Indexed: 11/23/2022] Open
Abstract
Transfer RNA (tRNA) structure, modifications and functions are evolutionary and established in bacteria, archaea and eukaryotes.
Typically the tRNA modifications are indispensable for its stability and are required for decoding the mRNA into amino acids for
protein synthesis. A conserved methylation has been located on the anticodon loop specifically at the 37th position and it is next to
the anticodon bases. This modification is called as m1G37 and it is catalyzed by tRNA (m1G37) methyltransferase (TrmD). It is
deciphered that G37 positions occur on few additional amino acids specific tRNA subsets in bacteria. Furthermore, Archaea and
Eukaryotes have more number of tRNA subsets which contains G37 position next to the anticodon and the G residue are located at
different positions such as G36, G37, G38, 39, and G40. In eight bacterial species, G (guanosine) residues are presents at the 37th and
38th position except three tRNA subsets having G residues at 36th and 39th positions. Therefore we propose that m1G37 modification
may be feasible at 36th, 37th, 38th, 39th and 40th positions next to the anticodon of tRNAs. Collectively, methylation at G residues
close to the anticodon may be possible at different positions and without restriction of anticodon 3rd base A, C, U or G.
Collapse
Affiliation(s)
- Thangavelu Srinivasan
- DST-FIST Bioinformatics & Principal Investigator, School of Genomics, Department of Advanced Zoology and Biotechnology, Loyola College, Chennai - 600 034, Tamil Nadu, India
| | | | | | | | | |
Collapse
|
62
|
Boundy S, Safo MK, Wang L, Musayev FN, O'Farrell HC, Rife JP, Archer GL. Characterization of the Staphylococcus aureus rRNA methyltransferase encoded by orfX, the gene containing the staphylococcal chromosome Cassette mec (SCCmec) insertion site. J Biol Chem 2012; 288:132-40. [PMID: 23150671 DOI: 10.1074/jbc.m112.385138] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The gene orfX is conserved among all staphylococci, and its complete sequence is maintained upon insertion of the staphylococcal chromosome cassette mec (SCCmec) genomic island, containing the gene encoding resistance to β-lactam antibiotics (mecA), into its C terminus. The function of OrfX has not been determined. We show that OrfX was constitutively produced during growth, that orfX could be inactivated without altering bacterial growth, and that insertion of SCCmec did not alter gene expression. We solved the crystal structure of OrfX at 1.7 Å and found that it belongs to the S-adenosyl-L-methionine (AdoMet)-dependent α/β-knot superfamily of SPOUT methyltransferases (MTases), with a high structural homology to YbeA, the gene product of the Escherichia coli 70 S ribosomal MTase RlmH. MTase activity was confirmed by demonstrating the OrfX-dependent methylation of the Staphylococcus aureus 70 S ribosome. When OrfX was crystallized in the presence of its AdoMet substrate, we found that each monomer of the homodimeric structure bound AdoMet in its active site. Solution studies using isothermal titration calorimetry confirmed that each monomer bound AdoMet but with different binding affinities (K(d) = 52 ± 0.4 and 606 ± 2 μm). In addition, the structure shows that the AdoMet-binding pocket, formed by a deep trefoil knot, contains a bound phosphate molecule, which is the likely nucleotide methylation site. This study represents the first characterization of a staphylococcal ribosomal MTase and provides the first crystal structure of a member of the α/β-knot superfamily of SPOUT MTases in the RlmH or COG1576 family with bound AdoMet.
Collapse
Affiliation(s)
- Sam Boundy
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298 USA
| | | | | | | | | | | | | |
Collapse
|
63
|
Sakaguchi R, Giessing A, Dai Q, Lahoud G, Liutkeviciute Z, Klimasauskas S, Piccirilli J, Kirpekar F, Hou YM. Recognition of guanosine by dissimilar tRNA methyltransferases. RNA (NEW YORK, N.Y.) 2012; 18:1687-1701. [PMID: 22847817 PMCID: PMC3425783 DOI: 10.1261/rna.032029.111] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 06/16/2012] [Indexed: 06/01/2023]
Abstract
Guanosines are important for biological activities through their specific functional groups that are recognized for RNA or protein interactions. One example is recognition of N(1) of G37 in tRNA by S-adenosyl-methionine (AdoMet)-dependent tRNA methyltransferases to synthesize m(1)G37-tRNA, which is essential for translational fidelity in all biological domains. Synthesis of m(1)G37-tRNA is catalyzed by TrmD in bacteria and by Trm5 in eukarya and archaea, using unrelated and dissimilar structural folds. This raises the question of how dissimilar proteins recognize the same guanosine. Here we probe the mechanism of discrimination among functional groups of guanosine by TrmD and Trm5. Guanosine analogs were systematically introduced into tRNA through a combination of chemical and enzymatic synthesis. Single turnover kinetic assays and thermodynamic analysis of the effect of each analog on m(1)G37-tRNA synthesis reveal that TrmD and Trm5 discriminate functional groups differently. While both recognize N(1) and O(6) of G37, TrmD places a much stronger emphasis on these functional groups than Trm5. While the exocyclic 2-amino group of G37 is important for TrmD, it is dispensable for Trm5. In addition, while an adjacent G36 is obligatory for TrmD, it is nonessential for Trm5. These results depict a more rigid requirement of guanosine functional groups for TrmD than for Trm5. However, the sensitivity of both enzymes to analog substitutions, together with an experimental revelation of their low cellular concentrations relative to tRNA substrates, suggests a model in which these enzymes rapidly screen tRNA by direct recognition of G37 in order to monitor the global state of m(1)G37-tRNA.
Collapse
Affiliation(s)
- Reiko Sakaguchi
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Anders Giessing
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Qing Dai
- Departments of Biochemistry & Molecular Biology, and Chemistry, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois 60637, USA
| | - Georges Lahoud
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Zita Liutkeviciute
- Department of Biological DNA Modification, Institute of Biotechnology, Vilnius University, LT-02241 Vilnius, Lithuania
| | - Saulius Klimasauskas
- Department of Biological DNA Modification, Institute of Biotechnology, Vilnius University, LT-02241 Vilnius, Lithuania
| | - Joseph Piccirilli
- Departments of Biochemistry & Molecular Biology, and Chemistry, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois 60637, USA
| | - Finn Kirpekar
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| |
Collapse
|
64
|
Zhang H, Wan H, Gao ZQ, Wei Y, Wang WJ, Liu GF, Shtykova EV, Xu JH, Dong YH. Insights into the catalytic mechanism of 16S rRNA methyltransferase RsmE (m³U1498) from crystal and solution structures. J Mol Biol 2012; 423:576-89. [PMID: 22925577 DOI: 10.1016/j.jmb.2012.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 08/07/2012] [Accepted: 08/20/2012] [Indexed: 12/29/2022]
Abstract
RsmE is the founding member of a new RNA methyltransferase (MTase) family responsible for methylation of U1498 in 16S ribosomal RNA in Escherichia coli. It is well conserved across bacteria and plants and may play an important role in ribosomal intersubunit communication. The crystal structure in monomer showed that it consists of two distinct but structurally related domains: the PUA (pseudouridine synthases and archaeosine-specific transglycosylases)-like RNA recognition and binding domain and the conserved MTase domain with a deep trefoil knot. Analysis of small-angle X-ray scattering data revealed that RsmE forms a flexible dimeric conformation that may be essential for substrate binding. The S-adenosyl-l-methionine (AdoMet)-binding characteristic determined by isothermal titration calorimetry suggested that there is only one AdoMet molecule bound in the subunit of the homodimer. In vitro methylation assay of the mutants based on the RsmE-AdoMet-uridylic acid complex model showed key residues involved in substrate binding and catalysis. Comprehensive comparisons of RsmE with closely related MTases, combined with the biochemical experiments, indicated that the MTase domain of one subunit in dimeric RsmE is responsible for binding of one AdoMet molecule and catalytic process while the PUA-like domain in the other subunit is mainly responsible for recognition of one substrate molecule (the ribosomal RNA fragment and ribosomal protein complex). The methylation process is required by collaboration of both subunits, and dimerization is functionally critical for catalysis. In general, our study provides new information on the structure-function relationship of RsmE and thereby suggests a novel catalytic mechanism.
Collapse
Affiliation(s)
- Heng Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, 19B, Yuquan Road, Beijing 100049, China
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Fislage M, Roovers M, Tuszynska I, Bujnicki JM, Droogmans L, Versées W. Crystal structures of the tRNA:m2G6 methyltransferase Trm14/TrmN from two domains of life. Nucleic Acids Res 2012; 40:5149-61. [PMID: 22362751 PMCID: PMC3367198 DOI: 10.1093/nar/gks163] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Methyltransferases (MTases) form a major class of tRNA-modifying enzymes needed for the proper functioning of tRNA. Recently, RNA MTases from the TrmN/Trm14 family that are present in Archaea, Bacteria and Eukaryota have been shown to specifically modify tRNAPhe at guanosine 6 in the tRNA acceptor stem. Here, we report the first X-ray crystal structures of the tRNA m2G6 (N2-methylguanosine) MTase TTCTrmN from Thermus thermophilus and its ortholog PfTrm14 from Pyrococcus furiosus. Structures of PfTrm14 were solved in complex with the methyl donor S-adenosyl-l-methionine (SAM or AdoMet), as well as the reaction product S-adenosyl-homocysteine (SAH or AdoHcy) and the inhibitor sinefungin. TTCTrmN and PfTrm14 consist of an N-terminal THUMP domain fused to a catalytic Rossmann-fold MTase (RFM) domain. These results represent the first crystallographic structure analysis of proteins containing both THUMP and RFM domain, and hence provide further insight in the contribution of the THUMP domain in tRNA recognition and catalysis. Electrostatics and conservation calculations suggest a main tRNA binding surface in a groove between the THUMP domain and the MTase domain. This is further supported by a docking model of TrmN in complex with tRNAPhe of T. thermophilus and via site-directed mutagenesis.
Collapse
Affiliation(s)
- Marcus Fislage
- VIB Department of Structural Biology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
| | | | | | | | | | | |
Collapse
|
66
|
Abstract
Hsp90 is a highly abundant and ubiquitous molecular chaperone which plays an essential role in many cellular processes including cell cycle control, cell survival, hormone and other signalling pathways. It is important for the cell's response to stress and is a key player in maintaining cellular homeostasis. In the last ten years, it has become a major therapeutic target for cancer, and there has also been increasing interest in it as a therapeutic target in neurodegenerative disorders, and in the development of anti-virals and anti-protozoan infections. The focus of this review is the structural and mechanistic studies which have been performed in order to understand how this important chaperone acts on a wide variety of different proteins (its client proteins) and cellular processes. As with many of the other classes of molecular chaperone, Hsp90 has a critical ATPase activity, and ATP binding and hydrolysis known to modulate the conformational dynamics of the protein. It also uses a host of cochaperones which not only regulate the ATPase activity and conformational dynamics but which also mediate interactions with Hsp90 client proteins. The system is also regulated by post-translational modifications including phosphorylation and acetylation. This review discusses all these aspects of Hsp90 structure and function.
Collapse
|
67
|
Lahoud G, Goto-Ito S, Yoshida KI, Ito T, Yokoyama S, Hou YM. Differentiating analogous tRNA methyltransferases by fragments of the methyl donor. RNA (NEW YORK, N.Y.) 2011; 17:1236-1246. [PMID: 21602303 PMCID: PMC3138561 DOI: 10.1261/rna.2706011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 04/15/2011] [Indexed: 05/30/2023]
Abstract
Bacterial TrmD and eukaryotic-archaeal Trm5 form a pair of analogous tRNA methyltransferase that catalyze methyl transfer from S-adenosyl methionine (AdoMet) to N(1) of G37, using catalytic motifs that share no sequence or structural homology. Here we show that natural and synthetic analogs of AdoMet are unable to distinguish TrmD from Trm5. Instead, fragments of AdoMet, adenosine and methionine, are selectively inhibitory of TrmD rather than Trm5. Detailed structural information of the two enzymes in complex with adenosine reveals how Trm5 escapes targeting by adopting an altered structure, whereas TrmD is trapped by targeting due to its rigid structure that stably accommodates the fragment. Free energy analysis exposes energetic disparities between the two enzymes in how they approach the binding of AdoMet versus fragments and provides insights into the design of inhibitors selective for TrmD.
Collapse
Affiliation(s)
- Georges Lahoud
- Thomas Jefferson University, Department of Biochemistry and Molecular Biology, Philadelphia, Pennsylvania 19107, USA
| | - Sakurako Goto-Ito
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
- Department of Biophysics and Biochemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ken-ichi Yoshida
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
- Department of Biophysics and Biochemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takuhiro Ito
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
- Department of Biophysics and Biochemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ya-Ming Hou
- Thomas Jefferson University, Department of Biochemistry and Molecular Biology, Philadelphia, Pennsylvania 19107, USA
| |
Collapse
|
68
|
Chen HY, Yuan YA. Crystal structure of Mj1640/DUF358 protein reveals a putative SPOUT-class RNA methyltransferase. J Mol Cell Biol 2011; 2:366-74. [PMID: 21098051 DOI: 10.1093/jmcb/mjq034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The proteins in DUF358 family are all bacterial proteins, which are ∼200 amino acids long with unknown function. Bioinformatics analysis suggests that these proteins contain several conserved arginines and aspartates that might adopt SPOUT-class fold. Here we report crystal structure of Methanocaldococcus jannaschii DUF358/Mj1640 in complex with S-adenosyl-L-methionine (SAM) at 1.4 Å resolution. The structure reveals a single domain structure consisting of eight-stranded β-sheets sandwiched by six α-helices at both sides. Similar to other SPOUT-class members, Mj1640 contains a typical deep trefoil knot at its C-terminus to accommodate the SAM cofactor. However, Mj1640 has limited structural extension at its N-terminus, which is unique to this family member. Mj1640 forms a dimer, which is mediated by two parallel pairs of α-helices oriented almost perpendicular to each other. Although Mj1640 shares close structural similarity with Nep1, the significant differences in N-terminal extension domain and the overall surface charge distribution strongly suggest that Mj1640 might target a different RNA sequence. Detailed structural analysis of the SAM-binding pocket reveals that Asp157 or Glu183 from its own monomer or Ser43 from the associate monomer probably plays the catalytic role for RNA methylation.
Collapse
Affiliation(s)
- Hong-Ying Chen
- Mechanobiology Institute, National University of Singapore, T-lab Building, 5A Engineering Drive 1, Singapore 117411, Singapore
| | | |
Collapse
|
69
|
Virnau P, Mallam A, Jackson S. Structures and folding pathways of topologically knotted proteins. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2011; 23:033101. [PMID: 21406854 DOI: 10.1088/0953-8984/23/3/033101] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In the last decade, a new class of proteins has emerged that contain a topological knot in their backbone. Although these structures are rare, they nevertheless challenge our understanding of protein folding. In this review, we provide a short overview of topologically knotted proteins with an emphasis on newly discovered structures. We discuss the current knowledge in the field, including recent developments in both experimental and computational studies that have shed light on how these intricate structures fold.
Collapse
Affiliation(s)
- Peter Virnau
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudinger Weg 7, 55128 Mainz, Germany.
| | | | | |
Collapse
|
70
|
Christian T, Lahoud G, Liu C, Hoffmann K, Perona JJ, Hou YM. Mechanism of N-methylation by the tRNA m1G37 methyltransferase Trm5. RNA (NEW YORK, N.Y.) 2010; 16:2484-2492. [PMID: 20980671 PMCID: PMC2995409 DOI: 10.1261/rna.2376210] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 09/22/2010] [Indexed: 05/30/2023]
Abstract
Trm5 is a eukaryal and archaeal tRNA methyltransferase that catalyzes methyl transfer from S-adenosylmethionine (AdoMet) to the N(1) position of G37 directly 3' to the anticodon. While the biological role of m(1)G37 in enhancing translational fidelity is well established, the catalytic mechanism of Trm5 has remained obscure. To address the mechanism of Trm5 and more broadly the mechanism of N-methylation to nucleobases, we examined the pH-activity profile of an archaeal Trm5 enzyme, and performed structure-guided mutational analysis. The data reveal a marked dependence of enzyme-catalyzed methyl transfer on hydrogen ion equilibria: the single-turnover rate constant for methylation increases by one order of magnitude from pH 6.0 to reach a plateau at pH 7.0. This suggests a mechanism involving proton transfer from G37 as the key element in catalysis. Consideration of the kinetic data in light of the Trm5-tRNA-AdoMet ternary cocrystal structure, determined in a precatalytic conformation, suggests that proton transfer is associated with an induced fit rearrangement of the complex that precedes formation of the reactive configuration in the active site. Key roles for the conserved R145 side chain in stabilizing a proposed oxyanion at G37-O(6), and for E185 as a general base to accept the proton from G37-N(1), are suggested based on the mutational analysis.
Collapse
Affiliation(s)
- Thomas Christian
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | |
Collapse
|
71
|
Christian T, Lahoud G, Liu C, Hou YM. Control of catalytic cycle by a pair of analogous tRNA modification enzymes. J Mol Biol 2010; 400:204-17. [PMID: 20452364 PMCID: PMC2892103 DOI: 10.1016/j.jmb.2010.05.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 04/13/2010] [Accepted: 05/03/2010] [Indexed: 10/19/2022]
Abstract
Enzymes that use distinct active site structures to perform identical reactions are known as analogous enzymes. The isolation of analogous enzymes suggests the existence of multiple enzyme structural pathways that can catalyze the same chemical reaction. A fundamental question concerning analogous enzymes is whether their distinct active-site structures would confer the same or different kinetic constraints to the chemical reaction, particularly with respect to the control of enzyme turnover. Here, we address this question with the analogous enzymes of bacterial TrmD and its eukaryotic and archaeal counterpart Trm5. TrmD and Trm5 catalyze methyl transfer to synthesize the m1G37 base at the 3' position adjacent to the tRNA anticodon, using S-adenosyl methionine (AdoMet) as the methyl donor. TrmD features a trefoil-knot active-site structure whereas Trm5 features the Rossmann fold. Pre-steady-state analysis revealed that product synthesis by TrmD proceeds linearly with time, whereas that by Trm5 exhibits a rapid burst followed by a slower and linear increase with time. The burst kinetics of Trm5 suggests that product release is the rate-limiting step of the catalytic cycle, consistent with the observation of higher enzyme affinity to the products of tRNA and AdoMet. In contrast, the lack of burst kinetics of TrmD suggests that its turnover is controlled by a step required for product synthesis. Although TrmD exists as a homodimer, it showed half-of-the-sites reactivity for tRNA binding and product synthesis. The kinetic differences between TrmD and Trm5 are parallel with those between the two classes of aminoacyl-tRNA synthetases, which use distinct active site structures to catalyze tRNA aminoacylation. This parallel suggests that the findings have a fundamental importance for enzymes that catalyze both methyl and aminoacyl transfer to tRNA in the decoding process.
Collapse
Affiliation(s)
- Thomas Christian
- Thomas Jefferson University, Department of Biochemistry and Molecular Biology, 233 South 10 Street, BLSB 220, Philadelphia, PA 19107
| | - Georges Lahoud
- Thomas Jefferson University, Department of Biochemistry and Molecular Biology, 233 South 10 Street, BLSB 220, Philadelphia, PA 19107
| | - Cuiping Liu
- Thomas Jefferson University, Department of Biochemistry and Molecular Biology, 233 South 10 Street, BLSB 220, Philadelphia, PA 19107
| | - Ya-Ming Hou
- Thomas Jefferson University, Department of Biochemistry and Molecular Biology, 233 South 10 Street, BLSB 220, Philadelphia, PA 19107
| |
Collapse
|
72
|
Prentiss MC, Wales DJ, Wolynes PG. The energy landscape, folding pathways and the kinetics of a knotted protein. PLoS Comput Biol 2010; 6:e1000835. [PMID: 20617197 PMCID: PMC2895632 DOI: 10.1371/journal.pcbi.1000835] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 05/25/2010] [Indexed: 11/18/2022] Open
Abstract
The folding pathway and rate coefficients of the folding of a knotted protein are calculated for a potential energy function with minimal energetic frustration. A kinetic transition network is constructed using the discrete path sampling approach, and the resulting potential energy surface is visualized by constructing disconnectivity graphs. Owing to topological constraints, the low-lying portion of the landscape consists of three distinct regions, corresponding to the native knotted state and to configurations where either the N or C terminus is not yet folded into the knot. The fastest folding pathways from denatured states exhibit early formation of the N terminus portion of the knot and a rate-determining step where the C terminus is incorporated. The low-lying minima with the N terminus knotted and the C terminus free therefore constitute an off-pathway intermediate for this model. The insertion of both the N and C termini into the knot occurs late in the folding process, creating large energy barriers that are the rate limiting steps in the folding process. When compared to other protein folding proteins of a similar length, this system folds over six orders of magnitude more slowly.
Collapse
Affiliation(s)
- Michael C Prentiss
- Department of Chemistry, Center for Theoretical Biological Physics, University of California San Diego, La Jolla, California, United States of America.
| | | | | |
Collapse
|
73
|
White TA, Kell DB. Comparative genomic assessment of novel broad-spectrum targets for antibacterial drugs. Comp Funct Genomics 2010; 5:304-27. [PMID: 18629165 PMCID: PMC2447455 DOI: 10.1002/cfg.411] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Revised: 03/24/2004] [Accepted: 04/01/2004] [Indexed: 11/08/2022] Open
Abstract
Single and multiple resistance to antibacterial drugs currently in use is spreading, since they act against only a very small number of molecular targets; finding novel targets for anti-infectives is therefore of great importance. All protein sequences from three pathogens (Staphylococcus aureus, Mycobacterium tuberculosis and Escherichia coli O157:H7 EDL993) were assessed via comparative genomics methods for their suitability as antibacterial targets according to a number of criteria, including the essentiality of the protein, its level of sequence conservation, and its distribution in pathogens, bacteria and eukaryotes (especially humans). Each protein was scored and ranked based on weighted variants of these criteria in order to prioritize proteins as potential novel broad-spectrum targets for antibacterial drugs. A number of proteins proved to score highly in all three species and were robust to variations in the scoring system used. Sensitivity analysis indicated the quantitative contribution of each metric to the overall score. After further analysis of these targets, tRNA methyltransferase (trmD) and translation initiation factor IF-1 (infA) emerged as potential and novel antimicrobial targets very worthy of further investigation. The scoring strategy used might be of value in other areas of post-genomic drug discovery.
Collapse
Affiliation(s)
- Thomas A White
- Department of Biology, University of York, Heslington, York YO10 5YW, UK
| | | |
Collapse
|
74
|
Iyer LM, Abhiman S, de Souza RF, Aravind L. Origin and evolution of peptide-modifying dioxygenases and identification of the wybutosine hydroxylase/hydroperoxidase. Nucleic Acids Res 2010; 38:5261-79. [PMID: 20423905 PMCID: PMC2938197 DOI: 10.1093/nar/gkq265] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Unlike classical 2-oxoglutarate and iron-dependent dioxygenases, which include several nucleic acid modifiers, the structurally similar jumonji-related dioxygenase superfamily was only known to catalyze peptide modifications. Using comparative genomics methods, we predict that a family of jumonji-related enzymes catalyzes wybutosine hydroxylation/peroxidation at position 37 of eukaryotic tRNAPhe. Identification of this enzyme raised questions regarding the emergence of protein- and nucleic acid-modifying activities among jumonji-related domains. We addressed these with a natural classification of DSBH domains and reconstructed the precursor of the dioxygenases as a sugar-binding domain. This precursor gave rise to sugar epimerases and metal-binding sugar isomerases. The sugar isomerase active site was exapted for catalysis of oxygenation, with a radiation of these enzymes in bacteria, probably due to impetus from the primary oxygenation event in Earth’s history. 2-Oxoglutarate-dependent versions appear to have further expanded with rise of the tricarboxylic acid cycle. We identify previously under-appreciated aspects of their active site and multiple independent innovations of 2-oxoacid-binding basic residues among these superfamilies. We show that double-stranded β-helix dioxygenases diversified extensively in biosynthesis and modification of halogenated siderophores, antibiotics, peptide secondary metabolites and glycine-rich collagen-like proteins in bacteria. Jumonji-related domains diversified into three distinct lineages in bacterial secondary metabolism systems and these were precursors of the three major clades of eukaryotic enzymes. The specificity of wybutosine hydroxylase/peroxidase probably relates to the structural similarity of the modified moiety to the ancestral amino acid substrate of this superfamily.
Collapse
Affiliation(s)
- Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | | | |
Collapse
|
75
|
Ochi A, Makabe K, Kuwajima K, Hori H. Flexible recognition of the tRNA G18 methylation target site by TrmH methyltransferase through first binding and induced fit processes. J Biol Chem 2010; 285:9018-29. [PMID: 20053984 DOI: 10.1074/jbc.m109.065698] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transfer RNA (Gm18) methyltransferase (TrmH) catalyzes methyl transfer from S-adenosyl-l-methionine to a conserved G18 in tRNA. We investigated the recognition mechanism of Thermus thermophilus TrmH for its guanosine target. Thirteen yeast tRNA(Phe) mutant transcripts were prepared in which the modification site and/or other nucleotides in the D-loop were substituted by dG, inosine, or other nucleotides. We then conducted methyl transfer kinetic studies, gel shift assays, and inhibition experiments using these tRNA variants. Sites of methylation were confirmed with RNA sequencing or primer extension. Although the G18G19 sequence is not essential for methylation by TrmH, disruption of G18G19 severely reduces the efficiency of methyl transfer. There is strict recognition of guanosine by TrmH, in that methylation occurs at the adjacent G19 when the G18 is replaced by dG or adenosine. The fact that TrmH methylates guanosine in D-loops from 4 to 12 nucleotides in length suggests that selection of the position of guanosine within the D-loop is relatively flexible. Our studies also demonstrate that the oxygen 6 atom of the guanine base is a positive determinant for TrmH recognition. The recognition process of TrmH for substrate is inducible and product-inhibited, in that tRNAs containing Gm18 are excluded by TrmH. In contrast, substitution of G18 with dG18 results in the formation of a more stable TrmH-tRNA complex. To address the mechanism, we performed the stopped-flow pre-steady state kinetic analysis. The result clearly showed that the binding of TrmH to tRNA is composed of at least three steps, the first bi-molecular binding and the subsequent two uni-molecular induced-fit processes.
Collapse
Affiliation(s)
- Anna Ochi
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577
| | | | | | | |
Collapse
|
76
|
Wurm JP, Meyer B, Bahr U, Held M, Frolow O, Kötter P, Engels JW, Heckel A, Karas M, Entian KD, Wöhnert J. The ribosome assembly factor Nep1 responsible for Bowen-Conradi syndrome is a pseudouridine-N1-specific methyltransferase. Nucleic Acids Res 2010; 38:2387-98. [PMID: 20047967 PMCID: PMC2853112 DOI: 10.1093/nar/gkp1189] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nep1 (Emg1) is a highly conserved nucleolar protein with an essential function in ribosome biogenesis. A mutation in the human Nep1 homolog causes Bowen-Conradi syndrome-a severe developmental disorder. Structures of Nep1 revealed a dimer with a fold similar to the SPOUT-class of RNA-methyltransferases suggesting that Nep1 acts as a methyltransferase in ribosome biogenesis. The target for this putative methyltransferase activity has not been identified yet. We characterized the RNA-binding specificity of Methanocaldococcus jannaschii Nep1 by fluorescence- and NMR-spectroscopy as well as by yeast three-hybrid screening. Nep1 binds with high affinity to short RNA oligonucleotides corresponding to nt 910-921 of M. jannaschii 16S rRNA through a highly conserved basic surface cleft along the dimer interface. Nep1 only methylates RNAs containing a pseudouridine at a position corresponding to a previously identified hypermodified N1-methyl-N3-(3-amino-3-carboxypropyl) pseudouridine (m1acp3-Psi) in eukaryotic 18S rRNAs. Analysis of the methylated nucleoside by MALDI-mass spectrometry, HPLC and NMR shows that the methyl group is transferred to the N1 of the pseudouridine. Thus, Nep1 is the first identified example of an N1-specific pseudouridine methyltransferase. This enzymatic activity is also conserved in human Nep1 suggesting that Nep1 is the methyltransferase in the biosynthesis of m1acp3-Psi in eukaryotic 18S rRNAs.
Collapse
Affiliation(s)
- Jan Philip Wurm
- Institut für Molekulare Biowissenschaften, Johann-Wolfgang-Goethe-Universität, 60438 Frankfurt/M., Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Hou YM, Perona JJ. Stereochemical mechanisms of tRNA methyltransferases. FEBS Lett 2009; 584:278-86. [PMID: 19944101 DOI: 10.1016/j.febslet.2009.11.075] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 11/18/2009] [Accepted: 11/19/2009] [Indexed: 12/31/2022]
Abstract
Methylation of tRNA on the four canonical bases adds structural complexity to the molecule, and improves decoding specificity and efficiency. While many tRNA methylases are known, detailed insight into the catalytic mechanism is only available in a few cases. Of interest among all tRNA methylases is the structural basis for nucleotide selection, by which the specificity is limited to a single site, or broadened to multiple sites. General themes in catalysis include the basis for rate acceleration at highly diverse nucleophilic centers for methyl transfer, using S-adenosylmethionine as a cofactor. Studies of tRNA methylases have also yielded insights into molecular evolution, particularly in the case of enzymes that recognize distinct structures to perform identical reactions at the same target nucleotide.
Collapse
Affiliation(s)
- Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th St., Philadelphia, PA 19107, USA.
| | | |
Collapse
|
78
|
Tertiary structure checkpoint at anticodon loop modification in tRNA functional maturation. Nat Struct Mol Biol 2009; 16:1109-15. [PMID: 19749755 DOI: 10.1038/nsmb.1653] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 06/29/2009] [Indexed: 11/08/2022]
Abstract
tRNA precursors undergo a maturation process, involving nucleotide modifications and folding into the L-shaped tertiary structure. The N1-methylguanosine at position 37 (m1G37), 3' adjacent to the anticodon, is essential for translational fidelity and efficiency. In archaea and eukaryotes, Trm5 introduces the m1G37 modification into all tRNAs bearing G37. Here we report the crystal structures of archaeal Trm5 (aTrm5) in complex with tRNA(Leu) or tRNA(Cys). The D2-D3 domains of aTrm5 discover and modify G37, independently of the tRNA sequences. D1 is connected to D2-D3 through a flexible linker and is designed to recognize the shape of the tRNA outer corner, as a hallmark of the completed L shape formation. This interaction by D1 lowers the K(m) value for tRNA, enabling the D2-D3 catalysis. Thus, we propose that aTrm5 provides the tertiary structure checkpoint in tRNA maturation.
Collapse
|
79
|
Dunstan MS, Hang PC, Zelinskaya NV, Honek JF, Conn GL. Structure of the thiostrepton resistance methyltransferase.S-adenosyl-L-methionine complex and its interaction with ribosomal RNA. J Biol Chem 2009; 284:17013-17020. [PMID: 19369248 PMCID: PMC2719339 DOI: 10.1074/jbc.m901618200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 03/31/2009] [Indexed: 12/03/2022] Open
Abstract
The x-ray crystal structure of the thiostrepton resistance RNA methyltransferase (Tsr).S-adenosyl-L-methionine (AdoMet) complex was determined at 2.45-A resolution. Tsr is definitively confirmed as a Class IV methyltransferase of the SpoU family with an N-terminal "L30-like" putative target recognition domain. The structure and our in vitro analysis of the interaction of Tsr with its target domain from 23 S ribosomal RNA (rRNA) demonstrate that the active biological unit is a Tsr homodimer. In vitro methylation assays show that Tsr activity is optimal against a 29-nucleotide hairpin rRNA though the full 58-nucleotide L11-binding domain and intact 23 S rRNA are also effective substrates. Molecular docking experiments predict that Tsr.rRNA binding is dictated entirely by the sequence and structure of the rRNA hairpin containing the A1067 target nucleotide and is most likely driven primarily by large complementary electrostatic surfaces. One L30-like domain is predicted to bind the target loop and the other is near an internal loop more distant from the target site where a nucleotide change (U1061 to A) also decreases methylation by Tsr. Furthermore, a predicted interaction with this internal loop by Tsr amino acid Phe-88 was confirmed by mutagenesis and RNA binding experiments. We therefore propose that Tsr achieves its absolute target specificity using the N-terminal domains of each monomer in combination to recognize the two distinct structural elements of the target rRNA hairpin such that both Tsr subunits contribute directly to the positioning of the target nucleotide on the enzyme.
Collapse
MESH Headings
- Base Sequence
- Catalytic Domain
- Crystallography, X-Ray
- Dimerization
- Drug Resistance, Bacterial
- Macromolecular Substances
- Methyltransferases/chemistry
- Methyltransferases/genetics
- Methyltransferases/metabolism
- Models, Molecular
- Nucleic Acid Conformation
- Protein Structure, Quaternary
- Protein Structure, Secondary
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- S-Adenosylmethionine/chemistry
- S-Adenosylmethionine/metabolism
- Staphylococcus aureus/drug effects
- Staphylococcus aureus/enzymology
- Staphylococcus aureus/genetics
- Static Electricity
- Thiostrepton/pharmacology
Collapse
Affiliation(s)
- Mark S Dunstan
- From the Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Pei C Hang
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Natalia V Zelinskaya
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - John F Honek
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322.
| |
Collapse
|
80
|
Goto-Ito S, Ito T, Ishii R, Muto Y, Bessho Y, Yokoyama S. Crystal structure of archaeal tRNA(m(1)G37)methyltransferase aTrm5. Proteins 2009; 72:1274-89. [PMID: 18384044 DOI: 10.1002/prot.22019] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Methylation of the N1 atom of guanosine at position 37 in tRNA, the position 3'-adjacent to the anticodon, generates the modified nucleoside m(1)G37. In archaea and eukaryotes, m(1)G37 synthesis is catalyzed by tRNA(m(1)G37)methyltransferase (archaeal or eukaryotic Trm5, a/eTrm5). Here we report the crystal structure of archaeal Trm5 (aTrm5) from Methanocaldococcus jannaschii (formerly known as Methanococcus jannaschii) in complex with the methyl donor analogue at 2.2 A resolution. The crystal structure revealed that the entire protein is composed of three structural domains, D1, D2, and D3. In the a/eTrm5 primary structures, D2 and D3 are highly conserved, while D1 is not conserved. The D3 structure is the Rossmann fold, which is the hallmark of the canonical class-I methyltransferases. The a/eTrm5-defining domain, D2, exhibits structural similarity to some class-I methyltransferases. In contrast, a DALI search with the D1 structure yielded no structural homologues. In the crystal structure, D3 contacts both D1 and D2. The residues involved in the D1:D3 interactions are not conserved, while those participating in the D2:D3 interactions are well conserved. D1 and D2 do not contact each other, and the linker between them is disordered. aTrm5 fragments corresponding to the D1 and D2-D3 regions were prepared in a soluble form. The NMR analysis of the D1 fragment revealed that D1 is well folded by itself, and it did not interact with either the D2-D3 fragment or the tRNA. The NMR analysis of the D2-D3 fragment revealed that it is well folded, independently of D1, and that it interacts with tRNA. Furthermore, the D2-D3 fragment was as active as the full-length enzyme for tRNA methylation. The positive charges on the surface of D2-D3 may be involved in tRNA binding. Therefore, these findings suggest that the interaction between D1 and D3 is not persistent, and that the D2-D3 region plays the major role in tRNA methylation.
Collapse
Affiliation(s)
- Sakurako Goto-Ito
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
81
|
Kim DJ, Kim HS, Lee SJ, Suh SW. Crystal structure ofThermotoga maritimaSPOUT superfamily RNA methyltransferase Tm1570 in complex with S-adenosyl-L-methionine. Proteins 2009; 74:245-9. [DOI: 10.1002/prot.22249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
82
|
Abstract
The issue of how a newly synthesized polypeptide chain folds to form a protein with a unique three-dimensional structure, otherwise known as the 'protein-folding problem', remains a fundamental question in the life sciences. Over the last few decades, much information has been gathered about the mechanisms by which proteins fold. However, despite the vast topological diversity observed in biological structures, it was thought improbable, if not impossible, that a polypeptide chain could 'knot' itself to form a functional protein. Nevertheless, such knotted structures have since been identified, raising questions about how such complex topologies can arise during folding. Their formation does not fit any current folding models or mechanisms, and therefore represents an important piece of the protein-folding puzzle. This article reviews the progress made towards discovering how nature codes for, and contends with, knots during protein folding, and examines the insights gained from both experimental and computational studies. Mechanisms to account for the formation of knotted structures that were previously thought unfeasible, and their implications for protein folding, are also discussed.
Collapse
Affiliation(s)
- Anna L Mallam
- St John's College and University Chemical Laboratory, Cambridge, UK.
| |
Collapse
|
83
|
Abstract
One of the most striking topological features to be found in a protein is that of a distinct knot formed by the path of the polypeptide backbone. Such knotted structures represent some of the smallest "self-tying" knots observed in Nature. Proteins containing a knot deep within their structure add an extra complication to the already challenging protein-folding problem; it is not obvious how, during the process of folding, a substantial length of polypeptide chain manages to spontaneously thread itself through a loop. Here, we probe the folding mechanism of YibK, a homodimeric alpha/beta-knot protein containing a deep trefoil knot at its carboxy terminus. By analyzing the effect of mutations made in the knotted region of the protein we show that the native structure in this area remains undeveloped until very late in the folding reaction. Single-site destabilizing mutations made in the knot structure significantly affect only the folding kinetics of a late-forming intermediate and the slow dimerization step. Furthermore, we find evidence to suggest that the heterogeneity observed in the denatured state is not caused by isomerization of the single cis proline bond as previously thought, but instead could be a result of the knotting mechanism. These results allow us to propose a folding model for YibK where the threading of the polypeptide chain and the formation of native structure in the knotted region of the protein occur independently as successive events.
Collapse
|
84
|
Purta E, Kaminska KH, Kasprzak JM, Bujnicki JM, Douthwaite S. YbeA is the m3Psi methyltransferase RlmH that targets nucleotide 1915 in 23S rRNA. RNA (NEW YORK, N.Y.) 2008; 14:2234-44. [PMID: 18755835 PMCID: PMC2553730 DOI: 10.1261/rna.1198108] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 07/09/2008] [Indexed: 05/26/2023]
Abstract
Pseudouridines in the stable RNAs of Bacteria are seldom subjected to further modification. There are 11 pseudouridine (Psi) sites in Escherichia coli rRNA, and further modification is found only at Psi1915 in 23S rRNA, where the N-3 position of the base becomes methylated. Here, we report the identity of the E. coli methyltransferase that specifically catalyzes methyl group addition to form m(3)Psi1915. Analyses of E. coli rRNAs using MALDI mass spectrometry showed that inactivation of the ybeA gene leads to loss of methylation at nucleotide Psi1915. Methylation is restored by complementing the knockout strain with a plasmid-encoded copy of ybeA. Homologs of the ybeA gene, and thus presumably the ensuing methylation at nucleotide m(3)Psi1915, are present in most bacterial lineages but are essentially absent in the Archaea and Eukaryota. Loss of ybeA function in E. coli causes a slight slowing of the growth rate. Phylogenetically, ybeA and its homologs are grouped with other putative S-adenosylmethionine-dependent, SPOUT methyltransferase genes in the Cluster of Orthologous Genes COG1576; ybeA is the first member to be functionally characterized. The YbeA methyltransferase is active as a homodimer and docks comfortably into the ribosomal A site without encroaching into the P site. YbeA makes extensive interface contacts with both the 30S and 50S subunits to align its active site cofactor adjacent to nucleotide Psi1915. Methylation by YbeA (redesignated RlmH for rRNA large subunit methyltransferase H) possibly functions as a stamp of approval signifying that the 50S subunit has engaged in translational initiation.
Collapse
Affiliation(s)
- Elzbieta Purta
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | | | | | | | |
Collapse
|
85
|
Crystal structure of tRNA N2,N2-guanosine dimethyltransferase Trm1 from Pyrococcus horikoshii. J Mol Biol 2008; 383:871-84. [PMID: 18789948 DOI: 10.1016/j.jmb.2008.08.068] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Accepted: 08/21/2008] [Indexed: 11/21/2022]
Abstract
Trm1 catalyzes a two-step reaction, leading to mono- and dimethylation of guanosine at position 26 in most eukaryotic and archaeal tRNAs. We report the crystal structures of Trm1 from Pyrococcus horikoshii liganded with S-adenosyl-l-methionine or S-adenosyl-l-homocysteine. The protein comprises N-terminal and C-terminal domains with class I methyltransferase and novel folds, respectively. The methyl moiety of S-adenosyl-l-methionine points toward the invariant Phe27 and Phe140 within a narrow pocket, where the target G26 might flip in. Mutagenesis of Phe27 or Phe140 to alanine abolished the enzyme activity, indicating their role in methylating G26. Structural analyses revealed that the movements of Phe140 and the loop preceding Phe27 may be involved in dissociation of the monomethylated tRNA*Trm1 complex prior to the second methylation. Moreover, the catalytic residues Asp138, Pro139, and Phe140 are in a different motif from that in DNA 6-methyladenosine methyltransferases, suggesting a different methyl transfer mechanism in the Trm1 family.
Collapse
|
86
|
Toyooka T, Awai T, Kanai T, Imanaka T, Hori H. Stabilization of tRNA (mG37) methyltransferase [TrmD] from Aquifex aeolicus by an intersubunit disulfide bond formation. Genes Cells 2008; 13:807-16. [PMID: 18651851 DOI: 10.1111/j.1365-2443.2008.01207.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Recombinant Aquifex aeolicus TrmD protein has a Cys20-Cys20 disulfide bond between its two subunits. This was demonstrated by SDS-polyacrylamide gel analysis of wild-type enzyme and C20S mutant protein (in which the Cys20 residue is substituted by serine), in the absence or presence of various concentrations of dithiothreitol. Analytical gel-filtration chromatography revealed that the C20S mutant protein forms a dimer structure even though it is missing the disulfide bond. Western blotting analysis suggests that the Cys20-Cys20 disulfide bond is formed in native TrmD protein in living A. aeolicus cells. Incubation at 85 degrees C for 20 min caused the precipitation of more than half of the C20S protein, while more than 70% of the wild-type enzyme was soluble at that temperature. This assay clearly demonstrates that the disulfide bond enhances the protein stability at 85 degrees C. A kinetic assay showed that the methyl-transfer activity of the C20S mutant protein was slightly less than that of the wild-type enzyme at 70 degrees C. Comparison of the CD-spectra of wild-type and C20S proteins reveals that some of the alpha-helices in the C20S mutant protein are less tightly packed than those of the wild-type enzyme at 70 degrees C.
Collapse
Affiliation(s)
- Takashi Toyooka
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, Japan
| | | | | | | | | |
Collapse
|
87
|
Mallam AL, Onuoha SC, Grossmann JG, Jackson SE. Knotted fusion proteins reveal unexpected possibilities in protein folding. Mol Cell 2008; 30:642-8. [PMID: 18538662 DOI: 10.1016/j.molcel.2008.03.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 02/22/2008] [Accepted: 03/28/2008] [Indexed: 11/28/2022]
Abstract
Proteins that contain a distinct knot in their native structure are impressive examples of biological self-organization. Although this topological complexity does not appear to cause a folding problem, the mechanisms by which such knotted proteins form are unknown. We found that the fusion of an additional protein domain to either the amino terminus, the carboxy terminus, or to both termini of two small knotted proteins did not affect their ability to knot. The multidomain constructs remained able to fold to structures previously thought unfeasible, some representing the deepest protein knots known. By examining the folding kinetics of these fusion proteins, we found evidence to suggest that knotting is not rate limiting during folding, but instead occurs in a denatured-like state. These studies offer experimental insights into when knot formation occurs in natural proteins and demonstrate that early folding events can lead to diverse and sometimes unexpected protein topologies.
Collapse
Affiliation(s)
- Anna L Mallam
- Chemistry Department, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | | | | | | |
Collapse
|
88
|
Taylor AB, Meyer B, Leal BZ, Kötter P, Schirf V, Demeler B, Hart PJ, Entian KD, Wöhnert J. The crystal structure of Nep1 reveals an extended SPOUT-class methyltransferase fold and a pre-organized SAM-binding site. Nucleic Acids Res 2008; 36:1542-54. [PMID: 18208838 PMCID: PMC2275143 DOI: 10.1093/nar/gkm1172] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 12/18/2007] [Accepted: 12/20/2007] [Indexed: 11/13/2022] Open
Abstract
Ribosome biogenesis in eukaryotes requires the participation of a large number of ribosome assembly factors. The highly conserved eukaryotic nucleolar protein Nep1 has an essential but unknown function in 18S rRNA processing and ribosome biogenesis. In Saccharomyces cerevisiae the malfunction of a temperature-sensitive Nep1 protein (nep1-1(ts)) was suppressed by the addition of S-adenosylmethionine (SAM). This suggests the participation of Nep1 in a methyltransferase reaction during ribosome biogenesis. In addition, yeast Nep1 binds to a 6-nt RNA-binding motif also found in 18S rRNA and facilitates the incorporation of ribosomal protein Rps19 during the formation of pre-ribosomes. Here, we present the X-ray structure of the Nep1 homolog from the archaebacterium Methanocaldococcus jannaschii in its free form (2.2 A resolution) and bound to the S-adenosylmethionine analog S-adenosylhomocysteine (SAH, 2.15 A resolution) and the antibiotic and general methyltransferase inhibitor sinefungin (2.25 A resolution). The structure reveals a fold which is very similar to the conserved core fold of the SPOUT-class methyltransferases but contains a novel extension of this common core fold. SAH and sinefungin bind to Nep1 at a preformed binding site that is topologically equivalent to the cofactor-binding site in other SPOUT-class methyltransferases. Therefore, our structures together with previous genetic data suggest that Nep1 is a genuine rRNA methyltransferase.
Collapse
Affiliation(s)
- Alexander B. Taylor
- Department of Biochemistry, X-ray Crystallography Core Laboratory, The University of Texas Health Science Center San Antonio, San Antonio, TX-78229, USA, Excellence Center: Macromolecular Complexes and Institut für Molekulare Biowissenschaften, Johann-Wolfgang-Goethe-Universität, 60438 Frankfurt/M., Germany, Center for Analytical Ultracentrifugation of Macromolecular Assemblies, The University of Texas Health Science Center San Antonio and Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio, Texas 78229, USA
| | - Britta Meyer
- Department of Biochemistry, X-ray Crystallography Core Laboratory, The University of Texas Health Science Center San Antonio, San Antonio, TX-78229, USA, Excellence Center: Macromolecular Complexes and Institut für Molekulare Biowissenschaften, Johann-Wolfgang-Goethe-Universität, 60438 Frankfurt/M., Germany, Center for Analytical Ultracentrifugation of Macromolecular Assemblies, The University of Texas Health Science Center San Antonio and Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio, Texas 78229, USA
| | - Belinda Z. Leal
- Department of Biochemistry, X-ray Crystallography Core Laboratory, The University of Texas Health Science Center San Antonio, San Antonio, TX-78229, USA, Excellence Center: Macromolecular Complexes and Institut für Molekulare Biowissenschaften, Johann-Wolfgang-Goethe-Universität, 60438 Frankfurt/M., Germany, Center for Analytical Ultracentrifugation of Macromolecular Assemblies, The University of Texas Health Science Center San Antonio and Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio, Texas 78229, USA
| | - Peter Kötter
- Department of Biochemistry, X-ray Crystallography Core Laboratory, The University of Texas Health Science Center San Antonio, San Antonio, TX-78229, USA, Excellence Center: Macromolecular Complexes and Institut für Molekulare Biowissenschaften, Johann-Wolfgang-Goethe-Universität, 60438 Frankfurt/M., Germany, Center for Analytical Ultracentrifugation of Macromolecular Assemblies, The University of Texas Health Science Center San Antonio and Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio, Texas 78229, USA
| | - Virgil Schirf
- Department of Biochemistry, X-ray Crystallography Core Laboratory, The University of Texas Health Science Center San Antonio, San Antonio, TX-78229, USA, Excellence Center: Macromolecular Complexes and Institut für Molekulare Biowissenschaften, Johann-Wolfgang-Goethe-Universität, 60438 Frankfurt/M., Germany, Center for Analytical Ultracentrifugation of Macromolecular Assemblies, The University of Texas Health Science Center San Antonio and Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio, Texas 78229, USA
| | - Borries Demeler
- Department of Biochemistry, X-ray Crystallography Core Laboratory, The University of Texas Health Science Center San Antonio, San Antonio, TX-78229, USA, Excellence Center: Macromolecular Complexes and Institut für Molekulare Biowissenschaften, Johann-Wolfgang-Goethe-Universität, 60438 Frankfurt/M., Germany, Center for Analytical Ultracentrifugation of Macromolecular Assemblies, The University of Texas Health Science Center San Antonio and Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio, Texas 78229, USA
| | - P. John Hart
- Department of Biochemistry, X-ray Crystallography Core Laboratory, The University of Texas Health Science Center San Antonio, San Antonio, TX-78229, USA, Excellence Center: Macromolecular Complexes and Institut für Molekulare Biowissenschaften, Johann-Wolfgang-Goethe-Universität, 60438 Frankfurt/M., Germany, Center for Analytical Ultracentrifugation of Macromolecular Assemblies, The University of Texas Health Science Center San Antonio and Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio, Texas 78229, USA
| | - Karl-Dieter Entian
- Department of Biochemistry, X-ray Crystallography Core Laboratory, The University of Texas Health Science Center San Antonio, San Antonio, TX-78229, USA, Excellence Center: Macromolecular Complexes and Institut für Molekulare Biowissenschaften, Johann-Wolfgang-Goethe-Universität, 60438 Frankfurt/M., Germany, Center for Analytical Ultracentrifugation of Macromolecular Assemblies, The University of Texas Health Science Center San Antonio and Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio, Texas 78229, USA
| | - Jens Wöhnert
- Department of Biochemistry, X-ray Crystallography Core Laboratory, The University of Texas Health Science Center San Antonio, San Antonio, TX-78229, USA, Excellence Center: Macromolecular Complexes and Institut für Molekulare Biowissenschaften, Johann-Wolfgang-Goethe-Universität, 60438 Frankfurt/M., Germany, Center for Analytical Ultracentrifugation of Macromolecular Assemblies, The University of Texas Health Science Center San Antonio and Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio, Texas 78229, USA
| |
Collapse
|
89
|
Bujnicki JM, Droogmans L, Grosjean H, Purushothaman SK, Lapeyre B. Bioinformatics-Guided Identification and Experimental Characterization of Novel RNA Methyltransferas. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/978-3-540-74268-5_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
90
|
Leulliot N, Bohnsack MT, Graille M, Tollervey D, Van Tilbeurgh H. The yeast ribosome synthesis factor Emg1 is a novel member of the superfamily of alpha/beta knot fold methyltransferases. Nucleic Acids Res 2007; 36:629-39. [PMID: 18063569 PMCID: PMC2241868 DOI: 10.1093/nar/gkm1074] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Emg1 was previously shown to be required for maturation of the 18S rRNA and biogenesis of the 40S ribosomal subunit. Here we report the determination of the crystal structure of Emg1 at 2 Å resolution in complex with the methyl donor, S-adenosyl-methionine (SAM). This structure identifies Emg1 as a novel member of the alpha/beta knot fold methyltransferase (SPOUT) superfamily. In addition to the conserved SPOUT core, Emg1 has two unique domains that form an extended surface, which we predict to be involved in binding of RNA substrates. A point mutation within a basic patch on this surface almost completely abolished RNA binding in vitro. Three point mutations designed to disrupt the interaction of Emg1 with SAM each caused>100-fold reduction in SAM binding in vitro. Expression of only Emg1 with these mutations could support growth and apparently normal ribosome biogenesis in strains genetically depleted of Emg1. We conclude that the catalytic activity of Emg1 is not essential and that the presence of the protein is both necessary and sufficient for ribosome biogenesis.
Collapse
Affiliation(s)
- Nicolas Leulliot
- Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, UMR8619, Bât 430, Université de Paris-Sud, 91405 Orsay Cedex, France.
| | | | | | | | | |
Collapse
|
91
|
Kuratani M, Bessho Y, Nishimoto M, Grosjean H, Yokoyama S. Crystal structure and mutational study of a unique SpoU family archaeal methylase that forms 2'-O-methylcytidine at position 56 of tRNA. J Mol Biol 2007; 375:1064-75. [PMID: 18068186 DOI: 10.1016/j.jmb.2007.11.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 10/30/2007] [Accepted: 11/09/2007] [Indexed: 11/15/2022]
Abstract
The conserved cytidine residue at position 56 of tRNA contributes to the maintenance of the L-shaped tertiary structure. aTrm56 catalyzes the 2'-O-methylation of the cytidine residue in archaeal tRNA, using S-adenosyl-L-methionine. Based on the amino acid sequence, aTrm56 is the most distant member of the SpoU family. Here, we determined the crystal structure of Pyrococcus horikoshii aTrm56 complexed with S-adenosyl-L-methionine at 2.48 A resolution. aTrm56 consists of the SPOUT domain, which contains the characteristic deep trefoil knot, and a unique C-terminal beta-hairpin. aTrm56 forms a dimer. The S-adenosyl-L-methionine binding and dimerization of aTrm56 were similar to those of the other SpoU members. A structure-based sequence alignment revealed that aTrm56 conserves only motif II, among the four signature motifs. However, an essential Arg16 residue is located at a novel position within motif I. Biochemical assays showed that aTrm56 prefers the L-shaped tRNA to the lambda form as its substrate.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Binding Sites
- Crystallography, X-Ray
- Cytidine/analogs & derivatives
- Cytidine/chemistry
- Dimerization
- Hydrogen Bonding
- Hydrophobic and Hydrophilic Interactions
- Methylation
- Models, Chemical
- Models, Molecular
- Molecular Sequence Data
- Mutation
- Protein Binding
- Protein Conformation
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Pyrococcus horikoshii/enzymology
- RNA, Archaeal/chemistry
- RNA, Archaeal/genetics
- RNA, Archaeal/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- S-Adenosylmethionine/metabolism
- Sequence Homology, Amino Acid
- tRNA Methyltransferases/chemistry
- tRNA Methyltransferases/genetics
- tRNA Methyltransferases/metabolism
Collapse
Affiliation(s)
- Mitsuo Kuratani
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
92
|
Christian T, Hou YM. Distinct determinants of tRNA recognition by the TrmD and Trm5 methyl transferases. J Mol Biol 2007; 373:623-32. [PMID: 17868690 PMCID: PMC2064070 DOI: 10.1016/j.jmb.2007.08.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Accepted: 08/03/2007] [Indexed: 11/24/2022]
Abstract
TrmD and Trm5 are, respectively, the bacterial and eukarya/archaea methyl transferases that catalyze transfer of the methyl group from S-adenosyl methionine (AdoMet) to the N1 position of G37 in tRNA to synthesize m1G37-tRNA. The m1G37 modification prevents tRNA frameshifts on the ribosome by assuring correct codon-anticodon pairings, and thus is essential for the fidelity of protein synthesis. Although TrmD and Trm5 are derived from unrelated AdoMet families and recognize the cofactor using distinct motifs, the question of whether they select G37 on tRNA by the same, or different, mechanism has not been answered. Here we address this question by kinetic analysis of tRNA truncation mutants that lack domains typically present in the canonical L shaped structure, and by evaluation of the site of modification on tRNA variants with an expanded or contracted anticodon loop. With both experimental approaches, we show that TrmD and Trm5 exhibit separate and distinct mode of tRNA recognition, suggesting that they evolved by independent and non-overlapping pathways from their unrelated AdoMet families. Our results also shed new light onto the significance of the m1G37 modification in the controversial quadruplet-pairing model of tRNA frameshift suppressors.
Collapse
Affiliation(s)
- Thomas Christian
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
93
|
Ozanick SG, Bujnicki JM, Sem DS, Anderson JT. Conserved amino acids in each subunit of the heteroligomeric tRNA m1A58 Mtase from Saccharomyces cerevisiae contribute to tRNA binding. Nucleic Acids Res 2007; 35:6808-19. [PMID: 17932071 PMCID: PMC2175304 DOI: 10.1093/nar/gkm574] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In Saccharomyces cerevisiae, a two-subunit methyltransferase (Mtase) encoded by the essential genes TRM6 and TRM61 is responsible for the formation of 1-methyladenosine, a modified nucleoside found at position 58 in tRNA that is critical for the stability of tRNA(Met)i The crystal structure of the homotetrameric m1A58 tRNA Mtase from Mycobacterium tuberculosis, TrmI, has been solved and was used as a template to build a model of the yeast m1A58 tRNA Mtase heterotetramer. We altered amino acids in TRM6 and TRM61 that were predicted to be important for the stability of the heteroligomer based on this model. Yeast strains expressing trm6 and trm61 mutants exhibited growth phenotypes indicative of reduced m1A formation. In addition, recombinant mutant enzymes had reduced in vitro Mtase activity. We demonstrate that the mutations introduced do not prevent heteroligomer formation and do not disrupt binding of the cofactor S-adenosyl-L-methionine. Instead, amino acid substitutions in either Trm6p or Trm61p destroy the ability of the yeast m1A58 tRNA Mtase to bind tRNA(Met)i, indicating that each subunit contributes to tRNA binding and suggesting a structural alteration of the substrate-binding pocket occurs when these mutations are present.
Collapse
Affiliation(s)
- Sarah G Ozanick
- Department of Biological Sciences, Marquette University, P.O. Box 1881, Milwaukee, WI 53201, USA
| | | | | | | |
Collapse
|
94
|
Abstract
Knotted proteins are more commonly observed in recent years due to the enormously growing number of structures in the Protein Data Bank (PDB). Studies show that the knot regions contribute to both ligand binding and enzyme activity in proteins such as the chromophore-binding domain of phytochrome, ketol–acid reductoisomerase or SpoU methyltransferase. However, there are still many misidentified knots published in the literature due to the absence of a convenient web tool available to the general biologists. Here, we present the first web server to detect the knots in proteins as well as provide information on knotted proteins in PDB—the protein KNOT (pKNOT) web server. In pKNOT, users can either input PDB ID or upload protein coordinates in the PDB format. The pKNOT web server will detect the knots in the protein using the Taylor's smoothing algorithm. All the detected knots can be visually inspected using a Java-based 3D graphics viewer. We believe that the pKNOT web server will be useful to both biologists in general and structural biologists in particular.
Collapse
Affiliation(s)
- Yan-Long Lai
- Institute of Bioinformatics, National Chiao Tung University, Hsinchu 30050, Taiwan and Core Facility for Structural Bioinformatics, National Chiao Tung University, Hsinchu 30050, Taiwan
| | - Shih-Chung Yen
- Institute of Bioinformatics, National Chiao Tung University, Hsinchu 30050, Taiwan and Core Facility for Structural Bioinformatics, National Chiao Tung University, Hsinchu 30050, Taiwan
| | - Sung-Huan Yu
- Institute of Bioinformatics, National Chiao Tung University, Hsinchu 30050, Taiwan and Core Facility for Structural Bioinformatics, National Chiao Tung University, Hsinchu 30050, Taiwan
| | - Jenn-Kang Hwang
- Institute of Bioinformatics, National Chiao Tung University, Hsinchu 30050, Taiwan and Core Facility for Structural Bioinformatics, National Chiao Tung University, Hsinchu 30050, Taiwan
- *To whom correspondence should be addressed. +886-3-513-1337+886-3-572-9288
| |
Collapse
|
95
|
Structural and evolutionary bioinformatics of the SPOUT superfamily of methyltransferases. BMC Bioinformatics 2007; 8:73. [PMID: 17338813 PMCID: PMC1829167 DOI: 10.1186/1471-2105-8-73] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Accepted: 03/05/2007] [Indexed: 11/29/2022] Open
Abstract
Background SPOUT methyltransferases (MTases) are a large class of S-adenosyl-L-methionine-dependent enzymes that exhibit an unusual alpha/beta fold with a very deep topological knot. In 2001, when no crystal structures were available for any of these proteins, Anantharaman, Koonin, and Aravind identified homology between SpoU and TrmD MTases and defined the SPOUT superfamily. Since then, multiple crystal structures of knotted MTases have been solved and numerous new homologous sequences appeared in the databases. However, no comprehensive comparative analysis of these proteins has been carried out to classify them based on structural and evolutionary criteria and to guide functional predictions. Results We carried out extensive searches of databases of protein structures and sequences to collect all members of previously identified SPOUT MTases, and to identify previously unknown homologs. Based on sequence clustering, characterization of domain architecture, structure predictions and sequence/structure comparisons, we re-defined families within the SPOUT superfamily and predicted putative active sites and biochemical functions for the so far uncharacterized members. We have also delineated the common core of SPOUT MTases and inferred a multiple sequence alignment for the conserved knot region, from which we calculated the phylogenetic tree of the superfamily. We have also studied phylogenetic distribution of different families, and used this information to infer the evolutionary history of the SPOUT superfamily. Conclusion We present the first phylogenetic tree of the SPOUT superfamily since it was defined, together with a new scheme for its classification, and discussion about conservation of sequence and structure in different families, and their functional implications. We identified four protein families as new members of the SPOUT superfamily. Three of these families are functionally uncharacterized (COG1772, COG1901, and COG4080), and one (COG1756 represented by Nep1p) has been already implicated in RNA metabolism, but its biochemical function has been unknown. Based on the inference of orthologous and paralogous relationships between all SPOUT families we propose that the Last Universal Common Ancestor (LUCA) of all extant organisms contained at least three SPOUT members, ancestors of contemporary RNA MTases that carry out m1G, m3U, and 2'O-ribose methylation, respectively. In this work we also speculate on the origin of the knot and propose possible 'unknotted' ancestors. The results of our analysis provide a comprehensive 'roadmap' for experimental characterization of SPOUT MTases and interpretation of functional studies in the light of sequence-structure relationships.
Collapse
|
96
|
Klimasauskas S, Weinhold E. A new tool for biotechnology: AdoMet-dependent methyltransferases. Trends Biotechnol 2007; 25:99-104. [PMID: 17254657 DOI: 10.1016/j.tibtech.2007.01.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 11/15/2006] [Accepted: 01/12/2007] [Indexed: 11/26/2022]
Abstract
AdoMet-dependent methyltransferases catalyze highly specific methyl group transfers from the ubiquitous cofactor S-adenosyl-L-methionine to a multitude of biological targets in the cell. Recently, DNA methyltransferases have been used for the sequence-specific, covalent attachment of larger chemical groups to plasmid and bacteriophage DNA using two classes of synthetic AdoMet analogs. These synthetic cofactors, in combination with the myriad AdoMet-dependent methyltransferases available in nature, provide new molecular tools for precise, targeted functionalization and labeling of large natural DNAs and, in all likelihood, RNAs and proteins. This paves the way for numerous novel applications in the functional analysis of biological methylation, biotechnology and medical diagnostics.
Collapse
Affiliation(s)
- Saulius Klimasauskas
- Laboratory of Biological DNA Modification, Institute of Biotechnology, LT-02241 Vilnius, Lithuania.
| | | |
Collapse
|
97
|
Takeda H, Toyooka T, Ikeuchi Y, Yokobori SI, Okadome K, Takano F, Oshima T, Suzuki T, Endo Y, Hori H. The substrate specificity of tRNA (m1G37) methyltransferase (TrmD) from Aquifex aeolicus. Genes Cells 2007; 11:1353-65. [PMID: 17121543 DOI: 10.1111/j.1365-2443.2006.01022.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transfer RNA (m(1)G37) methyltransferase (TrmD) catalyzes methyl-transfer from S-adenosyl-L-methionine to the N(1) atom of G37 in tRNA. In Escherichia coli cells, TrmD methylates tRNA species possessing a G36G37 sequence. It was previously believed that G36 was the positive determinant of TrmD recognition. In the current study, we demonstrate that TrmD from Aquifex aeolicus methylates tRNA transcripts possessing an A36G37 sequence as well as tRNA transcripts possessing a G36G37 sequence. In contrast, tRNA transcripts possessing pyrimidine36G37 were not methylated at all. These substrate specificities were confirmed by an in vitro kinetic assay using 16 tRNA transcripts. The modified nucleoside and the position in yeast tRNA(Phe) transcript were confirmed by LC/MS. Furthermore, nine truncated tRNA molecules were tested to clarify the additional recognition site. Unexpectedly, A. aeolicus TrmD protein efficiently methylated the micro helix corresponding to the anti-codon arm. Because the disruption of the anti-codon stem caused the complete loss of the methyl group acceptance activity, the anti-codon stem is essential for the recognition. Moreover, the existence of the D-arm structure inhibited the activity. Recently, it was reported that E. coli TrmD methylates yeast tRNA(Phe) harboring a sequence A36G37. Thus, recognition of the purine36G37 sequence is probably common to eubacteria TrmD proteins.
Collapse
Affiliation(s)
- Hiroshi Takeda
- Department of Applied Chemistry, Faculty of Engineering, Ehime University, Bunkyo 3, Matsuyama 790-8577, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Mallam AL, Jackson SE. The Dimerization of an α/β-Knotted Protein Is Essential for Structure and Function. Structure 2007; 15:111-22. [PMID: 17223537 DOI: 10.1016/j.str.2006.11.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 11/24/2006] [Accepted: 11/29/2006] [Indexed: 11/29/2022]
Abstract
alpha/beta-Knotted proteins are an extraordinary example of biological self-assembly; they contain a deep topological trefoil knot formed by the backbone polypeptide chain. Evidence suggests that all are dimeric and function as methyltransferases, and the deep knot forms part of the active site. We investigated the significance of the dimeric structure of the alpha/beta-knot protein, YibK, from Haemophilus influenzae by the design and engineering of monomeric versions of the protein, followed by examination of their structural, functional, stability, and kinetic folding properties. Monomeric forms of YibK display similar characteristics to an intermediate species populated during the formation of the wild-type dimer. However, a notable loss in structure involving disruption to the active site, rendering it incapable of cofactor binding, is observed in monomeric YibK. Thus, dimerization is vital for preservation of the native structure and, therefore, activity of the protein.
Collapse
Affiliation(s)
- Anna L Mallam
- Chemistry Department, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | | |
Collapse
|
99
|
Graham DE, Kramer G. Identification and characterization of archaeal and fungal tRNA methyltransferases. Methods Enzymol 2007; 425:185-209. [PMID: 17673084 DOI: 10.1016/s0076-6879(07)25008-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
All organisms modify their tRNAs by use of evolutionarily conserved enzymes. Members of the Archaea contain an extensive set of modified nucleotides that were early evidence of the fundamental evolutionary divergence of the Archaea from Bacteria and Eucarya. However, the enzymes responsible for these posttranscriptional modifications were largely unknown before the advent of genome sequencing. This chapter explains methods to identify tRNA methyltransferases in genome sequences, emphasizing the identification and characterization of six enzymes from the hyperthermophilic archaeon Methanocaldococcus jannaschii. We describe methods to express these proteins, purify or synthesize tRNA substrates, measure methyltransferase activity, and map tRNA modifications. Comparison of the archaeal methyltransferases with their yeast homologs suggests that the common ancestor of the archaeal and eucaryal organismal lineages already had extensive tRNA modifications.
Collapse
Affiliation(s)
- David E Graham
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
100
|
Mallam AL, Jackson SE. A comparison of the folding of two knotted proteins: YbeA and YibK. J Mol Biol 2006; 366:650-65. [PMID: 17169371 DOI: 10.1016/j.jmb.2006.11.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 10/19/2006] [Accepted: 11/03/2006] [Indexed: 10/23/2022]
Abstract
The extraordinary topology of proteins belonging to the alpha/beta-knot superfamily of proteins is unexpected, due to the apparent complexities involved in the formation of a deep trefoil knot in a polypeptide backbone. Despite this, an increasing number of knotted structures are being identified; how such proteins fold remains a mystery. Studies on the dimeric protein YibK from Haemophilus influenzae have led to the characterisation of its folding pathway in some detail. To complement research into the folding of YibK, and to address whether folding pathways are conserved for members of the alpha/beta-knot superfamily, the structurally similar knotted protein YbeA from Escherichia coli has been studied. A comprehensive thermodynamic and kinetic analysis of the folding of YbeA is presented here, and compared to that of YibK. Both fold via an intermediate state populated under equilibrium conditions that is monomeric and considerably structured. The unfolding/refolding kinetics of YbeA are simpler than those found for YibK and involve two phases attributed to the formation of a monomeric intermediate state and a dimerisation step. In contrast to YibK, a change in the rate-determining step on the unfolding pathway for YbeA is observed with a changing concentration of urea. Despite this difference, both proteins fold by a mechanism involving at least one sequential monomeric intermediate that has properties similar to that observed during the equilibrium unfolding. The rate of dimerisation observed for YbeA and YibK is very similar, as is the rate constant for formation of the kinetic monomeric intermediate that precedes dimerisation. The findings suggest that relatively slow folding and dimerisation may be common attributes of knotted proteins.
Collapse
Affiliation(s)
- Anna L Mallam
- University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW, UK
| | | |
Collapse
|